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This paper is a study of continuously resettled contingent claims prices in a stochastic economy. 
As special cases, the relationship between futures and forward prices is analyzed, and a 
preference-free expression is derived for these prices, as well as the price of a continuously 
resettled futures option, whose formula differs from Black’s futures option pricing formula due 
to the effects of marking-to-market the changes in the futures option premium. 

1. Introduction 

This paper derives prices of continuously resettled contingent claims in a 
Markov diffusion setting. This extends the work of Cox, Ingersoll, and Ross 
(CIR) (1981) by pricing a class of assets from which the futures contract and 
modern futures option are special cases. The CIR formula for futures prices 
in a continuous-time setting depends on a risk-premium term that is given an 
explicit solution in this paper in terms of other parameters. CIR, moreover, 
characterized futures prices in a discrete-time setting, and then extended to 
continuous-time by asserting an analogy that is made explicit here. 

Continuous resettlement 

By analogy with a futures contract, a general continuously resettled con- 
tingent claim is completely specified by its maturity date T, dividend rate 
{d,, t I T} (zero in the case of a futures contract), and an underlying process 
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{P,, t I T) (for example, the price of the underlying asset in the case of 
certain futures contracts), to which the claim is linked. 

The continuous resettlement price is a ‘price’ process (Q,, t I T}, for 
example, the futures price process. Changes in this price are continuously 
credited to the holder of the claim’s margin account, together with any 
dividends paid by the asset. We are not aware of any currently traded, 
continuously resettled claims that pay dividends in addition to resettlement 
payments. A potential example would be a continuously resettled swap 
contract. The margin account earns interest at the short-term risk-free rate. 
The process Q is such that: 

(1) the current market value of the resettled claim is always zero, and 
(2) at maturity, Q, = P,. 

A futures contract satisfies both of these conditions, as do certain of the 
modern futures options contracts. With conventional options, the option 
premium is paid out to purchase the option, and no further money changes 
hands until the option is exercised. The same arrangement applies to certain 
futures options. This type of option was studied by Black (1976) and by 
Ramaswamy and Sundaresan (1985). Certain modern futures options, how- 
ever, are marked-to-market. [For an overview of the different types of margin 
systems, see Fitzgerald (1987).] The systems employed at LIFFE in London 
and (to a lesser extent) at the Chicago Mercantile Exchange (CME) corre- 
spond in principle to our definition of continuous resettlement. 

The remainder of the paper is organized as follows. Section 2 lays out the 
primitive processes and functions describing the market. The main results, in 
section 3, include two useful pricing lemmas, as well as a series of results on 
continuously resettled prices that extend and sharpen the basic results of 
Cox, Ingersoll, and Ross (1981). Section 4 contains some discussion as well as 
several simple examples for futures and futures option prices, including a 
comparison of futures options of the conventional (not marked-to-market) 
and resettled varieties. 

2. The primitives 

We represent the state of the economy by a state vector X, E R“ satisfying 
the stochastic differential equation 

where B is a k-dimensional Standard Brownian Motion and u and 77 are 
functions satisfying regularity conditions to be described. We assume that 
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there are k risky securities and short-term riskless borrowing, and define: 

P, = 9(X,, t) E [w = underlying process for continuously resettled asset, 
d, = 0(X,, t) E Iw = rate of dividend payment of continuously resettled claim, 
S, = 4(X,, t) E Rk = vector of risky security prices, 
6, = A(X,, t) E L@ = rate of dividend payment of risky securities, and 
r1 = R(X,, t) E [w+= instantaneous risk-free rate, 

where the functions 4, A, and R satisfy regularity conditions to be de- 
scribed. Huang (1987) shows that a continuous-time general equilibrium [of 
the sort demonstrated by Duffie and Zame (198911 can have this Markovian 
structure. We use E,(.) to denote expectation conditional on the a-algebra 
generated by {B,: 0 IS I t), that is, the ‘information set’ at time t. The 
notation cov,(., * 1 is defined similarly. For simplicity, we suppress the usual 
qualification: ‘almost surely’. 

