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The supplement is organized as follows. We first prove Theorem A.1 in Appendix E. Since

continuous-time independent random matching without enduring partnerships can be viewed

as a special case of the model considered in Appendix A with all the enduring probabilities

being zero, most results in Section 2 are covered by the corresponding results in Appendix A.

Some remaining properties are then checked in Appendix F.

E Proof of Theorem A.1

This section is organized as follows. Subsection E.1 presents a static random partial matching

model with finitely many agents as well as some estimations on the relevant matching proba-

bilities. Such a static model will be used in the construction of a finite-period dynamic random

matching model with finitely many agents in Subsection E.2. To make the proof of Theorem

A.1 more accessible, we first state in Subsection E.3 some properties of the finite-agent dynamic

matching model (Lemmas E.2 – E.10) that are needed for proving Theorem A.1 in Subsection

E.4. The proofs of the technical results in Lemmas E.1 through E.10 are postponed to Subsec-

tion E.5. In particular, Lemma E.1 is proved in Subsection E.5.1. In order to prove Lemmas

E.2 – E.10, some additional technical results are presented as Lemmas E.11 through E.21 in

Subsection E.5.2. Then, Lemmas E.2 through E.10 are shown in Subsections E.5.3 through

E.5.11, respectively.

E.1 Finite-agent static random partial matching with general matching probabil-
ities

Let I = {1, . . . , M̂} be a finite set with M̂ an even integer in the set N of positive integers, I0

the power set on I, and λ0 the counting probability measure on I0 with λ0(A) = |A|/|I| for

any A ∈ I0, where |A| is the cardinality of |A|. A partial matching ψ on I is an involution from

I to I in the sense that ψ(ψ(i)) = i for any i ∈ I. When ψ(i) 6= i (ψ(i) = i), agent i is matched
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with agent ψ(i) (agent i is not matched). When ψ(i) 6= i for each i ∈ I, ψ is said to be a full

matching on I. For a given probability space (Ω,F0, P0), a random (partial) matching π on I

is a mapping from I ×Ω to I such that πω = π( · , ω) is a partial matching on I for each ω ∈ Ω.

The following result is essential to the construction of finite matching model with multiple

periods (for the matching steps) in Subsection E.2.

Lemma E.1. Let (I, I0, λ0) be the finite counting probability space as above. Then, there exists

a finite set Ω with its power set F0 such that for any type function α0 from I to S and partial

matching π0 on I with

g0(i) =

{
α0(π0(i)) if π0(i) 6= i

J if π0(i) = i,

and for any function q from S × S to R+ with
∑

r∈S qkr ≤ 1 and ρ̂kJqkl = ρ̂lJqlk for any

k, l ∈ S, where ρ̂ = λ0

(
α0, g0

)−1
is the extended type distribution induced by

(
α0, g0

)
on Ŝ,1

there exists a random matching π from I×Ω to I and a probability measure P0 on (Ω,F0) with

the following properties.

(i) Let H = {i ∈ I : π0(i) 6= i}. Then P0

(
{ω ∈ Ω : πω(i) = π0(i) for any i ∈ H}

)
= 1.

(ii) Let g be the mapping from I × Ω to S ∪ {J}, defined by

g(i, ω) =

{
α0(π(i, ω)) if π(i, ω) 6= i

J if π(i, ω) = i

for any (i, ω) ∈ I × Ω.

Fix any i, j ∈ I with i 6= j, π0(i) = i and π0(j) = j; denote α0(i) and α0(j) by k1 and k2

respectively. For any l1, l2 ∈ S, the random matching π and the associated type process g

satisfy the following inequalities:

P0 (πi = j) ≤ 2

M̂ρ̂k1J

,

qk1l1 −
2

M̂
2
3

≤ P0(gi = l1) ≤ qk1l1 if ρ̂k1J ≥
1

M̂
1
3

,

qk1l1qk2l2 −
5

M̂
2
3

≤ P0(gi = l1, gj = l2) ≤ qk1l1qk2l2 +
1

M̂
2
3

if ρ̂k1J ≥
1

M̂
1
3

and ρ̂k2J ≥
1

M̂
1
3

.

(iii) For any k, l ∈ S and any ω ∈ Ω,∣∣λ0

(
{i ∈ I : α0(i) = k, g0(i) = J, g(i, ω) = l}

)
− ρ̂kJqkl

∣∣ ≤ 2

M̂
.

1That is, for any subset C of Ŝ, ρ̂(C) = λ0

((
α0, g0

)−1
(C)
)

. In particular, ρ̂kJ = λ0

((
α0, g0

)
= (k, J)

)
.

Note that g0 represents the partners’ types for the initially matched agents.
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To reflect their dependence on (α0, π0, q), π and P0 will also be denoted by π(α0,π0,q) and

P(α0, π0, q) respectively.2

Part (i) means that initially matched agents are not rematched. The three inequalities

in Part (ii) provide respectively (1) an upper bound on the probability for two single agents

to be matched, (2) an estimation on the distribution of the partner’s type of a newly matched

agent, (3) the approximate pairwise independence of the random types of the partners for the

newly matched agents. Part (iii) provides an estimation of the cross-sectional extended type

distributions for the newly matched agents.

E.2 Finite-agent dynamic matching model

What we need to do is to construct a sequence of transition probabilities and a sequence

of extended type functions. Since we need to consider random mutation, random matching,

random type changing and break-up at each time period, three finite spaces with transition

probabilities will be constructed at each time period.

Before the formal construction, we briefly describe the timeline. In each period, there are

three steps. The first step is the mutation step, agents (single or matched) change their types

independently. The second step is the matching step, only single agents take part in a static

random matching described in Lemma E.1. The third step is the type changing with break-up

step, at which agents who were just matched in the last step either enter into a long-term

partnership or do not, and then experience a change in their types according to the specified

type-changing probabilities. At this step, agents who have been matched for more than one

step may break up with some probability, and change their types according to the specified

type-changing probabilities if they indeed break up.

Denote

η̄ = max{ηkl : k, l ∈ S, k 6= l},

q̄ = max{θkl(p̂) : k, l ∈ S, p̂ ∈ ∆̂},

ϑ̄ = max{ϑkl : k, l ∈ S},

ā = max{η̄, q̄, ϑ̄}+ 1.

Let M be an integer in N with M ≥ max{Kā, 3}. Let M̂ be an even integer in N and sufficiently

larger than M (an explicit expression for M̂ will be given after Lemma E.2). As in Subsection

E.1, let I = {1, 2, . . . , M̂}, I0 the power set on I, and λ0 the counting probability measure on

2The above equation shows that gi, i ∈ I are approximately pairwise independent. In fact, we can use similar
techniques to prove that gi, i ∈ I are approximately mutually independent. For simplicity, we only demonstrate
the case for approximate pairwise independence.
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I0. Let T0 be the finite set {n}M2

n=0. The corresponding time line is {n/M}M2

n=0 so that the time

length for each period is 1/M .

We define the parameters for the dynamical system as follows. For any k, k′, l, l′ ∈ S,

and p̂ ∈ ∆̂, let

η̂kl =

{
1
M ηkl + 1

M2 if k 6= l

1−
∑

r∈(S\{k}) η̂kr if k = l,

q̂kl(p̂) =
1

M
θkl(p̂) and q̂k(p̂) = 1−

∑
l∈S

q̂kl(p̂),

ξ̂kl = min{ξkl, 1−
1

M2
},

σ̂kl = σkl,

ς̂kl = ςkl,

ϑ̂kl =
1

M
ϑkl +

1

M2
.

Note that M ≥ Kā and ā = max{η̄, q̄, ϑ̄}+ 1. Then, we can obtain that

η̂kl ≤
ā− 1

Kā
+

1

K2ā2
≤ ā− 1

Kā
+

1

Kā
=

1

K
if k 6= l,

η̂kl ≥ 1−K 1

K
= 0 if k = l,

q̂kl(p̂) ≤
ā

Kā
=

1

K
,

q̂k(p̂) ≥ 1−K 1

K
= 0.

In this way, we have defined η̂kl, ξ̂kl and ϑ̂kl so that η̂kl and ϑ̂kl have lower bound 1
M2 , and ξ̂kl

has upper bound 1− 1
M2 . Such bounds will be used in the proof of Lemma E.15.

For the initial stage at period 0, let α̂0 be the initial type function from I to S, and π̂0

the initial partial matching from I to I. Let ĝ0 be the mapping from I to S ∪ {J} defined by

ĝ0(i) =

{
α̂0(π̂0(i)) if π̂0(i) 6= i

J if π̂0(i) = i,

for any i ∈ I. Let ρ̂0 = λ0

(
α̂0, ĝ0

)−1
be the initial cross-sectional extended type distribution

on Ŝ. We require that ρ̂0
kJ ≥

1
M2 for any k ∈ S. Since the initial stage is deterministic, we can

let (Ω0, E0, Q0) be the trivial probability space over the single set {0}. A function on I can be

trivially viewed as a function on I × Ω0, and vice versa.

Suppose that the construction for the dynamical system D has been done up to time

period n−1 for n ≥ 1. Thus, {(Ωm, Em, Qm)}3n−3
m=0 and {α̂m, π̂m, ĝm}3n−3

m=0 have been constructed,

where each Ωm is a finite set with its power set Em, Qm a transition probability from Ωm−1 to

(Ωm, Em), α̂m a type function from I × Ωm−1 to the type space S, and π̂m a random partial
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matching from I × Ωm−1 to I. Here, Ωm =
∏m
j=0 Ωj , and {ωj}mj=1 will also be denoted by ωm

when there is no confusion. Denote the product transition probability Q0 ⊗Q1 ⊗ · · · ⊗Qm by

Qm, and ⊗mj=0Ej by Em (which is simply the power set on Ωm). Then, Qm is the product of

the transition probability Qm with the probability measure Qm−1.

We shall now consider the constructions for period n. We first work with the random

mutation step. Let Ω3n−2 = SI (the space of all functions from I to S) with its power set

E3n−2. For each ω3n−3 ∈ Ω3n−3 and i ∈ I, if α̂3n−3(i, ω3n−3) = k, define a probability measure

γω
3n−3

i on S by letting γω
3n−3

i (l) = η̂kl for each l ∈ S. Define a probability measure Qω
3n−3

3n−2

on (SI , E3n−2) to be the product measure
∏
i∈I γ

ω3n−3

i . Let α̂3n−2 :
(
I ×

∏3n−2
m=0 Ωm

)
→ S

be such that α̂3n−2
(
i, ω3n−2

)
= ω3n−2(i). Let π̂3n−2 :

(
I ×

∏3n−2
m=0 Ωm

)
→ I be such that

π̂3n−2
(
i, ω3n−2

)
= π̂3n−3

(
i, ω3n−3

)
. Let ĝ3n−2 :

(
I ×

∏3n−2
m=0 Ωm

)
→ S ∪ {J} be such that

ĝ3n−2
(
i, ω3n−2

)
=

{
α̂3n−2(π̂3n−2(i, ω3n−2), ω3n−2) if π̂3n−2(i, ω3n−2) 6= i

J if π̂3n−2(i, ω3n−2) = i.

Let ρ̂3n−2
ω3n−2 = λ0

(
α̂3n−2
ω3n−2 , ĝ

3n−2
ω3n−2

)−1
be the cross-sectional extended type distribution after the

random mutation step.

Next, we consider the step of random matching. Let Ω3n−1 be the finite space constructed

in Lemma E.1 with the power set E3n−1. For any given ω3n−2 ∈ Ω3n−2, the type function is

α̂3n−2
ω3n−2( · ), while the partial matching function is π̂3n−3

ω3n−3( · ). We can construct a probability

measure Qω
3n−2

3n−1 = Pα̂3n−2

ω3n−2 ,π̂
3n−3

ω3n−3 ,q̂(ρ̂
3n−2

ω3n−2 ) and a random matching πα̂3n−2

ω3n−2 ,π̂
3n−3

ω3n−3 ,q̂(ρ̂
3n−2

ω3n−2 ) by

Lemma E.1. Let α̂3n−1 :
(
I ×

∏3n−1
m=0 Ωm

)
→ S, π̂3n−1 :

(
I ×

∏3n−1
m=0 Ωm

)
→ I and ĝ3n−1 :(

I ×
∏3n−1
m=0 Ωm

)
→ S ∪ {J} be such that

α̂3n−1
(
i, ω3n−1

)
= α̂3n−2

(
i, ω3n−2

)
,

π̂3n−1
(
i, ω3n−1

)
= πα̂3n−2

ω3n−2 ,π̂
3n−3

ω3n−3 ,q̂(ρ̂
3n−2

ω3n−2 ) (i, ω3n−1) ,

ĝ3n−1
(
i, ω3n−1

)
=

{
α̂3n−2(π̂3n−1(i, ω3n−1), ω3n−2) if π̂3n−1(i, ω3n−1) 6= i

J if π̂3n−1(i, ω3n−1) = i.

Let ρ̂3n−1
ω3n−1 = λ0

(
α̂3n−1
ω3n−1 , ĝ

3n−1
ω3n−1

)−1
be the cross-sectional extended type distribution after the

random matching step.

Now, we consider the final step of random type changing with break-up for matched

agents. Let Ω3n = (S × {0, 1})I with its power set E3n, where 0 represents “unmatched” and 1

represents “paired”. Each point ω3n = (ω1
3n, ω

2
3n) ∈ Ω3n is a function from I to S×{0, 1}. Define

a new type function α̂3n : (I × Ω3n) → S by letting α̂3n(i, ω3n) = ω1
3n(i). Fix ω3n−1 ∈ Ω3n−1.

For each i ∈ I,
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1. if π̂3n−1(i, ω3n−1) = i (i is not paired after the matching step at period n), let τω
3n−1

i be the

probability measure on the space S×{0, 1} that gives probability one to
(
α̂3n−2(i, ω3n−2), 0

)
and zero for the rest.

2. if π̂3n−1(i, ω3n−1) 6= i and π̂3n−3(i, ω3n−3) = i (i is newly paired after the matching step

at period n), α̂3n−2(i, ω3n−2) = k, π̂3n−1(i, ω3n−1) = j and α̂3n−2(j, ω3n−2) = l, define a

probability measure τω
3n−1

ij on (S × {0, 1})× (S × {0, 1}) such that

τω
3n−1

ij

(
(k′, 1), (l′, 1)

)
= ξ̂klσ̂kl(k

′, l′)

and

τω
3n−1

ij

(
(k′, 0), (l′, 0)

)
=
(

1− ξ̂kl
)
ς̂kl(k

′)ς̂lk(l
′)

for k′, l′ ∈ S, and zero for the rest.

3. if π̂3n−1(i, ω3n−1) 6= i and π̂3n−3(i, ω3n−3) 6= i (i is already paired at time n − 1),

α̂3n−2(i, ω3n−2) = k, π̂3n−1(i, ω3n−1) = j and α̂3n−2(j, ω3n−2) = l, define a probabil-

ity measure τω
3n−1

ij on (S × {0, 1})× (S × {0, 1}) such that

τω
3n−1

ij

(
(k′, 1), (l′, 1)

)
=
(

1− ϑ̂kl
)
δk(k

′)δl(l
′)

and

τω
3n−1

ij

(
(k′, 0), (l′, 0)

)
= ϑ̂klς̂kl(k

′)ς̂lk(l
′)

for k′, l′ ∈ S, and zero for the rest, where δk(k
′) is one for k = k′ and zero for k 6= k′.

Let

Anω3n−1 = {(i, j) ∈ I × I : i < j, π̂3n−1(i, ω3n−1) = j}

Bn
ω3n−1 = {i ∈ I : π̂3n−1(i, ω3n−1) = i}.

Define a probability measure Qω
3n−1

3n on (S × {0, 1})I to be the product measure∏
i∈Bn

ω3n−1

τω
3n−1

i ⊗
∏

(i,j)∈An
ω3n−1

τω
3n−1

ij .

We define π̂3n and ĝ3n such that for any (i, ω3n) ∈ I × Ω3n,

π̂3n(i, ω3n) =

{
i if π̂3n−1(i, ω3n−1) = i or ω2

3n(i) = 0 or ω2
3n(π̂3n−1(i, ω3n−1)) = 0

π̂3n−1(i, ω3n−1) otherwise,

ĝ3n
(
i, ω3n

)
=

{
α̂3n(π̂3n(i, ω3n), ω3n) if π̂3n(i, ω3n) 6= i

J if π̂3n(i, ω3n) = i.
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It is to check that for each ω3n ∈ Ω3n, π̂3n
ω3n( · ) is indeed a partial matching on I.3 Let

ρ̂3n
ω3n = λ0

(
α̂3n
ω3n , ĝ

3n
ω3n

)−1
be the cross-sectional extended type distribution after the step of

random type changing with break-up for matched agents.

Repeating this construction, we can construct a sequence of transition probabilities

{(Ωm, Em, Qm)}3M2

m=0 and a sequence of functions {(α̂m, π̂m, ĝ)}3M2

m=0.

Let (I ×Ω3M2
, I0⊗E3M2

, λ0⊗Q3M2
) be the product probability space of (I, I0, λ0) and

(Ω3M2
, E3M2

, Q3M2
). For simplicity, we denote Ω3M2

by Ω and Q3M2
by P0. For a natural num-

ber N , any function f from (Ωm+1, Em+1, Qm+1) to RN and ωm ∈ Ωm, Eωm(f) and Varω
m

(f)

are defined to be
∫

Ωm+1
f(ωm+1) dQω

m

m+1 and
∫

Ωm+1
||f(ωm+1)− Eωmf ||2∞ dQω

m

m+1, respectively.

In the following, we will often work with functions or sets that are measurable in

(Ωm, Em, Qm) for somem ≤ 3M2, which may be viewed as functions or sets based on (Ω3M2
, E3M2

, Q3M2
)

by allowing for dummy components for the tail part.

E.3 Properties of the finite-agent dynamic matching model

In this subsection, we first introduce a process β̃m to capture the types of the agents and

their partners, and whether the agents are newly matched. For 1 ≤ m ≤ 3M2 and i ∈ I, let

β̃mi = (α̂mi , ĝ
m
i , ĥ

m
i ), where

ĥmi =

{
0 if ĝmi 6= J and ĝm−1

i 6= J

1 otherwise.

It is clear that ĥmi = 0 if and only if agent i has been matched with another agent for at least

two steps. Note that in the third step of each time period, agents who have been matched

for at least two steps break up with some probability; agents who have just been matched

in the previous step (the matching step) form a long-term partnership with some probability.

That is why we need ĥ to identify agents who have been matched for at least two steps. By

the construction of the model, if an agent has a partner at the end of the mutation step, he

or she must have the same partner in the previous step. It is easy to verify that for any

n ∈ {1, . . . ,M},

ĥ3n−2
i =

{
0 if ĝ3n−2

i 6= J

1 if ĝ3n−2
i = J.

(E.1)

3For any given ω3n ∈ Ω3n, let Cnω3n = {i ∈ I : π̂3n−1(i, ω3n−1) = i or ω2
3n(i) · ω2

3n

(
π̂3n−1(i, ω3n−1)

)
= 0}.

Then, for any i ∈ Cnω3n , we have π̂3n
ω3n(i) = i by the definition of π̂3n. For any i /∈ Cnω3n , we know that

π̂3n−1(i, ω3n−1) = j 6= i, and ω2
3n(i)·ω2

3n(j) = 1. The definition of π̂3n indicates that π̂3n
ω3n(i) = π̂3n−1(i, ω3n−1) =

j. Since π̂3n−1
ω3n−1(·) is a matching, we know that π̂3n−1(j, ω3n−1) = i 6= j. It is also clear that ω2

3n(j) · ω2
3n(i) = 1,

which implies that j /∈ Cnω3n . It follows from the definition of π̂3n that π̂3n
ω3n(j) = π̂3n−1(j, ω3n−1) = i. Therefore,

π̂3n
ω3n(·) is a partial matching on I.
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Similarly, for the type changing with break-up step,

ĥ3n
i =

{
0 if ĝ3n

i 6= J

1 if ĝ3n
i = J.

(E.2)

Let S̃ = S × (S ∪ {J})× {0, 1}. Any (k, l, r) ∈ S̃ is called an expanded type. Let ∆̃ be

the space whose elements consist of any probability measure p̃ on S̃ = S × (S ∪ {J}) × {0, 1}
satisfying p̃klr = p̃lkr and p̃kJ0 = 0 (which means that p̃kJ1 = p̂kJ) for any k, l ∈ S and

r ∈ {0, 1}, which can be viewed as a compact and convex subset of the simplex in a Euclidean

space. We will work with the sup norm || · ||∞ on the relevant Euclidean space. For each

k, l ∈ S, we use the same notation q̂kl to denote the matching probability from ∆̃→ R that is

defined by letting q̂kl(ρ̃) = q̂kl(ρ̂), where ρ̂kl = ρ̃kl0 + ρ̃kl1.

Let ρ̃m be the cross-sectional expanded type distribution λ0

(
β̃m
)−1

. For k, l ∈ S, ρ̃mkl0

is the fraction of agents who are of type k, matched with type-l agents at the m-th step and

paired at the (m − 1)-th step as well, while ρ̃mkl1 is the fraction of agents who are of type k,

matched with type-l agents at the m-th step and single at the (m− 1)-th step. Note that ρ̂mkl

is the proportion of type-k agents matched with type-l agents at the m-th step, which implies

ρ̂mkl = ρ̃mkl0 + ρ̃mkl1. It is clear that ρ̃m belongs to ∆̃.

Next, we define three mappings T1, T2, T3 on ∆̃ to represent the transformation of the

expanded type distribution after each step of random mutation, random matching, and random

type changing and break-up.4 For any ρ ∈ ∆̃, let

[T1(ρ̃)]kl0 =

{∑
k′, l′∈S ρ̃k′l′0 η̂k′k η̂l′l if l 6= J

0 if l = J,

[T1(ρ̃)]kl1 =

{
0 if l 6= J∑

k′∈S ρ̃k′J1 η̂k′k if l = J,

[T2(ρ̃)]kl0 =

{
ρ̃kl0 if l 6= J

0 if l = J,

[T2(ρ̃)]kl1 =

{
ρ̃kJ1q̂kl(ρ̃) if l 6= J

ρ̃kJ1q̂k(ρ̃) if l = J,

[T3(ρ̃)]kl0 =

{
ρ̃kl0

(
1− ϑ̂kl

)
+
∑

k′,l′∈S ρ̃k′l′1 ξ̂k′l′ σ̂k′l′(k, l) if l 6= J

0 if l = J,

[T3(ρ̃)]kl1 =

{
0 if l 6= J∑

k′,l′∈S ρ̃k′l′1

(
1− ξ̂k′l′

)
ς̂k′l′(k) +

∑
k′,l′∈S ρ̃k′l′0 ϑ̂k′l′ ς̂k′l′(k) + ρ̃kJ1 if l = J.

4If the expanded type distribution at the beginning of step 3n−2 is ρ̃, Lemma E.11 indicates that the expected
expanded type distribution at the end of step 3n − 2 is T1(ρ̃). Similarly, Lemma E.13 says that the expected
expanded type distribution at the end of step 3n is T3(ρ̃) if the expanded type distribution at the beginning of
step 3n is ρ̃. However, T2(ρ̃) is not the expected expanded type distribution at the end of step 3n− 1 if the type
distribution at the beginning of step 3n− 1 is ρ̃. Nevertheless, by Lemma E.12, T2(ρ̃) is a good approximation
of the expected expanded type distribution at the end of step 3n− 1.
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The following lemma shows the equicontinuity of T1, T2, T3 and q̂.

Lemma E.2. There exists a sequence of positive numbers {ξm}3M
2+1

m=−1 with ξ−1 = 1

MMM and

3M2ξm ≤ ξ0 ≤ ξ−1 for any m ∈ {1, . . . , 3M2 + 1} such that for any m ∈ {−1, 0, . . . , 3M2},
r ∈ {1, 2, 3}, ρ̃, ρ̃′ ∈ ∆̃, if ‖ρ̃− ρ̃′‖∞ ≤ ξm+1, then

‖Tr(ρ̃)− Tr(ρ̃′)‖∞ ≤ ξm,

‖q̂(ρ̃)− q̂(ρ̃′)‖∞ ≤ ξm.

In the rest of this paper, we shall take M̂ to be the smallest even integer greater than(
1

ξ3M2+1

)3
.

Let e(m) = [m+2
3 ] and f(m) = m − 3e(m) + 3. Then for any m ∈ {1, . . . , 3M2}, the

m-th step in the finite dynamical system is also the f(m)-th step in the e(m)-th period. For

integers 1 ≤ m1 ≤ m2 ≤ 3M2, we use Um2
m1

to represent Tf(m2) ◦ Tf(m2−1) ◦ · · · ◦ Tf(m1). For

convenience, when 1 ≤ m2 < m1 ≤ 3M2, Um2
m1

is defined to be the identity mapping on ∆̃.

The following lemma provides an upper bound on the difference between the expected

expanded type distribution at the m-th step Eρ̃m and the repeated applications of the trans-

formations T1, T2, T3.

Lemma E.3. There exists a sequence {B1(n)}∞n=1 of positive real numbers with limn→∞B1(n) =

0 such that for any m ∈ {1, 2, . . . , 3M2}, we have ‖E(ρ̃m)− Um1 (ρ̃0)‖∞ ≤ B1(M).

Let Fm = {F ∈ E3M2
: F = Fm × Π3M2

m′=m+1Ωm′ and Fm ∈ Em}. Any set F in Fm

represents an event that “happens” by step m. For example, we use
(
β̃3n−2
i = (k, J, 1)

)
∩F 3n−2

to represent some event that happens by step 3n− 2 in which β̃3n−2
i = (k, J, 1). The following

two lemmas consider conditional probabilities5 of the form of P0

(
β̃m+1
i = b

∣∣ (β̃mi = a
)
∩ Fm

)
for Fm ∈ Fm, which will be used in Subsection E.4 below.

The following lemma provides an upper bound on the difference between q̂kl
(
U3n−2

1 (E(ρ̃0))
)

and P0

(
β̃3n−1
i = (k, l, 1)

∣∣ (β̃3n−2
i = (k, J, 1)

)
∩ F 3n−2

)
.

Lemma E.4. For any i ∈ I, n ∈ {1, 2, . . . ,M2}, k, l ∈ S, and F 3n−2 ∈ F3n−2 with

P0

((
β̃3n−2
i = (k, J, 1)

)
∩ F 3n−2

)
> 0, we have∣∣∣P0

(
β̃3n−1
i = (k, l, 1)

∣∣ (β̃3n−2
i = (k, J, 1)

)
∩ F 3n−2

)
− q̂kl

(
U3n−2

1 (ρ̃0)
)∣∣∣

≤ 1

M3P0

((
β̃3n−2
i = (k, J, 1)

)
∩ F 3n−2

) +
1

M2
.

5For given events A and B with P0(A) = 0, we can define the value of the conditional probability P0(B|A)
to be any number in [0, 1] that suits a particular context.
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The next lemma shows the relationship between P0

(
β̃m+1
i = b

∣∣ β̃mi = a
)

and

P0

(
β̃m+1
i = b

∣∣ (β̃mi = a
)
∩ Fm

)
.

Lemma E.5. Fix any i ∈ I, a, b ∈ S̃, and n ∈ {1, 2, . . . ,M2}.

(i) For any F 3n−3 ∈ F3n−3 with P0

((
β̃3n−3
i = a

)
∩ F 3n−3

)
> 0, the following identity holds:

P0

(
β̃3n−2
i = b

∣∣ (β̃3n−3
i = a

)
∩ F 3n−3

)
= P0

(
β̃3n−2
i = b

∣∣ β̃3n−3
i = a

)
.

(ii) For any F 3n−2 ∈ F3n−2 with P0

((
β̃3n−2
i = a

)
∩ F 3n−2

)
> 0, we have the following

inequality∣∣∣P0

(
β̃3n−1
i = b

∣∣ (β̃3n−2
i = a

)
∩ F 3n−2

)
− P0

(
β̃3n−1
i = b

∣∣ β̃3n−2
i = a

)∣∣∣
≤ 1

M3P0

((
β̃3n−2
i = a

)
∩ F 3n−2

) +
1

M2
.

(iii) For any F 3n−1 ∈ F3n−1 with P0

((
β̃3n−1
i = a

)
∩ F 3n−1

)
> 0, we have

P0

(
β̃3n
i = b

∣∣ (β̃3n−1
i = a

)
∩ F 3n−1

)
= P0

(
β̃3n
i = b

∣∣ β̃3n−1
i = a

)
.

For any i ∈ I and m ∈ {0, 1, . . . , 3M2}, let Fmi be the algebra generated by {β̃m′i }mm′=0.

Any set in Fmi represents an event for agent i that happens by step m.

An approximate Markov property for the expanded type process is presented below.

Lemma E.6. There exists a sequence {B2(n)}∞n=1 of positive real numbers with limn→∞B2(n) =

0. Fox any i ∈ I, β̃i satisfies the approximate Markov property in the sense that for any

m,m′ ∈ {0, 1, . . . , 3M2} with m > m′, a, a′ ∈ S̃, and Fm
′−1

i ∈ Fm′−1
i ,

P0

((
β̃mi = a, β̃m

′
i = a′

)
∩ Fm′−1

i

)
P0

(
β̃m
′

i = a′
)
− P0

(
β̃mi = a, β̃m

′
i = a′

)
P0

((
β̃m
′

i = a′
)
∩ Fm′−1

i

)
≤ B2(M).

