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ABSTRACT

This paper provides propertiesof price operators, functions that map the payoff of a

contingent claim to its market value as a function of the stateof the economy. First we

provide conditionsfor a norm—preservingarbitrage—freeextensionof an arbitrage—freeprice

operatorfrom the spaceof actually marketedassetsto the spaceof all possibleassets.This

can he useful for the characterizationof equilibrium in settingsof asymmetric information

or sequential trade. Then we show, in the multiperiod setting, that tile market value of

a security may be treated as the potential of its dividend, and show severalproperties

that derivefrom this characterization.Finally, we demonstratethe existenceof an “eigen—

probability measure”on the statespaceunderwhich the meancurrentvalueof anysecurity

is its discountedmean future payoff. The fixed discountfactor is the spectral radius of

the valuation operator, the reciprocalof the smallestpossiblefixed rate of return on any

security.

I thank Mark Garman for bringing my attention to the connectionbetweenprice

operatorsand semigroups,and Kai Lai Chung for teachingme what little I know of the

connection betweenMarkov processesand potentials. This is a draft. Comments are

invited. Any errors are my own.
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Price Operators: Extensions,Potentials, and the Markov Valuation of Securities )

1. Introduction

A price operator is a function f mapping a vector spaceM of assetsof some sort into a

vectorspaceL of market values. We treat N as avectorspaceof possibleassets,A C N as

the subsetof actually tradedassets,andM = span(A)as the marketedsubspace,achieved

by linear combinationsof traded assets.Typically L is a vector spaceof functions on a

set E representingthe state of the economy. For an assetm E M, the function f(m) E L )

statesthe market valueof m as a function of the state, [f(m)J(e) in state e. By the usual

linearity of marketvaluation, apriceoperator is linear. A priceoperatorf is arbitrage—free

if positive: f(m) is positive wheneverm is positive. We will first state conditions under

which an arbitrage—freeprice operator f on the marketedsubspaceM can be extended

to an arbitrage—freeprice operator on the entire space N of possible assets. This, in

turn, permits one to representf, for example,as a conditional expectationoperator. This

extensionmay be useful for such purposesascharacterizingprice operatorsas an evolution

family or semi—groupof operators in a multi—period setting [7], and in generalizingthe

coimection betweenoptiniality and absenceof arbitrage found by Kreps [13] to a multi--

period or rational expectationsframework. We will apply the extensionto a Markovian

setting in the latter part of the paper to show that the market value of a security is the

potential of its dividend under the valuation semi—group. Making this connectionallows

one to apply a large body of results from potential theory to the problem of assetpricing.

For example, tile CompleteMaximum Principle implies that if Security A is worth more

than Security B in statesof tile economyfor which B pays dividends, then A is worth

more than B in every state. The ResolventEquation gives a direct connectionbetweenthe

time—rateof preferenceandsecurityprice in a Lucas [14] or Merton [15] style economy. We

also see that~the reciprocalof the spectral radius of the valuation operator is the smallest

possiblerate of return under which the current value of a securitymay be treatedas the

expectedfuture discountedpayoff of the security,under someprobability assessments.

The remainderof the paperis divided into two parts. The next sectionstudiesthe op-

erator extensionproblem. Section 2.1 reviews severalclassicalresults on linear extensions;

Section 2.2 presentsthe basicprice operatorextensionproblem; the main extensionresults
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are Theorems3 and 4 of Section 2.3. Section 3 appliestile results of Section 2 to the con-

nections betweenassetpricing in a multi—period setting and potential theory. The direct

connectionis madein Section3.1. The role in this connectionplayedby Markov processes

is outlined in Section 3.2. Finally, Section 3.3 shows how one can price assetsmerely by

discountedexpectedpayoffs under a spectral radius discountrate andunderexpectations

given by Gceigenprobabilities,~akind of steady—stateArrow—Debreuprices. Many readers,

particularly those interestedmainly in Markoviansecurity valuation, may wish to proceed

directly to Section 3.

2. Price Operator Extensions

2.1. Background

We first review a classicalextensionresult commonlyknown as the Hahn—BanachTheorem.

For convenience,we temporarily let L denote the vector spaceB, the real—line. We let

M denote a vector subspaceof a vector space N. A map p : M —~ L is sublinear if

p(x H- y) � p(x) + p(y) for all x and y in M, andp(ax) = ap(x) for all a > 0 and x in M.