Regularity conditions 

For simplicity, define an arbitrage to be a self-financing trading strategy 
with negative initial market value, which has no future cash flow [for a 
technical definition, including integrability or boundedness conditions on 
trading strategies, see, for example, Duffie (1988) or Dybvig and Huang 
(1988)]. All of our results are based on an assumed absence of arbitrage. 
Assuming that the matrix 4(x, t) is everywhere nonsingular, let CL: I@ X 

R + R be defined for later purposes by 

p(~,t) =d-‘(RJ-A -4-ttr[qTdX?]), 

suppressing the (x, t) arguments whenever convenient, and where, for exam- 
ple, 4 = a//ax and ._& is defined coordinate-by-coordinate in the obvious 
way. 

We assume for the remainder of the paper that the functions p and 71 
defined above satisfy Lipschitz conditions.’ The functions D, H (to be 
defined later), and R, all defined on R“ X [O, T] for some fixed time T > 0, 
also satisfy a Lipschitz condition. In Rk X 10, T], the functions p, 7, D, H, R, 

CL,, 7x, 0x7 Hx, Rx, c~xx, rlxx, Ox,, H,,, and R,, exist, are continuous, and 
satisfy a growth condition.* These conditions, imposed for the remainder of 
the paper, can be weakened, as indicated in the paper’s concluding remarks. 

‘Define IlLI = [t&CL )] T ‘I2 for L in the space of k x n matrices, Mk3”. Then f: Rk x [O,m) --) 
Mk3” satisfies a Lipschitz condition (in x) if there exists a scalar A such that Ilf(x, t) -f(y, t)ll~ 
hllx -yII for all x and y in Rk and t 2 0. 

*f satisfies a growth condition (in x) if there exists a scalar A such that Ilf(x, t)ll< a(1 + Ilxll) 
for all x and y in Rk and t r 0. 
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3. Main results 

The following pricing result, although new, is similar in spirit to 
the literature. 

others in 

Lemma 1. Suppose there is no arbitrage. The market value, g,, at time t of a 
security that pays out dividends at rate d, for all T E [t, T], and has a terminal 
payoff of h, = H(X,) at time T, is given by 

g,=G(X,,t) 

(2) 

where the process {&: T E [t, T]) is defined by 

A!* =x,, (3) 

d~~=CL(~~,T)dT+77(~~,T)dB,. (4) 

To prove this, we suppose that G(X,, T) is indeed the price of the security 
at time T, t I T I T, and that G: Rk X [0, T] -+ R is C*‘i (that is, twice 
continuously differentiable with respect to x, and continuously differentiable 
with respect to t). We also assume that there exists some self-financing 
trading strategy (a, b) in the risky assets and riskless borrowing that repli- 
cates this asset. Later, we confirm these assumptions. By the definition of a 
Self-finanCing Strategy, for t IT< T, 

G(X,,T) =a,S,+b, 

=G(X,,t) +[‘asdS,+ /‘[ asas + b,r,] ds - ,/‘d, ds. 
t t 

(5) 

By Ito’s Lemma, continuing to suppress arguments of functions wherever 
notationally convenient, 

./(x7,7) =/(X,,t) +/%-9ds+/T~ndB,, 
t t 

G(X,,T) =G(X,,t) +/‘_YSGds+/‘G,.rldB,, 
t t 

(6) 

(7) 
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where 

~~‘f,+fx”+~tr[rlTfxx?7]. 

Subtracting (7) from (51, using (61, for t I 7 I T, 

jT[ _52G - a,99- aslSs - bsrs + d,] ds + IT[ G,T - a,An] dB, = 0. 
t t 

This is satisfied if and only if each integrand is identically zero (almost 
everywhere). Thus, 

G,v = a,&, 

_9G -a&BY- asas - bsr, + d, = 0. 

Eqs. (5) and (8) are satisfied by 

(8) 

(9) 

a, = Gxd-‘, 

b, = G - G,.Y-‘9. 