The following lemma shows that the expanded type process satisfies an approximate

pairwise independence condition.

Lemma E.7. There exists a sequence {B3(n)}∞n=1 of positive real numbers with limn→∞B3(n) =

0 such that for any i, j ∈ I with i 6= j and π̂0
i 6= j, m ∈ {0, 1, . . . , 3M2}, Fmi ∈ Fmi , and

Fmj ∈ Fmj we have ∣∣P0

(
Fmi ∩ Fmj

)
− P0 (Fmi )P

(
Fmj
)∣∣ ≤ B3(M).
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In the rest of this subsection, we consider an estimation of the number of mutations,

matchings and break-ups that can happen within any time interval, and consider the expected

cross-sectional expanded type distribution. For any ω ∈ Ω, let

Ĥm
i (ω) =

∣∣{n ∈ T0 : α̂3n−2
i (ω) 6= α̂3n−3

i (ω) or ĝ3n−2
i (ω) 6= ĝ3n−3

i (ω), 3n− 2 ≤ m}
∣∣ ,

N̂m
i (ω) =

∣∣{n ∈ T0 : ĝ3n−1
i (ω) 6= ĝ3n−2

i (ω), 3n− 1 ≤ m}
∣∣ ,

R̂mi (ω) =
∣∣∣{n ∈ T0 : ĝ3n

i (ω) = J and ĥ3n−1
i (ω) = 0, 3n ≤ m}

∣∣∣ .
Here, Ĥm

i is the number of mutations of agent i and of the partner of agent i, by the m-th

step, while N̂m
i and R̂mi are the numbers of matchings and breakups of agent i by the m-th

step. Let X̂m
i = Ĥm

i + N̂m
i + R̂mi .

The following lemma provides a lower bound for the probability that there is no jump

for the counting process X̂i between two different steps.

Lemma E.8. For any m,∆m ∈ {0, . . . , 3M2} and Fm ∈ Fm such that m + ∆m ≤ 3M2 and

P0(Fm) > 0, we have

P0(X̂m+∆m
i = X̂m

i |Fm) ≥
(

1− Kā

M

)2∆m

.

An estimation on the probability of changing type twice in a given time interval is

presented below.

Lemma E.9. For any m,∆m ∈ {0, . . . , 3M2} such that m+ ∆m ≤ 3M2 and P0(Fm) > 0, we

have

P0

(
X̂m+∆m
i − X̂m

i ≥ 2
∣∣Fm) ≤ (1−

(
1− Kā

M

)2∆m
)2

.

An upper bound is provided below for ‖E
(
ρ̃m+∆m

)
− E (ρ̃m) ‖∞.

Lemma E.10. For any m,∆m ∈ {0, . . . , 3M2} such that m+ ∆m ≤ 3M2, we have

‖E
(
ρ̃m+∆m

)
− E (ρ̃m) ‖∞ ≤ 1−

(
1− Kā

M

)2∆m

.

E.4 Existence of continuous-time random matching

The proof in this subsection makes extensive use of some basic results in nonstandard analysis,

of which a comprehensive introduction is provided in the first three chapters of the book Loeb

and Wolff (2015).

As noted in Loeb and Wolff (2015), hyperfinite sets are important objects in nonstandard

analysis, which can be viewed as equivalence classes of sequences of finite sets. The transfer
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principle indicates that any results about finite sets can be restated on hyperfinite sets. In

particular, the dynamic matching model and its properties as developed in Subsections E.2

and E.3 can be recast in the setting with a hyperfinite number of agents and time periods with

the same notations.

We recall some notations in the hyperfinite setting as follows. First, we take M , as used

in the finite dynamic matching model, to be an unlimited hyperfinite integer in ∗N∞, and M̂

the smallest even hyperinteger in ∗N∞ which is greater than
(

1
ξ3M2+1

)3
(as described in the

paragraph below Lemma E.2).6 Then, let I be the hyperfinite set {1, 2, . . . , M̂} with its internal

power set I0 and the internal counting probability measure λ0 on I0, and T0 the hyperfinite set

{n}M2

n=0 with the corresponding time line {n/M}M2

n=0 (i.e., the time length for each period is the

infinitesimal 1/M). The parameters for the dynamical system, η̂kl, q̂kl, ξ̂kl, σ̂kl, ς̂kl, ϑ̂kl remain

the same. As in the finite dynamic matching model, we denote Ω3M2
, E3M2

(the internal power

set on Ω3M2
) and Q3M2

by Ω, F0 and P0 respectively. Let (I × Ω, I0 ⊗ F0, λ0 ⊗ P0) be the

internal product probability space of (I, I0, λ0) and (Ω,F0, P0). Note that I0 ⊗ F0 is also the

internal power set on I ×Ω. By the Transfer Principle, we know that Lemmas E.1 to E.10 still

hold in the hyperfinite setting. We will not distinguish the statements of Lemmas E.1 to E.10

in the finite and hyperfinite settings when there is no confusion.

Let (I, I, λ), (Ω,F , P ) and (I×Ω, I�F , λ�P ) be the standard probability spaces that are

obtained from the internal probability spaces (I, I0, λ0), (Ω,F0, P0) and (I×Ω, I0⊗F0, λ0⊗P0)

respectively by taking their corresponding Loeb probability spaces. Note that (I×Ω, I�F , λ�
P ) is a Fubini extension of the usual product space (I×Ω, I⊗F , λ⊗P ). We need to prove that

there exist α : I ×Ω×R+ → S, π : I ×Ω×R+ → I, and g : I ×Ω×R+ → S ∪ {J} satisfying

all the properties described in Appendix A.1. Towards this end, we divide the proof into six

parts. In Part 1, we define these processes, and discuss their basic properties. In Part 2, we

prove that (α, g) is Markovian and independent. We then check that the transition-intensity

matrix of the relevant Markov chains at time t is Q(p̌(t)). In particular, we consider Cases 1,

2, 3 and 4 of Table 1 in Parts 3, 4, 5, and 6 respectively.

Part 1: Recall that p̂0 is the initial extended type distribution. Let {Akl}(k,l)∈Ŝ be an internal

partition of I such that |Akl|
M̂
' p̂0

kl for any k ∈ S and l ∈ S ∪ {J}, |AkJ |
M̂
≥ 1

M2 for any

k ∈ S, and |Akl| = |Alk| for any k, l ∈ S, and |Akk| is even for any k ∈ S. Let α̂0 be an

6A positive hyperreal number is said to be infinite or unlimited if it is greater than every standard natural
number. As usual, ∗N∞ denotes the set of unlimited hyperfinite integers. A hyperreal number is said to be
finite or limited if its absolute value is less than some standard natural number. Two hyperreal numbers a and
b are said to be infinitely close to each other if a− b is an infinitesimal, which is denoted by a ' b. We also use
monad(a) to denote the set of all the hyperreal numbers infinitely close to a. When a is limited, it is infinitely
close to a standard real number b, which is called the standard part of a, denoted by ◦a or st(a).
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internal function from (I, I0, λ0) to S such that α̂0(i) = k if i ∈
⋃
l∈S∪{J}Akl. Let π̂0 be an

internal partial matching on I such that π̂0(i) = i on
⋃
k∈S AkJ , and the restriction π̂0|Akl is

an internal bijection from Akl to Alk for any k, l ∈ S. Let ĝ0(i) = α̂0(π̂0(i)). It is clear that

λ0({i : α̂0(i) = k, ĝ0(i) = l}) ' p̂0
kl for any k ∈ S and l ∈ S ∪ {J}.

Fix any t ∈ R+, and denote the hyperinteger part of tM by n̄. Based on the hyperfinite

dynamic system transferred from Appendix E.2, let α′(t) = α̂3n̄, π(t) = π̂3n̄, g′(t) = ĝ3n̄.

Since α̂3n̄, π̂3n̄, and ĝ3n̄ are all internal, it is clear that α′(t), π(t), and g′(t) are measurable on

(I × Ω, I � F , λ� P ).

Fix any i ∈ I. The stochastic processes α′i and g′i may not be right-continuous with left

limits (RCLL). We will show that up to any finite time, any agent can only change their types

finitely many times with probability one. Recall that X̂m
i (ω) is defined in the paragraph below

Lemma E.7. Let

Ai = {ω ∈ Ω : X̂m
i (ω) is finite for any m ∈ ∗N such that

m

M
is finite}.

For any N in the set N of (standard) positive integers, let ANi = {ω ∈ Ω : X̂NM
i (ω) is finite}.

It is clear that Ai = ∩∞N=1A
N
i , and

ANi =
∞⋃
k=1

{ω ∈ Ω : X̂NM
i (ω) ≤ k}.

Since the set {ω ∈ Ω : X̂NM
i (ω) ≤ k} is internal, ANi is measurable in F Fix any N ∈ N. For any

n ∈ N and j ∈ {0, 1, . . . , n}, let mj be the hyperinteger part of jNM
n . Then m0 = 0, mn = NM

and mj − mj−1 <
2NM
n for any j ∈ {1, . . . , n}. Fix any n ∈ N. For any ω /∈ ANi , X̂NM

i (ω)

is infinite, which implies that there exists j ∈ {1, . . . , n} such that X̂
mj
i (ω) − X̂mj−1

i (ω) ≥ 2.

Therefore, we know that

Ω \ANi ⊆
n⋃
j=1

{ω ∈ Ω : X̂
mj
i (ω)− X̂mj−1

i (ω) ≥ 2},

which implies that

P
(
Ω \ANi

)
≤

n∑
j=1

P
(
X̂
mj
i − X̂mj−1

i ≥ 2
)
. (E.3)

It follows from Lemma E.9 that

P0

(
X̂
mj
i − X̂mj−1

i ≥ 2
)
≤

(
1−

(
1− Kā

M

)2(mj−mj−1)
)2

. (E.4)

Note that M is unlimited. It is clear that for any ∆m such that ∆m
M is finite,(

1− Kā

M

)∆m

=

(
1− Kā

M

) M
Kā

Kā∆m
M

' e−
Kā∆m
M ' e− ◦(

∆m
M )Kā. (E.5)
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Since the standard part of
mj−mj−1

M is N
n , it follows from Equations (E.4) and (E.5) that

P
(
X̂
mj
i − X̂mj−1

i ≥ 2
)
≤
(

1− e−
2KNā
n

)2
. (E.6)

By combining Equations (E.3) and (E.6), we obtain that

P
(
Ω \ANi

)
≤ n

(
1− e−

2KNā
n

)2
.

Note that n
(

1− e−
2KNā
n

)2
→ 0 as n → ∞. Then P

(
Ω \ANi

)
= 0, which implies that

P
(
ANi
)

= 1. Therefore, we have P (Ai) = P
(
∩∞N=1A

N
i

)
= 1.

Let A = {(i, ω) ∈ I × Ω : X̂m
i (ω) is finite for any m ∈ ∗N such that m

M is finite}. Then,

it is clear that

A =

∞⋂
N=1

∞⋃
k=1

{(i, ω) ∈ I × Ω : X̂NM
i (ω) ≤ k},

which also implies that A is measurable in I � F . Since A = {(i, ω) ∈ I × Ω : ω ∈ Ai} and

P (Ai) = 1 for any i ∈ I, we have λ� P (A) = 1 by the Fubini property.

We define

αi(ω, t) =

{
limt′→t+ α

′
i(ω, t

′) if (i, ω) ∈ A
α̂3n̄
i (ω) otherwise,

gi(ω, t) =

{
limt′→t+ g

′
i(ω, t

′) if (i, ω) ∈ A
ĝ3n̄
i (ω) otherwise.

Now we prove that α and g are well defined and measurable on (I×Ω×R+, (I�F)⊗B(R+)).

For any (i, ω) ∈ A, α′i(ω, t
′) can only change finitely many times in the time interval [0, t+ 1].

Then there exists ε > 0 such that α′i(ω, t
′) are constant on (t, t+ ε). Then, for any (i, ω) ∈ A,

lim
t′→t+

α′i(ω, t
′) is well defined, and the sample path αi(ω, t) is RCLL in t ∈ R+. For any i ∈ I,

since P (Ai) = 1, the stochastic process αi is RCLL. We can prove that g is well defined

with the RCLL property in the same way. By the definition of α and g, and the fact that

A is measurable, it is clear that for any t ∈ R+, α(i, ω, t) and g(i, ω, t) are measurable on

(I × Ω, I � F , λ � P ). By Proposition 1.13 in Karatzas and Shreve (1991), α and g are

measurable on (I × Ω× R+, (I � F)⊗ B(R+)).

For each n ∈ T0 = {n}M2

n=0 and ω ∈ Ω, since π̂3n
ω is an internal involution on I and λ0 is

the hyperfinite counting probability measure on I0, it is obvious that the particular case π̂3n̄
ω

is measure-preserving from the Loeb space (I, I, λ) to itself. Hence, for any t ∈ R+ and ω ∈ Ω,

πωt( · ) is an internal involution on I and is measure-preserving.

Part 2: Fix any i ∈ I and t ∈ R+. Letting Et = {n ∈ ∗N : n
M ∈ monad(t)}, it is obvious that

n̄ ∈ Et. Define the following F -measurable set

Bi(t) = {ω ∈ Ω : X̂3n
i (ω) = X̂3n̄

i (ω) for any n ∈ Et}. (E.7)
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For any n1, n2 ∈ T0 such that st(n1
M ) < t < st(n2

M ) for t > 0, n1 = 0 and st(n2
M ) > 0 for t = 0,

Lemma E.8 implies that

P (Ω \Bi(t)) ≤ P
(
X̂3n1
i 6= X̂3n2

i

)
≤ 1− st

(
e−

6Kā(n2−n1)
M

)
.

If st
(
n2−n1
M

)
→ 0, then st

(
e−

6Kā(n2−n1)
M

)
→ 1. Hence, we have P (Ω \Bi(t)) = 0, which implies

that P (Bi(t)) = 1.

Fix any ω ∈ Ai. If α̂3n
i (ω) ≡ C for any n ∈ Et, then the Spillover Principle implies that

there exists n1, n2 ∈ T0 such that st(n1
M ) < t < st(n2

M ) for t > 0, n1 = 0 and st(n2
M ) > 0 for

t = 0, and α̂3n
i (ω) ≡ C for any n ∈ {n1, n1 + 1, . . . , n2}. Hence for any t′ in the time interval(

st(n1
M ), st(n2

M )
)
, α′i(t

′) = C. Therefore, for any n ∈ Et, we have

αi(ω, t) = lim
t′→t+

α′i(ω, t
′) = C = α̂3n

i (ω).

Fix any n0 ∈ Et. For any ω ∈ Ai, if α̂3n0
i (ω) 6= αi(ω, t), then α̂3n

i (ω) can not be constant

for n ∈ Et by the argument above. In this case, there is a mutation, matching, or break up at

some period in Et, which implies that the event {ω ∈ Ai : α̂3n0
i (ω) 6= αi(ω, t)} is a subset of

Ω \Bi(t). Since P (Ai) = 1, we have

P
(
α̂3n0
i 6= αit

)
≤ P (Ω \Bi(t)) = 0,

which implies that P
(
α̂3n0
i = αit

)
= 1. Similarly, we can prove that P

(
ĝ3n0
i = git

)
= 1. Denote

βi(t) = (αi(t), gi(t)) and β̂mi = (α̂mi , ĝ
m
i ) for any 0 ≤ m ≤ 3M2. Then we have

P
(
ω ∈ Ω : β̂3n0

i (ω) = βi(ω, t)
)

= 1. (E.8)

Fix any ω ∈ Bi(t). The Spillover Principle implies that there exists n1, n2 ∈ T0 such

that st(n1
M ) < t < st(n2

M ) for t > 0, n1 = 0 and st(n2
M ) > 0 for t = 0, and X̂3n1

i (ω) = X̂3n2
i (ω).

Then, we know that for any n ∈ {n1, n1 + 1, . . . , n2}, π̂3n
i (ω) = π̂3n̄

i (ω) and α̂3n
(
π̂3n
i (ω), ω

)
=

α̂3n̄
(
π̂3n̄
i (ω), ω

)
. Hence, for any t′ in the time interval

(
st(n1

M ), st(n2
M )
)
,

α′
(
π(i, ω, t), ω, t′

)
= α′

(
π(i, ω, t′), ω, t′

)
= α̂3n̄

(
π̂3n̄
i (ω), ω

)
.

Therefore, we can obtain that

lim
t′→t+

α′
(
π(i, ω, t), ω, t′

)
= α̂3n̄

(
π̂3n̄
i (ω), ω

)
.

We consider two cases as in the definition of α. If ω ∈ Aπ(i,ω,t), then

α (π(i, ω, t), ω, t) = lim
t′→t+

α′
(
π(i, ω, t), ω, t′

)
= α̂3n̄

(
π̂3n̄
i (ω), ω

)
.
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If ω /∈ Aπ(i,ω,t), then α (π(i, ω, t), ω, t) = α̂3n̄
(
π̂3n̄
i (ω), ω

)
. Since P (Bi(t)) = 1, we can claim

that for P -almost all ω ∈ Ω, α (π(i, ω, t), ω, t) = α̂3n̄
(
π̂3n̄
i (ω), ω

)
. Hence, we can derive that for

P -almost all ω ∈ Ω,

gi(ω, t) = ĝ3n̄
i (ω) =

{
α̂3n̄

(
π̂3n̄
i (ω), ω

)
if π̂3n̄

i (ω) 6= i

J if π̂3n̄
i (ω) = i

=

{
α (π(i, ω, t), ω, t) if π(i, ω, t) 6= i

J if π(i, ω, t) = i.

Therefore, the above equation together with Part 1 imply that Property 1 of the independent

dynamical system D̂ is verified.

By the hyperfinite analog of Lemma E.6, we know thatB2(M) ' 0 (sinceM is unlimited),

and for any r ∈ N, m1 = 3n1,m2 = 3n2, . . . ,mr = 3nr with n1 > n2 > · · · > nr in T0, and any

expanded types a1, a2, . . . , ar in S̃,

P
(
β̃m1
i = a1, β̃

m2
i = a2, . . . , β̃

mr
i = ar

)
P
(
β̃m2
i = a2

)
= P

(
β̃m1
i = a1, β̃

m2
i = a2

)
P
(
β̃m2
i = a2, . . . , β̃

mr
i = ar

)
. (E.9)

For any n ∈ T0, Equation (E.2) indicates that

ĥ3n
i =

{
0 if ĝ3n

i 6= J

1 if ĝ3n
i = J

= 1{J}
(
ĝ3n
i

)
,

which means that the value of ĥ3n
i is completely determined by ĝ3n

i . Hence, Equation (E.9)

implies that for any n1 > n2 > · · · > nr in T0, and any extended types b1, b2, . . . , br in Ŝ,

P
(
β̂3n1
i = b1, β̂

3n2
i = b2, . . . , β̂

3nr
i = br

)
P
(
β̂3n2
i = b2

)
= P

(
β̂3n1
i = b1, β̂

3n2
i = b2

)
P
(
β̂3n2
i = b2, . . . , β̂

3nr
i = br

)
. (E.10)

For any r ∈ N, and real time sequence t1 > t2 > · · · > tr in R+, choose nk ∈ T0 such that
nk
M ' tk for 1 ≤ k ≤ r. Then, it follows from Equations (E.8) and (E.10) that for any extended

types b1, b2, . . . , br in Ŝ

P (βi(t1) = b1, βi(t2) = b2, . . . , βi(tr) = br)P (βi(t2) = b2)

= P (βi(t1) = b1, βi(t2) = b2)P (βi(t2) = b2, . . . , βi(tr) = br) ,

which implies that the stochastic process βi = (αi, gi) has the Markov property.

Fix any j ∈ I with j 6= i and π̂0
i 6= j. By the hyperfinite analog of Lemma E.7, we

know that B3(M) ' 0 (since M is unlimited), and for any n1 > n2 > · · · > nr in T0, and any

extended types b1, c1, b2, c2, . . . , br, cr in Ŝ,

P
(
β̂3n1
i = b1, β̂

3n1
j = c1, . . . , β̂

3nr
i = br, β̂

3nr
j = cr

)
= P

(
β̂3n1
i = b1, . . . , β̂

3nr
i = br

)
P
(
β̂3n1
j = c1, . . . , β̂

3nr
j = cr

)
. (E.11)
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For any r ∈ N, and real time sequence t1 > t2 > · · · > tr in R+, choose nk ∈ T0 such that
nk
M ' tk for 1 ≤ k ≤ r. We can obtain from Equations (E.8) and (E.11) that for any extended

types b1, c1, b2, c2, . . . , br, cr in Ŝ,

P (βi(t1) = b1, βj(t1) = c1, . . . , βi(tr) = br, βj(tr) = cr)

= P (βi(t1) = b1, . . . , βi(tr) = br)P (βj(t1) = c1, . . . , βj(tr) = cr) , (E.12)

which implies that the stochastic processes (αi, gi) and (αj , gj) are independent.

Part 3: Fix any i ∈ I, t ∈ R+, k, l, k′, l′ ∈ S with (k, l) 6= (k′, l′) and P (βi(t) = (k, l)) > 0.

The purpose of this part is to verify that the transition intensity for agent i from expanded

type (k, l) to expanded type (k′, l′) at time t is given in Case 1 of Table 1.

For any ∆t ∈ R++ (the set of positive real numbers), let n,∆n ∈ ∗N such that n
M ∈

monad(t) and ∆n
M ∈ monad(∆t). By Equation (E.8),

P
(
βi(t+ ∆t) = (k′, l′)

∣∣βi(t) = (k, l)
)
' P0

(
β̂3n+3∆n
i = (k′, l′)

∣∣ β̂3n
i = (k, l)

)
.

Lemma E.9 indicates that

P0

(
X̂3n+3∆n
i − X̂3n

i ≥ 2
∣∣ β̂3n

i = (k, l)
)
≤

(
1−

(
1− Kā

M

)6∆n
)2

'
(

1− e−
6Kā∆n
M

)2
'
(
1− e−6Kā∆t

)2
,

which implies that the probability for agent i to change her extended type twice in the time

interval [t, t+ ∆t] is of order ∆t2. Hence,

P
(
βi(t+ ∆t) = (k′, l′)

∣∣βi(t) = (k, l)
)

= P0

(
β̂3n+3∆n
i = (k′, l′), X̂3n+3∆n

i − X̂3n
i = 1

∣∣ β̂3n
i = (k, l)

)
+O(∆t2). (E.13)

For any k1, l1 ∈ S and m,m′ ∈ {3n, 3n+ 1, . . . , 3M2} with m > m′, let

Bm
k1l1 = {ω ∈ Ω : β̂mi (ω) = (k1, l1), X̂3n

i (ω) = X̂m−1
i (ω), β̂3n

i (ω) = (k, l)},

which is the event that β̂mi = (k1, l1), β̂3n
i = (k, l), and there is neither mutation, nor matching,

nor break-up for agent i between 3n-th step and (m− 1)-th step. Further,

Cmm′ = {ω ∈ Ω : X̂m′
i (ω) = X̂m

i (ω)}

is the event that there is neither mutation, nor matching, nor break-up for agent i between

m′-th step and m-th step. In particular, when the event Cmm′ happens, agent i does not change

her extended type between m′-th step and m-th step.

If the events
(
β̂3n
i = (k, l)

)
and

(
X̂3n+3∆n
i − X̂3n

i = 1
)

happen, then mutation is the

only way for agent i to change her extended type to (k′, l′) by the end of step 3n + 3∆n

17



(since the other two steps must involve single agents). Based on the definition of conditional

probabilities, Equation (E.13) can be expanded as follows:

P
(
βi(t+ ∆t) = (k′, l′)

∣∣βi(t) = (k, l)
)

= P0

(
β̂3n+3∆n
i = (k′, l′), X̂3n+3∆n

i − X̂3n
i = 1

∣∣ β̂3n
i = (k, l)

)
+O(∆t2)

=
n+∆n−1∑
r=n

P0

(
B3r+1
k′l′ ∩ C

3n+3∆n
3r+1

∣∣ β̂3n
i = (k, l)

)
+O(∆t2)

=
n+∆n−1∑
r=n

[
P0

(
B3r+1
k′l′

∣∣ β̂3n
i = (k, l)

)
P0

(
C3n+3∆n

3r+1

∣∣B3r+1
k′l′

)]
+O(∆t2)

=
n+∆n−1∑
r=n

[
P0

(
β̂3r+1
i = (k′, l′)

∣∣C3r
3n ∩

(
β̂3n
i = (k, l)

))
P0

(
C3r

3n

∣∣ β̂3n
i = (k, l)

)
P0

(
C3n+3∆n

3r+1

∣∣B3r+1
k′l′

)]
+O(∆t2).

By Equation (E.1) and Lemma E.5, we obtain that

P0

(
β̂3r+1
i = (k′, l′)

∣∣C3r
3n ∩

(
β̂3n
i = (k, l)

))
= P0

(
β̂3r+1
i = (k′, l′)

∣∣C3r
3n ∩

(
β̂3r
i = (k, l)

))
= P0

(
β̃3r+1
i = (k′, l′, 0)

∣∣C3r
3n ∩

(
β̃3r
i = (k, l, 0)

))
= P0

(
β̃3r+1
i = (k′, l′, 0)

∣∣ β̃3r
i = (k, l, 0)

)
= P0

(
β̂3r+1
i = (k′, l′)

∣∣ β̂3r
i = (k, l)

)
= η̂kk′ η̂ll′ ,

where the last identity follows from the step of random mutation for matched agents in the

construction of the dynamic matching model. Then, the above identities imply that

P
(
βi(t+ ∆t) = (k′, l′)

∣∣βi(t) = (k, l)
)

=
n+∆n−1∑
r=n

[
P0

(
β̂3r+1
i = (k′, l′)

∣∣ β̂3n
i = (k, l)

)
P0

(
C3r

3n

∣∣ β̂3n
i = (k, l)

)
P0

(
C3n+3∆n

3r+1

∣∣B3r+1
k′l′

)]
+O(∆t2). (E.14)

When k 6= k′ and l = l′, P0

(
β̂3r+1
i = (k′, l)

∣∣ β̂3r
i = (k, l)

)
= η̂kk′ η̂ll, which implies that∣∣∣P0

(
β̂3r+1
i = (k′, l)

∣∣ β̂3r
i = (k, l)

)
− η̂kk′

∣∣∣
= |η̂kk′ η̂ll − η̂kk′ | = η̂kk′(1− η̂ll) = η̂kk′

∑
l′′∈S\{l}

η̂ll′′ ≤ K
( ā
M

)2

.
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Now, we estimate the difference∣∣∣∣∣P (βi(t+ ∆t) = (k′, l)
∣∣βi(t) = (k, l)

)
−
n+∆n−1∑
r=n

η̂kk′

∣∣∣∣∣
≤

n+∆n−1∑
r=n

∣∣∣(P0

(
β̂3r+1
i = (k′, l)

∣∣ β̂3n
i = (k, l)

)
− η̂kk′

)
P0

(
C3r

3n

∣∣ β̂3n
i = (k, l)

)
P0

(
C3n+3∆n

3r+1

∣∣B3r+1
k′l′

)∣∣∣
+

n+∆n−1∑
r=n

η̂kk′
∣∣∣P0

(
C3r

3n

∣∣ β̂3n
i = (k, l)

)
P0

(
C3n+3∆n

3r+1

∣∣B3r+1
k′l′

)
− 1
∣∣∣+O(∆t2)

≤
n+∆n−1∑
r=n

K
( ā
M

)2

+

n+∆n−1∑
r=n

η̂kk′
∣∣∣P0

(
C3r

3n

∣∣ β̂3n
i = (k, l)

)
P0

(
C3n+3∆n

3r+1

∣∣B3r+1
k′l′

)
− 1
∣∣∣+O(∆t2).

Since ā is finite, we know that
∑n+∆n−1

r=n K
(
ā
M

)2
= ā2

M
∆n
M is infinitesimal and can be absorbed

into O(∆t2). By Lemma E.8, we have

P0

(
C3r

3n

∣∣ β̂3n
i = (k, l)

)
P0

(
C3n+3∆n

3r+1

∣∣B3r+1
k′l′

)
≥

(
1− Kā

M

)6(r−n)(
1− Kā

M

)6(n+∆n−r)
' e−

6K(r−n)ā
M e−

6K(n+∆n−r)ā
M .

Then, it follows from the above inequalities that∣∣∣∣∣P (βi(t+ ∆t) = (k′, l)
∣∣βi(t) = (k, l)

)
−
n+∆n−1∑
r=n

η̂kk′

∣∣∣∣∣
≤

n+∆n−1∑
r=n

ā

M

(
1− e−

6K(r−n)ā
M e−

6K(n+∆n−r)ā
M

)
+O(∆t2)

= ā∆t
(
1− e−6Kā∆t

)
+O(∆t2)

= O(∆t2).