A function F : N —~ L is an extension of a function f : M —~ L if F(x) = 1(z) for all x in

M.

THEOREM (HAHN-BANAOH). Supposef is an L-valuedlinear form on M andp is a

sublinear L—valuedform on N such that f(x) < p(z) for all x in M. Then f has a linear

extensionF : N —~ L such that F(z) <p(z) for all z in M.

As a corollary, any continuouslinear functional on a vector subspaceof a locally convex

space,for examplea normedspace,has a continuouslinear extensionto the whole space.

If M is orderedby the positive cone N+ andtile original functional f : M —~ L is positive

on M+ = Mn N+, we usually want a positive extensionF, meaningF(z) � 0 for all z in

N+. A simple condition is given by the well—known Krein—RutmanTheorem:

THEOREM (KREIN-RTJTMAN). SupposeN is a locally convexspaceandMflint(N+)

is not empty. 1ff is positive,linear, andcontinuouson M thenf has a positivecontinuous

linear extensionF : M —~ L. If N is normed, the extensionis norm—preserving.

The condition that N+ has interior is strong, but can be weakenedby applying the

following definition.
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SubspaccPositive intersectionProperty (SPIP~).Suppose M is a vector subspaceof an

orderedvector space N. Then (M, N) has SPIP if, for each x in N, thereexists y in Al

suchthat z H- y � 0 if andonly if thereexistsz in M such that z + z ~ 0.

LEMMA. If M~int(N~)~ 0 then(M, N) has SPIP.

The proof is simple. Wecan then weaken the Krein—Rutman conditions as follows.

THEOREM (MONOTONE EXTENSION). Suppose,for any ordered vector spaceN and

vector subspaceM of N, that (Al, N) has the subspacepositive intersectionproperty.

Then anypositivelinear L-valued form on M hasa positive linear extensionF : N —~ L.

A proof may be found in Day [6].

2.2. Operator Extensions

Now we attempt generalizationsof the results in the last section for f a linear functional

(L = B) to f a linear operator mapping a subspaceM of a vector spaceN into a general

vector space L. For most applications in a Markovian setting, L = N. For example, let

N denotea vector spaceof real--valued functions on a set 11. A security, in a two—period

setting is identified with a function z in N, where z(w) denotesthe payoffof the security

in state w at the next period. If A is the subsetof securities actually available for trade

and there is free formation of portfolios (linear combinations) of securities, then M = )

span(A)is the marketedsuhspace of portfolios, avector subspace.Let E denotethe set of

“current” statesof tiie world; in a Markovian setting we take 8 = ft The market value

f(z) of portfolio z is [f(x)](E) in current state ~ C 8. We treat 1(x), then, as an element

of a spaceL of real—valuedfunctions on 8, and f as an operatormapping M into L. By

the linearity of market valuation, f is linear. There are (at least) two particular reasons

we may want a positive linear extension of f to the full space N of possible securities.

First, one may want to draw conclusionssimilar to Kreps’ [13] on the relationshipbetween

the extension of price functionals, “viability” (in his language, the existence of optimal

choices),and absenceof arbitrage. Second,we may wish to obtain a representationof f

as a “conditional expectationoperator,” along the lines of Harrison and Kreps [10]. Duffie

and Garman[7], for example,apply the results of this paper to an intertemporalsecurity

marketsetting, showingthat lack of arbitrageimplies that the valuation operatorsbetween
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successivedatescomposeandextendto an evolutionfamily of operators,or a semigroupin

the stationarycase. In arational expectationseconomy,the imagespaceL could be viewed

as the the spaceof functions on B measurablewith respectto the sigma—algebragenerated

by the join of all “private information” sigma—algebras.

Of course, in the setting we present,one can alwaysobtain a real—valuedlinear ex-

tension of [f(.)](~)separatelyfor each “state” E~but there is no reasonto believe that

the resulting “extension” F is “measurable”, in the sensethat [F(x)](.) is a measurable

function on 8, which is a key propertyfor most purposes.

The existence of a positive operatorextensionof f dependson property of L or N

known as order completeness.In fact, order completenessis both necessaryandsufficient

underotherweak regularity conditions. An orderedvector spaceL is order completeif it

hasthe following property: [Let A C L be a subsetsuch that thereexistsz C L with a ~ x

for all a in A. Then A has a least upperbound,a vector y C L suchthat a ~ y for all a in

A arid no other vector z ~ y with this property.]