Now, substituting for a and b in (9), 

+itr[nTGxxn] +D=O, (10) 

with the terminal boundary condition G(x, T) = H(x). By the Feynman-Kac 
formula [see, for example, Duffie (1988)1, the unique solution to (10) is given 
by (2). Moreover, the solution is indeed C2,‘, as supposed. Thus all of the 
steps above are justified. We have shown that the dividend stream Id,) and 
terminal payoff h, can be generated by the trading strategy (a, b) with an 
investment of G(X,, t) at time t. This proves Lemma 1 (given the obvious 
arbitrage arguments). 

The following related lemma will be used to price resettled contingent 
claims. 

Lemma 2. Suppose there is no arbitrage. The market value, jr, at time t 
of a security that has a terminal (time T) payoff of [9(X,, T) + 
jt’D<Xs, s) dslexp( j,‘r, ds) is 

(11) 

where A?7 is defined by eqs. (3)-(4). 
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The proof is similar to that of Lemma 1. Specifically, assume that (a, b) is a 
self-financing trading strategy in the risky assets and riskless borrowing that 
replicates the asset. For t I 7 I T, suppose the price of the asset at time T is 

J(X,,T) +/h,ds (12) 
f 

(13) 

where p, = exp(/,‘r, ds). By Ito’s Lemma, 

From (13), 

dj,= [a,(_9/+S) +b,r,] d7+a,dqdB,. (15) 

Equating the dB, terms in (15) and (14), a7 = P7JXd-‘. Substituting for a, 
in (121, 

b,=p,J+&j’d,ds --P,J,4-‘k’. 
f 

(16) 

Dividing by p, and equating the d7 terms in (14) and (151, 

Expanding _9J and using the definition of II, 

J,p + J, + i tr(qTJXXq) + D = 0, (17) 

which has the assumed solution (10) given the boundary condition J(x, T) = 
9(x, T). Hence j, is indeed the price of the asset at time T, proving 
Lemma 2. 

Continuously resettled claims 

In a discrete-time setting, a claim that pays dividends d, in period t and is 
marked to changes in the ‘price process’ {Q,} is actually a contingent claim 
whose market value is always zero, and which pays d, + Q, - Q, _ 1 at period 
t. These pays (or collects) may also be left to accumulate with interest in a 
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margin account until the position in this claim is offset, or until expiration of 
the claim, say at period T. The terminal resettlement price Qr is set (either 
by contract design or arbitrage considerations) to some terminal value, say 
P,, which may be the price of a related asset. 

In continuous time, given the dividend rate process, d,, instantaneous 
interest rate process, rt, and the continuous resettlement price process, Q,, a 
continuously resettled position process, Br, generates a margin account whose 
value W, is determined by an arbitrary initial investment W, and 

dW,=(r,W,+e,d,)dt+8,dQ,. (IS) 

Since the terminal value W, belongs to the position holder, the initial 
investment W, is the arbitrage-free price at time 0 of a claim to W, at time 
T. Similarly, at any time t, W, is the arbitrage-free price of a claim to W, at 
time T. 

Theorem 1. Suppose there is no arbitrage. The resettlement price, Q,, of a 
continuously resettled claim that pays dividends at the rate d, and is marked at 
the terminal date T to P,, is also equal to the current market value of an asset 
that has the terminal (time T) payoff 

*d,ds+P,]exp[[*r.ds]. (19) 

To see this [a generalization of Proposition 2 from Cox, Ingersoll, and Ross 
(1981)], let the margin account balance at time c be W, = Qt. For the position 
process 

we have 

dw, = W7r, dr + 8, dQ, + t$d, dr 

= W7rT dr + exp 

Consider the process Y, defined by 

(21) 

y,= W,- [Q,+i’d,ds]exp[[‘r$ds], tsr<T. 
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Using Ito’s Lemma and simplifying, we obtain dY, = Y7r, dr, with initial 
condition Y, = 0. By inspection, Y, = 0 for all r. Thus, for t I 7 I T, 

W, = Q, + /h, d 
t 

s]exp[~sd~]. 

Since P, = Qr, Q, is indeed the value at time t of an asset that has the 
terminal payout given by (19). This proves the theorem. (The smoothness 
conditions in section 2 play no role in the proof.) 