Therefore, we obtain the estimation

P
(
βi(t+ ∆t) = (k′, l)

∣∣βi(t) = (k, l)
)

=

n+∆n−1∑
r=n

η̂kk′ +O(∆t2)

= ηkk′∆t+O(∆t2). (E.15)

When k = k′ and l 6= l′, we can also prove in the same way as above that

P
(
βi(t+ ∆t) = (k, l′)

∣∣βi(t) = (k, l)
)

= ηll′∆t+O(∆t2). (E.16)
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It remains to consider the case that k 6= k′ and l 6= l′. It is clear that

P0

(
β̂3r+1
i = (k′, l′)

∣∣ β̂3r
i = (k, l)

)
= η̂kk′ η̂ll′ ≤

( ā
M

)2

.

Therefore, Equation (E.14) implies that

P
(
βi(t+ ∆t) = (k′, l′)

∣∣βi(t) = (k, l)
)

=

n+∆n−1∑
r=n

[
P0

(
β̂3r+1
i = (k′, l′)

∣∣ β̂3n
i = (k, l)

)
P0

(
C3r

3n

∣∣ β̂3n
i = (k, l)

)
P0

(
C3n+3∆n

3r+1

∣∣B3r+1
3n ∩

(
β̂3n
i = (k, l)

))]
+O(∆t2)

≤
n+∆n−1∑
r=n

( ā
M

)2

+O(∆t2)

= O(∆t2). (E.17)

By combining Equations (E.15), (E.16), (E.17), we obtain that

P
(
βi(t+ ∆t) = (k′, l′)

∣∣βi(t) = (k, l)
)

=
(
ηkk′δl(l

′) + ηll′δk(k
′)
)

∆t+O(∆t2).

Hence, agent i’s transition intensity for her expanded types from (k, l) to (k′, l′) at time t is

indeed Q(k,l)(k′,l′)(p̌(t)), as given in Case 1 of Table 1.

Part 4: Fix any i ∈ I, t ∈ R+, k, l, k′ ∈ S with P (βi(t) = (k, l)) > 0. The purpose of this

part is to verify that agent i’s transition intensity for her expanded types from (k, l) to (k′, J)

at time t is given in Case 2 of Table 1.

For any ∆t ∈ R++, let n,∆n ∈ ∗N such that n
M ∈ monad(t) and ∆n

M ∈ monad(∆t). By

Equation (E.8), we have

P
(
βi(t+ ∆t) = (k′, J)

∣∣βi(t) = (k, l)
)
' P0

(
β̂3n+3∆n
i = (k′, J)

∣∣ β̂3n
i = (k, l)

)
.

By Lemma E.9, the probability for agent i to change her extended type twice in the time

interval [t, t+ ∆t] is at level of ∆t2. Hence, we have

P
(
βi(t+ ∆t) = (k′, J)

∣∣βi(t) = (k, l)
)

= P0

(
β̂3n+3∆n
i = (k′, J), X̂3n+3∆n

i − X̂3n
i = 1

∣∣ β̂3n
i = (k, l)

)
+O(∆t2). (E.18)

For any k1 ∈ S and m,m′ ∈ {3n, 3n+ 1, . . . , 3M2} with m > m′, let

Bm
k1J = {ω ∈ Ω : β̂mi (ω) = (k1, J), X̂3n

i (ω) = X̂m−1
i (ω), β̂3n

i (ω) = (k, l)}

and Cmm′ = {ω ∈ Ω : X̂m′
i (ω) = X̂m

i (ω)}. Then, Bm
k1l1

is the event that β̂mi = (k1, J),

β̂3n
i = (k, l), and there is neither mutation, nor matching, nor break-up for agent i between
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3n-th step and (m− 1)-th step; Cmm′ is the event that there is neither mutation, nor matching,

nor break-up for agent i between m′-th step and m-th step. In particular, when the event Cmm′

happens, agent i does not change her extended type between m′-th step and m-th step.

If the events
(
β̂3n
i = (k, l)

)
and

(
X̂3n+3∆n
i − X̂3n

i = 1
)

happen, break-up is the only

way for agent i to change her extended type to (k′, J) by the end of step 3n + 3∆n (since, in

the other two steps, paired agents must stay paired). Based on the definition of conditional

probabilities, Equation (E.18) can be expanded as follows:

P
(
βi(t+ ∆t) = (k′, J)

∣∣βi(t) = (k, l)
)

= P0

(
β̂3n+3∆n
i = (k′, J), X̂3n+3∆n

i − X̂3n
i = 1

∣∣ β̂3n
i = (k, l)

)
+O(∆t2)

=
n+∆n−1∑
r=n

P0

(
B3r+3
k′J ∩ C3n+3∆n

3r+3

∣∣ β̂3n
i = (k, l)

)
+O(∆t2)

=
n+∆n−1∑
r=n

[
P0

(
B3r+3
k′J

∣∣ β̂3n
i = (k, l)

)
P0

(
C3n+3∆n

3r+3

∣∣B3r+3
k′J

)]
+O(∆t2)

=
n+∆n−1∑
r=n

[
P0

(
β̂3r+3
i = (k′, J)

∣∣C3r+2
3n ∩

(
β̂3n
i = (k, l)

))
P0

(
C3r+2

3n

∣∣ β̂3n
i = (k, l)

)
P0

(
C3n+3∆n

3r+3

∣∣B3r+3
k′J

)]
+O(∆t2).

It follows from Equation (E.2) and Lemma E.5 that

P0

(
β̂3r+3
i = (k′, J)

∣∣C3r+2
3n ∩

(
β̂3n
i = (k, l)

))
= P0

(
β̂3r+3
i = (k′, J)

∣∣C3r+2
3n ∩

(
β̂3r+2
i = (k, l)

))
= P0

(
β̃3r+3
i = (k′, J, 1)

∣∣C3r+2
3n ∩

(
β̃3r+2
i = (k, l, 0)

))
= P0

(
β̃3r+3
i = (k′, J, 1)

∣∣ β̃3r+2
i = (k, l, 0)

)
= ϑ̂klς̂kl(k

′),

where the last identity follows from the step of random type changing with break-up for agents

(who are not newly matched, but break up the partnership) in the construction of the dynamic

matching model. Then, the above identities imply that

P
(
βi(t+ ∆t) = (k′, J)

∣∣βi(t) = (k, l)
)

=

n+∆n−1∑
r=n

ϑ̂klς̂kl(k
′)P0

(
C3r+2

3n

∣∣ β̂3n
i = (k, l)

)
P0

(
C3n+3∆n

3r+3

∣∣B3r+3
k′J

)
+O(∆t2). (E.19)
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Next, we estimate the difference∣∣∣∣∣P (βi(t+ ∆t) = (k′, J)
∣∣βi(t) = (k, l)

)
−
n+∆n−1∑
r=n

ϑ̂klς̂kl(k
′)

∣∣∣∣∣
≤

n+∆n−1∑
r=n

ϑ̂klς̂kl(k
′)
∣∣∣P0

(
C3r+2

3n

∣∣ β̂3n
i = (k, l)

)
P0

(
C3n+3∆n

3r+3

∣∣B3r+3
k′J

)
− 1
∣∣∣

+ O(∆t2).

By Lemma E.8, we obtain that

P0

(
C3r+2

3n

∣∣ β̂3n
i = (k, l)

)
P0

(
C3n+3∆n

3r+3

∣∣B3r+3
k′J

)
≥

(
1− Kā

M

)2(3r−3n+2)(
1− Kā

M

)2(3n+3∆n−3r−3)

' e−
2Kā(3r−3n+2)

M e−
2Kā(3n+3∆n−3r−3)

M

' e−6Kā∆t.

Then, it follows from the above inequalities that∣∣∣∣∣P (βi(t+ ∆t) = (k′, l)
∣∣βi(t) = (k, l)

)
−
n+∆n−1∑
r=n

ϑ̂klς̂kl(k
′)

∣∣∣∣∣
≤

n+∆n−1∑
r=n

ā

M

(
1− e−6Kā∆t

)
+O(∆t2)

= ā∆t
(
1− e−6Kā∆t

)
+O(∆t2)

= O(∆t2).

Therefore, we have

P
(
βi(t+ ∆t) = (k′, J)

∣∣βi(t) = (k, l)
)

=
n+∆n−1∑
r=n

ϑ̂klς̂kl(k
′) +O(∆t2)

= ϑklςkl(k
′)∆t+O(∆t2), (E.20)

which implies that agent i’s transition intensity for her expanded types from (k, l) to (k′, J) at

time t is Q(k,l)(k′,J)(p̌(t)), as given in Case 2 of Table 1.

Part 5: Fix any i ∈ I, t ∈ R+, k, k′, l′ ∈ S with P (βi(t) = (k, J)) > 0. The purpose of this

part is to verify that agent i’s transition intensity for her expanded types from (k, J) to (k′, l′)

at time t is given in Case 3 of Table 1.

For any ∆t ∈ R++, let n,∆n ∈ ∗N such that n
M ∈ monad(t) and ∆n

M ∈ monad(∆t). By

Equation (E.8), we have

P
(
βi(t+ ∆t) = (k′, l′)

∣∣βi(t) = (k, J)
)
' P0

(
β̂3n+3∆n
i = (k′, l′)

∣∣ β̂3n
i = (k, J)

)
.
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Lemma E.9 says that the probability for agent i to change her extended type twice in the time

interval [t, t+ ∆t] is at level of ∆t2. Hence, we have

P
(
βi(t+ ∆t) = (k′, l′)

∣∣βi(t) = (k, J)
)

= P0

(
β̂3n+3∆n
i = (k′, l′), X̂3n+3∆n

i − X̂3n
i = 1

∣∣ β̂3n
i = (k, J)

)
+O(∆t2). (E.21)

For any k1, l1 ∈ S and m,m′ ∈ {3n, 3n+ 1, . . . , 3M2} with m > m′, let

Bm
k1l1 = {ω ∈ Ω : β̂mi (ω) = (k1, l1), X̂3n

i (ω) = X̂m−1
i (ω), β̂3n

i (ω) = (k, J)}

and Cmm′ = {ω ∈ Ω : X̂m′
i (ω) = X̂m

i (ω)}. Then Bm
k1l1

is the event that β̂mi = (k1, l1), β̂3n
i =

(k, J) and there is neither mutation, nor matching, nor break-up for agent i between 3n-th

step and (m − 1)-th step; Cmm′ is the event that there is neither mutation, nor matching, nor

break-up for agent i between m′-th step and m-th step. In particular, when the event Cmm′

happens, agent i does not change her extended type between m′-th step and m-th step. It is

clear that

Bm
k1l1 = {ω ∈ Ω : β̂mi (ω) = (k1, l1), β̂3n

i (ω) = (k, J)} ∩ Cm−1
3n . (E.22)

If the events
(
β̂3n
i = (k, J)

)
and

(
X̂3n+3∆n
i − X̂3n

i = 1
)

happen, then matching is the

only way for agent i to change her extended type to (k′, l′) by the end of step 3n+ 3∆n (since,

in the other two steps, single agents must stay single). Equation (E.21) can be expanded as

follows:

P
(
βi(t+ ∆t) = (k′, l′)

∣∣βi(t) = (k, J)
)

= P0

(
β̂3n+3∆n
i = (k′, l′), X̂3n+3∆n

i − X̂3n
i = 1

∣∣ β̂3n
i = (k, J)

)
+O(∆t2)

=
n+∆n−1∑
r=n

∑
l∈S

P0

((
β̂3r+3
i = (k′, l′)

)
∩B3r+2

kl ∩ C3n+3∆n
3r+3

∣∣ β̂3n
i = (k, J)

)
+O(∆t2)

=

n+∆n−1∑
r=n

∑
l∈S

[
P0

((
β̂3r+3
i = (k′, l′)

)
∩B3r+2

kl

∣∣ β̂3n
i = (k, J)

)
P0

(
C3n+3∆n

3r+3

∣∣ (β̂3r+3
i = (k′, l′)

)
∩B3r+2

kl

)]
+O(∆t2)

=

n+∆n−1∑
r=n

∑
l∈S

[
P0

(
β̂3r+3
i = (k′, l′)

∣∣B3r+2
kl

)
P0

(
B3r+2
kl

∣∣ β̂3n
i = (k, J)

)
P0

(
C3n+3∆n

3r+3

∣∣ (β̂3r+3
i = (k′, l′)

)
∩B3r+2

kl

)]
+O(∆t2).
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By Equations (E.2), (E.22) and Lemma E.5,

P0

(
β̂3r+3
i = (k′, l′)

∣∣B3r+2
kl

)
= P0

(
β̂3r+3
i = (k′, l′)

∣∣ (β̂3r+2
i = (k, l)

)
∩ C3r+1

3n ∩
(
β̂3n
i = (k, J)

))
= P0

(
β̃3r+3
i = (k′, l′, 0)

∣∣ (β̃3r+2
i = (k, l, 1)

)
∩ C3r+1

3n ∩
(
β̂3n
i = (k, J)

))
= P0

(
β̃3r+3
i = (k′, l′, 0)

∣∣ β̃3r+2
i = (k, l, 1)

)
= ξ̂klσ̂kl(k

′, l′),

where the last identity follows from the step of random type changing with break-up for agents

(who are newly matched with an enduring relationship) in the construction of the dynamic

matching model. Then, the above identities and Equation (E.22) imply that

P
(
βi(t+ ∆t) = (k′, l′)

∣∣βi(t) = (k, J)
)

=
n+∆n−1∑
r=n

∑
l∈S

ξ̂klσ̂kl(k
′, l′)P0

(
B3r+2
kl

∣∣ β̂3n
i = (k, J)

)
P0

(
C3n+3∆n

3r+3

∣∣ (β̂3r+3
i = (k′, l′)

)
∩B3r+2

kl

)
+O(∆t2)

=
n+∆n−1∑
r=n

∑
l∈S

[
ξ̂klσ̂kl(k

′, l′)P0

(
β̂3r+2 = (k, l)

∣∣C3r+1
3n ∩

(
β̂3n
i = (k, J)

))
P0

(
C3r+1

3n

∣∣ β̂3n
i = (k, J)

)
P0

(
C3n+3∆n

3r+3

∣∣ (β̂3r+3
i = (k′, l′)

)
∩B3r+2

kl

)]
+O(∆t2). (E.23)

Fix any sample realization ω3r+1 ∈ Ω3r+1 such that β̂3r+1
i

(
ω3r+1

)
= (k, J). By the

definition of ĥmi , we know that ĥ3r+1
i

(
ω3r+1

)
= 1, and ĥ3r+2

i

(
ω3r+1, ω3r+2

)
= 1 for any ω3r+2 ∈

Ω3r+2. Hence, these facts together with Lemma E.4 imply that∣∣∣q̂kl (U3r+1
1

(
ρ̃0
))
− P0

(
β̂3r+2 = (k, l)

∣∣C3r+1
3n ∩

(
β̂3n
i = (k, J)

))∣∣∣
=

∣∣∣q̂kl (U3r+1
1

(
ρ̃0
))
− P0

(
β̂3r+2 = (k, l)

∣∣C3r+1
3n ∩

(
β̂3r+1
i = (k, J)

))∣∣∣
=

∣∣∣q̂kl (U3r+1
1

(
ρ̃0
))
− P0

(
β̃3r+2 = (k, l, 1)

∣∣C3r+1
3n ∩

(
β̃3r+1
i = (k, J, 1)

))∣∣∣
≤ 1

M3P0

(
C3r+1

3n ∩
(
β̃3r+1
i = (k, J, 1)

)) +
1

M2

=
1

M3P0

(
C3r+1

3n ∩
(
β̂3n
i = (k, J)

)) +
1

M2
.

By Lemma E.8, P
(
C3r+1

3n

∣∣ β̂3n
i = (k, J)

)
> 0, which implies that P

(
C3r+1

3n ∩
(
β̂3n
i = (k, J)

))
>
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0. Then P0

(
C3r+1

3n ∩
(
β̂3n
i = (k, J)

))
is not infinitesimal. It is then clear that

1

M3P0

(
C3r+1

3n ∩
(
β̂3n
i = (k, J)

)) < 1

M2
.

Therefore, we obtain the following estimation∣∣∣q̂kl (U3r+1
1

(
ρ̃0
))
− P0

(
β̂3r+2 = (k, l)

∣∣C3r+1
3n ∩

(
β̂3n
i = (k, J)

))∣∣∣ ≤ 2

M2
, (E.24)

which implies that

P0

(
β̂3r+2 = (k, l)

∣∣C3r+1
3n ∩

(
β̂3n
i = (k, J)

))
≤ q̂kl

(
U3r+1

1

(
ρ̃0
))

+
2

M2

≤ ā

M
+

2

M2
.

It follows from the above inequality that∣∣∣∣∣
n+∆n−1∑
r=n

∑
l∈S

[
ξ̂klσ̂kl(k

′, l′)P0

(
β̂3r+2 = (k, l)

∣∣C3r+1
3n ∩

(
β̂3n
i = (k, J)

))
P0

(
C3r+1

3n

∣∣ β̂3n
i = (k, J)

)
P0

(
C3n+3∆n

3r+3

∣∣ (β̂3r+3
i = (k′, l′)

)
∩B3r+2

kl

)]
−

n+∆n−1∑
r=n

∑
l∈S

ξ̂klσ̂kl(k
′, l′)P0

(
β̂3r+2 = (k, l)

∣∣C3r+1
3n ∩

(
β̂3n
i = (k, J)

))∣∣∣∣∣
=

n+∆n−1∑
r=n

∑
l∈S

[
ξ̂klσ̂kl(k

′, l′)P0

(
β̂3r+2 = (k, l)

∣∣C3r+1
3n ∩

(
β̂3n
i = (k, J)

))
(

1− P0

(
C3r+1

3n

∣∣ β̂3n
i = (k, J)

)
P0

(
C3n+3∆n

3r+3

∣∣ (β̂3r+3
i = (k′, l′)

)
∩B3r+2

kl

))]
≤

n+∆n−1∑
r=n

∑
l∈S

(
ā

M
+

2

M2

)
(

1− P0

(
C3r+1

3n

∣∣ β̂3n
i = (k, J)

)
P0

(
C3n+3∆n

3r+3

∣∣ (β̂3r+3
i = (k′, l′)

)
∩B3r+2

kl

))
. (E.25)

By Lemma E.8, we obtain that

P0

(
C3r+1

3n

∣∣ β̂3n
i = (k, J)

)
P0

(
C3n+3∆n

3r+3

∣∣ (β̂3r+3
i = (k′, l′)

)
∩B3r+2

kl

)
≥

(
1− Kā

M

)2(3r−3n+1)(
1− Kā

M

)2(3n+3∆n−3r−3)

' e−
2Kā(3r−3n+1)

M e−
2Kā(3n+3∆n−3r−3)

M

' e−6Kā∆t. (E.26)
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For x, z ∈ ∗R, we use x . z (x & z ) to denote that there exists y ∈ ∗R with y ' x such that

y ≤ z (y ≥ z). Then, Equations (E.25) and (E.26) imply that∣∣∣∣∣
n+∆n−1∑
r=n

∑
l∈S

[
ξ̂klσ̂kl(k

′, l′)P0

(
β̂3r+2 = (k, l)

∣∣C3r+1
3n ∩

(
β̂3n
i = (k, J)

))
P0

(
C3r+1

3n

∣∣ β̂3n
i = (k, J)

)
P0

(
C3n+3∆n

3r+3

∣∣ (β̂3r+3
i = (k′, l′)

)
∩B3r+2

kl

)]
−

n+∆n−1∑
r=n

∑
l∈S

ξ̂klσ̂kl(k
′, l′)P0

(
β̂3r+2 = (k, l)

∣∣C3r+1
3n ∩

(
β̂3n
i = (k, J)

))∣∣∣∣∣
.

n+∆n−1∑
r=n

K

(
ā

M
+

2

M2

)(
1− e−6Kā∆t

)
. Kā

(
1− e−6Kā∆t

)
∆t

= O(∆t2). (E.27)

Therefore, Equations (E.23) and (E.27) lead to the following estimation

P
(
βi(t+ ∆t) = (k′, l′)

∣∣βi(t) = (k, J)
)

=
n+∆n−1∑
r=n

∑
l∈S

ξ̂klσ̂kl(k
′, l′)P0

(
β̂3r+2 = (k, l)

∣∣C3r+1
3n ∩

(
β̂3n
i = (k, J)

))
+O(∆t2). (E.28)

We can use Equation (E.24) to deduce that∣∣∣∣∣
n+∆n−1∑
r=n

∑
l∈S

ξ̂klσ̂kl(k
′, l′)q̂kl

(
U3r+1

1

(
ρ̃0
))

−
n+∆n−1∑
r=n

∑
l∈S

ξ̂klσ̂kl(k
′, l′)P0

(
β̂3r+2 = (k, l)

∣∣C3r+1
3n ∩

(
β̂3n
i = (k, J)

))∣∣∣∣∣
≤

∣∣∣∣∣
n+∆n−1∑
r=n

∑
l∈S

ξ̂klσ̂kl(k
′, l′)

2

M2

∣∣∣∣∣
≤ ∆nK

2

M2
, (E.29)

which is an infinitesimal and can be absorbed into the term O(∆t2). Therefore, Equations

(E.28) and (E.29) imply that

P
(
βi(t+ ∆t) = (k′, l′)

∣∣βi(t) = (k, J)
)

=

n+∆n−1∑
r=n

∑
l∈S

ξ̂klσ̂kl(k
′, l′)q̂kl

(
U3r+1

1

(
ρ̃0
))

+O(∆t2). (E.30)
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Equation (E.8) implies that p̌t = E (p̂t) ' E
(
ρ̂3n
)
. By Lemma E.3, U3r+1

1 (ρ̃0) '
E
(
ρ̃3r+1

)
. By the continuity of θkl, we obtain the following estimation

1

∆t

∣∣∣∣∣
n+∆n−1∑
r=n

∑
l∈S

ξ̂klσ̂kl(k
′, l′)q̂kl

(
U3r+1

1

(
ρ̃0
))
−
∑
l∈S

ξ̂klσ̂kl(k
′, l′)θkl (p̌t) ∆t

∣∣∣∣∣
.

1

∆t

∑
l∈S

ξ̂klσ̂kl(k
′, l′)

∣∣∣∣∣
n+∆n−1∑
r=n

1

M
∗θkl

(
U3r+1

1

(
ρ̃0
))
− ∗θkl

(
E
(
ρ̂3n
)) ∆n

M

∣∣∣∣∣
.

1

M∆t

∑
l∈S

ξ̂klσ̂kl(k
′, l′)

n+∆n−1∑
r=n

∣∣∗θkl (E (ρ̃3r+1
))
− ∗θkl

(
E
(
ρ̃3n
))∣∣

.
K

∆n

n+∆n−1∑
r=n

∣∣∗θkl (E (ρ̃3r+1
))
− ∗θkl

(
E
(
ρ̃3n
))∣∣ .

Fix any ∆n′ ∈ T0 such that ∆n′

M is infinitesimal. Lemma E.10 implies that ‖E
(
ρ̃3r+1

)
−

E
(
ρ̃3n
)
‖∞ is infinitesimal for any r between n and n + ∆n′. By the continuity of θkl,∣∣∗θkl (E (ρ̃3r+1

))
− ∗θkl

(
E
(
ρ̃3n
))∣∣ is also infinitesimal. Then, we obtain that

K

∆n′

n+∆n′−1∑
r=n

∣∣∗θkl (E (ρ̂3r+1
))
− ∗θkl

(
E
(
ρ̂3n
))∣∣ ' 0.

By the Spillover Principle, it is easy to show that for any ε ∈ R++, there exists δ ∈ R++

such that for any ∆n ∈ T0 with st
(

∆n
M

)
< δ, the standard part of

K

∆n

n+∆n−1∑
r=n

∣∣∗θkl (E (ρ̂3r+1
))
− ∗θkl

(
E
(
ρ̂3n
))∣∣

is less than ε. We can then claim that∣∣∣∣∣
n+∆n−1∑
r=n

∑
l∈S

ξ̂klσ̂kl(k
′, l′)q̂kl

(
U3r+1

1

(
ρ̃0
))
−
∑
l∈S

ξ̂klσ̂kl(k
′, l′)θkl (p̌t) ∆t

∣∣∣∣∣ = o(∆t).

Hence, Equation (E.30) implies that

P
(
βi(t+ ∆t) = (k′, l′)

∣∣βi(t) = (k, J)
)

=
∑
l∈S

ξklσkl(k
′, l′)θkl (p̌t) ∆t+ o(∆t),

which implies agent i’s transition intensity for her expanded types from (k, J) to (k′, l′) at time

t to be Q(k,J)(k′,l′)(p̌(t)) as in Case 3 of Table 1.

Part 6: Fix any i ∈ I, t ∈ R+, k, k′ ∈ S with k 6= k′ and P (βi(t) = (k, J)) > 0. The purpose

of this part is to verify that agent i’s transition intensity for her expanded types from (k, J) to

(k′, J) at time t is given in Case 4 of Table 1.
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For any ∆t ∈ R++, let n,∆n ∈ ∗N such that n
M ∈ monad(t) and ∆n

M ∈ monad(∆t). By

Equation (E.8), we have

P
(
βi(t+ ∆t) = (k′, J)

∣∣βi(t) = (k, J)
)
' P0

(
β̂3n+3∆n
i = (k′, J)

∣∣ β̂3n
i = (k, J)

)
.

Lemma E.9 says that the probability for agent i to change her extended type twice in the time

interval [t, t+ ∆t] is at level of ∆t2. Hence, we have

P
(
βi(t+ ∆t) = (k′, J)

∣∣βi(t) = (k, J)
)

= P0

(
β̂3n+3∆n
i = (k′, J), X̂3n+3∆n

i − X̂3n
i = 1

∣∣ β̂3n
i = (k, J)

)
+O(∆t2). (E.31)

For any k1 ∈ S and m,m′ ∈ {3n, 3n+ 1, . . . , 3M2} with m > m′, let

Bm
k1J = {ω ∈ Ω : β̂mi (ω) = (k1, J), X̂3n

i (ω) = X̂m−1
i (ω), β̂3n

i (ω) = (k, J)}

and Cmm′ = {ω ∈ Ω : X̂m′
i (ω) = X̂m

i (ω)}. Then Bm
k1J

is the event that β̂mi = (k1, J), β̂3n
i = (k, J)

and there is neither mutation, nor matching, nor break-up for agent i between 3n-th step and

(m−1)-th step; Cmm′ is the event that there is neither mutation, nor matching, nor break-up for

agent i between m′-th step and m-th step. In particular, when the event Cmm′ happens, agent

i does not change her extended type between m′-th step and m-th step. It is clear that

Bm
k1J = {ω ∈ Ω : β̂mi (ω) = (k1, J), β̂3n

i (ω) = (k, J)} ∩ Cm−1
3n . (E.32)

If the events
(
β̂3n
i = (k, J)

)
and

(
X̂3n+3∆n
i − X̂3n

i = 1
)

happen, agent i can become

an agent with extended type (k′, J) via mutation, or matching (without entering an enduring

partnership) by the end of step 3n+ 3∆n (since a single agent does not involve in the break-up

of a long-term relationship). Equation (E.31) can be expanded as follows:

P
(
βi(t+ ∆t) = (k′, J)

∣∣βi(t) = (k, J)
)

= P0

(
β̂3n+3∆n
i = (k′, J), Ĥ3n+3∆n

i − Ĥ3n
i = 1, X̂3n+3∆n

i − X̂3n
i = 1

∣∣ β̂3n
i = (k, J)

)
+ P0

(
β̂3n+3∆n
i = (k′, J), N̂3n+3∆n

i − N̂3n
i = 1, X̂3n+3∆n

i − X̂3n
i = 1

∣∣ β̂3n
i = (k, J)

)
+ O(∆t2). (E.33)
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The first term in the right hand side can be expanded as follows:

P0

(
β̂3n+3∆n
i = (k′, J), Ĥ3n+3∆n

i − Ĥ3n
i = 1, X̂3n+3∆n

i − X̂3n
i = 1

∣∣ β̂3n
i = (k, J)

)
=

n+∆n−1∑
r=n

P0

(
B3r+1
k′J ∩ C3n+3∆n

3r+1

∣∣ β̂3n
i = (k, J)

)
=

n+∆n−1∑
r=n

[
P0

(
B3r+1
k′J

∣∣ β̂3n
i = (k, J)

)
P0

(
C3n+3∆n

3r+1

∣∣B3r+1
k′J

)]
=

n+∆n−1∑
r=n

[
P0

(
β̂3r+1
i = (k′, J)

∣∣C3r
3n ∩

(
β̂3n
i = (k, J)

))
P0

(
C3r

3n

∣∣ β̂3n
i = (k, J)

)
P0

(
C3n+3∆n

3r+1

∣∣B3r+1
k′J

)]
.