Tile lineal closureof a subsetA of a vectorspaceL is the set of z in L such that there

existsy in A with {ax-i-(1 —a)y, a C (0, 1]} C A. A subsetA of L is lineally closedprovided

A and the lineal closure of A coincide. Of course,if a subsetof a topological vector space

is closed, it is lineally closed. (But not necessarilythe converse!) We will stipulate in some

of the following results that N+ or L+ is lineally closed. This is certainly the casefor any

foreseenapplication.

A vector spaceL has the Hahn—Banachextensionproperty if the Hahn—BanachThe-

oremstated in Section 2.1 (for L = B) is true for any vectorspaceN and vector subspace

M C N. A vector spaceL has the MonotoneExtensionProperty if it obeysthe Monotone

ExtensionTheorem (statedin Section 2.1 for L = B.)

THEOREM. SupposeL is an orderedvectorspacewhosepositiveconeis lineally closed.

Then the following conditionsare equivalent.

(i) L is order complete

(ii) L has the Hahn—BanachExtensionproperty

(iii) L has the Monotone extension property.
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This statementis highly simplified from asimilar result of Day [6], his TheoremVI,

3.1. and tells us that evenunder the favorable “subspacepositive intersectionproperty”

there is no guaranteeof apositive linear extensionof the marketvaluationoperatorunless

L is order complete.This is strong. For example,the spaceCb(~I)of boundedcontinuous

functionson anormal topological space11 is ordercomplete if andonly if ~I is extremally

disconnected(eachopensubsetof 12 hasopenclosure). In effect, 12 must be discrete.For

(Al, .M, ~t) a a—finite measurespace,however,all of the spacesL~(jL),1 � q � oo, are order

complete. The a—finite restriction is weak: (Al, .M, ji) is a—finite providedM is the union

of a countableset of its measurablesubsets,each of finite measure. In particular, any

Euclideanspaceis a—finite (Lebesguemeasure),as is any finite measurespacefor example,

a probability space. We will be focusingon L~(~)sincethat is a naturalspacefor Markov

prOcesses[11]. This is thespaceof essentiallyboundedmeasurablereal—valuedfunctionson

(M, M, em). The a-finite restriction canbe weakenedto localizable, as definedby Schaefer

[18, p. 157].

2.3. Main Extension Results

An ordered vector space L is a lattice if every set {x, y} of two elementsz andy of L hasa

least upper bound,denotedx V y. For example,the spacesCb(1I) andL~i), 1 ~ q ~ Co

describedin Section 2.2 are lattices, with fV g {max{f(w),y(w)}, w C 1l}. The space

C’~O,11 of differentiablefunctions on [0,1] is not a lattice becausethe least upper bound )

of two differentiablefunctionsneednot be differentiable.

A BanachspaceL that is a lattice is a Banachlattice providedthe function z ‘—‘

zV 0 is continuous.The function spacesCb(12) (supremumnorm) and L~(j~)are examples

of Banachlattices. A Banachlattice L with theproperty zV y = z V y II for all x

and y in L+ is an abstract M—space,or AM—space. If the unit ball of L has a least upper

bound,say c, then e is the unit of L. An exampleof an AM—space with aunit is L°°(~);

thereare manyother examples,for instanceCb(12). The unit of both L00(,L) and C6(12) is

the constantunity function. The following famousresult will soonbe used:

THEOREM 1. If L is an AM—spacewith unit then L is isomorphic with the space

C(K) of continuousfunctionson a compacttopological spaceK. If, in addition, L is order

complete, then K is extrem ally disconnected.
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This result~,duemoreor lessto Kakutani [18, pp. 104—108], is the basis of the following

result. First we note that a vectorsuhspaceof a lattice is a sublatticeif a lattice underthe

sameordering.

THEOREM 2 (SCHAEFER). SupposeAl is aclosedsublatticeofa Banachlattice N, and

L is an order completeAM—spacewith unit. Then anypositivelinear operatorf : Al —+ L

has a norm preservingpositivelinear extensionF : N —~ L.

For a multiperiod application,the norm preservingproperty of this extensionis mi-
portant, and we will strive for it in the following.1 It is implicit in the statement of

Schaefer’s result, and a useful property, that every positive linear operator on a Banach

lattice into a normedlattice is continuous,or equivalently,of finite norm. See [18, p. 84].