Corollary 1. Under the conditions described, the continuous resettlement price 
process is given by 

Qt=g(Xt,t> =E,[B(g,,T)+~‘~(~~,s)], (22) 

where _J? is defined by (3)~(4). 

This follows immediately from Lemma 2. 
The futures price at time t for delivery of Pr at time T is the resettlement 

price Q, for the corresponding claim, with zero dividends (d = 0). The 
corresponding forward price, on the other hand, is that ‘price’ L, for which a 
claim to P, - L, at time T has a market value of zero at time t. 

Corollary 2. Under the conditions described, the futures and forward prices 
(F, and L,, respectively) for delivery of P, at time T are given at any time t by 

Ft= y(Xt,t) =E,[+,,T)], (23) 

(24) 

Eq. (23) follows immediately from Corollary 1, while (24) follows from 
Lemma 1 when we impose the well-known no-arbitrage condition that the 
forward price is the price at time t of an asset that pays out the value of the 
underlying asset at time T, divided by the price Z, T of a bond paying one 
unit of account with certainty at time T. [See Proposition 1 in Cox, Ingersoll, 
and Ross (1981).3 

Corollary 3. Under the conditions described, the resettlement price of a 
(continuously resettled) futures option, with exercise price K and expiration date 
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T < T, is given at time t, t I 7, by 

O,= @(K,t) =E,([+,T) -K]+). (25) 

Although the regularity conditions in section 2 call for smooth functions, 
the lack of smoothness of x e (9(x, r) - K)+ at qX,7j = K has no effect on 
the result [see, for example, Duffie (1988, sect. 22)]. 

4. Discussion and examples 

4.1. Futures us forward prices 

From our expressions for F, and L,, 

The forward and futures prices are equal, in particular, when interest rates 
are constant. The following result is reminiscent of a similar discrete-time 
finding by Cox, Ingersoll, and Ross (1981). 

Corollary 4. Suppose that the risky assetspay no dividends, and that 9<J?,, T) 
is uncorrelated with exp[ - jlrR(_$, T) dr]. Then 

F, = L, = P,/Z,,,, (27) 

where Z, T = E,(exp[ - /,TR(J?7, r)dr]) is the price at time t of a discount bond 
maturing’at time T. 

This follows from Lemma 1. 

4.2. Asset prices as state variables 

In the analysis above, for generality, the vector of asset prices is assumed 
to be a (smooth) function of the underlying state variables. If this function is 
invertible, we can without loss of generality take the state variables to be the 
asset prices themselves. In this situation, our expressions simplify substan- 
tially. Eq. (1) reduces to 

p(x,t) =R(x,t)x-A(x,t), (1’) 

and the partial differential eq. (lo), satisfied for the price G of a contingent 
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claim, is equivalent to 

-rG+G,(Rx-A)+G,+itr[~~G,,n] +D=O. (IO’) 

Using this form, we can analytically calculate futures and forward prices in 
special cases. Suppose, for example, that there is only one risky asset, with 
price S,, and the short-term riskless rate r, = r, a constant. Then, for 
dividend D = 0, eq. (10) simplifies to 

aG aG lY2G 
-~G+(Kx-A)~+~+;“~~~~=O. (28) 

For a futures contract delivering the underlying risky asset, the relevant 
boundary condition is that the futures price at maturity must equal the spot 
price, that is, G(x, T) =x, x E R. We can solve (28) when the dividend 
payout rate A takes on certain forms. 

4.3. Examples 

(a) S, = -c(r) (deterministic cost of storage), for some function c on 

to, Tl. 
It can be verified by direct calculation that the solution to (28) is the usual 

cost-of-carry formula for the futures price 

(b) 6, = LYS,, for some cx (constant dividend yield). 
The futures price is given by 

F, = e(r-aXr-f) S f’ 

(c) S, = X,, with r L t (constant dividend rate). 
The futures price is given by 

(30) 

In comparing (b) and (c), note that 

er(T-O 
if O<cw<r, 

if a>r, 
if a=Oorr. 
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4.4. Continuously resettled futures options 