By Equation (E.1) and Lemma E.5 (i), we obtain that

P0

(
β̂3r+1
i = (k′, J)

∣∣C3r
3n ∩

(
β̂3n
i = (k, J)

))
= P0

(
β̂3r+1
i = (k′, J)

∣∣C3r
3n ∩

(
β̂3r
i = (k, J)

))
= P0

(
β̃3r+1
i = (k′, J, 1)

∣∣C3r
3n ∩

(
β̃3r
i = (k, J, 1)

))
= P0

(
β̃3r+1
i = (k′, J, 1)

∣∣ β̃3r
i = (k, J, 1)

)
= P0

(
β̂3r+1
i = (k′, J)

∣∣ β̂3r
i = (k, J)

)
= η̂kk′ ,

where the last identity follows from the step of random mutation for matched agents in the

construction of the dynamic matching model. Then, the above identities imply that

P0

(
β̂3n+3∆n
i = (k′, J), Ĥ3n+3∆n

i − Ĥ3n
i = 1, X̂3n+3∆n

i − X̂3n
i = 1

∣∣ β̂3n
i = (k, J)

)
=

n+∆n−1∑
r=n

[
η̂kk′P0

(
C3r

3n

∣∣ β̂3n
i = (k, J)

)
P0

(
C3n+3∆n

3r+1

∣∣B3r+1
k′J

)]
. (E.34)

Now, we estimate the difference∣∣∣∣∣P0

(
β̂3n+3∆n
i = (k′, J), Ĥ3n+3∆n

i − Ĥ3n
i = 1, X̂3n+3∆n

i − X̂3n
i = 1

∣∣ β̂3n
i = (k, J)

)
−
n+∆n−1∑
r=n

η̂kk′

∣∣∣∣∣
≤

n+∆n−1∑
r=n

η̂kk′
∣∣∣P0

(
C3r

3n

∣∣ β̂3n
i = (k, J)

)
P0

(
C3n+3∆n

3r+1

∣∣B3r+1
k′J

)
− 1
∣∣∣ .

We can obtain from Lemma E.8 that

P0

(
C3r

3n

∣∣ β̂3n
i = (k, l)

)
P0

(
C3n+3∆n

3r+1

∣∣B3r+1
k′l′

)
≥

(
1− Kā

M

)6(r−n)(
1− Kā

M

)2(3n+3∆n−3r−1)

' e−
6K(r−n)ā

M e−
2K(3n+3∆n−3r−1)ā

M .
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Then, it follows from the above inequalities that∣∣∣∣∣P0

(
β̂3n+3∆n
i = (k′, J), Ĥ3n+3∆n

i − Ĥ3n
i = 1, X̂3n+3∆n

i − X̂3n
i = 1

∣∣ β̂3n
i = (k, J)

)
−
n+∆n−1∑
r=n

η̂kk′

∣∣∣∣∣
≤

n+∆n−1∑
r=n

ā

M

(
1− e−

6K(r−n)ā
M e−

2K(3n+3∆n−3r−1)ā
M

)
' ā∆t

(
1− e−6Kā∆t

)
= O(∆t2).

Therefore, we obtain the following estimation

P0

(
β̂3n+3∆n
i = (k′, J), Ĥ3n+3∆n

i − Ĥ3n
i = 1, X̂3n+3∆n

i − X̂3n
i = 1

∣∣ β̂3n
i = (k, J)

)
=

n+∆n−1∑
r=n

η̂kk′ +O(∆t2)

= ηkk′∆t+O(∆t2). (E.35)

Next, we need to estimate the second term on the right hand side of Equation (E.33). The

proof for such an estimation is very close to the proof in Part 5. For the sake of completeness

and readability, we present the detailed proof below.

The second term on the right hand side of Equation (E.33) can be expanded as follows:

P0

(
β̂3n+3∆n
i = (k′, J), N̂3n+3∆n

i − N̂3n
i = 1, X̂3n+3∆n

i − X̂3n
i = 1

∣∣ β̂3n
i = (k, J)

)
=

n+∆n−1∑
r=n

∑
l∈S

P0

((
β̂3r+3
i = (k′, J)

)
∩B3r+2

kl ∩ C3n+3∆n
3r+3

∣∣ β̂3n
i = (k, J)

)

=
n+∆n−1∑
r=n

∑
l∈S

[
P0

((
β̂3r+3
i = (k′, J)

)
∩B3r+2

kl

∣∣ β̂3n
i = (k, J)

)
P0

(
C3n+3∆n

3r+3

∣∣ (β̂3r+3
i = (k′, J)

)
∩B3r+2

kl

)]
=

n+∆n−1∑
r=n

∑
l∈S

[
P0

(
β̂3r+3
i = (k′, J)

∣∣B3r+2
kl

)
P0

(
B3r+2
kl

∣∣ β̂3n
i = (k, J)

)
P0

(
C3n+3∆n

3r+3

∣∣ (β̂3r+3
i = (k′, J)

)
∩B3r+2

kl

)]
.

It follows from Equations (E.2) and (E.32), and Lemma E.5 that

P0

(
β̂3r+3
i = (k′, J)

∣∣B3r+2
kl

)
= P0

(
β̂3r+3
i = (k′, J)

∣∣ (β̂3r+2
i = (k, l)

)
∩ C3r+1

3n ∩
(
β̂3n
i = (k, J)

))
= P0

(
β̃3r+3
i = (k′, J, 1)

∣∣ (β̃3r+2
i = (k, l, 1)

)
∩ C3r+1

3n ∩
(
β̂3n
i = (k, J)

))
= P0

(
β̃3r+3
i = (k′, J, 1)

∣∣ β̃3r+2
i = (k, l, 1)

)
= (1− ξ̂kl)ς̂kl(k′),
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where the last identity follows from the step of random type changing with break-up for matched

agents (without entering an enduing partnership) in the construction of the dynamic matching

model. Then, the above identities and Equation (E.32) imply that

P0

(
β̂3n+3∆n
i = (k′, J), N̂3n+3∆n

i − N̂3n
i = 1, X̂3n+3∆n

i − X̂3n
i = 1

∣∣ β̂3n
i = (k, J)

)
=

n+∆n−1∑
r=n

∑
l∈S

(1− ξ̂kl)ς̂kl(k′)P0

(
B3r+2
kl

∣∣ β̂3n
i = (k, J)

)
P0

(
C3n+3∆n

3r+3

∣∣ (β̂3r+3
i = (k′, J)

)
∩B3r+2

kl

)
=

n+∆n−1∑
r=n

∑
l∈S

[
(1− ξ̂kl)ς̂kl(k′)P0

(
β̂3r+2 = (k, l)

∣∣C3r+1
3n ∩

(
β̂3n
i = (k, J)

))
P0

(
C3r+1

3n

∣∣ β̂3n
i = (k, J)

)
P0

(
C3n+3∆n

3r+3

∣∣ (β̂3r+3
i = (k′, J)

)
∩B3r+2

kl

)]
.(E.36)

Fix any sample realization ω3r+1 ∈ Ω3r+1 such that β̂3r+1
i

(
ω3r+1

)
= (k, J). By the definition

of ĥmi , we know that ĥ3r+1
i

(
ω3r+1

)
= 1, and ĥ3r+2

i

(
ω3r+1, ω3r+2

)
= 1 for any ω3r+2 ∈ Ω3r+2.

Hence, these facts together with Lemma E.4 imply that∣∣∣q̂kl (U3r+1
1

(
ρ̃0
))
− P0

(
β̂3r+2 = (k, l)

∣∣C3r+1
3n ∩

(
β̂3n
i = (k, J)

))∣∣∣
=

∣∣∣q̂kl (U3r+1
1

(
ρ̃0
))
− P0

(
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∣∣C3r+1
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(
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(
β̃3r+1
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M3P0

(
C3r+1

3n ∩
(
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i = (k, J, 1)

)) +
1

M2

=
1

M3P0

(
C3r+1

3n ∩
(
β̂3n
i = (k, J)

)) +
1

M2
.

By Lemma E.8, P
(
C3r+1

3n

∣∣ β̂3n
i = (k, J)

)
> 0. Then we have P

(
C3r+1

3n ∩
(
β̂3n
i = (k, J)

))
> 0.

It is clear that P0

(
C3r+1

3n ∩
(
β̂3n
i = (k, J)

))
is not infinitesimal, which implies that

1

M3P0

(
C3r+1

3n ∩
(
β̂3n
i = (k, J)

)) < 1

M2
.

Therefore, we obtain the following estimation∣∣∣q̂kl (U3r+1
1

(
ρ̃0
))
− P0

(
β̂3r+2 = (k, l)

∣∣C3r+1
3n ∩

(
β̂3n
i = (k, J)

))∣∣∣ ≤ 2

M2
, (E.37)

which implies

P0

(
β̂3r+2 = (k, l)

∣∣C3r+1
3n ∩

(
β̂3n
i = (k, J)
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≤ q̂kl

(
U3r+1

1

(
ρ̃0
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+
2

M2

≤ ā

M
+

2

M2
.
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It follows from the above inequality that∣∣∣∣∣
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∑
l∈S
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. (E.38)

It follows from Lemma E.8 that

P0

(
C3r+1
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Then, Equations (E.38) and (E.39) imply that∣∣∣∣∣
n+∆n−1∑
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ā
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= O(∆t2). (E.40)
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By Equations (E.36) and (E.40), we have the following estimation

P0

(
β̂3n+3∆n
i = (k′, J), N̂3n+3∆n

i − N̂3n
i = 1, X̂3n+3∆n

i − X̂3n
i = 1

∣∣ β̂3n
i = (k, J)
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=
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∣∣C3r+1
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+O(∆t2). (E.41)

It follows from Equation (E.37) that∣∣∣∣∣
n+∆n−1∑
r=n

∑
l∈S
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2
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∣∣∣∣∣
≤ ∆nK

2

M2
, (E.42)

which is an infinitesimal and can be absorbed into the term O(∆t2). Therefore, Equations

(E.41) and (E.42) imply that

P0

(
β̂3n+3∆n
i = (k′, J), N̂3n+3∆n

i − N̂3n
i = 1, X̂3n+3∆n

i − X̂3n
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1

(
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+O(∆t2). (E.43)

Equation (E.8) implies that p̌t = E (p̂t) ' E
(
ρ̂3n
)
. By Lemma E.3, U3r+1

1 (ρ̃0) '
E
(
ρ̃3r+1

)
. By the continuity of θkl, we obtain the following estimation
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M
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1

M∆t
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Fix any ∆n′ ∈ T0 such that ∆n′

M is infinitesimal. Lemma E.10 implies that ‖E
(
ρ̃3r+1

)
−

E
(
ρ̃3n
)
‖∞ is infinitesimal for any r between n and n + ∆n′. By the continuity of θkl,
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∣∣∗θkl (E (ρ̃3r+1
))
− ∗θkl

(
E
(
ρ̃3n
))∣∣ is also infinitesimal. Then, we obtain that
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− ∗θkl

(
E
(
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))∣∣ ' 0.

By the Spillover Principle, we know that for any ε ∈ R++, there exists δ ∈ R++ such that for
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(

∆n
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∆n
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∣∣∗θkl (E (ρ̂3r+1
))
− ∗θkl

(
E
(
ρ̂3n
))∣∣

is less than ε. Therefore, we can claim that∣∣∣∣∣
n+∆n−1∑
r=n

∑
l∈S
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1

(
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))
−
∑
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∣∣∣∣∣ = o(∆t).

Hence, Equation (E.43) implies that

P0

(
β̂3n+3∆n
i = (k′, J), N̂3n+3∆n

i − N̂3n
i = 1, X̂3n+3∆n

i − X̂3n
i = 1

∣∣ β̂3n
i = (k, J)

)
=

∑
l∈S

(1− ξkl)ςkl(k′)θkl (p̌t) ∆t+ o(∆t). (E.44)

By Equations (E.35) and (E.44), we can obtain that

P
(
βi(t+ ∆t) = (k′, J)

∣∣βi(t) = (k, J)
)

= P0

(
β̂3n+3∆n
i = (k′, J), Ĥ3n+3∆n

i − Ĥ3n
i = 1, X̂3n+3∆n

i − X̂3n
i = 1

∣∣ β̂3n
i = (k, J)

)
+P0

(
β̂3n+3∆n
i = (k′, J), N̂3n+3∆n

i − N̂3n
i = 1, X̂3n+3∆n

i − X̂3n
i = 1

∣∣ β̂3n
i = (k, J)

)
+O(∆t2)

= ηkk′∆t+
∑
l∈S

(1− ξkl)ςkl(k′)θkl (p̌t) ∆t+ o(∆t),

which implies that agent i’s transition intensity for her expanded types from (k, J) to (k′, J)

at time t is indeed Q(k,J)(k′,J)(p̌(t)), as given in Case 4 of Table 1.

E.5 Proofs of Lemmas E.1 – E.10

The proof of Lemma E.1 is given in Subsection E.5.1. In order to prove Lemmas E.2 – E.10,

some additional lemmas are presented in Subsection E.5.2. Lemmas E.2 – E.10 are then proved

in Subsections E.5.3 – E.5.11 respectively.

E.5.1 Proof of Lemma E.1

The proof consists of three steps. In the first step, we (randomly) choose a set Akl of agents

among the type-k single agents, which is to be matched with type-l agents. We require that the
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cardinality |Akl| of Akl is even and |Akl| = |Alk|, which allow the agents in Akl and Alk to be

matched. The second step is to randomly match the agents in Akl and Alk. In the third step,

the random matching obtained by combining the match of agents in those groups is shown to

satisfy Lemma E.1 (i), (ii) and (iii).

Step 1: For each k ∈ S, let Ik = {i ∈ I : α0(i) = k, π0(i) = i} be the set of type-k agents

who are initially unmatched. Let

Ω0 =
{

(Akl)k,l∈S : ∀k, l, l′ ∈ S,Akl ⊆ Ik, |Akl| is the largest even integer

less than or equal to |Ik|qkl, Akl and Akl′ are disjoint for different l and l′.
}

Note that ρ̂kJ is the proportion of agents of type k who are initially unmatched, which implies

that |Ik| = M̂ρ̂kJ . Hence, we have |Ik|qkl = M̂ρ̂kJqkl = M̂ρ̂lJqlk = |Il|qlk. Then for any

(Akl)k,l∈S ∈ Ω0, |Akl| = |Alk| for any k, l ∈ S. Let µ0 be the counting probability measure on

(Ω0,A0), where A0 is the power set of Ω0.

Step 2: For any fixed ω0 = (Akl)k,l∈S ∈ Ω0, we consider partial matchings on I that match

agents from Akl to Alk. We only need to consider those sets Akl which are nonempty. For each

k ∈ S, let Ωω0
kk be the set of all the full matchings on Akk, and µω0

kk the counting probability

measure on Ωω0
kk. For k, l ∈ S with k < l, let Ωω0

kl be the set of all the bijections from Akl to

Alk, and µω0
kl the counting probability measure on Ωω0

kl . Let Ω1 be the set of all the partial

matchings from I to I. Define Ωω0
1 to be the set of φ ∈ Ω1, with

(i) the restriction φ|H = π0|H , where H is the set {i : π0(i) 6= i} of initially matched agents;

(ii) {i ∈ Ik : φ(i) = i} = Ik\
(
∪Kl=1Akl

)
for each k ∈ S;

(iii) the restriction φ|Akk ∈ Ωω0
kk for k ∈ S;

(iv) for k, l ∈ S with k < l, φ|Akl ∈ Ωω0
kl .

(i) means that initially matched agents remain matched with the same partners. The rest is

clear.

Define a probability measure µω0
1 on Ω1 such that such that

(i) for φ ∈ Ωω0
1 ,

µω0
1 (φ) =

∏
1≤k≤l≤K,Akl 6=∅

µω0
kl (φ|Akl);

(ii) φ /∈ Ωω0
1 , µω0

1 (φ) = 0.

35



The purpose of introducing the space Ωω0
1 and the probability measure µω0

1 is to match the

agents in Akl to the agents in Alk randomly. The probability measure µω0
1 is trivially extended

to the common sample space Ω1.

Define a probability measure P0 on Ω = Ω0 × Ω1 with the power set F0 by letting

P0 ((ω0, ω1)) = µ0(ω0)× µω0
1 (ω1).

For (i, ω) ∈ I × Ω, let π(i, (ω0, ω1)) = ω1(i), and g(i, ω) =

{
α0(π(i, ω)) if π(i, ω) 6= i

J if π(i, ω) = i.

Denote the set {(ω0, ω1) ∈ Ω : ω0 ∈ Ω0, ω1 ∈ Ωω0
1 } by Ω̂. The definition of P0 indicates

that P0

(
Ω̂
)

= 1.

Step 3: It is clear that π is a random matching and satisfies part (i) of the lemma. For any

k, l ∈ S and ω ∈ Ω, we have λ0

(
{i ∈ I : α0(i) = k, g0(i) = J, g(i, ω) = l}

)
= |Akl|

M̂
. Since |Akl| is

the largest even integer less than or equal to |Ik|qkl, we have | |Akl| − |Ik|qkl | ≤ 2. Hence,∣∣λ0

(
{i ∈ I : α0(i) = k, g0(i) = J, g(i, ω) = l}

)
− ρ̂kJqkl

∣∣ =

∣∣∣∣ |Akl|M̂
− |Ik|
M̂

qkl

∣∣∣∣ ≤ 2

M̂
,

which implies part (iii) of the lemma.

It remains to prove part (ii). Fix any i, j ∈ I with i 6= j, π0(i) = i and π0(j) = j; denote

α0(i) and α0(j) by k1 and k2 respectively.

We start with the first inequality in part (ii). By the construction above, we have

P0 (πi = j) = P0 ({((Akl)k,l∈S , ω1) : i ∈ Ak1k2 , j ∈ Ak2k1 , ω1(i) = j}) .

Let Ā = {(Akl)k,l∈S : i ∈ Ak1k2 , j ∈ Ak2k1}. Then, the definition of P0 implies that

P0 (πi = j) =
∑

(Akl)k,l∈S∈Ā

µ0 ((Akl)k,l∈S)µ
(Akl)k,l∈S
1 (ω1(i) = j).

When k1 6= k2, for any (Akl)k,l∈S ∈ Ā, we know that

µ
(Akl)k,l∈S
1 (ω1(i) = j) =

1

|Ak1k2 |
.

When k1 = k2, for any (Akl)k,l∈S ∈ Ā, we have

µ
(Akl)k,l∈S
1 (ω1(i) = j) =

1

|Ak1k2 | − 1
≤ 2

|Ak1k2 |
,

since |Ak1k2 | ≥ 2 for any (Akl)k,l∈S ∈ Ā. Then, it is clear that µ
(Akl)k,l∈S
1 (ω1(i) = j) ≤ 2

|Ak1k2
|

always holds for any (Akl)k,l∈S ∈ Ā. Therefore, we can obtain that

P0 (πi = j) ≤
∑

(Akl)k,l∈S∈Ā

µ0 ((Akl)k,l∈S)
2

|Ak1k2 |

=
2

|Ak1k2 |
µ0 ({(Akl)k,l∈S : i ∈ Ak1k2 , j ∈ Ak2k1})

≤ 2

|Ak1k2 |
µ0 ({(Akl)k,l∈S : i ∈ Ak1k2}) .
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Let Mk and mkl be the cardinality of Ik and Akl respectively. Let
(
a
b

)
= a!

b!(a−b)! denote

the binomial coeffiecient. Then we have

P0 (πi = j) ≤ 2

mk1k2

( Mk1
−1

mk1k2
−1

)
(
Mk1
mk1k2

) =
2

mk1k2

mk1k2

Mk1

=
2

Mk1

=
2

M̂ρ̂k1J

,

where the last identity follows from the fact that M̂ρ̂k1J
= |Ik| = Mk1 .

Next, we prove the second inequality in part (ii). Assume that ρ̂k1J
≥ 1

M̂
1
3

. We have

P0(g(i) = l1) = µ0 ({(Akl)k,l∈S : i ∈ Ak1l1}) =

( Mk1
−1

mk1l1
−1

)
(
Mk1
mk1l1

) =
mk1l1

Mk1

.

It is clear that P0(g(i) = l1) ≤
Mk1

qk1l1
Mk1

= qk1l1
. Note that

P0(g(i) = l1) ≥
Mk1qk1l1

− 2

Mk1

= qk1l1 −
2

Mk1

= qk1l1 −
2

M̂ρ̂k1J

≥ qk1l1 −
2

M̂
2
3

.

Then, we have

qk1l1 −
2

M̂
2
3

≤ P0(g(i) = l1) ≤ qk1l1 . (E.45)

It remains to prove the third inequality in part (ii). We make the further assumption

that ρ̂k2J
≥ 1

M̂
1
3

. When k1 6= k2, we obtain that

P0(g(i) = l1, g(j) = l2) = µ0({(Akl)k,l∈S : i ∈ Ak1l1 , j ∈ Ak2l2})

=

( Mk1
−1

mk1l1
−1

)
(
Mk1
mk1l1

)
( Mk2

−1
mk2l2

−1

)
(
Mk2
mk2l2

) = P0(g(i) = l1)P0(g(j) = l2).

Equation (E.45) implies the following inequalities:

qk1l1qk2l2 ≥ P0(g(i) = l1, g(j) = l2) ≥ (qk1l1 −
2

M̂
2
3

)(qk2l2 −
2

M̂
2
3

) ≥ qk1l1qk2l2 −
4

M̂
2
3

. (E.46)

When k1 = k2 but l1 6= l2, we have

P0(g(i) = l1, g(j) = l2) = µ0({(Akl)k,l∈S : i ∈ Ak1l1 , j ∈ Ak1l2}) =

( Mk1
−2

mk1l1
−1,mk1l2

−1

)
(

Mk1
mk1l1

,mk1l2

) ,

where
(
a
b,c

)
= a!

b!c!(a−b−c)! is the multinomial coefficient. It is clear that

P0(g(i) = l1, g(j) = l2) =
mk1l1mk1l2

Mk1(Mk1 − 1)
≤ mk1l1(mk1l2 + 1)

M2
k1

≤ qk1l1qk1l2 + qk1l1

1

Mk1

≤ qk1l1qk1l2 +
1

Mk1

= qk1l1qk1l2 +
1

M̂ρ̂k1J

≤ qk1l1qk1l2 +
1

M̂
2
3

.
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On the other hand, we can obtain that

mk1l1mk1l2

Mk1(Mk1 − 1)

≥
(Mk1qk1l1

− 2)

Mk1

(Mk1qk1l2
− 2)

Mk1

≥ qk1l1qk1l2 −
2

Mk1

qk1l1 −
2

Mk1

qk1l2

≥ qk1l1qk1l2 −
4

Mk1

= qk1l1qk1l2 −
4

M̂ρ̂k1J

≥ qk1l1qk1l2 −
4

M̂
2
3

.

By combining the above inequalities, we have

qk1l1qk1l2 −
4

M̂
2
3

≤ P0(g(i) = l1, g(j) = l2) ≤ qk1l1qk1l2 +
1

M̂
2
3

. (E.47)

When k1 = k2 and l1 = l2, we can obtain that

P0(g(i) = l1, g(j) = l1) = µ0({(Akl)k,l∈S : i, j ∈ Ak1l1}) =

( Mk1
−2

mk1l1
−2

)
(
Mk1
mk1l1

) .

It is clear that

P0(g(i) = l1, g(j) = l1) =
(mk1l1)(mk1l1 − 1)

Mk1(Mk1 − 1)
≤
m2
k1l1

M2
k1

≤ q2
k1l1 .

On the other hand,

(mk1l1)(mk1l1 − 1)

Mk1(Mk1 − 1)
≥

(Mk1qk1l1
− 2)

Mk1

(Mk1qk1l1
− 3)

Mk1

≥ q2
k1l1 −

5

Mk1

qk1l1 ≥ q
2
k1l1 −

5

M̂
2
3

.

Therefore, we obtain that

q2
k1l1 −

5

M̂
2
3

≤ P0(g(i) = l1, g(j) = l2) ≤ q2
k1l1 . (E.48)

By combining Equations (E.46), (E.47) and (E.48), we know that for any (k1, l1), (k2, l2) ∈ S2,

qk1l1qk2l2 −
5

M̂
2
3

≤ P0(g(i) = l1, g(j) = l2) ≤ qk1l1qk2l2 +
1

M̂
2
3

.
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E.5.2 Some additional lemmas

The following lemma demonstrates the identity of Eω3n−3
ρ̃3n−2 and T1

(
ρ̃3n−3(ω3n−3)

)
.

Lemma E.11. For any n ∈ T0, ω3n−3 ∈ Ω3n−3, we have

Eω
3n−3

ρ̃3n−2 = T1

(
ρ̃3n−3(ω3n−3)

)
.

Proof. Fix any n ∈ T0, ω3n−3 ∈ Ω3n−3 and (k, l, r) ∈ S̃. For any (k′, l′, r′) ∈ S̃, let

Bω3n−3

k′l′r′ = {i ∈ I : β̃3n−3
i (ω3n−3) = (k′, l′, r′)}.

It follows from the definition of ρ̃3n−2 that

Eω
3n−3

ρ̃3n−2
klr =

∫
Ω3n−2

ρ̃3n−2
klr (ω3n−2)dQω

3n−3

3n−2

=

∫
Ω3n−2

1

M̂

∑
i∈I

1klr(β̃
3n−2
i (ω3n−2))dQω

3n−3

3n−2

=
1

M̂

∑
(k′,l′,r′)∈S̃

∑
i∈Bω3n−3

k′l′r′

∫
Ω3n−2

1klr(β̃
3n−2
i (ω3n−2))dQω

3n−3

3n−2

=
1

M̂

∑
(k′,l′,r′)∈S̃

∑
i∈Bω3n−3

k′l′r′

Qω
3n−3

3n−2

(
β̃3n−2
i (ω3n−2) = (k, l, r)

)
.

When l ∈ S and r = 0, we have

Eω
3n−3

ρ̃3n−2
kl0 =

1

M̂

∑
k′,l′∈S

∑
i∈Bω3n−3

k′l′0

Qω
3n−3

3n−2

(
β̃3n−2
i (ω3n−2) = (k, l, 0)

)

=
1

M̂

∑
k′,l′∈S

∑
i∈Bω3n−3

k′l′0

η̂kk′ η̂ll′

=
∑
k′,l′∈S

ρ̃3n−3
k′l′0 (ω3n−3)η̂kk′ η̂ll′

=
[
T1

(
ρ̃3n−3(ω3n−3)

)]
kl0
. (E.49)

When l = J and r = 1, we have

Eω
3n−3

ρ̃3n−2
kJ1 =

1

M̂

∑
k′∈S

∑
i∈Bω3n−3

k′J1

Qω
3n−3

3n−2

(
β̃3n−2
i (ω3n−2) = (k, J, 1)

)

=
1

M̂

∑
k′∈S

∑
i∈Bω3n−3

k′J1

η̂kk′

=
∑
k′∈S

ρ̃3n−3
k′J1 (ω3n−3)η̂kk′

=
[
T1

(
ρ̃3n−3(ω3n−3)

)]
kJ1

. (E.50)
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By the construction of the mutation step and the definition of β̃3n−2, it is clear that

Eω
3n−3

ρ̃3n−2
kl1 = 0 =

[
T1

(
ρ̃3n−3(ω3n−3)

)]
kl1
, (E.51)

Eω
3n−3

ρ̃3n−2
kJ0 = 0 =

[
T1

(
ρ̃3n−3(ω3n−3)

)]
kJ0

. (E.52)

The identity Eω3n−3
ρ̃3n−2 = T1

(
ρ̃3n−3(ω3n−3)

)
then follows from Equations (E.49), (E.50),

(E.51) and (E.52)

The following lemma shows the relationship between Eω3n−2
ρ̃3n−1 and T2

(
ρ̃3n−2(ω3n−2)

)
.

Lemma E.12. For any n ∈ T0, ω3n−1 ∈ Ω3n−1, we have

||ρ̃3n−1(ω3n−1)− T2

(
ρ̃3n−2(ω3n−2)

)
||∞ ≤

2K

M̂
.

Proof. Fix any n ∈ T0, ω3n−2 ∈ Ω3n−2 and (k, l, r) ∈ S̃. When l ∈ S and r = 0, it is clear that

for any ω3n−1 ∈ Ω3n−1 with ω3n−1 =
(
ω3n−2, ω3n−1

)
,

ρ̃3n−1
kl0 (ω3n−1) = ρ̃3n−2

kl0 (ω3n−2) =
[
T2

(
ρ̃3n−2(ω3n−2)

)]
kl0
. (E.53)

When l ∈ S and r = 1, it follows from Lemma E.1 (iii) that for any ω3n−1 ∈ Ω3n−1,∣∣ρ̃3n−1
kl1 (ω3n−1)−

[
T2(ρ̃3n−2(ω3n−2))

]
kl1

∣∣
=

∣∣ρ̃3n−1
kl1 (ω3n−1)− ρ̃3n−2

kJ1 (ω3n−2)q̂kl
(
ρ̃3n−2(ω3n−2)

)∣∣
≤ 2

M̂
. (E.54)

When l = J and r = 1, we have for any ω3n−1 ∈ Ω3n−1,∣∣ρ̃3n−1
kJ1 (ω3n−1)−

[
T2(ρ̃3n−2(ω3n−2))

]
kJ1

∣∣
=

∣∣∣∣∣∑
l′∈S

ρ̃3n−1
kl′1 (ω3n−1)−

∑
l′∈S

[
T2(ρ̃3n−2(ω3n−2))

]
kl′1

∣∣∣∣∣
≤ 2K

M̂
. (E.55)

When l ∈ S and r = 0, by the construction of the matching step and the definition of

β̃3n−1, it is clear that for any ω3n−1 ∈ Ω3n−1,

ρ̃3n−1
kJ0 (ω3n−1) = 0 =

[
T2

(
ρ̃3n−2(ω3n−2)

)]
kJ0

. (E.56)

By Equations (E.53), (E.54), (E.55) and (E.56), we have,

||ρ̃3n−1(ω3n−1)− T2

(
ρ̃3n−2(ω3n−2)

)
||∞ ≤

2K

M̂

for any ω3n−1 ∈ Ω3n−1.