Unfortunately, arid this is critical, it is extremely restrictive to assumethat the marketed

subspaceM of the spaceN of all possiblesecurities is itself a lattice. That is, if port-

folios x and y are in Al, there is no reason to believe that the portfolios with payoffs

(x V y)(w) = max{x(w),y(w)}, w C 12, is also marketed. A sufficient condition is that

all options and compound options are available for trade [12]. Thus, all of our remaining

results are not for Al not a sublattice.

A vector subspaceAl of an orderedvector space N majorizesN provided, for each

n C N there exists m C Al such that m n. For example, if N = L~(p),it is necessary

and sufficient~for Al to majorize N that there exists x C Al and a scalar k > 0 such

that x � k. Becausemajorization implies tile subspacepositive intersectionproperty, the

following result is a corollary to the Theoremof Section 2.2, but the proof is illustrative.

PROPOSITION 1. SupposeL is an order complete vector space with a lineally closed

positive cone. If N is an ordered vector spacemajorizedby a vector subspace M, then any

positive linear operator f : M —~ L has a positive linear extension.

PRooF: Let p : N —p L denote the function defined by

p(z)=inf{f(y):z~y, yCM}, zCN.

~ We recall that the norm f of an operator f : Al —p L on a normed space (Al, Ii IM)

into anormedspace(L, . ~)is sup{~~f(m) ~ m IIM~1}.
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Thenp is sublinearand the Hahn—Banachextensionproperty appliesbecauseL is order

complete (See Section 2.2). Thus f has a p—dominated linear extension F : N —÷ L.

Because,for any x C N+, F(—x) ~ p(—z) = 0, F is a positive linear extension. g

There is not a hint of a norm preserving argument to be gotten from this proof. The

following result hasthus been developed. This result heavily exploits the properties of the

Markov setting, N = L, amid the properties of an order complete AM—spacewith unit. A

special case is N = L = L~(jt),which is precisely the setting most suited to the security

valuation problem in a multiperiod setting.

THEOREM 3. SupposeL is an order complete AM—spacewith unit, Al is a vectorsubspace

of L, and f is a continuouspositive linear operator on M into L. Then f has a positive

norm preservinglinear extensionF: L —~ L.

PROOF: First, by Theorem 1 of this section we can treat L as the space C(K) of continuous

functions on a compactextremnally disconnectedtopological spaceK. [The proof proceeds

identically without this transformationfor the caseL = L00(~t), j~a a—finite measure,which

is the I)riliciPal application.]

Let p : L —~ L denote the sublinearform:

p(z) = f jJ x~, z C L.

[That p(ax) = ap(x) for a > 0 is obvious. Since (z + y)+ ~ x+ + y+, sublinearity is then

trivial.] Now f(x) ~ p(x) for z C Al follows by positivity off andthe definition of p. Thus,

since L is order complete,f hasa p—dominatedlinear extensionF : L —~ L by the theorem

of Section 2.2. The extensionis positive since, for any x C L+, F(—z) � p(—z) = 0. The

extensionis norm—preservingsince, for any x C L,

F(x) [I = F(z~)— F(x) II
~max{~IF(x~)II, II F(z) I}
� max{U p(x~) [, p(x) I}
= max{[ f III If II II x
= 11111 max {II x~~ ~ II)
=1111111 II.

This completes the proof. I
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One of the conditions of Theorem 3 is that f is continuous. We note that this is

automatic if Iv! is a closedsublattice,asnoted earlier, or under the following condition.

LEMMA 1. SupposeL is an AM—spacewith unit majorized by a vector subspaceAl. If

f is a positive linear operatoron a vector subspaceAl of L into a normedorderedvector

space Y then f is continuous.

PROOF: Let y C M be such that y � e, where e is the order unit of L. Then, for any

z C M of norm less than or equal to unity, II f(x) II II f(y) II by positivity of f. I

This is actually a special caseof a much more generalresult. See Schaefer[17, p. 230]. Of

course a more generalresult is obtainedunder the subspacepositive interactionproperty,

but the proof is less clear.

LEMMA 2. SupposeN is a BanachLattice and Al is a vector subspaceof L such that

(M, N) has the subspace positive intersection property. If f is a positive linear operator

on M into a normedvector lattice L, thenf is continuous.