In addition to our simplifying assumptions above, suppose that n(x, t) = (TX 
for some constant (+. We could solve (28) directly, but there is a simpler 
method. Suppose there is a constant dividend yield, (Y, as in example (b). 
Then, using Corollary 3 and substituting for F from (30), eq. (25) yields the 
continuously resettled futures option price 

=e r(T-t)-a(T-T) E,[e-“‘-“($ _ e-(‘-aXT-T) q’] . (34 

From Lemma 1, the value of a European call option on the underlying asset, 
with exercise price e-(r-aXT-7) K and expiration date 7, is 

C, = E,[e-‘(‘-‘)(S, _ e-(r-aXr-r)K)+], 
(33) 

which is calculated by a simple adjustment to the Black-Scholes (1973) 
formula. Comparing (32) and (331, 

0 =er(T--f)-~(T--7)~ 
I * 

= er(T-t)-a(T-T) S,@( d,) - K@( d2) 

= ea(‘-‘) F,@( d,) - K@( d,), (34) 

where @( * 1 is the standard normal cumulative distribution function, 

d 
1 

= log(S,/K) +r(T-t) -a(T-7) +ia2(7-t) 

= log( FJK) + (a + +a2)(7 - t) 

u 7-t J-- ’ 

In contrast, under the same assumptions, a conventional (European) op- 
tion on the futures contract without resettlement has (by Lemma 1) the 
market value 

E,[e-‘(‘-‘)(Y(_?r,r) -K)+] = e-r(T-f)O1, (35) 
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to be compared with (25). Black (1976) derives (35) in the special case T = T, 
(Y = 0. Ramaswamy and Sundaresan (1985) derive an equivalent result. 

4.5. Alternative derivation of Corollary 1 

We can derive Corollary 1 in a more direct manner, using arguments 
similar to those used in our proof of Lemma 1. 

To do this, assume that 9: Rk x [w + [w is C**’ and that there exists some 
self-financing trading strategy (a, b) in the risky asset and riskless borrowing 
that replicates the asset. Then, by the definition of a self-financing strategy 
and since the asset’s value is always zero, 

0 = a& + b,P,, tsr<T, 

/ 

7 

= a, dS, + /‘( asas + by,) ds - jTdQ, - /‘ds ds. (36) f t t t 

By Ito’s Lemma, 

(37) 

(38) 

Subtracting (38) from (36), using (37), 

_/‘( X2- a,_9J- asSs - b,r, + d,) ds + /^‘( _!ZXn - a,xq) dB, = 0, 
t t 

This is satisfied only if each integrand is identically zero. Thus, 

_9_53’- a,ZVY’- asSs - bsr, + d, = 0. 

Solving for a, and 6, as in the proofs of Lemmas 1 and 2, we see that 
4(x,t) must satisfy the partial differential equation 
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with the terminal boundary condition Q<x, T) = 9(x, T). By the Feynman- 
Kac formula, the solution is given by (22). Moreover, the solution is indeed 
C2*‘, as assumed. 

While this method produces the right answer, it is incomplete. We have 
used arbitrage arguments to get our asset prices, saying that if we have a 
trading strategy that produces exactly the same cash inflows and outflows as 
an existing asset, the price of the asset must equal the initial cost of the 
trading strategy, or else we can make an arbitrage profit. This does not work 
here. If Q does not follow the process we derived, (36) does not tell us how 
to make an arbitrage profit, since the term in Q appears on the right-hand 
side of the equation. 

In other words, this second approach shows only that the suggested price 
Q, is consistent with the absence of arbitrage. It does not show that any other 
price implies an arbitrage opportunity. 

4.6. Generality 

Although most of the results in this paper can be extended to a general 
stochastic setting, we have chosen to present them in a simpler Markovian 
setting, this yielding somewhat more concrete formulas for trading strategies 
and prices. The reader is invited to normalize the asset price vector S, by 
exp</,‘r, ds) and apply Girsanov’s Theorem for the general (‘path-depen- 
dent’) case, as suggested by Harrison and Kreps (1979). 

Within the Markovian setting, the strong smoothness conditions on the 
primitive functions described in section 2 can easily be relaxed, as indicated 
for instance in Duffie (19881, so long as the Feynman-Kac formula applies, 
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