The identity of Eω3n−1
ρ̃3n and T1

(
ρ̃3n−1(ω3n−1)

)
is proved in the next lemma.
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Lemma E.13. For any n ∈ T0, ω3n−1 ∈ Ω3n−1, we have

Eω
3n−1

ρ̃3n = T3

(
ρ̃3n−1(ω3n−1)

)
.

Proof. Fix any n ∈ T0, ω3n−1 ∈ Ω3n−1 and (k, l, r) ∈ S̃. For any (k′, l′, r′) ∈ S̃, let

Bω3n−1

k′l′r′ = {i ∈ I : β̃3n−1
i (ω3n−1) = (k′, l′, r′)}.

It follows from the definition of ρ̃3n that

Eω
3n−1

ρ̃3n
klr =

∫
Ω3n

ρ̃3n
klr(ω

3n)dQω
3n−1

3n

=

∫
Ω3n

1

M̂

∑
i∈I

1klr(β̃
3n
i )dQω

3n−1

3n

=
1

M̂

∑
(k′,l′,r′)∈S̃

∑
i∈Bω3n−1

k′l′r′

∫
Ω3n

1klr(β̃
3n
i )dQω

3n−1

3n

=
1

M̂

∑
(k′,l′,r′)∈S̃

∑
i∈Bω3n−1

k′l′r′

Qω
3n−1

3n

(
β̃3n
i = (k, l, r)

)
.

When l ∈ S and r = 0, we have

Eω
3n−1

ρ̃3n
kl0 =

1

M̂

∑
i∈Bω3n−1

kl0

Qω
3n−1

3n

(
β̃3n
i = (k, l, 0)

)
+

1

M̂

∑
k′,l′∈S

∑
i∈Bω3n−1

k′l′1

Qω
3n−1

3n

(
β̃3n
i = (k, l, 0)

)
= ρ̃3n−1

kl0 (ω3n−1)(1− ϑ̂kl) +
∑
k′,l′∈S

ρ̃3n−1
k′l′1 (ω3n−1)ξ̂k′l′ σ̂k′l′(k, l)

=
[
T3

(
ρ̃3n−1(ω3n−1)

)]
kl0
. (E.57)

When l = J and r = 1, we obtain that

Eω
3n−1

ρ̃3n
kJ1 =

1

M̂

∑
i∈Bω3n−1

kJ1

Qω
3n−1

3n

(
β̃3n
i = (k, J, 1)

)
+

1

M̂

∑
k′,l′∈S

∑
i∈Bω3n−1

k′l′0

Qω
3n−1

3n

(
β̃3n
i = (k, J, 1)

)

+
1

M̂

∑
k′,l′∈S

∑
i∈Bω3n−1

k′l′1

Qω
3n−1

3n

(
β̃3n
i = (k, J, 1)

)
= ρ̃3n−1

kJ1 (ω3n−1) + ρ̃3n−1
kl0 (ω3n−1)(1− ϑ̂kl) +

∑
k′,l′∈S

ρ̃3n−1
k′l′1 (ω3n−1)ξ̂k′l′ σ̂k′l′(k, l)

=
[
T3

(
ρ̃3n−1(ω3n−1)

)]
kJ1

. (E.58)
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By the construction of the type changing with break-up step, and the definition of β̃3n,

it is clear that

Eω
3n−1

ρ̃3n
kl1 = 0 =

[
T3

(
ρ̃3n−1(ω3n)

)]
kl1
, (E.59)

Eω
3n−1

ρ̃3n
kJ0 = 0 =

[
T3

(
ρ̃3n−1(ω3n)

)]
kJ0

. (E.60)

The identity Eω3n−1
ρ̃3n = T3

(
ρ̃3n−1(ω3n−1)

)
is then implied by Equations (E.57), (E.58), (E.59)

and (E.60).

The following lemma shows that the cross-sectional expanded type distribution ρ̃m at

the end of step m can be approximated by Um1 (ρ̃0).

Lemma E.14. Let ε0 = 3M2K(K+1)

M̂
1
3

. For any m ∈ {1, 2, . . . , 3M2}, let

V m = {ωm ∈ Ωm : ‖ρ̃m(ωm)− Um1 (ρ̃0)‖∞ > ξ0},

where ξ0 is defined in Lemma E.2. Then, for any m ∈ {1, 2, . . . , 3M2}, we have Qm (V m) ≤ ε0.

Proof. Fix any n ∈ T0. For the mutation step in period n, fix any ω3n−3 ∈ Ω3n−3. Let

Cω
3n−3

= {(i, j) ∈ I × I : i < j, π̂3n−3(i, ω3n−3) = j}.

For any i, j ∈ I such that i 6= j and π̂3n−3(i, ω3n−3) 6= j, and any (k, l, r) ∈ S̃, it is clear

that 1klr(β̃
3n−2
i ) and 1klr(β̃

3n−2
j ) are independent on (Ω3n−2, E3n−2, Q

ω3n−3

3n−2 ). Therefore, such

independence and the definition of Cω
3n−3

imply that

Varω
3n−3

ρ̃3n−2
klr = Varω

3n−3 1

M̂

∑
i∈I

1klr(β̃
3n−2
i )

=
1

M̂2

∑
i∈I

Varω
3n−3

1klr(β̃
3n−2
i ) +

2

M̂2

∑
(i,j)∈Cω3n−3

Cov
(
1klr(β̃

3n−2
i ),1klr(β̃

3n−2
j )

)

≤ 1

M̂2
M̂

1

4
+

2

M̂2

M̂

2

1

4

=
1

2M̂
.

It follows from the Chebyshev Inequality and Lemma E.11 that

Qω
3n−3

3n−2

(
‖ρ̃3n−2 − T1

(
ρ̃3n−3

)
‖∞ ≥

1

M̂
1
3

)
= Qω

3n−3

3n−2

(
‖ρ̃3n−2 − Eω

3n−3
ρ̃3n−2‖∞ ≥

1

M̂
1
3

)
≤

∑
(k,l,r)∈S̃

Qω
3n−3

3n−2

(∣∣∣ρ̃3n−2
klr − Eω

3n−3
ρ̃3n−2
klr

∣∣∣ ≥ 1

M̂
1
3

)

≤ 2K(K + 1)

1
2M̂
1

M̂
2
3

=
K(K + 1)

M̂
1
3

.
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Let W 3n−2 = {ω3n−2 ∈ Ω3n−2 : ‖ρ̃3n−2(ω3n−2)− T1

(
ρ̃3n−3(ω3n−3)

)
‖∞ ≥ 1

M̂
1
3
}. It is clear that

Q3n−2(W 3n−2) =

∫
Ω3n−3

Qω
3n−3

3n−2

(
‖ρ̃3n−2 − T1

(
ρ̃3n−3

)
‖∞ ≥

1

M̂
1
3

)
dQ3n−3

≤ K(K + 1)

M̂
1
3

. (E.61)

For the random matching step in period n, Lemma E.12 indicates that for any ω3n−1 ∈
Ω3n−1,

||ρ̃3n−1(ω3n−1)− T2

(
ρ̃3n−2(ω3n−2)

)
||∞ ≤

2K

M̂
.

It is then clear that the set

W 3n−1 = {ω3n−1 ∈ Ω3n−1 : ‖ρ̃3n−1(ω3n−1)− T2

(
ρ̃3n−2(ω3n−2)

)
‖∞ ≥

1

M̂
1
3

}

is empty. Hence, we have

Q3n−1(W 3n−1) =

∫
Ω3n−2

Qω
3n−1

3n−2

(
‖ρ̃3n−1 − T1

(
ρ̃3n−2

)
‖∞ ≥

1

M̂
1
3

)
dQ3n−2 = 0. (E.62)

For the type changing with break-up step in period n, fix any ω3n−1 ∈ Ω3n−1. Let

Cω
3n−1

= {(i, j) ∈ I × I : i < j, π̂3n−1(i, ω3n−1) = j}.

For any i, j ∈ I such that i 6= j and π̂3n−1(i, ω3n−1) 6= j, and any (k, l, r) ∈ S̃, it is clear that

1klr(β̃
3n
i ) and 1klr(β̃

3n
j ) are independent on (Ω3n, E3n, Q

ω3n−1

3n ). Therefore, we have

Varω
3n−1

ρ̃3n
klr = Varω

3n−1 1

M̂

∑
i∈I

1klr(β̃
3n
i )

=
1

M̂2

∑
i∈I

Varω
3n−1

1klr(β̃
3n
i ) +

2

M̂2

∑
(i,j)∈Cω3n−1

Cov
(
1klr(β̃

3n
i ),1klr(β̃

3n
j )
)

≤ 1

M̂2

∑
i∈I

1

4
+

2

M̂2

M̂

2

1

4

=
1

2M̂
.

It follows from the Chebyshev Inequality and Lemma E.13 that

Qω
3n−1

3n

(
‖ρ̃3n − T3

(
ρ̃3n−1

)
‖∞ ≥

1

M̂
1
3

)
= Qω

3n−1

3n

(
‖ρ̃3n − Eω

3n−1
ρ̃3n‖∞ ≥

1

M̂
1
3

)
≤

∑
(k,l,r)∈S̃

Qω
3n−1

3n

(∣∣∣ρ̃3n
klr − Eω

3n−1
ρ̃3n
klr

∣∣∣ ≥ 1

M̂
1
3

)

≤ 2K(K + 1)

1
2M̂
1

M̂
2
3

=
K(K + 1)

M̂
1
3

.
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Let W 3n = {ω3n ∈ Ω3n : ‖ρ̃3n(ω3n)− T3

(
ρ̃3n−1(ω3n−1)

)
‖∞ ≥ 1

M̂
1
3
}. It is clear that

Q3n(W 3n) =

∫
Ω3n−1

Qω
3n−1

3n

(
‖ρ̃3n − T3

(
ρ̃3n−1

)
‖∞ ≥

1

M̂
1
3

)
dQ3n−1

≤ K(K + 1)

M̂
1
3

. (E.63)

For any m ∈ T0, let

W
m

= {ωm ∈ Ωm : ωm
′ ∈Wm′ for some m′ between 1 and m}.

By Equations (E.61), (E.62) and (E.63), we have

Qm(W
m

) ≤
m∑

m′=0

Qm
′
(Wm′) ≤ 3M2K(K + 1)

M̂
1
3

= ε0.

Fix any m ∈ {0, 1, . . . , 3M2} and ωm /∈Wm
. We have

‖ρ̃m(ωm)− Um1 (ρ̃0)‖∞

≤ ‖ρ̃m(ωm)− Umm (ρ̃m−1(ωm−1))‖∞ + ‖Umm (ρ̃m−1(ωm−1))− Um1 (ρ̃0)‖∞

≤
m∑
j=1

‖Umj+1(ρ̃j(ωj))− Umj (ρ̃j−1(ωj−1))‖∞

=
m∑
j=1

∥∥∥Umj+1(ρ̃j(ωj))− Umj+1

(
U jj (ρ̃j−1(ωj−1))

)∥∥∥
∞
.

By the definition of M̂ , we know that 1

M̂
1
3
≤ ξ3M2+1. The fact that ωm /∈Wm

leads to ωj /∈W j

for any j ∈ {0, 1, . . . ,m}, which implies that

‖ρ̃j(ωj)− U jj (ρ̃j−1(ωj−1))‖∞ <
1

M̂
1
3

≤ ξ3M2+1.

By Lemma E.2, we have

‖ρ̃m(ωm)− Um1 (ρ̃0)‖∞

≤
m−1∑
j=0

ξ3M2+1−j

≤
m−1∑
j=0

1

3M2
ξ0 ≤ ξ0,

which implies that ωm /∈ V m = {ωm ∈ Ωm : ‖ρ̃m(ωm) − Um1 (ρ̃0)‖∞ > ξ0}. Since ωm is

an arbitrarily fixed element in Ωm \ Wm
, the fact that ωm /∈ V m implies that V m ⊆ W

m
.

Therefore, we have Qm(V m) ≤ ε0.

The following lemma shows that, when ω3n−2 is not in V 3n−2, M̂−
1
15 is a lower bound

for the population of single type-k agents after step 3n− 2.
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Lemma E.15. For any n ∈ {1, 2, . . . ,M2}, ω3n−2 /∈ V 3n−2 and k ∈ S, we have ρ̃3n−2
kJ1 (ω3n−2) ≥

M̂−
1
15 .

Proof. : Fix any n ∈ T0 = {1, 2, . . . ,M2}. When n = 1, our convention is that U0
1 is the

identity mapping, and hence we have∑
k∈S

[
U3n−3

1 (ρ̃0)
]
kJ1

=
∑
k∈S

ρ̃0
kJ1 =

∑
k∈S

ρ̂0
kJ .

Note that ρ̂0
kJ ≥

1
M2 for any k ∈ S. Therefore, it is clear that

∑
k∈S

[
U3n−3

1 (ρ̃0)
]
kJ1
≥ 1

M2 .

When n ≥ 2, the definition of T3 implies the following identities:∑
k∈S

[
U3n−3

1 (ρ̃0)
]
kJ1

=
∑
k∈S

[
T3

(
U3n−4

1 (ρ̃0)
)]
kJ1

=
∑

k,k′,l′∈S
(1− ξ̂k′l′) ς̂k′l′(k)[U3n−4

1 (ρ̃0)]k′l′1 +
∑

k,k′,l′∈S
ϑ̂k′l′ ς̂k′l′(k)[U3n−4

1 (ρ̃0)]k′l′0

+
∑
k∈S

[U3n−4
1 (ρ̃0)]kJ1

=
∑
k′,l′∈S

(1− ξ̂k′l′)[U3n−4
1 (ρ̃0)]k′l′1 +

∑
k′,l′∈S

ϑ̂k′l′ [U
3n−4
1 (ρ̃0)]k′l′0 +

∑
k∈S

[U3n−4
1 (ρ̃0)]kJ1.

By the definition of ϑ̂ and ξ̂, we know that ϑ̂kl ≥ 1
M2 and ξ̂kl ≤ 1− 1

M2 for any k, l ∈ S. Then,

we can obtain that∑
k∈S

[
U3n−3

1 (ρ̃0)
]
kJ1

≥ 1

M2

 ∑
k′,l′∈S

[U3n−4
1 (ρ̃0)]k′l′1 +

∑
k′,l′∈S

[U3n−4
1 (ρ̃0)]k′l′0 +

∑
k∈S

[U3n−4
1 (ρ̃0)]kJ1


=

1

M2
.

Therefore,
∑

k∈S
[
U3n−3

1 (ρ̃0)
]
kJ1
≥ 1

M2 for any n ∈ T0.

Note that η̂kl ≥
1
M2 for any k, l ∈ S by its definition. The definition of T1 implies that

for any k ∈ S, [
U3n−2

1 (ρ̃0)
]
kJ1

=
[
T1

(
U3n−3

1 (ρ̃0)
)]
kJ1

=
∑
l∈S

[
U3n−3

1 (ρ̃0)
]
lJ1

η̂lk ≥
1

M2

∑
l∈S

[
U3n−3

1 (ρ̃0)
]
lJ1
≥ 1

M4
.

Fix any ω3n−2 /∈ V 3n−2. We have ‖ρ̃3n−2(ω3n−2)− U3n−2
1 (ρ̃0)‖∞ ≤ ξ0, which implies that

ρ̃3n−2
kJ1 (ω3n−2) ≥ [U3n−2

1 (ρ̃0)]kJ1 − ξ0 ≥
1

M4
− ξ−1.
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Note that M ≥ 3, ξ3M2+1 < ξ−1 = 1

MMM and M̂ >
(

1
ξ3M2+1

)3
≥
(

1
ξ−1

)3
≥ M3MM

. It is clear

that ξ−1 ≤ 1
M27 ≤ 1

2M4 and M̂−
1
15 ≤ 1

M
81
15
< 1

M5 ≤ 1
3M4 <

1
2M4 . Therefore, we have

ρ̃3n−2
kJ1 (ω3n−2) ≥ 1

M4
− 1

2M4
=

1

2M4
≥ 1

M̂
1
15

,

which is the required inequality in the lemma.

The following lemma provides an approximation of the matching probabilities at step

3n− 1 using parameter q̂.

Lemma E.16. For any i, j ∈ I with i 6= j, ω3n−2 /∈ V 3n−2 and k1, l1, k2, l2 ∈ S, if β̃3n−2
i

(
ω3n−2

)
=

(k1, J, 1) and β̃3n−2
j

(
ω3n−2

)
= (k2, J, 1), then∣∣∣Qω3n−2

3n−1 (ĝ3n−1
i = l1)− q̂k1l1

(
ρ̃3n−2

(
ω3n−2

))∣∣∣ ≤ 1

M̂
1
9

,∣∣∣Qω3n−2

3n−1 (ĝ3n−1
i = J)− q̂k1

(
ρ̃3n−2

(
ω3n−2

))∣∣∣ ≤ 1

M̂
1
9

,∣∣∣Qω3n−2

3n−1 (ĝ3n−1
i = l1, ĝ

3n−1
j = l2)− q̂k1l1

(
ρ̃3n−2

(
ω3n−2

))
q̂k2l2

(
ρ̃3n−2

(
ω3n−2

))∣∣∣ ≤ 1

M̂
1
9

,∣∣∣Qω3n−2

3n−1 (ĝ3n−1
i = J, ĝ3n−1

j = l2)− q̂k1

(
ρ̃3n−2

(
ω3n−2

))
q̂k2l2

(
ρ̃3n−2

(
ω3n−2

))∣∣∣ ≤ 1

M̂
1
9

,∣∣∣Qω3n−2

3n−1 (ĝ3n−1
i = J, ĝ3n−1

j = J)− q̂k1

(
ρ̃3n−2

(
ω3n−2

))
q̂k2

(
ρ̃3n−2

(
ω3n−2

))∣∣∣ ≤ 1

M̂
1
9

.

Proof. Fix any i, j ∈ I with i 6= j, ω3n−2 /∈ V 3n−2 and k1, l1, k2, l2 ∈ S. Assume that

β̃3n−2
i

(
ω3n−2

)
= (k1, J, 1) and β̃3n−2

j

(
ω3n−2

)
= (k2, J, 1).

By Lemma E.15, we have ρ̃3n−2
k1J1

(
ω3n−2

)
≥ 1

M̂
1
15
> 1

M̂
1
3

, and ρ̃3n−2
k2J1

(
ω3n−2

)
≥ 1

M̂
1
15
> 1

M̂
1
3

.

It follows from Lemma E.1 that∣∣∣Qω3n−2

3n−1 (ĝ3n−1
i = l1)− q̂k1l1

(
ρ̃3n−2

(
ω3n−2

))∣∣∣
≤ 2

M̂
2
3

<
2

M̂
5
9

1

M̂
1
9

≤ 1

M̂
1
9

, and

∣∣∣Qω3n−2

3n−1 (ĝ3n−1
i = l1)Qω

3n−2

3n−1 (ĝ3n−1
j = l2)− q̂k1l1

(
ρ̃3n−2

(
ω3n−2

))
q̂k2l2

(
ρ̃3n−2

(
ω3n−2

))∣∣∣
≤ 5

M̂
2
3

<
5

M̂
5
9

1

M̂
1
9

≤ 1

M̂
1
9

.

Next, we consider the case that agent i is not matched. We can obtain∣∣∣Qω3n−2

3n−1 (ĝ3n−1
i = J)− q̂k1

(
ρ̃3n−2

(
ω3n−2

))∣∣∣
=

∣∣∣∣∣∣
∑
l1∈S

Qω
3n−2

3n−1 (ĝ3n−1
i = l1)−

∑
l1∈S

q̂k1l1

(
ρ̃3n−2

(
ω3n−2

))∣∣∣∣∣∣
≤ 2K

M̂
2
3

<
2K

M̂
5
9

1

M̂
1
9

<
2K

M̂
1
3

1

M̂
1
9

≤ 2K

MMM

1

M̂
1
9

≤ 2K

(max{Kā, 3})27

1

M̂
1
9

≤ 1

M̂
1
9

, and
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∣∣∣Qω3n−2

3n−1

(
ĝ3n−1
i = J, ĝ3n−1

j = l2

)
− q̂k1

(
ρ̃3n−2

(
ω3n−2

))
q̂k2l2

(
ρ̃3n−2

(
ω3n−2

))∣∣∣
=

∣∣∣∣∣∑
l′∈S

Qω
3n−2

3n−1

(
ĝ3n−1
i = l′, ĝ3n−1

j = l2

)
−
∑
l′∈S

q̂k1l′
(
ρ̃3n−2

(
ω3n−2

))
q̂k2l2

(
ρ̃3n−2

(
ω3n−2

))∣∣∣∣∣
≤ 5K

M̂
2
3

<
5K

M̂
5
9

1

M̂
1
9

<
5K

M̂
1
3

1

M̂
1
9

≤ 5K

MMM

1

M̂
1
9

≤ 5K

(max{Kā, 3})27

1

M̂
1
9

≤ 1

M̂
1
9

.

It remains to consider the case that agents i and j are not matched. We have∣∣∣Qω3n−2

3n−1

(
ĝ3n−1
i = J, ĝ3n−1

j = J
)
− q̂k1

(
ρ̃3n−2

(
ω3n−2

))
q̂k2

(
ρ̃3n−2

(
ω3n−2

))∣∣∣
=

∣∣∣∣∣∑
l′∈S

Qω
3n−2

3n−1

(
ĝ3n−1
i = J, ĝ3n−1

j = l′
)
−
∑
l′∈S

q̂k1

(
ρ̃3n−2

(
ω3n−2

))
q̂k2l′

(
ρ̃3n−2

(
ω3n−2

))∣∣∣∣∣
≤ 5K2

M̂
2
3

<
5K2

M̂
5
9

1

M̂
1
9

<
5K2

M̂
1
3

1

M̂
1
9

≤ 5K2

MMM

1

M̂
1
9

≤ 5K2

(max{Kā, 3})27

1

M̂
1
9

≤ 1

M̂
1
9

.

The proof is thus completed.

The following lemma strengthens Lemma E.4 by providing a sharper bound, which will

be used in the proof of Lemma E.18 below.

Lemma E.17. For any i ∈ I, k, l ∈ S, n ∈ T0, and F 3n−2 ∈ F3n−2 such that

P0

((
β̃3n−2
i = (k, J, 1)

)
∩ F 3n−2

)
> 0, we have∣∣∣P0

(
β̃3n−1
i = (k, l, 1)

∣∣ (β̃3n−2
i = (k, J, 1)

)
∩ F 3n−2

)
− q̂kl

(
U3n−2

1 (ρ̃0)
)∣∣∣

≤ 2ε0

P0

((
β̃3n−2
i = (k, J, 1)

)
∩ F 3n−2

) +
1

M̂
1
9

+ ξ−1.

Proof. Fix any i ∈ I, k, l ∈ S, n ∈ T0, and F 3n−2 ∈ F3n−2 such that P0

((
β̃3n−2
i = (k, J, 1)

)
∩ F 3n−2

)
>

0. Let a = (k, J, 1), b = (k, l, 1), and

A =
{
ω3n−2 ∈ Ω3n−2 : β̃3n−2

i (ω3n−2) = (k, J, 1)
}
∩ F 3n−2.

We know that Q3n−2(A) = P0(A) > 0. It is clear that

P0

(
β̃3n−1
i = b

∣∣ (β̃3n−2
i = a

)
∩ F 3n−2

)
=

1

Q3n−2(A)

∫
A
Qω

3n−2

3n−1

(
β̃3n−1
i = b

)
dQ3n−2

=
1

Q3n−2(A)

∫
A
Qω

3n−2

3n−1

(
ĝ3n−1
i = l

)
dQ3n−2.
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By Lemmas E.14 and E.16, we have∣∣∣∣P0

(
β̃3n−1
i = b

∣∣ (β̃3n−2
i = a

)
∩ F 3n−2

)
− 1

Q3n−2(A)

∫
A
q̂kl
(
ρ̃3n−2

(
ω3n−2

))
dQ3n−2

∣∣∣∣
≤ 1

Q3n−2(A)

∫
A∩V 3n−2

∣∣∣Qω3n−2

3n−1

(
ĝ3n−1
i = l

)
− q̂kl

(
ρ̃3n−2

(
ω3n−2

))∣∣∣ dQ3n−2

+
1

Q3n−2(A)

∫
A\V 3n−2

∣∣∣Qω3n−2

3n−1

(
ĝ3n−1
i = l

)
− q̂kl

(
ρ̃3n−2

(
ω3n−2

))∣∣∣ dQ3n−2

≤ Q3n−2(V 3n−2)

Q3n−2(A)
+
Q3n−2(A\V 3n−2)

Q3n−2(A)

1

M̂
1
9

≤ ε0
Q3n−2(A)

+
1

M̂
1
9

. (E.64)

By the definition of V 3n−2 in Lemma E.14, we know that ‖ρ̃3n−2(ω3n−2)− U3n−2
1 (ρ̃0)‖∞ ≤ ξ0

for any ω3n−2 /∈ V 3n−2. By Lemma E.2, we have
∣∣q̂kl (ρ̃3n−2(ω3n−2)

)
− q̂kl

(
U3n−2

1 (ρ̃0
)∣∣ ≤ ξ−1

for any ω3n−2 /∈ V 3n−2. It follows from Lemma E.14 that∣∣∣∣q̂kl (U3n−2
1 (ρ̃0)

)
− 1

Q3n−2(A)

∫
A
q̂kl
(
ρ̃3n−2

(
ω3n−2

))
dQ3n−2

∣∣∣∣
≤ 1

Q3n−2(A)

∫
A∩V 3n−2

∣∣qkl (U3n−2
1 (ρ̃0)

)
− q̂kl

(
ρ̃3n−2

(
ω3n−2

))∣∣ dQ3n−2

+
1

Q3n−2(A)

∫
A\V 3n−2

∣∣q̂kl (U3n−2
1 (ρ̃0)

)
− q̂kl

(
ρ̃3n−2

(
ω3n−2

))∣∣ dQ3n−2

≤ Q3n−2(V 3n−2)

Q3n−2(A)
+
Q3n−2(A\V 3n−2)

Q3n−2(A)
ξ−1

≤ ε0
Q3n−2(A)

+ ξ−1. (E.65)

By Equations (E.64) and (E.65), we have∣∣∣P0

(
β̃3n−1
i = (k, l, 1)

∣∣ (β̃3n−2
i = (k, J, 1)

)
∩ F 3n−2

)
− q̂kl

(
U3n−2

1 (ρ̃0)
)∣∣∣

=

∣∣∣∣P0

(
β̃3n−1
i = b

∣∣ (β̃3n−2
i = a

)
∩ F 3n−2

)
− 1

Q3n−2(A)

∫
A
q̂kl
(
ρ̃3n−2

(
ω3n−2

))
dQ3n−2

∣∣∣∣
+

∣∣∣∣q̂kl (U3n−2
1 (ρ̃0)

)
− 1

Q3n−2(A)

∫
A
q̂kl
(
ρ̃3n−2

(
ω3n−2

))
dQ3n−2

∣∣∣∣
≤ 2ε0

Q3n−2(A)
+

1

M̂
1
9

+ ξ−1

≤ 2ε0

P0

((
β̃3n−2
i = (k, J, 1)

)
∩ F 3n−2

) +
1

M̂
1
9

+ ξ−1,

which completes the proof.

The following lemma improves the upper bound in Part (ii) of Lemma E.5.
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Lemma E.18. For any i ∈ I, n ∈ T0, a, b ∈ S̃, and F 3n−2 ∈ F3n−2 such that

P0

((
β̃3n−2
i = a

)
∩ F 3n−2

)
> 0, we have∣∣∣P0

(
β̃3n−1
i = b

∣∣ (β̃3n−2
i = a

)
∩ F 3n−2

)
− P0

(
β̃3n−1
i = b

∣∣ β̃3n−2
i = a

)∣∣∣
≤ 4Kε0

P0

((
β̃3n−2
i = a

)
∩ F 3n−2

) +
2K

M̂
1
9

+ 2Kξ−1.