PROOF: By the Theoreni of Section 2,2, f hasa positivelinear extensionF : N —~ L. But

any suchoperatorF is continuoussinceN is a BanachLattice. Thus f is continuous. I

We also havean extensionresult for the caseN ~ L. An operatorP betweennormed

spacesis con tractive if continuousand of norm less than or equal to unity. An operator

P is a projection if the composition P2
= P o P is equal to P. We will make use of the

following technical result.

PROPoSITION 2. SupposeL is an order complete AM—spacewith unit e and L0 is a closed

vector sublattice of L containing e. Then there exists a positive contractive projection

P : L —~ L0 whose range is L0.

This Proposition is Corollary 2, p. 110 of Schaefer[18]. We then haveour second

extensionresult.

THEOREM 4. SupposeL and N are AM—spaceswith unit, the former order complete,

and f is a positive linear operator into L on a vectorsubspaceAl of N that majorizesN.

Then f is continuous and has a positivelinear norm preservingextensionF : N —~ L.

PROOF: As earlier, we can identify L with the space C(K) of continuous functions on

a compact extremally disconnectedspaceK. Let p00(K) denote the spaceof bounded
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sequenceson K. BecauseK is extremnally disconnected, we can treat C(K) as a closed

vector sublattice of £~(K)with the constantunity function as its unit. By the previous

proposition, there is a contractiveprojection P : ~(K) C(K).

For each t C K, the linear functional q: Al —~ ~°° (K) definedby

q(z) = [f(x)](t), z C M

is positive, and thus by Lemma 1 continuousof norm no greaterthan II f II . Because

Al majorizesN, we know Mn int(N+) is not empty. Thus, by the usual Krein—Reitmnan

Theorem (Section2.1), q has anorm-preservingpositive linear extensionQt : N —~ B. The

operator Q : N —~ ~°°(K) definedby

[Qx](t) = Qtz, t C K,

is positive, linear, and of norm f . The compositionF = P o Q is thus apositive linear

norm preservingextensionof f. I

The conditions on N can be weakened,it seems. There is then a possibleresult on

strictly positive extensionsof strictly positive operators, following the ideas in Kreps [13]

arid Duffie-Huang [8].

3. Prices and Potentials

We now apply the extensionresults of the last section to show that the market value of a )

security in a multiperiod setting may be treatedas the potential of its dividend under an

extensionof the single--periodvaluationoperator. There may be a folklore concerningthis

result, although I am not awareof a reference. At least in the context of a deterministic

growth economy, the idea might be fairly common knowledge. Aside from the intuition

affordedby connectingpriceswith the physical phenomenonof potentials,there is a body

of results from potential theory that may be of interest to assetpricing theorists. We will

take a small sample. A major post—war occupationof probabilistshas been the drawing

of parallelsbetweenMarkov processesand potential theory. This is evident, for example,

in the work of Blumenthal, Clung, Doob, Dynkin, Getoor, Hunt, andMeyer, to name a

few. Of courseit is this parallel, combinedwith an assumptionof Markovian uncertaintyin

marketmodelssuch as thoseof Merton [15], Lucas[14], Brock [3,4], Breeden[2], and Cox,

Ingersoll, and Ross [5], that createsthe link betweenpotentialsandpricesshownhere. We
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will ignore probability theory for the moment, however,and illustrate that link directly.

Then we showseveralapplicationsof potential theory to assetpricing. Finally, we bring in

Markov properties.

3.1. The Price—Potential Equivalence

Let L be a vector space of “assets”. A security is identified with its dividend, a vector d

in L. Typically, L is a spaceof real—valuedfunctions on a “state” spaceZ, andd(z) is the

dividend paid in state z C Z. Similarly, the market valueof a security is a vector p in L.

In the framework suggested,p(z) is the “price” of the security in state z. We call (p,d)

a price—dividendpair. Although there is no formal requirementto do so, we will imagine

an infinite—horizon setting in which the market value p and dividend d of a security are

the samefunctions of tile stateat all times. Of course,by adding time to the statespace,

we can coiivert to this interpretation evenin time—dependentsettings. For simplicity, we

takethe conventionthat market valuesarepre—dividend,so that p(z) — d(z) is the value in

statez of a claim to p in thefollowing period, which dependsof courseon the statein the

following period. Let .4 index the set of all securitiesand let Al = span({pa, a C .4}) denote

the marketed subspace of L. With post dividend trading, that is, any assetm C Al canbe

createdasaportfolio a C RN of N securitiesin theform m = anpn,where{1,. .. , N}

indexessonic finite subsetof A. Let V : A~1—~ L denotethe valuation operator, which maps

any marketed asset m C M to the required investment, or V(nr) ~ a~(p,~— d~),
Nwhere m = ~ In other words, [V(m)](z) is the market valueof assetm in state

z. Of courseV is a linear operator. Although thereis someroom for generalization,wetake

the assetspaceL to be the spaceL~of boundednieasurablefunctions on the statespace

(Z, Z), treating functions equal almost everywhereas identical. We assumethe underlying

measurespaceis a—finite. A Euclideanstatespaceis an examnple.

The valuation operator V is arbitrage—free if positive, that is, if any assetwhose

payoff is positive in every future state requires a positive investmentin every current state.

The valuation operator V is strictly contractiveif II V II < 1, meaning that the maximum

possible payoff of any portfolio is strictly greater in magnitude than the required investment.

A sufficient (but far from necessary) condition is the existence of a scalar c > 0 suchthat,

for any price—dividend pair (p, d), we have p � d � ~. If P : L —~ L is a positive operator,

the potential operator associatedwith P is the operatorC = ~ P1, where P~is the
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n—th power of P. [ For example,P2 P(Pf).} The function Cf is the potential of any

fCL.

PROPOSITION. Supposethe market valuation operator V is arbitrage—freeand strictly

contractive. Then V has a positivestrictly contractivelinear extensionP : L —‘ L. The

marketvaluep C L of anysecurityis the associatedpotential Gd of its dividendd C L.

PROOF: Apply Theorem 3 of the previous section for the existenceof a positive strictly

contractivelinear extension P : L —* L. Then, for any price—dividend pair (p, d), we have

p — d = Pp, implying

p=Pp+d=P(Pp+d)+d=...

= T~(PNP + Pnd)

sincepN~ —~ 0 in norni by the fact that P II < 1. I

The proof is nothing niore than the usual Neumannseriesexpansionof (I — P)’.

An exampleof how potential theory may be applied to assetpricing is given by the

CompleteMaximumPrinciple.

THEOREM (COMPLETE MAXIMUM PRINCIPLE). Let G denotea boundedpotentialop-

erator associatedwith a positive contractive operator P. For any g in L+, h in L, and

positivescalar k, if/c + [C.q](z) � [Ch](z) for all z such that h(z) > 0, thenk + Gg � Ch.

PROOF: Since C is bounded,the associatedkernel is proper in the senseof Meyer [16], p.

173. A positive function f C L is excessiveif Pf � f. We note that kl~+ Cg is excessive,

an easy lemma to prove. Then TheoremT27 of Meyer [16], p. 184, applies. I

COROLLARY. Supposethe marketvaluation operatoris positive andstrictly contractive.

Let (p, d) and (q,f) beprice—dividendpairs in L, with f positive. If k is a positivescalar

such that q(z) + k � p(z) wheneverd(z) > 0, thenq + k � p.

The Corollary statesthat security A has a greatermarket value than security B in any

state of the economyprovided the market value of A is greater than that of B in any

state in which the dividend of B is strictly positive. More generally,an excessin value by
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the indicatedconstantk is preserved. The connectionbetweenpricesandpotentialsalso

applies in continuous—timeunder continuity assumptions.For a continuous—timesetting in

which the price—dividendpair (p, f) is invariant in time, undercontinuity assumptionswe

would havethe relationship

pT

Vtfdt+VTp, T�0, (1)
0

where {V~}is the family of operatorsthat map future to current market values. Relation

(1) was first suggestedby Garmnan[9]. That is, V~: L —~ L is the operator that assigns

a current market value Vtf to an assetthat pays f(z) in state z at time t in the future.

As arguedin Duffie and Garmuan[7], the family {V~}is a semigroup, meaningV,- V~V8
whenever8 + t = r. In that case, we take C to be the potential of the semigroup {V~}of

valuation operators,or

Vtfdt, JCL.
0

In order to establish (1), of course,one requires, in addition to the absenceof arbitrage,

strong continuity conditionsthat are not required in discretetime.