Proof. Fix any i ∈ I, n ∈ T0, a ∈ S̃, and F 3n−2 ∈ F3n−2 such that P0

((
β̃3n−2
i = a

)
∩ F 3n−2

)
>

0. When β̃3n−2
i = (k, l, 0) for some k, l ∈ S, agent i is already matched at the mutation step

of 3n − 2. Thus, her expanded type at step 3n − 1 does not change with probability one. In

other words, we have for any b ∈ S̃,

P0

(
β̃3n−1
i = b

∣∣ (β̃3n−2
i = a

)
∩ F 3n−2

)
= P0

(
β̃3n−1
i = b

∣∣ β̃3n−2
i = a

)
, (E.66)

which implies the inequality in the lemma. Since P0

((
β̃3n−2
i = a

)
∩ F 3n−2

)
> 0, it is not

possible for a to be (k, J, 0) or (k, l, 1) for any k, l ∈ S. Hence, we only need to consider a =

(k, J, 1). In this case, if b is neither (k, J, 1) nor (k, l, 1), then we must have P0

(
β̃3n−1
i = b

)
= 0,

which implies the identity in Equation (E.66). Therefore, the inequality in the lemma holds

again. Thus, it remains to consider b = (k, J, 1) or (k, l, 1).

Let b = (k, l, 1). It follows from Lemma E.17 that∣∣∣P0

(
β̃3n−1
i = (k, l, 1)

∣∣ (β̃3n−2
i = (k, J, 1)

)
∩ F 3n−2

)
− q̂kl

(
U3n−2

1 (ρ̃0)
)∣∣∣

≤ 2ε0

P0

((
β̃3n−2
i = (k, J, 1)

)
∩ F 3n−2

) +
1

M̂
1
9

+ ξ−1, and

∣∣∣P0

(
β̃3n−1
i = (k, l, 1)

∣∣ β̃3n−2
i = (k, J, 1)

)
− q̂kl

(
U3n−2

1 (ρ̃0)
)∣∣∣

≤ 2ε0

P0

(
β̃3n−2
i = (k, J, 1)

) +
1

M̂
1
9

+ ξ−1.

By combining the above two inequalities, we obtain that∣∣∣P0

(
β̃3n−1
i = b

∣∣ (β̃3n−2
i = a

)
∩ F 3n−2

)
− P0

(
β̃3n−1
i = b

∣∣ β̃3n−2
i = a

)∣∣∣
≤ 4ε0

P0

((
β̃3n−2
i = a

)
∩ F 3n−2

) +
2

M̂
1
9

+ 2ξ−1,

which implies the inequality in the lemma.
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Assume b = (k, J, 1). Then, we have∣∣∣P0

(
β̃3n−1
i = (k, J, 1)

∣∣ (β̃3n−2
i = a

)
∩ F 3n−2

)
− P0

(
β̃3n−1
i = (k, J, 1)

∣∣ β̃3n−2
i = a

)∣∣∣
=

∣∣∣∣∣
K∑
l=1

P0

(
β̃3n−1
i = (k, l, 1)

∣∣ (β̃3n−2
i = a

)
∩ F 3n−2

)
−

K∑
l=1

P0

(
β̃3n−1
i = (k, l, 1)

∣∣ β̃3n−2
i = a

)∣∣∣∣∣
≤ 4Kε0

P0

((
β̃3n−2
i = a

)
∩ F 3n−2

) +
2K

M̂
1
9

+ 2Kξ−1.

Hence, the proof is completed.

The following lemma is Part (i) of Lemma E.5.

Lemma E.19. For any i ∈ I, a, b ∈ S̃, n ∈ T0, and F 3n−3 ∈ F3n−3 such that

P0

((
β̃3n−3
i = a

)
∩ F 3n−3

)
> 0, we have

P0

(
β̃3n−2
i = b

∣∣ (β̃3n−3
i = a

)
∩ F 3n−3

)
= P0

(
β̃3n−2
i = b

∣∣ β̃3n−3
i = a

)
.

Proof. Fix any i ∈ I, a, b ∈ S̃, n ∈ T0, and F 3n−3 ∈ F3n−3 such that P0

((
β̃3n−3
i = a

)
∩ F 3n−3

)
>

0. Let

D1 = {ω3n−3 ∈ Ω3n−3 : β̃3n−3
i (ω3n−3) = a} ∩ F 3n−3.

We know that P0(D1) = Q3n−3(D1) > 0. By the construction of the mutation step at period

n, it is easy to see that

P0

(
β̃3n−2
i = b

∣∣ (β̃3n−3
i = a

)
∩ F 3n−3

)
=

1

Q3n−3(D1)

∫
D1

Qω
3n−3

3n−2 (β̃3n−2
i = b)dQ3n−3

=
1

Q3n−3(D1)

∫
D1

BabdQ
3n−3

= Bab,

where

Bab =


η̂k1l1

η̂k2l2
if a = (k1, k2, 0), b = (l1, l2, 0)

η̂k1l1
if a = (k1, J, 1), b = (l1, J, 1)

0 otherwise.

By taking F 3n−3 to be Ω3n−3 , we have

P0

(
β̃3n−2
i = b

∣∣ β̃3n−3
i = a

)
= Bab.

Therefore, the identity in the lemma follows.

The following lemma is Part (iii) of Lemma E.5.
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Lemma E.20. For any i ∈ I, a, b ∈ S̃, n ∈ T0, and F 3n−1 ∈ F3n−1 such that

P0

((
β̃3n−1
i = a

)
∩ F 3n−1

)
> 0, we have

P0

(
β̃3n
i = b

∣∣ (β̃3n−1
i = a

)
∩ F 3n−1

)
= P0

(
β̃3n
i = b

∣∣ β̃3n−1
i = a

)
.

Proof. Fix any i ∈ I, a, b ∈ S̃, n ∈ T0, and F 3n−1 ∈ F3n−1 such that P0

((
β̃3n−1
i = a

)
∩ F 3n−1

)
>

0. Let

D1 = {ω3n−1 ∈ Ω3n−1 : β̃3n−1
i (ω3n−1) = a} ∩ F 3n−1.

By the construction of the type changing with break-up step at period n, it is clear that

P0

(
β̃3n
i = b

∣∣ (β̃3n−1
i = a

)
∩ F 3n−1

)
=

1

Q3n−1(D1)

∫
D1

Qω
3n−1

3n (β̃3n
i = b)dQ3n−1

=
1

Q3n−1(D1)

∫
D1

BabdQ
3n−1

= Bab,

where

Bab =



1− ϑ̂k1k2 if a = (k1, k2, 0), b = (k1, k2, 0)

ϑ̂k1k2ςk1k2(l1) if a = (k1, k2, 0), b = (l1, J, 1)

ξ̂k1k2 σ̂k1k2(l1, l2) if a = (k1, k2, 1), b = (l1, l2, 0)

(1− ξ̂k1k2)ς̂k1k2(l1) if a = (k1, k2, 1), b = (l1, J, 1)

1 if a = (k1, J, 1), b = (k1, J, 1)

0 otherwise.

By taking F 3n−1 to be Ω3n−1 , we have

P0

(
β̃3n
i = b

∣∣ β̃3n−1
i = a

)
= Bab.

Hence, we obtain the identity in the lemma.

The following lemma provides an upper bounded for the probability with which two

agents are matched at the m-th step.

Lemma E.21. For any i, j ∈ I with i 6= j and π0
i 6= j, and m ∈ {0, 1, . . . , 3M2}, we have

P0 (π̂mi = j) ≤ mε0 +
2m

M̂
14
15

.

Proof. Fix any i, j ∈ I with i 6= j. It is clear that the inequality holds when m = 0. Suppose

the inequality holds when m = m′. It is easy to see that

P0

(
π̂m
′+1

i = j
)

= P0

(
π̂m
′+1

i = j, π̂m
′

i = j
)

+ P0

(
π̂m
′+1

i = j, π̂m
′

i 6= j
)

≤ P0

(
π̂m
′

i = j
)

+ P0

(
π̂m
′+1

i = j, π̂m
′

i 6= j
)
. (E.67)
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If m′ = 3n− 3 or 3n− 1 for some n ∈ T0, it is clear that P0

(
π̂m
′+1

i = j, π̂m
′

i 6= j
)

= 0. Then,

Equation (E.67) and the induction hypothesis imply that

P0

(
π̂m
′+1

i = j
)
≤ P0

(
π̂m
′

i = j
)
≤ (m′ + 1)ε0 +

2m′ + 2

M̂
14
15

.

If m′ = 3n− 2 for some n ∈ T0, we have

P0

(
π̂m
′+1

i = j, π̂m
′

i 6= j
)

= P0

(
π̂m
′+1

i = j, π̂m
′

i = i
)
.

Let A3n−2 = {ω3n−2 ∈ Ω3n−2 : π̂3n−2
i (ω3n−2) = i}. Then, we obtain that

P0

(
π̂m+1
i = j, π̂mi 6= j

)
=

∫
A3n−2

Qω
3n−2

3n−1 (π̂3n−1
i = j)dQ3n−2

=

∫
A3n−2∩V 3n−2

Qω
3n−2

3n−1 (π̂3n−1
i = j)dQ3n−2 +

∫
A3n−2\V 3n−2

Qω
3n−2

3n−1 (π̂3n−1
i = j)dQ3n−2

≤ Q3n−2
(
A3n−2 ∩ V 3n−2

)
+

∫
A3n−2\V 3n−2

Qω
3n−2

3n−1 (π̂3n−1
i = j)dQ3n−2.

For any ω3n−2 ∈ A3n−2, if π̂3n−2
j (ω3n−2) 6= j, it is clear that Qω

3n−2

3n−1 (π̂3n−1
i = j) = 0; if

π̂3n−2
j (ω3n−2) = j, Lemma E.1 (ii) implies that Qω

3n−2

3n−1 (π̂3n−1
i = j) ≤ 2

M̂ρ̂
α3n−2
i (ω3n−2)J

. It follows

from Lemma E.15 that for any ω3n−2 /∈ V 3n−2 and k ∈ S, we have ρ̃3n−2
kJ1 (ω3n−2) ≥ M̂−

1
15 .

Therefore, Lemma E.14 leads to

P0

(
π̂m
′+1

i = j, π̂m
′

i 6= j
)

≤ Q3n−2
(
A3n−2 ∩ V 3n−2

)
+Q3n−2

(
A3n−2\V 3n−2

) 2

M̂M̂−
1
15

≤ ε0 +
2

M̂
14
15

.

The above inequality and Equation (E.67) together with the induction hypothesis imply that

P0

(
π̂m
′+1

i = j
)
≤ P0

(
π̂m
′

i = j
)

+ ε0 +
2

M̂
14
15

≤ (m′ + 1)ε0 +
2m′ + 2

M̂
14
15

.

By induction, we have

P0 (π̂mi = j) ≤ mε0 +
2m

M̂
14
15

for any m ∈ {0, 1, . . . , 3M2}.

E.5.3 Proof of Lemma E.2

First, we work with T1. Since T1 is continuous on ∆̃, there exists a strictly increasing continuous

bijection v1 on R+ with v1(0) = 0 such that ||T1(ρ̃)−T1(ρ̃′)||∞ ≤ v1(||ρ̃−ρ̃′||∞). for any ρ̃, ρ̃′ ∈ ∆̃
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(which is called a modulus of continuity of the function T1).7

For T2, T3, q̂, we can derive their modulus of continuity in the same way. By taking the

maximum, we can get a strictly increasing bijection v on R+ which is a common modulus of

continuity for all these mappings.

Let ξ−1 = 1

MMM and w be the inverse function v−1 on R+. Let ξ0 = min (w(ξ−1), ξ−1),

ξm = min
(
w(ξm−1), ξ0

3M2

)
for any m ∈ {1, . . . , 3M2}. Hence, it is clear that 3M2ξm ≤ ξ0 ≤ ξ−1

for any m ∈ {1, 2, . . . , 3M2 + 1}.
Fix any m ∈ {−1, 0, . . . , 3M2}, and ρ̃, ρ̃′ ∈ ∆̃ with ‖ρ̃ − ρ̃′‖∞ ≤ ξm+1. Then, we know

that ‖ρ̃ − ρ̃′‖∞ ≤ w(ξm). The fact that v is a strictly increasing bijection on R+ implies that

v (‖ρ̃− ρ̃′‖∞) ≤ ξm. Since v is a common modulus of continuity for T1, T2, T3 and q̂, we obtain

that for any r ∈ {1, 2, 3},

‖Tr(ρ̃)− Tr(ρ̃′)‖∞ ≤ ξm, and ‖q̂(ρ̃)− q̂(ρ̃′)‖∞ ≤ ξm,

which completes the proof.

E.5.4 Proof of Lemma E.3

Fix any m ∈ {0, 1, . . . , 3M2}. Let V m = {ωm ∈ Ωm : ‖ρ̃m(ωm)−Um1 (ρ̃0)‖∞ > ξ0}. By Lemma

E.14, we know that P0 (V m) ≤ ε0.

Then we can obtain that

‖E(ρ̃m)− Um1 (ρ̃0)‖∞

=

∥∥∥∥∫
Ωm

(
ρ̃m − Um1 (ρ̃0)

)
dQm

∥∥∥∥
∞

≤
∫

Ωm
‖ρ̃m − Um1 (ρ̃0)‖∞dQm

≤
∫
Vm
‖ρ̃m − Um1 (ρ̃0)‖∞dQm +

∫
Ωm\Vm

‖ρ̃m − Um1 (ρ̃0)‖∞dQm

≤ ε0 + ξ0 ≤ ε0 + ξ−1 =
3M2K(K + 1)

M̂
1
3

+
1

MMM

≤ 3M2K(K + 1)

MMM +
1

MMM ≤
3M2(K + 1)2

MMM .

Let B1(M) = 3M2(K+1)2

MMM . It is clear that limM→∞B1(M) = 0.

7Given a continuous function f from a compact metric space (X, dX) to a metric space (Y, dY ), f admits a
(global) modulus of continuity ω in the sense that ω is a function from R+ to R+ with limt→0 ω(t) = ω(0) = 0,
and for any x, x′ ∈ X, dY (f(x), f(x′)) ≤ ω (dX(x, x′)). Since the range of f is compact, we can assume with
loss of generality that ω is a bounded function on R+. Following the wikipedia entry “Modulus of continuity”
(https://en.wikipedia.org/wiki/Modulus of continuity), let ω′(t) := 1

t

∫ 2t

t

[
sup0≤s′≤s ω(s′)

]
ds for t > 0 and

ω′(0) = 0. Then, it is easy to verify that ω′ is increasing and continuous on R+. Let ω̂(t) := ω′(t) + t for any
t ∈ R+, which is a modulus of continuity for f that is a strictly increasing continuous bijection on R+.
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E.5.5 Proof of Lemma E.4

By Lemma E.17, for any i ∈ I, k, l ∈ S, n ∈ T0 and F 3n−2 ∈ F3n−2 such that

P0

((
β̃3n−2
i = (k, J, 1)

)
∩ F 3n−2

)
> 0, we have∣∣∣P0

(
β̃3n−1
i = (k, l, 1)

∣∣ (β̃3n−2
i = (k, J, 1)

)
∩ F 3n−2

)
− q̂k2k1

(
U3n−2

1 (ρ̃0)
)∣∣∣

≤ 2ε0

P0

((
β̃3n−2
i = (k, J, 1)

)
∩ F 3n−2

) +
1

M̂
1
9

+ ξ−1.

Note that 2ε0 = 6M2K(K+1)

M̂
1
3

< 1
M3 and 1

M̂
1
9

+ ξ−1 = 1

M̂
1
9

+ 1

MMM < 1
M2 . It is then clear that∣∣∣P0

(
β̃3n−1
i = (k, l, 1)

∣∣ (β̃3n−2
i = (k, J, 1)

)
∩ F 3n−2

)
− q̂k2k1

(
U3n−2

1 (ρ̃0)
)∣∣∣

≤ 1

M3P0

((
β̃3n−2
i = (k, J, 1)

)
∩ F 3n−2

) +
1

M2
,

which is the required inequality in Lemma E.4.

E.5.6 Proof of Lemma E.5

Parts (i) and (iii) of Lemma E.5 have been shown in Lemmas E.19 and E.20 respectively.

Fix any i ∈ I, a, b ∈ S̃, n ∈ {1, 2, . . . ,M2}, and F 3n−2 ∈ F3n−2 such that

P0

((
β̃3n−2
i = a

)
∩ F 3n−2

)
> 0. Lemma E.18 indicates that∣∣∣P0

(
β̃3n−1
i = b

∣∣ (β̃3n−2
i = a

)
∩ F 3n−2

)
− P0

(
β̃3n−1
i = b

∣∣ β̃3n−2
i = a

)∣∣∣
≤ 4Kε0

P0

((
β̃3n−2
i = a

)
∩ F 3n−2

) +
2K

M̂
1
9

+ 2Kξ−1.

Note that M ≥ max{Kā, 3}, ξ−1 = 1

MMM , ε0 = 3M2K(K+1)

M̂
1
3

and M̂ >
(

1
ξ3M2+1

)3
≥
(

1
ξ−1

)3
≥

M3MM
. Then we can obtain that

4Kε0 =
12M2K2(K + 1)

M̂
1
3

≤ 24M5

M̂
1
3

≤ 24M5

MMM ≤
24M5

M27
<

1

M3
,

2K

M̂
1
9

+ 2Kξ−1 ≤
2M

M
1
3
MM

+
2M

MMM ≤
4M

M
1
3
MM
≤ 4M

M9
<

1

M2
.

Therefore, we have∣∣∣P0

(
β̃3n−1
i = b

∣∣ (β̃3n−2
i = a

)
∩ F 3n−2

)
− P0

(
β̃3n−1
i = b

∣∣ β̃3n−2
i = a

)∣∣∣
≤ 1

M3P0

((
β̃3n−2
i = a

)
∩ F 3n−2

) +
1

M2
,

which is Part (ii) of Lemma E.5.
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E.5.7 Proof of Lemma E.6

For a random variable f and an event G on Ω, we shall use (from now onwards) the simplified

notation (f = a,G) to represent the event (f = a) ∩ G that event G happens while f takes

value a.

We need to provide a sequence of estimations {cm}1≤m≤3M2 such that for any i ∈ I, any

m,m1 ∈ {0, 1, . . . , 3M2} with m > m1, any expanded types a, a1 ∈ S̃, and any Fm1−1
i ∈ Fm1−1

i ,

we have ∣∣∣P0

(
β̃mi = a, β̃m1

i = a1, F
m1−1
i

)
P0

(
β̃m1
i = a1

)
−P0

(
β̃mi = a, β̃m1

i = a1

)
P0

(
β̃m1
i = a1, F

m1−1
i

)∣∣∣ ≤ cm.
Fix any i ∈ I and m ∈ {1, 2, . . . , 3M2}. When m = 1, it is clear that c1 can be taken to be 0.

Suppose that we have already defined cm, we need to define cm+1 using cm.

Fix any m1,m2 with m+ 1 > m1 >m2, and expanded types a, a1,a2. We first consider

the case when m > m1. It is clear that

P0

(
β̃m+1
i = a, β̃m1

i = a1, F
m1−1
i

)
P0

(
β̃m1
i = a1

)
=

∑
b∈S̃

P0

(
β̃m+1
i = a, β̃mi = b, β̃m1

i = a1, F
m1−1
i

)
P0

(
β̃m1
i = a1

)
.

Let A =
{
b ∈ S̃ : P0

(
β̃mi = b, β̃m1

i = a1, F
m1−1
i

)
> 0
}

. We have8

P0

(
β̃m+1
i = a, β̃m1

i = a1, F
m1−1
i

)
P0

(
β̃m1
i = a1

)
=

∑
b∈A

P0

(
β̃m+1
i = a, β̃mi = b, β̃m1

i = a1, F
m1−1
i

)
P0

(
β̃m1
i = a1

)
=

∑
b∈A

P0

(
β̃m+1
i = a

∣∣ β̃mi = b, β̃m1
i = a1, F

m1−1
i

)
P0

(
β̃mi = b, β̃m1

i = a1, F
m1−1
i

)
P0

(
β̃m1
i = a1

)
.

LetB =
∑

b∈A P0

(
β̃m+1
i = a

∣∣ β̃mi = b, β̃m1
i = a1

)
P0

(
β̃mi = b, β̃m1

i = a1, F
m1−1
i

)
P0

(
β̃m1
i = a1

)
.

We can obtain that∣∣∣P0

(
β̃m+1
i = a, β̃m1

i = a1, β̃
m2
i = a2

)
P0

(
β̃m1
i = a1

)
−B

∣∣∣
=

∑
b∈A

∣∣∣P0

(
β̃m+1
i = a

∣∣ β̃mi = b, β̃m1
i = a1, F

m1−1
i

)
− P0

(
β̃m+1
i = a

∣∣ β̃mi = b, β̃m1
i = a1

)∣∣∣
×P0

(
β̃mi = b, β̃m1

i = a1, F
m1−1
i

)
P0

(
β̃m1
i = a1

)
.

8When A is empty, we follow the convention that summation over an empty set is zero.
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By Lemmas E.18, E.19 and E.20, we know that for any m ∈ {1, 2, . . . , 3M2}, and b ∈ A,∣∣∣P0

(
β̃m+1
i = a

∣∣ β̃mi = b, β̃m1
i = a1, F

m1−1
i

)
− P0

(
β̃m+1
i = a

∣∣ β̃mi = b
)∣∣∣

≤ K

(
4ε0

P0(β̃mi = b, β̃m1
i = a1, F

m1−1
i )

+ 2ξ−1 +
2

M̂
1
9

)
, and

∣∣∣P0

(
β̃m+1
i = a

∣∣ β̃mi = b, β̃m1
i = a1

)
− P0

(
β̃m+1
i = a

∣∣ β̃mi = b
)∣∣∣

≤ K

(
4ε0

P0(β̃mi = b, β̃m1
i = a1)

+ 2ξ−1 +
2

M̂
1
9

)
.

It follows from the above inequalities that∣∣∣P0

(
β̃m+1
i = a, β̃m1

i = a1, β̃
m2
i = a2

)
P0

(
β̃m1
i = a1

)
−B

∣∣∣
=

∑
b∈A

∣∣∣P0

(
β̃m+1
i = a

∣∣ β̃mi = b, β̃m1
i = a1, F

m1−1
i

)
− P0

(
β̃m+1
i = a

∣∣ β̃mi = b
)

+P0

(
β̃m+1
i = a

∣∣ β̃mi = b
)
− P0

(
β̃m+1
i = a

∣∣ β̃mi = b, β̃m1
i = a1

)∣∣∣
×P0

(
β̃mi = b, β̃m1

i = a1, F
m1−1
i

)
P0

(
β̃m1
i = a1

)
≤

∑
b∈A

K

(
4ε0

P0(β̃mi = b, β̃m1
i = a1, F

m1−1
i )

+ 2ξ−1 +
2

M̂
1
9

+
4ε0

P0(β̃mi = b, β̃m1
i = a1)

+ 2ξ−1 +
2

M̂
1
9

)
×P0

(
β̃mi = b, β̃m1

i = a1, F
m1−1
i

)
P0

(
β̃m1
i = a1

)
≤

∑
b∈A

K

(
4ε0 + 2ξ−1 +

2

M̂
1
9

+ 4ε0 + 2ξ−1 +
2

M̂
1
9

)
≤ 2K2(K + 1)

(
8ε0 + 4ξ−1 +

4

M̂
1
9

)
. (E.68)

The induction hypothesis implies that for any b ∈ S̃,∣∣∣P0

(
β̃mi = b, β̃m1

i = a1, F
m1−1
i

)
P0

(
β̃m1
i = a1

)
− P0

(
β̃mi = b, β̃m1

i = a1

)
P0

(
β̃m1
i = a1, F

m1−1
i

)∣∣∣ ≤ cm.
Then, we can obtain that∣∣∣B − P0

(
β̃m+1
i = a, β̃m1

i = a1

)
P0

(
β̃m1
i = a1, F

m1−1
i

)∣∣∣
=

∣∣∣∣∣B −∑
b∈A

P0

(
β̃m+1
i = a

∣∣ β̃mi = b, β̃m1
i = a1

)
P0

(
β̃mi = b, β̃m1

i = a1

)
P0

(
β̃m1
i = a1, F

m1−1
i

)∣∣∣∣∣
≤

∑
b∈A

P0

(
β̃m+1
i = a

∣∣ β̃mi = b, β̃m1
i = a1

) ∣∣∣P0

(
β̃mi = b, β̃m1

i = a1, F
m1−1
i

)
P0

(
β̃m1
i = a1

)
−P0

(
β̃mi = b, β̃m1

i = a1

)
P0

(
β̃m1
i = a1, F

m1−1
i

)∣∣∣
≤ 2K(K + 1)cm ≤ 2K2(K + 1)cm. (E.69)
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By Equations (E.68) and (E.69), we have∣∣∣P0

(
β̃m+1
i = a, β̃m1

i = a1, F
m1−1
i

)
P0

(
β̃m1
i = a1

)
−P0

(
β̃m+1
i = a, β̃m1

i = a1

)
P0

(
β̃m1
i = a1, F

m1−1
i

)∣∣∣
≤ 2K2(K + 1)

(
4ξ−1 + 8ε0 +

4

M̂
1
9

+ cm

)
. (E.70)

If m = m1 and P0

(
β̃mi = a1, F

m1−1
i

)
= 0, then it is clear that

P0

(
β̃m+1
i = a, β̃m1

i = a1, F
m1−1
i

)
P0

(
β̃m1
i = a1

)
= P0

(
β̃m+1
i = a, β̃m1

i = a1

)
P0

(
β̃m1
i = a1, F

m1−1
i

)
. (E.71)

If m = m1 and P0

(
β̃mi = a1, F

m1−1
i

)
> 0, then it follows from Lemma E.18, E.19 and

E.20 that ∣∣∣P0

(
β̃m+1
i = a

∣∣ β̃m1
i = a1, F

m1−1
i

)
− P0

(
β̃m+1
i = a

∣∣ β̃m1
i = a1

)∣∣∣
≤ 4Kε0

P0

(
β̃m1
i = a1, F

m1−1
i

) +
2K

M̂
1
9

+ 2Kξ−1.

Therefore, we can obtain that∣∣∣P0

(
β̃m+1
i = a, β̃m1

i = a1, F
m1−1
i

)
P0

(
β̃m1
i = a1

)
−P0

(
β̃m+1
i = a, β̃m1

i = a1

)
P0

(
β̃m1
i = a1, F

m1−1
i

)∣∣∣
=

∣∣∣P0

(
β̃m+1
i = a

∣∣ β̃m1
i = a1, F

m1−1
i

)
− P0

(
β̃m+1
i = a

∣∣ β̃m1
i = a1

)∣∣∣
P0

(
β̃m1
i = a1, F

m1−1
i

)
P0

(
β̃m1
i = a1

)
≤

 4Kε0

P0

(
β̃m1
i = a1, F

m1−1
i

) +
2K

M̂
1
9

+ 2Kξ−1

P0

(
β̃m1
i = a1, F

m1−1
i

)
P0

(
β̃m1
i = a1

)
≤ 4Kε0 +

2K

M̂
1
9

+ 2Kξ−1. (E.72)

By Equations (E.70), (E.71) and (E.72), we can define cm+1 to be

2K2(K + 1)

(
4ξ−1 + 8ε0 +

4

M̂
1
9

+ cm

)
so that cm+1 has the desired inductive property.

Next, we use induction again to prove that for any m ∈ {1, 2, . . . , 3M2},

cm ≤ 22mK4m(K + 1)2m

(
4ξ−1 + 8ε0 +

4

M̂
1
9

)
. (E.73)
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Note that c1 = 0. It is clear that this inequality holds for m = 1. Suppose that this inequality

holds for m = m′ ≥ 1. Then we have

cm′+1 = 2K2(K + 1)

(
4ξ−1 + 8ε0 +

4

M̂
1
9

+ cm′

)
≤ 2K2(K + 1)

(
4ξ−1 + 8ε0 +

4

M̂
1
9

)
+ 22m′+1K4m′+2(K + 1)2m′+1

(
4ξ−1 + 8ε0 +

4

M̂
1
9

)
≤ 22m′+2K4m′+4(K + 1)2m′+2

(
4ξ−1 + 8ε0 +

4

M̂
1
9

)
.

Hence, Equation (E.73) holds. Let B2(M) = 26M2
K12M2

(K+1)6M2
(

4ξ−1 + 8ε0 + 4

M̂
1
9

)
. Since

ξ−1 = 1

MMM , ε0 = 3M2K(K+1)

M̂
1
3

and M̂ >
(

1
ξ3M2+1

)3
≥
(

1
ξ−1

)3
≥ M3MM

, it is clear that

limM→∞B2(M) = 0.

E.5.8 Proof of Lemma E.7

Fix any i, j ∈ I with π̂0
i 6= j. It follows from Lemma E.21 that for any m ∈ {0, 1, . . . , 3M2},

P0 (π̂mi = j) ≤ mε0 + 2m

M̂
14
15

. Recall that M ≥ max{Kā, 3}, M̂ ≥ M3MM
and ε0 = 3M2K(K+1)

M̂
1
3

.

We can obtain the following estimation

P0 (π̂mi = j) ≤ mε0 +
2m

M̂
14
15

≤ 3M2 3M2K(K + 1)

M̂
1
3

+
6M2

M̂
14
15

≤ 3M2 3M2M2M

M̂
1
3

+
6M2

M̂
1
3

≤ 24M6

M̂
1
3

=
24M6

M̂
1
6

1

M̂
1
6

≤ 24M6

M
27
2

1

M̂
1
6

=
24

M
15
2

1

M̂
1
6

<
1

M̂
1
6

.

For any m ∈ {0, 1, . . . , 3M2}, let Fmij = {ωm ∈ Ωm : π̂mi (ω) = j}; then we have P0

(
Fmij

)
≤ 1

M̂
1
6

.

We need to provide a sequence of estimations {dm}0≤m≤3M2 such that for any m ∈
{0, 1, . . . , 3M2}, a1, a2 ∈ S̃, and Fm−1

i ∈ Fm−1
i and Fm−1

j ∈ Fm−1
j , we have∣∣∣P0

(
β̃mi = a1, β̃

m
j = a2, F

m−1
i , Fm−1

j

)
−P0

(
β̃mi = a1, F

m−1
i

)
P0

(
β̃mj = a2, F

m−1
j

)∣∣∣ ≤ dm. (E.74)

Fix any m ∈ {0, 1, . . . , 3M2}. When m = 0, we can take d0 to be 0. Suppose that we

have already defined dm, we need to define dm+1 using dm.
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Fix any a1, a2, b1, b2 ∈ S̃, Fm−1
i ∈ Fm−1

i and Fm−1
j ∈ Fm−1

j . We first estimate the

following difference∣∣∣P0

(
β̃m+1
i = a1, β̃

m+1
j = a2, β̃

m
i = b1, β̃

m
j = b2, F

m−1
i , Fm−1

j

)
−P0

(
β̃m+1
i = a1, β̃

m
i = b1, F

m−1
i

)
P0

(
β̃m+1
j = a2, β̃

m
j = b2, F

m−1
j

)∣∣∣ .
For notational simplicity, we let

A =
{
ωm ∈ Ωm : β̃mi = b1, β̃

m
j = b2

}
∩ Fm−1

i ∩ Fm−1
j ,

A′ = {ωm ∈ Ωm : β̃mi = b1} ∩ Fm−1
i ,

A′′ = {ωm ∈ Ωm : β̃mj = b2} ∩ Fm−1
j .

We can obtain that

P0

(
β̃m+1
i = a1, β̃

m+1
j = a2, β̃

m
i = b1, β̃

m
j = b2, F

m−1
i , Fm−1

j

)
=

∫
A
Qω

m

m+1

(
β̃m+1
i = a1, β̃

m+1
j = a2

)
dQm.

We first consider the case when m = 3n− 2 for some n ∈ T0, that is, the m + 1 step is

the matching step in the n-th period. We start by assuming b1 = (k, l, 0). When β̃mi = (k, l, 0)

for some k, l ∈ S, agent i is already matched at the mutation step in the n-th period. By the

construction of the finite-agent dynamic matching model, paired agents do not change their

expanded types in the matching step. When a1 6= (k, l, 0), it is clear that

P0

(
β̃m+1
i = a1, β̃

m+1
j = a2, β̃

m
i = (k, l, 0), β̃mj = b2, F

m−1
i , Fm−1

j

)
= P0

(
β̃m+1
i = a1, β̃

m
i = (k, l, 0), Fm−1

i

)
P0

(
β̃m+1
j = a2, β̃

m
j = b2, F

m−1
j

)
= 0. (E.75)

When a1 = (k, l, 0), and P0

(
β̃mi = (k, l, 0), β̃mj = b2, F

m−1
i , Fm−1

j

)
= 0, the inductive hypoth-

esis implies that

P0

(
β̃mi = (k, l, 0), Fm−1

i

)
P0

(
β̃mj = b2, F

m−1
j

)
≤ dm.

We can then obtain∣∣∣P0

(
β̃m+1
i = (k, l, 0), β̃m+1

j = a2, β̃
m
i = (k, l, 0), β̃mj = b2, F

m−1
i , Fm−1

j

)
−P0

(
β̃m+1
i = (k, l, 0), β̃mi = (k, l, 0), Fm−1

i

)
P0

(
β̃m+1
j = a2, β̃

m
j = b2, F

m−1
j

)∣∣∣
= P0

(
β̃m+1
i = a1, β̃

m
i = (k, l, 0), Fm−1

i

)
P0

(
β̃m+1
j = a2, β̃

m
j = b2, F

m−1
j

)
≤ P0

(
β̃mi = (k, l, 0), Fm−1

i

)
P0

(
β̃mj = b2, F

m−1
j

)
≤ dm. (E.76)
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When a1 = (k, l, 0), P0

(
β̃mi = (k, l, 0), β̃mj = b2, F

m−1
i , Fm−1

j

)
> 0, we have

P0

(
β̃m+1
i = a1, β̃

m+1
j = a2, β̃

m
i = (k, l, 0), β̃mj = b2, F

m−1
i , Fm−1

j

)
= P0

(
β̃m+1
j = a2, β̃

m
i = (k, l, 0), β̃mj = b2, F

m−1
i , Fm−1

j

)
= P0

(
β̃m+1
j = a2 | β̃mi = (k, l, 0), β̃mj = b2, F

m−1
i , Fm−1

j

)
P0

(
β̃mi = (k, l, 0), β̃mj = b2, F

m−1
i , Fm−1

j

)
.

It follows from Lemma E.18 that∣∣∣P0

(
β̃m+1
j = a2 | β̃mi = (k, l, 0), β̃mj = b2, F

m−1
i , Fm−1

j

)
− P0

(
β̃m+1
j = a2 | β̃mj = b2

)∣∣∣
≤ 4Kε0

P0

(
β̃mi = (k, l, 0), β̃mj = b2, F

m−1
i , Fm−1

j

) +
2K

M̂
1
9

+ 2Kξ−1, and

∣∣∣P0

(
β̃m+1
j = a2 | β̃mj = b2, F

m−1
j

)
− P0

(
β̃m+1
j = a2 | β̃mj = b2

)∣∣∣
≤ 4Kε0

P0

(
β̃mj = b2, F

m−1
j

) +
2K

M̂
1
9

+ 2Kξ−1.

Then, the above inequalities imply that∣∣∣P0

(
β̃m+1
j = a2, β̃

m
i = (k, l, 0), β̃mj = b2, F

m−1
i , Fm−1

j

)
−P0

(
β̃m+1
j = a2 | β̃mj = b2

)
P0

(
β̃mi = (k, l, 0), β̃mj = b2, F

m−1
i , Fm−1

j

)∣∣∣
=

∣∣∣P0

(
β̃m+1
j = a2 | β̃mi = (k, l, 0), β̃mj = b2, F

m−1
i , Fm−1

j

)
− P0

(
β̃m+1
j = a2 | β̃mj = b2

)∣∣∣
P0

(
β̃mi = (k, l, 0), β̃mj = b2, F

m−1
i , Fm−1

j

)
≤ 4Kε0 +

2K

M̂
1
9

+ 2Kξ−1, and

∣∣∣P0

(
β̃m+1
j = a2, β̃

m
j = b2, F

m−1
j

)
− P0

(
β̃m+1
j = a2 | β̃mj = b2

)
P0

(
β̃mj = b2, F

m−1
j

)∣∣∣
=

∣∣∣P0

(
β̃m+1
j = a2 | β̃mj = b2, F

m−1
j

)
− P0

(
β̃m+1
j = a2 | β̃mj = b2

)∣∣∣P0

(
β̃mj = b2, F

m−1
j

)
≤ 4Kε0 +

2K

M̂
1
9

+ 2Kξ−1.
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By the above two inequalities and the inductive hypothesis, we can obtain that∣∣∣P0

(
β̃m+1
i = (k, l, 0), β̃m+1

j = a2, β̃
m
i = (k, l, 0), β̃mj = b2, F

m−1
i , Fm−1

j

)
−P0

(
β̃m+1
i = a1, β̃

m
i = (k, l, 0), Fm−1

i

)
P0

(
β̃m+1
j = a2, β̃

m
j = b2, F

m−1
j

)∣∣∣
=

∣∣∣P0

(
β̃m+1
j = a2, β̃

m
i = (k, l, 0), β̃mj = b2, F

m−1
i , Fm−1

j

)
−P0

(
β̃m+1
j = a2 | β̃mj = b2

)
P0

(
β̃mi = (k, l, 0), β̃mj = b2, F

m−1
i , Fm−1

j

)∣∣∣
+
∣∣∣P0

(
β̃m+1
j = a2 | β̃mj = b2

)
P0

(
β̃mi = (k, l, 0), β̃mj = b2, F

m−1
i , Fm−1

j

)
−P0

(
β̃m+1
j = a2 | β̃mj = b2

)
P0

(
β̃mi = (k, l, 0), Fm−1

i

)
P0

(
β̃mj = b2, F

m−1
j

)∣∣∣
+
∣∣∣P0

(
β̃m+1
j = a2 | β̃mj = b2

)
P0

(
β̃mi = (k, l, 0), Fm−1

i

)
P0

(
β̃mj = b2, F

m−1
j

)
−P0

(
β̃mi = (k, l, 0), Fm−1

i

)
P0

(
β̃m+1
j = a2, β̃

m
j = b2, F

m−1
j

)∣∣∣
≤ 4Kε0 +

2K

M̂
1
9

+ 2Kξ−1 + dm + 4Kε0 +
2K

M̂
1
9

+ 2Kξ−1

= 8Kε0 +
4K

M̂
1
9

+ 4Kξ−1 + dm. (E.77)

Next, we assume that b1 = (k, J, 0) or (k, l, 1) for some k, l ∈ S. It is clear that

P0

(
β̃mi = b1

)
= 0. Then we have

P0

(
β̃m+1
i = a1, β̃

m+1
j = a2, β̃

m
i = b1, β̃

m
j = b2, F

m−1
i , Fm−1

j

)
= P0

(
β̃m+1
i = a1, β̃

m
i = b1, F

m−1
i

)
P0

(
β̃m+1
j = a2, β̃

m
j = b2, F

m−1
j

)
= 0. (E.78)

One can exchange the positions of i and j to obtain exactly the same estimations as

in Equations (E.75), (E.76), (E.77) and (E.78), when i is replaced by j, and the conditions

on b1 are restated on b2. Thus, for the matching step, it remains to consider b1 = (k1, J, 1)

and b2 = (k2, J, 1) for some k1, k2 ∈ S. In this case, if a1 is neither (k1, J, 1) nor (k1, l, 1)

(l ∈ S), then we must have P0

(
β̃m+1
i = a1, β̃

m
i = b1, F

m−1
i

)
= 0, which implies the identities

in Equation (E.78). By the same reason, Equation (E.78) also holds when a2 is neither (k2, J, 1)

nor (k2, l, 1) (l ∈ S). Hence, we only need to consider a1 = (k1, l1, 1) and a2 = (k2, l2, 1) for

some l1, l2 ∈ S ∪ {J}.
In this paragraph, we work with a1 = (k1, l1, 1), a2 = (k2, l2, 1), b1 = (k1, J, 1), and

b2 = (k2, J, 1) for some k1, k2 ∈ S, and l1, l2 ∈ S ∪ {J}. The inequalities in Lemma E.16 give

symmetric treatment the cases for l ∈ S or l = J . For the simplicity of applying this lemma, we

introduce the notation q̂kJ to represent q̂k in the rest of the proof for Lemma E.7. By Lemmas
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E.14 and E.16, we have∣∣∣P0

(
β̃m+1
i = a1, β̃

m+1
j = a2, β̃

m
i = b1, β̃

m
j = b2, F

m−1
i , Fm−1

j

)
−
∫
A
q̂k1l1(ρ̃m)q̂k2l2(ρ̃m)dQm

∣∣∣∣
=

∣∣∣∣∫
A

(
Qω

m

m+1(β̃m+1
i = a1, β̃

m+1
j = a2)− q̂k1l1(ρ̃m)q̂k2l2(ρ̃m)

)
dQm

∣∣∣∣
≤

∫
A\Vm

∣∣∣Qωmm+1(β̃m+1
i = a1, β̃

m+1
j = a2)− q̂k1l1(ρ̃m)q̂k2l2(ρ̃m)

∣∣∣ dQm +Qm(V m)

≤ 1

M̂
1
9

+ ε0. (E.79)

Next, we estimate the difference∣∣∣∣∫
A
q̂k1l1(ρ̃m)q̂k2l2(ρ̃m)dQm − P0(A)q̂k1l1

(
Um1 (ρ̃0)

)
q̂k2l2

(
Um1 (ρ̃0)

)∣∣∣∣
≤

∫
A

∣∣q̂k1l1(ρ̃m)q̂k2l2(ρ̃m)− q̂k1l1

(
Um1 (ρ̃0)

)
q̂k2l2

(
Um1 (ρ̃0)

)∣∣ dQm
≤

∫
A\Vm

∣∣q̂k1l1(ρ̃m)q̂k2l2(ρ̃m)− q̂k1l1

(
Um1 (ρ̃0)

)
q̂k2l2

(
Um1 (ρ̃0)

)∣∣ dQm +Qm(V m)

=

∫
A\Vm

∣∣q̂k1l1(ρ̃m)q̂k2l2(ρ̃m)− q̂k1l1

(
Um1 (ρ̃0)

)
q̂k2l2(ρ̃m)

∣∣ dQm
+

∫
A\Vm

∣∣q̂k1l1

(
Um1 (ρ̃0)

)
q̂k2l2(ρ̃m)− q̂k1l1

(
Um1 (ρ̃0)

)
q̂k2l2

(
Um1 (ρ̃0)

)∣∣ dQm +Qm(V m)

≤
∫
A\Vm

∣∣q̂k1l1(ρ̃m)− q̂k1l1

(
Um1 (ρ̃0)

)∣∣ dQm
+

∫
A\Vm

∣∣q̂k2l2(ρ̃m)− q̂k2l2

(
Um1 (ρ̃0

)∣∣ dQm +Qm(V m).

By Lemma E.14, for any ωm /∈ V m, we have ||ρ̃m(ωm)− Um1 (ρ̃0)||∞ ≤ ξ0. Lemma E.2 implies

that for any ωm /∈ V m,∣∣q̂k1l1(ρ̃m(ωm))− q̂k1l1

(
Um1 (ρ̃0)

)∣∣ ≤ ξ−1 and
∣∣q̂k2l2(ρ̃m(ωm))− q̂k2l2

(
Um1 (ρ̃0)

)∣∣ ≤ ξ−1.

It follows from the above inequalities and Lemma E.14 that∣∣∣∣∫
A
q̂k1l1(ρ̃m)q̂k2l2(ρ̃m)dQm − P0(A)q̂k1l1

(
Um1 (ρ̃0)

)
q̂k2l2

(
Um1 (ρ̃0)

)∣∣∣∣
≤ 2ξ−1 + ε0 (E.80)

By Equations (E.79) and (E.80), we have∣∣∣P0

(
β̃m+1
i = a1, β̃

m+1
j = a2, β̃

m
i = b1, β̃

m
j = b2, F

m−1
i , Fm−1

j

)
−P0(A)q̂k1l1

(
Um1 (ρ̃0)

)
q̂k2l2

(
Um1 (ρ̃0)

)∣∣ ≤ 2ε0 +
1

M̂
1
9

+ 2ξ−1. (E.81)
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It follows from Lemmas E.14 and E.16 that∣∣∣∣P0

(
β̃m+1
i = a1, β̃

m
i = b1, F

m−1
i

)
−
∫
A′
q̂k1l1(ρ̃m)dQm

∣∣∣∣
=

∣∣∣∣∫
A′

(
Qω

m

m+1(β̃m+1
i = a1)− q̂k1l1(ρ̃m)

)
dQm

∣∣∣∣
≤

∫
A′\Vm

∣∣∣Qωmm+1(β̃m+1
i = a1)− q̂k1l1(ρ̃m)

∣∣∣ dQm +Qm(V m)

≤ 1

M̂
1
9

+ ε0. (E.82)

Next, we estimate the difference∣∣∣∣∫
A′
q̂k1l1(ρ̃m)dQm − P0(A′)q̂k1l1

(
Um1 (ρ̃0)

)∣∣∣∣
≤

∫
A′

∣∣q̂k1l1(ρ̃m)− q̂k1l1

(
Um1 (ρ̃0)

)∣∣ dQm
≤

∫
A′\Vm

∣∣q̂k1l1(ρ̃m)− q̂k1l1

(
Um1 (ρ̃0)

)∣∣ dQm +Qm(V m).

It follows from Lemma E.14 that for any ωm /∈ V m, ||ρ̃m(ωm) − Um1 (ρ̃0)||∞ ≤ ξ0. Lemma E.2

implies that for any ωm /∈ V m,
∣∣q̂k1l1

(ρ̃m)(ωm)− q̂k1l1

(
Um1 (ρ̃0)

)∣∣ ≤ ξ−1. It is then obvious that∣∣∣∣∫
A′
q̂k1l1(ρ̃m)− P0(A′)q̂k1l1

(
Um1 (ρ̃0)

)∣∣∣∣
≤ ξ−1 + ε0 (E.83)

By combining Equations (E.82) and (E.83), we have∣∣∣P0

(
β̃m+1
i = a1, β̃

m
i = b1, F

m−1
i

)
− P0(A′)q̂k1l1

(
Um1 (ρ̃0)

)∣∣∣
≤ 2ε0 +

1

M̂
1
9

+ ξ−1. (E.84)

Equation (E.84) states an inequality for a general agent i, which can be restated for agent j as

follows: ∣∣∣P0

(
β̃m+1
j = a2, β̃

m
j = b2, F

m−1
j

)
− P0(A′′)q̂k2l2

(
Um1 (ρ̃0)

)∣∣∣
≤ 2ε0 +

1

M̂
1
9

+ ξ−1, (E.85)
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Based on Equations (E.84) and (E.85), we can obtain that∣∣∣P0

(
β̃m+1
i = a1, β̃

m
i = b1, F

m−1
i

)
P0

(
β̃m+1
j = a2, β̃

m
j = b2, F

m−1
j

)
−P0(A′)P0(A′′)q̂k1l1

(
Um1 (ρ̃0)

)
q̂k2l2

(
Um1 (ρ̃0)

)∣∣
≤

∣∣∣P0(β̃m+1
i = a1, β̃

m
i = b1, F

m−1
i )P0(β̃m+1

j = a2, β̃
m
j = b2, F

m−1
j )

−P0(A′)q̂k1l1

(
Um1 (ρ̃0)

)
P0(β̃m+1

j = a2, β̃
m
j = b2, F

m−1
j )

∣∣∣
+
∣∣∣P0(A′)q̂k1l1(Um1 (ρ̃0))P0(β̃m+1

j = a2, β̃
m
j = b2, F

m−1
j )

−P0(A′)P0(A′′)q̂k1l1(Um1 (ρ̃0))q̂k2l2(Um1 (ρ̃0)) |

≤
∣∣∣P0(β̃m+1

i = a1, β̃
m
i = b1, F

m−1
i )− P0(A′)q̂k1l1

(
Um1 (ρ̃0)

)∣∣∣
+
∣∣∣P0(β̃m+1

j = a2, β̃
m
j = b2, F

m−1
j )− P0(A′′)q̂k2l2(Um1 (ρ̃0)) |

≤ 4ε0 +
2

M̂
1
9

+ 2ξ−1, (E.86)

The induction hypothesis indicates that |P0(A)− P0(A′)P0(A′′)| ≤ dm. By Equations (E.81)

and (E.86), we have∣∣∣P0

(
β̃m+1
i = a1, β̃

m+1
j = a2, β̃

m
i = b1, β̃

m
j = b2, F

m−1
i , Fm−1

j

)
−P0

(
β̃m+1
i = a1, β̃

m
i = b1, F

m−1
i

)
P0

(
β̃m+1
j = a2, β̃

m
j = b2, F

m−1
j

)∣∣∣
≤

∣∣P0(A)q̂k1l1(Um1 (ρ̃0))q̂k2l2(Um1 (ρ̃0))− P0(A′)P0(A′′)q̂k1l1(Um1 (ρ̃0))q̂k2l2(Um1 (ρ̃0))
∣∣

+6ε0 +
3

M̂
1
9

+ 4ξ−1

≤
∣∣P0(A)− P0(A′)P0(A′′)

∣∣+ 6ε0 +
3

M̂
1
9

+ 4ξ−1

≤ 6ε0 +
3

M̂
1
9

+ 4ξ−1 + dm. (E.87)

By Equations (E.76), (E.77) and (E.87), we know that for m = 3n−2, and for any a1, a2, b1, b2 ∈
S̃, Fm−1

i ∈ Fm−1
i and Fm−1

j ∈ Fm−1
j ,∣∣∣P0

(
β̃m+1
i = a1, β̃

m+1
j = a2, β̃

m
i = b1, β̃

m
j = b2, F

m−1
i , Fm−1

j

)
−P0

(
β̃m+1
i = a1, β̃

m
i = (k, l, 0), Fm−1

i

)
P0

(
β̃m+1
j = a2, β̃

m
j = b2, F

m−1
j

)∣∣∣
≤ 8Kε0 +

4K

M̂
1
9

+ 4Kξ−1 + dm. (E.88)

Next, we consider the case when m = 3n− 3 for some n ∈ T0, that is, the m+ 1 step is

the mutation step in the n-th period. Let

Bab =


η̂k1l1

η̂k2l2
if a = (k1, k2, 0), b = (l1, l2, 0)

η̂k1l1
if a = (k1, J, 1), b = (l1, J, 1)

0 otherwise.
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By the construction of the mutation step in the finite-agent dynamic matching model, we know

that if π̂mi (ωm) 6= j, β̃mi (ωm) = b1, β̃mj (ωm) = b2,

Qω
m

m+1(β̃m+1
i = a1, β̃

m+1
j = a2) = Qω

m

m+1(β̃m+1
i = a1)Qω

m

m+1(β̃m+1
j = a2) = Bb1a1Bb2a2 .

Recall from the beginning of this proof that Fmij = {ωm ∈ Ωm : π̂mi (ω) = j} and P0

(
Fmij

)
≤

1

M̂
1
11

. It then follows from Lemma E.14 that∣∣∣P0

(
β̃m+1
i = a1, β̃

m+1
j = a2, β̃

m
i = b1, β̃

m
j = b2, F

m−1
i , Fm−1

j

)
− P0(A)Bb1a1Bb2a2

∣∣∣
≤

∫
A

∣∣∣Qωmm+1(β̃m+1
i = a1, β̃

m+1
j = a2)−Bb1a1Bb2a2

∣∣∣ dQm
=

∫
A\(Fmij ∪Vm)

|Bb1a1Bb2a2 −Bb1a1Bb2a2 | dQm

+

∫
A∩(Fmij ∪Vm)

∣∣∣Qωmm+1(β̃m+1
i = a1, β̃

m+1
j = a2)−Bb1a1Bb2a2

∣∣∣ dQm
≤ P0(Fmij ∪ V m) ≤ P0(Fmij ) + P0(V m) ≤ 1

M̂
1
6

+ ε0. (E.89)

By the construction of the mutation step in the finite-agent dynamic matching model again,

we have

P0(β̃m+1
i = a1, β̃

m
i = b1, F

m−1
i ) = P0(A′)Bb1a1 , and

P0(β̃m+1
j = a2, β̃

m
j = b2, F

m−1
j ) = P0(A′′)Bb2a2 .

It follows from the above identities, the induction hypothesis
∣∣∣P0(A)− P0(Di

b1
)P0(Dj

b2
)
∣∣∣ ≤ dm,

and Equation (E.89) that∣∣∣P0

(
β̃m+1
i = a1, β̃

m+1
j = a2, β̃

m
i = b1, β̃

m
j = b2, F

m−1
i , Fm−1

j

)
−P0

(
β̃m+1
i = a1, β̃

m
i = b1, F

m−1
i

)
P0

(
β̃m+1
j = a2, β̃

m
j = b2, F

m−1
j

) ∣∣∣
≤

∣∣P0(A)Bb1a1Bb2a2 − P0(A′)Bb1a1 P0(A′′)Bb2a2

∣∣+
1

M̂
1
11

+ ε0

=
∣∣P0(A)− P0(A′)P0(A′′)

∣∣Bb1a1Bb2a2 +
1

M̂
1
11

+ ε0

≤ ε0 +
1

M̂
1
6

+ dm. (E.90)

It remains to consider the case when m = 3n − 1 for some n ∈ T0, that is, the m + 1

step is the type changing with break-up step in the n-th period. Though the proof of this part

is similar to the case of the mutation step, we present a full proof for the sake of completeness.

65



Let

Cab =



1− ϑ̂k1k2 if a = (k1, k2, 0), b = (k1, k2, 0)

ϑ̂k1k2ςk1k2(l1) if a = (k1, k2, 0), b = (l1, J, 1)

ξ̂k1k2 σ̂k1k2(l1, l2) if a = (k1, k2, 1), b = (l1, l2, 0)

(1− ξ̂k1k2)ς̂k1k2(l1) if a = (k1, k2, 1), b = (l1, J, 1)

1 if a = (k1, J, 1), b = (k1, J, 1)

0 otherwise.

By the construction of the type changing with break-up step in the finite-agent dynamic match-

ing model, we know that if π̂mi (ωm) 6= j, β̃mi (ωm) = b1, β̃mj (ωm) = b2,

Qω
m

m+1(β̃m+1
i = a1, β̃

m+1
j = a2) = Qω

m

m+1(β̃m+1
i = a1)Qω

m

m+1(β̃m+1
j = a2) = Cb1a1Cb2a2 .

Lemma E.14 implies that∣∣∣P0

(
β̃m+1
i = a1, β̃

m+1
j = a2, β̃

m
i = b1, β̃

m
j = b2, F

m−1
i , Fm−1

j

)
− P0(A)Cb1a1Cb2a2

∣∣∣
≤

∫
A

∣∣∣Qωmm+1(β̃m+1
i = a1, β̃

m+1
j = a2)− Cb1a1Cb2a2

∣∣∣ dQm
=

∫
A\(Fmij ∪Vm)

|Cb1a1Cb2a2 − Cb1a1Cb2a2 | dQm

+

∫
A∩(Fmij ∪Vm)

∣∣∣Qωmm+1(β̃m+1
i = a1, β̃

m+1
j = a2)− Cb1a1Cb2a2

∣∣∣ dQm
≤ P0(Fmij ∪ V m) ≤ P0(Fmij ) + P0(V m) ≤ 1

M̂
1
6

+ ε0. (E.91)

By the construction of the type changing with break-up step in the finite-agent dynamic match-

ing model again, we have

P0(β̃m+1
i = a1, β̃

m
i = b1, F

m−1
i ) = P0(A′)Cb1a1 , and

P0(β̃m+1
j = a2, β̃

m
j = b2, F

m−1
j ) = P0(A′′)Cb2a2 .

By the above identities, the induction hypothesis
∣∣∣P0(A)− P0(Di

b1
)P0(Dj

b2
)
∣∣∣ ≤ dm, and Equa-

tion (E.91), we obtain that∣∣∣P0

(
β̃m+1
i = a1, β̃

m+1
j = a2, β̃

m
i = b1, β̃

m
j = b2, F

m−1
i , Fm−1

j

)
−P0

(
β̃m+1
i = a1, β̃

m
i = b1, F

m−1
i

)
P0

(
β̃m+1
j = a2, β̃

m
j = b2, F

m−1
j

) ∣∣∣
≤

∣∣P0(A)Cb1a1Cb2a2 − P0(A′)Cb1a1 P0(A′′)Cb2a2

∣∣+
1

M̂
1
6

+ ε0

=
∣∣P0(A)− P0(A′)P0(A′′)

∣∣Cb1a1Cb2a2 +
1

M̂
1
6

+ ε0

≤ ε0 +
1

M̂
1
6

+ dm. (E.92)
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By combining Equations (E.88), (E.90), (E.92), we obtain that∣∣∣P0

(
β̃m+1
i = a1, β̃

m+1
j = a2, β̃

m
i = b1, β̃

m
j = b2, F

m−1
i , Fm−1

j

)
−P0

(
β̃m+1
i = a1, β̃

m
i = b1, F

m−1
i

)
P0

(
β̃m+1
j = a2, β̃

m
j = b2, F

m−1
j

)∣∣∣
≤ 8Kε0 +

4K

M̂
1
9

+ 4Kξ−1 + dm. (E.93)

Fix any Fmi ∈ Fmi . There exist Fm−1
ib ∈ Fm−1

i for b ∈ S̃ such that Fmi =
⋃
b∈S̃

((
β̃mi = b

)
∩ Fm−1

ib

)
.

Similarly, for any fixed Fmj ∈ Fmj , there exist Fm−1
jb ∈ Fm−1

j for b ∈ S̃ such that Fmj =⋃
b∈S̃

((
β̃mj = b

)
∩ Fm−1

jb

)
. Therefore, by Equation (E.93), we can obtain that∣∣∣P0

(
β̃m+1
i = a1, β̃

m+1
j = a2, F

m
i , F

m
j

)
−P0

(
β̃m+1
i = a1, F

m
i

)
P0

(
β̃m+1
j = a2, F

m
j

)∣∣∣
≤

∑
b1,b2∈S̃

∣∣∣P0

(
β̃m+1
i = a1, β̃

m+1
j = a2, β̃

m
i = b1, β̃

m
j = b2, F

m−1
ib1

, Fm−1
jb2

)
−P0

(
β̃m+1
i = a1, β̃

m
i = b1, F

m−1
ib1

)
P0

(
β̃m+1
j = a2, β̃

m
j = b2, F

m−1
jb2

)∣∣∣
≤ 4K2(K + 1)2

(
8Kε0 +

4K

M̂
1
9

+ 4Kξ−1 + dm

)
. (E.94)

Thus, we can define dm+1 to be 4K2(K + 1)2
(

8Kε0 + 4K

M̂
1
9

+ 4Kξ−1 + dm

)
.