3.2. Price Operators and Markov Processes

Whether in discrete or continuoustimne settings, as soonas one has positive contractive

price operators,there is also a Markov (or sub—Markov)stateprocesst under which the

current market value of a security is the total infinite horizon expecteddividends of the

security. In discrete—timefor examnple,if (p, d) is a price—dividendpair, we will have

p(z) = E~[Ed(~t)]~ z C z,

where E~denotesexpectationfor .k0 = z. The discounting effect of security pricing is

incorporated within the “killing rate” of the sub—MarkovprocessX. For discrete—time,

one can simply define .k to be the Z—valued processwith probability transition function

Q on the state space Z defined by Q~(B)= [V(1B)](z) for all B in Z, where V is a

normn preserving positive linear extension of the valuation operator. That is, Q~(B)is the

conditional probability that ~ C B given that .k~= z. [See, for example, Dynkin [1]

for details.] In continuous—time, the semi—groupof extendedvaluation operators {V~}is
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associatedin the sameway with someMarkov processX under regularity conditions. See, )

for example,Dynkin [1], Chapter2. In that case, p(z) = E~(f~d(X~)dt)

Wehaveshown that one canbegin with securityvaluationandobtain acorresponding

suh—Markov process.k under which the marketvalue of a security is the expectedtotal

dividends to be paid. A likely equilibrium foundation for this type of Markov pricing is

an underlying Markov processX. For example, in a discrete—timeMarkov economy, let

P be the sub—Markovtransition operator associatedwith an underlying Z--valued state

processX and let p C (0, 1) denote the discountrate of the single or representativeagent,

whose marginal utility for consumption is given by a strictly positive function v C L, or

v(z) = ~u(e(z),z), where c : Z —~ R+ denotesthe aggregateconsumptionfunction and

u : RxZ —+ B denotesthe timne andstateadditive differentiableutility function of the agent.

Let A : L —~ L denotethe operatormapping anyp C L to vp = {v(z)p(z),z C Z}. Then

the valuation operator is given by V = A’pPA. See,for example,Lucas [14], who calls

this the StochasticEuler Equation. HoweverV is not generallystrictly contractiveunless

v is boundedaway fromn zero. But pP is strictly contractive,has someboundedpotential

operator C,,, and the market value of a securitywith dividend d C L is p = A’C,,Ad.

Thes ame approachapplies in continuous time. Let {P~}denotethe semigroupof the

underlying Z—valued Markov processX. Utility is given by

U(c) = E (f~e~tu(c~,x~)dt). )

Let C,, denote the p—potentialof {P~},nieaning C,, f°ePtP~dt.See Meyer [16], pp.

187—201 and Dynkin [1], Chapter 2. Again the equilibrium market value, relative to the

consumptionnumeraire, of a security paying dividend d C L in a single or representative

agentequilibrium can be nothing other than p = A’C,,Ad. More explicitly,

p(z) = E~[f°°e_Ptv(Xt)d(Xt)dt],

whereE~denotesexpectationfor starting point Xo = z C Z. If A~ is bounded, that

is, if marginal utility for aggregateconsumptionis boundedaway from zero acrossstates,

then A’C,,A is bounded and we can “design” a new sub—Markovprocessk with the

samnestate space Z under which the value of a security paying dividend d C L is merely

kE(J~d(.k~)dt),wherek is a scalingconstantwhich we cantaketo be II A1 1111 A II. This
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is the suh-MarkovprocessX defined by the contraction semi—group {~A’P~A}. That

this is indeed a contractionsemi-groupcanbe checkedfrom the definition given by Dynkin

[1, p.22]. That therecorrespondsa sub—Markovtransition function canbe confirmedfrom

Theorem 2.1 (p.51) of Dynkin [1], provided {P~}is itself well—behavedin the senseof

tllat theoremu. Finally, the existenceof a correspondingsub-MarkovprocessX is given

by Theorem3.2, p. 85 of Dynkin [1], again assuming the underlying processX satisfies

minimal regularity conditions.

For any scalarsp > 0 and ‘y > 0, wehavethe resolventequation(for continuous—time):

C,, = C~+ (~— p)C7C,,.

This allows us to deduce,for instance,how the rate of time discount in the preferencesof

the agent affects the market value of securities. For examnple,if the agent’sdiscountrate

changesfrom ‘y to p. the valueof a securityclaiming dividend d changesfrom p = A’G7Ad

to j~= p + (-y — p)A’C.~C,,Ad. The correspondingdiscrete—timeresolventequationcan

be deducedfrom Meyer [16], p. 201. We could also think of p as the “killing rate” of the

underlying Markov process.The probability of survival of the agent over an interval [0, T]

is then
5

—pT

3.3. Elgen—probability—prices

The curious title of this sectioncomes from a connectionbetweenthe spectral radius of

an (extended)valuation operatorV : L —~ L and financial ratesof return. The relation

= Vf, for somescalarA ~ 0, andnon—zero f in L meansthat f is an eigenfunctionand

A is an eigenvaluefor V. (See,for example,the appendixof Schaefer[17].) In our setting,

this equationimplies that one can “invest” Af and receivef in the nextperiod, for a fixed

return of ~, regardlessof the current state. The supremnumof the set of absolutevalues

of eigeiivaluesis the spectral radius r(V) of V. In finite—dimensionalcases,or when V is

compact[17, p. 266], or evenmore generally [17, Theorem 3.4], the positivity of V implies

that there is an eigenvalueA = r(V) � 0 with a correspondingeigenfunctionf~� 0. In

the finite—dimensional case, this is known as the Frobenius—PerronTheorem, and if V is

strictly positive, then A = r(V) > 0 and f.x > 0 is strictly positiveand unique. We note

that the largest eigenvaluecorrespondsto the smallestpossiblefixed rate of return. For
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)example,in the Lucas model explainedearlier, it is short work to show, if marginal utility

for consumption is bounded away fromn zero, that the maximal eigenvalueis the discount

ratep andthat f,, = {~-~y~z C Z} is the corresponding eigenfunction. Obviously, a security

whosepayoff is the reciprocalof marginal utility is “valuable,” anda small rate—of—return

will induce an agentto hold it.

There is also an interestingrelationshipbetweenthe spectralradius of the valuation

operatorand “expectedreturns” under an “eigenmeasure.”

THEOREM. SupposeV : —+ L~is a positivelinear operator. Then thereis a proba-

hility measureQ on the statespace(Z, Z) such that

E~(Vf)= r(V)E~(f)

foi’ all f in L°°,wherethepositive scalar r(V) is the spectralradius of V.

PROOF: Let V’ denotethe adjoint of V. By the Corollary to Appendix Theorem 2.6 of

Schaefer[17], V’ has apositive eigenvectorii ~ 0 with eigenvaluer(V). Since the dual of

L is the spaceof mneasureson (Z, Z), we can treat I’ as theproductof astrictly positive

const~ntk anda probability measureQ on (Z, Z). By the definition of the adjoint operator

and an eigenvector,we havethe desiredresult. I

Tile Theorem saysnothing more than that there is a way to assignprobabilities to states,

tue “stationary Arrow—Debreuprices,” underwhich the meanfuture value of any security

is a fixed multiple of its meancurrent value. This multiple is the supremumii of all fixed

ratesof return on assets.If one insistson valuing asecurityby taking the expectedvalueof

its discountedpayoffs.usinga fixed discountrateand a fixed set of probability assessments

for all securities,then the discount rate r(V) and the probability assessmentsgiven by Q
seeman obvious choice.

COROLLARY. Supposethemarketvaluationoperatoris arbitrage—freeandstrictly contrac-

tive. Thenthereexistsan i.i.d. MarkovstateprocessX underwhich, for anyprice—dividend

pair (p, d),

E(p(Xi)) = E [~sk1d(xk)] (2)

The discount factor S < 1 can be taken to be the spectralradius of an extensionof the

marketvaluation operator.
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PROOF: Let. S be the spectral radius of a positive norm—preservingextensionV of the

valuationoperator. Let Q denotetheprobability measureon the statespace(Z, Z) defined

by the preceding Theorem. Let X be an i.i.d. Z—valued Markov processwith transition

probability Q. By tile theorem, for any price—dividendpair (p,d), we have E~(Vp)=

SE~(p),which implies

E~(p— d) = SE~(p)

= S(E~(p— d) + E~(d))

= S(E~(V~)+ E~(d))

= S2E~(p)+ SE~(d)

= lim [SNEQ(P) + S~~EQ(d)]

=

since
5

N ‘-~ 0. Thus, EQ(p) = ~0S~E~(d). But this is equivalentto (2) since X has

transition Q and is i.i.d. The expectationin (2) is given in the usualway, underthe measure

determninedby Q on the product spaceZ x Z x ... of samnple paths with the a—algebra

generatedby all measurablecylinder sets. I

As a direct. result of this corollary we have,for any price—dividendpair (p, d),

E~(p) 1 1 5E~(d), (3)

where Q is the transition probability of the constructedMarkov processX.
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