Next, we prove that for any m ∈ {0, 2, . . . , 3M2},

dm ≤ 24mK4m(K + 1)4m

(
8Kε0 +

4K

M̂
1
9

+ 4Kξ−1

)
. (E.95)

Since d0 = 0, it is clear that Equation (E.95) holds for m = 0. Suppose that Equation (E.95)

holds for m = m′. Then

dm′+1 = 4K2(K + 1)2

(
8Kε0 +

4K

M̂
1
9

+ 4Kξ−1 + dm′

)
≤ 4K2(K + 1)2

(
8Kε0 +

4K

M̂
1
9

+ 4Kξ−1

)
+ 24m′+2K4m′+2(K + 1)4m′+2

(
8Kε0 +

4K

M̂
1
9

+ 4Kξ−1

)
≤ 24m′+4K4m′+4(K + 1)4m′+4

(
8Kε0 +

4K

M̂
1
9

+ 4Kξ−1

)
.

Therefore, Equation (E.95) holds for any m ∈ {0, 2, . . . , 3M2} by mathematical induction.
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Fix any Fmi ∈ Fmi and Fmj ∈ Fmj . Equation (E.94) implies that∣∣P0

(
Fmi ∩ Fmj

)
− P0 (Fmi )P0

(
Fmj
)∣∣

=

∣∣∣∣∣∣
∑

a1,a2∈S̃

P0

(
β̃m+1
i = a1, β̃

m+1
j = a2, F

m
i , F

m
j

)

−
∑

a1,a2∈S̃

P0

(
β̃m+1
i = a1, F

m
i

)
P0

(
β̃m+1
j = a2, F

m
j

)∣∣∣∣∣∣
≤ 4K2(K + 1)2dm+1

≤ 4K2(K + 1)2212M2+4K12M2+4(K + 1)12M2+4

(
8Kε0 +

4K

M̂
1
9

+ 4Kξ−1

)
≤ 212M2+6K12M2+6(K + 1)12M2+6

(
8Kε0 +

4K

M̂
1
9

+ 4Kξ−1

)
.

Let B3(M) = 212M2+6K12M2+6(K + 1)12M2+6
(

8Kε0 + 4K

M̂
1
9

+ 4Kξ−1

)
. Since ξ−1 = 1

MMM ,

ε0 = 3M2K(K+1)

M̂
1
3

and M̂ >
(

1
ξ3M2+1

)3
≥
(

1
ξ−1

)3
≥M3MM

, it is clear that limM→∞B3(M) = 0.

Hence, Lemma E.7 is proved.

E.5.9 Proof of Lemma E.8

Fix any i ∈ I, m,∆m ∈ {0, . . . , 3M2} and Fm ∈ Fm such that m+ ∆m ≤ 3M2, ∆m
M is finite,

and P0(Fm) > 0.

We first consider the case whenm+∆m = 3n−2 for some n ∈ T0. Fix any ω3n−3 ∈ Ω3n−3.

Denote α̂3n−3
i (ω3n−3) and ĝ3n−3

i (ω3n−3) by k ∈ S and l ∈ S ∪{J} respectively. If l 6= J , by the

construction of the mutation step in the finite-agent dynamic matching model, we have

Qω
3n−3

3n−2

(
X̂3n−2
i = X̂3n−3

i

)
= η̂kkη̂ll ≥

(
1− Kā

M

)2

.

If l = J , we have

Qω
3n−3

3n−2

(
X̂3n−2
i = X̂3n−3

i

)
= η̂kk ≥ 1− Kā

M
≥
(

1− Kā

M

)2

.

Let A3n−3 =
(
X̂3n−3
i = X̂m

i

)
∩ Fm. If P0(A3n−3) > 0, then

P0(X̂3n−2
i = X̂3n−3

i |X̂3n−3
i = X̂m

i , F
m)

=

∫
A3n−3 Q

ω3n−3

3n−2

(
X̂3n−2
i = X̂3n−3

i

)
dQ3n−3

P0(A3n−3)

≥
∫
A3n−3

(
1− Kā

M

)2
dQ3n−3

P0(A3n−3)

=

(
1− Kā

M

)2

.
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Therefore, we obtain that

P0(X̂3n−2
i = X̂m

i |Fm)

= P0(X̂3n−3
i = X̂m

i |Fm)P0(X̂3n−2
i = X̂3n−3

i |X̂3n−3
i = X̂m

i , F
m)

≥ P0(X̂3n−3
i = X̂m

i |Fm)

(
1− Kā

M

)2

. (E.96)

If P0(X̂3n−3
i = X̂m

i , F
m) = 0, then the above inequality is trivially satisfied.

Next, we consider the case when m + ∆m = 3n − 1 for some n ∈ T0. Fix any ω3n−2 ∈
Ω3n−2. Denote α̂3n−2

i (ω3n−2) and ĝ3n−2
i (ω3n−2) by k ∈ S and l ∈ S ∪ {J} respectively. The

construction of the matching step in the finite-agent dynamic matching model and Lemma E.1

allows us to claim that

Qω
3n−2

3n−1

(
X̂3n−1
i = X̂3n−2

i

)
= 1, if l 6= J ,

Qω
3n−2

3n−1

(
X̂3n−1
i > X̂3n−2

i

)
≤
∑
l′∈S

q̂kl′ ≤
Kā

M
, if l = J .

It is then clear that

Qω
3n−2

3n−1

(
X̂3n−1
i = X̂3n−2

i

)
≥ 1−

∑
l′∈S

q̂kl′ ≥ 1− Kā

M
,

Let A3n−2 =
(
X̂3n−2
i = X̂m

i

)
∩ Fm. If P0(A3n−2) > 0, then

P0(X̂3n−1
i = X̂3n−2

i |X̂3n−2
i = X̂m

i , F
m)

=

∫
A3n−2 Q

ω3n−2

3n−1

(
X̂3n−1
i = X̂3n−2

i

)
dQ3n−2

P0(A3n−2)

≥
∫
A3n−2

(
1− Kā

M

)
dQ3n−2

P0(A3n−2)

=

(
1− Kā

M

)
.

Hence, we can derive the following estimation

P0(X̂3n−1
i = X̂m

i |Fm)

= P0(X̂3n−2
i = X̂m

i |Fm)P0(X̂3n−1
i = X̂3n−2

i |X̂3n−2
i = X̂m

i , F
m)

≥ P0(X̂3n−2
i = X̂m

i |Fm)

(
1− Kā

M

)
. (E.97)

If P0(X̂3n−2
i = X̂m

i , F
m) = 0, then the above inequality is trivially satisfied.

It remains to consider the case when m + ∆m = 3n for some n ∈ T0. Fix any ω3n−1 ∈
Ω3n−1. Denote α̂3n−1

i (ω3n−1) and ĝ3n−1
i (ω3n−1) and ĥ3n−1

i (ω3n−1) by k ∈ S, l ∈ S ∪ {J}
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and r ∈ {0, 1} respectively. The construction of the type changing and break-up step in the

finite-agent dynamic matching model says that

Qω
3n−1

3n

(
X̂3n
i = X̂3n−1

i

)
= 1, if l = J or r = 1,

Qω
3n−1

3n

(
X̂3n
i = X̂3n−1

i

)
=
(

1− ϑ̂kl
)
≥ 1− ā

M
, if l 6= J and r = 0.

Let A3n−1 =
(
X̂3n−1
i = X̂m

i

)
∩ Fm. If P0(A3n−1) > 0, then

P0(X̂3n
i = X̂3n−1

i |X̂3n−1
i = X̂m

i , F
m)

=

∫
A3n−1 Q

ω3n−1

3n

(
X̂3n
i = X̂3n−1

i

)
dQ3n−1

P0(A3n−1)

≥
∫
A3n−1

(
1− ā

M

)
dQ3n−1

P0(A3n−1)

=
(

1− ā

M

)
.

Therefore, we obtain that

P0(X̂3n
i = X̂m

i |Fm)

= P0(X̂3n−1
i = X̂m

i |Fm)P0(X̂3n
i = X̂3n−1

i |X̂3n−1
i = X̂m

i , F
m)

≥ P0(X̂3n−1
i = X̂m

i |Fm)
(

1− ā

M

)
. (E.98)

If P0(X̂3n−1
i = X̂m

i , F
m) = 0, then the above inequality is trivially satisfied.

By Equations (E.96), (E.97) and (E.98), we can derive

P0(X̂m+∆m
i = X̂m

i |Fm)

≥ P0(X̂m+∆m−1
i = X̂m

i |Fm)

(
1− Kā

M

)2

≥ P0(X̂m
i = X̂m

i |Fm)

m+∆m∏
m′=m+1

(
1− Kā

M

)2

≥
(

1− Kā

M

)2∆m

,

which is the required inequality in Lemma E.8.

E.5.10 Proof of Lemma E.9

Fix any i ∈ I, m,∆m ∈ {0, . . . , 3M2} such that m+∆m ≤ 3M2, ∆m
M is finite and P0(Fm) > 0.

It is clear that

P0

(
X̂m+∆m
i − X̂m

i ≥ 2
∣∣Fm)

=

m+∆m−1∑
r=m+1

P0

(
X̂m+∆m − X̂r

i ≥ 1, X̂r
i = X̂r−1

i + 1, X̂r−1 = X̂m
∣∣Fm) . (E.99)
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Fix any r ∈ {m+1,m+2, . . . ,m+∆m−1}. Assume that P0

(
X̂r
i = X̂r−1

i + 1, X̂r−1 = X̂m, Fm
)
>

0. By Lemma E.8, we can obtain that

P0

(
X̂m+∆m = X̂r

i

∣∣ X̂r
i = X̂r−1

i + 1, X̂r−1 = X̂m, Fm
)

≥
(

1− Kā

M

)2(m+∆m−r)
≥
(

1− Kā

M

)2∆m

,

which implies that

P0

(
X̂m+∆m − X̂r

i ≥ 1
∣∣ X̂r

i = X̂r−1
i + 1, X̂r−1 = X̂m, Fm

)
≤ 1−

(
1− Kā

M

)2∆m

.

It follows from the above inequality that

P0

(
X̂m+∆m − X̂r

i ≥ 1, X̂r
i = X̂r−1

i + 1, X̂r−1 = X̂m
∣∣Fm)

= P0

(
X̂m+∆m − X̂r

i ≥ 1
∣∣ X̂r

i = X̂r−1
i + 1, X̂r−1 = X̂m, Fm

)
P0

(
X̂r
i = X̂r−1

i + 1, X̂r−1 = X̂m
∣∣Fm)

≤

(
1−

(
1− Kā

M

)2∆m
)
P0

(
X̂r
i = X̂r−1

i + 1, X̂r−1 = X̂m
∣∣Fm) . (E.100)

When P0

(
X̂r
i = X̂r−1

i + 1, X̂r−1 = X̂m, Fm
)

= 0, the above inequality is trivially satisfied.

Hence, Equations (E.99) and (E.100) together with Lemma E.8 imply that

P0

(
X̂m+∆m
i − X̂m

i ≥ 2
∣∣Fm)

≤

(
1−

(
1− Kā

M

)2∆m
)
m+∆m∑
r=m+1

P0

(
X̂r
i = X̂r−1

i + 1, X̂r−1 = X̂m
∣∣Fm)

=

(
1−

(
1− Kā

M

)2∆m
)
P0

(
X̂m+∆m
i ≥ X̂m + 1

∣∣Fm)
=

(
1−

(
1− Kā

M

)2∆m
)(

1− P0

(
X̂m+∆m
i = X̂m

∣∣Fm))
≤

(
1−

(
1− Kā

M

)2∆m
)2

,

which is the required inequality in Lemma E.9.
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E.5.11 Proof of Lemma E.10

Fix any (k, l, r) ∈ S̃. By the definition of ρ̃, we obtain that∣∣∣E(ρ̃m+∆m
klr

)
− E (ρ̃mklr)

∣∣∣
=

∣∣∣∣∣E
(

1

M̂

∑
i∈I

1klr

(
β̃m+∆m
i

))
− E

(
1

M̂

∑
i∈I

1klr

(
β̃mi

))∣∣∣∣∣
≤ 1

M̂

∑
i∈I

E
∣∣∣1klr (β̃m+∆m

i

)
− 1klr

(
β̃mi

)∣∣∣
=

1

M̂

∑
i∈I

P0

(∣∣∣1klr (β̃m+∆m
i

)
− 1klr

(
β̃mi

)∣∣∣ = 1
)
. (E.101)

For any ω ∈ Ω, if
∣∣∣1klr (β̃m+∆m

i (ω)
)
− 1klr

(
β̃mi (ω)

)∣∣∣ = 1 , then X̂m+∆m
i (ω) > X̂m

i (ω). Thus,

we can obtain from Equation (E.101) that∣∣∣E(ρ̃m+∆m
klr

)
− E (ρ̃mklr)

∣∣∣ ≤ 1

M̂

∑
i∈I

P0

(
X̂m+∆m
i > X̂m

i

)
.

By Lemma E.8, we have

P0

(
X̂m+∆m
i > X̂m

i

)
≤ 1−

(
1− Kā

M

)2∆m

.

Therefore, we can obtain that∣∣∣E(ρ̃m+∆m
klr

)
− E (ρ̃mklr)

∣∣∣ ≤ 1−
(

1− Kā

M

)2∆m

,

which implies that

‖E
(
ρ̃m+∆m

)
− E (ρ̃m) ‖∞ ≤ 1−

(
1− Kā

M

)2∆m

.

Hence, Lemma E.10 is proven.

F Proof of Results in Section 2

The continuous-time random matching model with immediate break-up described in Section 2

can be treated as a special case of the model of random matching with enduring partnerships

in Appendix A by taking the enduring probabilities ξkl to be 0 for any k, l ∈ S. It is natural

to define other parameters for the random matching model with enduring partnerships. For

any k, l, k′, l′ ∈ S, extend θkl from its domain ∆ to ∆̂ by letting θkl(p̂) = θkl(p), σkl ((k
′, l′)) =

δk(k
′)δl(l

′), ϑkl = 1, and ηkl and ςkl remain the same.

In Section 2, at any given time t, any agent i has no partner with probability one.

It means that the process g is the constant J with probability one. Hence, we can obtain
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the properties and results on the type process α in Section 2 directly from the corresponding

properties and results on the extended type process (α, g) in Appendix A. In particular, the

transition intensity matrix R corresponds to Case 4 in Table 1. Properties 1, 2, 3 and 4 of the

random matching model D in Section 2, are also special cases of the corresponding properties

for the random matching model D̂ in Appendix A, while Parts (1), (2), (4), (5) and (6) of

Theorem 2.1 are direct implications of Theorem A.1, Propositions A.1 and A.2. It remains to

verify Property 5 of the dynamical matching model D and to prove Theorem 2.1 (3).

To check Property 5 of the dynamical matching model D, we shall need to study the

properties of agents’ last partners. Let M be an unlimited hyperfinite integer in ∗N∞ as in

Subsection E.4. Suppose that the hyperfinite dynamic matching model transferred from Section

E.2 has been constructed with π̂0(i) = i for each i ∈ I. Fix any agent i ∈ I and any standard

natural number n ∈ N. For any ω ∈ Ω, let d̂ni (ω) be the n-th matching period of agent i. That

is, d̂ni (ω)-th period is the period when agent i’s n-th partner arrives. If the total number of

matching periods is less than n, we let d̂ni (ω) be J ; otherwise 1 ≤ d̂ni (ω) ≤ M2. The real time

for the n-th matching of agent i is defined by

dni (ω) =

st
(
d̂ni (ω)
M

)
if d̂ni (ω) 6= J and

d̂ni (ω)
M is limited

∞ if d̂ni (ω) = J or
d̂ni (ω)
M is unlimited

Recall that [tM ] denotes the hyperinteger part of tM . For any ω ∈ Ω and t ∈ R+, agent i’s

last matching period up to time t is define by

τ̂ ti (ω) = max{n′ ∈ T0 : π̂3n′−1
i (ω3n′−1) 6= i and n′ ≤ [tM ]}

when the set {n′ ∈ T0 : π̂3n′−1
i (ω3n′−1) 6= i and n′ ≤ [tM ]} is nonempty; otherwise, τ̂ ti (ω) is

defined to be J .

Next, we define the process ϕ for agents’ last partners. Fix any i ∈ I. For any ω ∈ Ω

and t ∈ R+, let

ϕ′i(ω, t) =

{
π̂

3τ̂ ti (ω)−1
i (ω) if τ̂ ti (ω) 6= J

i if τ̂ ti (ω) = J.

Then, ϕ′i(ω, t) is agent i’s last partner up to the [tM ]-th period. Since τ̂ ti (ω) = J means that

agent i has not been matched up to the [tM ]-th period, agent i’s last partner is simply defined

to be herself in this case. Note that ϕ′i(t) may not be RCLL. Recall that the set

Ai = {ω′ ∈ Ω : X̂m
i (ω′) is finite for any positive hyperinteger m such that

m

M
is finite}

has probability one as shown in the proof of Part 1 in Subsection E.4. For any ω /∈ Ai and

t ∈ R+, define ϕi(ω, t) to be i; it is obvious that ϕi(ω, t) is RCLL in t. Fix any ω ∈ Ai and
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t ∈ R+. By the definition of Ai, we know that agent i matches finitely many times up to the

[(t + 1)M ]-th period. For any t′ in the real time interval [0, t + 1], since ϕ′i(ω, t
′) is agent i’s

last partner up to the [t′M ]-th period, we know that there exists j, j′ ∈ I and ε ∈ R++ such

that ϕ′i(ω, t
′) is j on (t, t+ ε) and j′ on (t− ε, t). Define ϕi(ω, t) to be j. For any t′ ∈ (t, t+ ε),

we know that ϕ′i(ω, t
′′) is j for t′′ ∈ (t′, t + ε′). According to the definition of ϕ, we obtain

that ϕi(ω, t
′) is still j for t′ ∈ (t, t + ε). Therefore, ϕi(ω, t

′) is right continuous at real time

t. Similarly, for any t′ ∈ (t − ε, t), ϕ′i(ω, t′′) is j′ for t′′ ∈ (t′, t). The definition of ϕ implies

that ϕi(ω, t
′) is j′ for t′ ∈ (t − ε, t). Therefore, the left limit of ϕi(ω, t

′) exists at time t. For

simplicity, let ϕi(ω,∞) = i for any ω ∈ Ω.

For any i ∈ I, let B(i) = {ω ∈ Ω : ϕ (ϕ (i, ω, dni (ω)) , ω, dni (ω)) = i}. It is clear that

{ω ∈ Ω : dni (ω) =∞} ⊆ B(i). We are going to show that P (B(i)) = 1. For any N ∈ T0, let

BN (i) = {ω ∈ Ω : d̂ni (ω) 6= J, π̂3n′−1 (i, ω) = i, π̂3n′−1
(
π̂3d̂ni (ω)−1 (i, ω) , ω

)
= π̂3d̂ni −1 (i, ω)

for any n′ ∈ T0 such that d̂ni (ω) < n′ ≤ d̂ni (ω) +N}.

Then BN (i) is the event that agent i and her n-th partner do not match in period d̂ni + 1, d̂ni +

2, . . . , d̂ni +N . The following lemma shows a relationship between BN (i) and B(i).

Lemma F.1. For any N ∈ T0 such that N
M is limited and st

(
N
M

)
> 0, BN (i) ⊆ B(i).

Proof. Fix any N ∈ T0 such that N
M is limited and st

(
N
M

)
> 0, and any ω ∈ BN (i). If ω /∈ Ai,

by the definition of ϕ, ϕ (i, ω, dni (ω)) = i. It is clear that

ϕ (ϕ (i, ω, dni (ω)) , ω, dni (ω)) = i.

If
d̂ni (ω)
M is unlimited, we have dni (ω) =∞. By the definition of ϕ, we have

ϕ (ϕ (i, ω, dni (ω)) , ω, dni (ω)) = i.

Next, we consider the case when ω ∈ Ai and
d̂ni (ω)
M is limited. Since ω ∈ BN (i), we have

d̂ni (ω) 6= J, π̂3n′−1 (i, ω) = i,

π̂3n′−1
(
π̂3d̂ni (ω)−1 (i, ω) , ω

)
= π̂3d̂ni (ω)−1 (i, ω)

for any n′ ∈ T0 such that d̂ni (ω) < n′ ≤ d̂ni (ω)+N . Therefore, for any t′ ∈
(
dni (ω), dni (ω) + st

(
N
M

))
,

ϕ′(i, ω, t′) = π̂3d̂ni (ω)−1 (i, ω) and ϕ′(π̂3d̂ni (ω)−1 (i, ω) , ω, t′) = i. By the definition of ϕ, we have

ϕ(i, ω, dni (ω)) = π̂3d̂ni (ω)−1 (i, ω) and ϕ(π̂3d̂ni (ω)−1 (i) , ω, dni ) = i, which implies

ϕ (ϕ (i, ω, dni (ω)) , ω, dni (ω)) = i.

Hence, we have ω ∈ B(i). By the arbitrary choice of ω in BN (i), we know that BN (i) is a

subset of B(i).
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The following lemma verifies Property 5 of the dynamical matching model D in Section

2 , which says that for any agent i, her partner’s partner at her n-th matching time dni is agent

i herself with probability one.

Lemma F.2. For any i ∈ I and n ∈ N, we have ϕ (ϕ (i, dni ) , dni ) = i P -almost surely.

Proof. Fix any i ∈ I, n ∈ N, and any N ∈ T0 such that N
M is limited and st

(
N
M

)
> 0. It follows

from the definition of BN (i) that

P0 (BN (i)) =
∑
j∈I

∑
r∈T0

P0

(
d̂ni = r, π̂3r−1 (i) = j, π̂3n′−1 (i) = i, π̂3n′−1 (j) = j

for any n′ ∈ T0 such that d̂ni < n′ ≤ d̂ni +N
)

=
∑
j∈I

∑
r∈T0

P0

(
d̂ni = r, π̂3r−1 (i) = j

)
P0

(
π̂3n′−1 (i) = i, π̂3n′−1 (j) = j

for any n′ ∈ T0 such that d̂ni < n′ ≤ d̂ni +N
∣∣ d̂ni = r, π̂3r−1 (i) = j

)
.

It follows from Lemma E.8 that

P0

(
π̂3n′−1 (i) = i for any n′ ∈ T0 such that d̂ni < n′ ≤ d̂ni +N

∣∣ d̂ni = r, π̂3r−1 (i) = j
)
& e−

6KāN
M ,

P0

(
π̂3n′−1 (j) = j for any n′ ∈ T0 such that d̂ni < n′ ≤ d̂ni +N

∣∣ d̂ni = r, π̂3r−1 (i) = j
)
& e−

6KāN
M .

Then, we can obtain that

P0

(
π̂3n′−1 (i) = i, π̂3n′−1 (j, ω) = j

for any n′ ∈ T0 such that d̂ni < n′ ≤ d̂ni +N
∣∣ d̂ni = r, π̂3r−1 (i) = j

)
≥ P0

(
π̂3n′−1 (i) = i for any n′ ∈ T0 such that d̂ni < n′ ≤ d̂ni +N

∣∣ d̂ni = r, π̂3r−1 (i) = j
)

+P0

(
π̂3n′−1 (j) = j for any n′ ∈ T0 such that d̂ni < n′ ≤ d̂ni +N

∣∣ d̂ni = r, π̂3r−1 (i) = j
)
− 1

& 2e−
6KāN
M − 1.

Therefore, we can derive that

P0 (BN (i)) &
∑
j∈I

∑
r∈T0

P0

(
d̂ni = r, π̂3r−1 (i) = j

)(
2e−

6KāN
M − 1

)
= P0

(
d̂ni 6= J

)(
2e−

6KāN
M − 1

)
.

It is clear that

P0

(
BN (i) ∪

(
d̂ni = J

))
= P0 (BN (i)) + P0

(
d̂ni = J

)
& P0

(
d̂ni 6= J

)(
2e−

6KāN
M − 1

)
+ P0

(
d̂ni = J

)
. (F.1)
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Since
(
d̂ni = J

)
⊆ {ω ∈ Ω : dni (ω) = ∞} and {ω ∈ Ω : dni (ω) = ∞} ⊆ B(i), we know

that
(
d̂ni = J

)
⊆ B(i). Hence, Lemma F.1 implies that BN (i) ∪

(
d̂ni = J

)
⊆ B(i). Therefore,

by Equation (F.1), we obtain that

P0 (B(i)) & P0

(
d̂ni 6= J

)(
2e−

6KāN
M − 1

)
+ P0

(
d̂ni = J

)
. (F.2)

If st
(
N
M

)
→ 0, then

(
2e−

6KāN
M − 1

)
→ 1, which implies that the right hand side of Equation

(F.2) tends to P0

(
d̂ni 6= J

)
+ P0

(
d̂ni = J

)
= 1. Therefore, we can claim that P (B(i)) = 1,

which implies that ϕ (ϕ (i, dni ) , dni ) = i P -almost surely.

For any k, l ∈ S, and 1 ≤ m ≤ 3M2, the number of matches by agent i up to the m-step,

when of type k, to an agent of type l is defined to be

N̂m
ikl(ω) = |{n ∈ T0 : α̂3n−1

i (ω) = k, π̂3n−1
i (ω) 6= i, ĝ3n−1

i (ω) = l, 3n− 1 ≤ m}|.

The following defines the counting process for the number of matches by agent i, when of type

k, to an agent of type l:

Nikl(ω, t) =

{
N̂

3[tM ]
ikl (ω) if ω ∈ Ai

0 if ω /∈ Ai.

Recall that Θkl(t) =
∫
I Nikl(ω, t) dλ(i) denotes the cumulative total quantity of matches of

agents of any given type k with agents of another given type l, by time t.

Finally, we are ready to prove Part (3) of Theorem 2.1.

Proof of Theorem 2.1 (3): Fix any t ∈ R+, k, l ∈ S, and non-negative standard integers

n and n′. For any i, j ∈ I with i 6= j (and thus π̂0(i) = i 6= j), it is clear that the events(
N̂

3[tM ]
ikl = n

)
and

(
N̂

3[tM ]
jkl = n′

)
are in F3[tM ]

i and F3[tM ]
j respectively. It follows from Lemma

E.7 that

P
(
N̂

3[tM ]
ikl = n, N̂

3[tM ]
jkl = n′

)
= P

(
N̂

3[tM ]
ikl = n

)
P
(
N̂

3[tM ]
jkl = n′

)
.

Since Ai has probability one, it is obvious that the events
(
N̂ikl(t) = n

)
and

(
N̂jkl(t) = n′

)
are independent. By the arbitrary choices of n and n′, we know that the random variables

Nikl(t) and Njkl(t) are independent. By the exact law of large numbers (Corollary 2.10 in Sun

(2006)), we have Θkl(ω, t) = EΘkl(t) for P -almost all ω ∈ Ω.

Fix any ∆t ∈ R+. Let n and n + ∆n be the hyperinteger parts of tM and (t + ∆t)M
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respectively. It follows from the Fubini property and the definition of Θkl that

1

∆t
(EΘkl(t+ ∆t)− EΘkl(t))

=
1

∆t

∫
I

(
EN̂ikl(t+ ∆t)− EN̂ikl(t)

)
dλ

' 1

∆t

∫
I

(
EN̂3(n+∆n)

ikl − EN̂3n
ikl

)
dλ0

=
1

∆t

n+∆n∑
n′=n+1

∫
I
E
(
N̂3n′
ikl − N̂

3(n′−1)
ikl

)
dλ0

=
1

∆t

n+∆n∑
n′=n+1

∫
I
E
(
N̂3n′−1
ikl − N̂3n′−2

ikl

)
dλ0

=
1

∆t

n+∆n∑
n′=n+1

∫
I
P0

(
N̂3n′−1
ikl − N̂3n′−2

ikl = 1
)
dλ0

=
1

∆t

n+∆n∑
n′=n+1

∫
I

∫
Ω3n′−2

Qω
3n′−2

3n′−1

(
N̂3n′−1
ikl − N̂3n′−2

ikl = 1
)
dQ3n′−2dλ0

=
1

∆t

n+∆n∑
n′=n+1

∫
Ω3n′−2

∫
I
Qω

3n′−2

3n′−1

(
N̂3n′−1
ikl − N̂3n′−2

ikl = 1
)
dλ0dQ

3n′−2. (F.3)

For any i ∈ I and ω3n′−2 ∈ Ω3n′−2 \ V 3n′−2, if β̂3n′−2
i (ω3n′−2) = (k, J) (i.e., β̃3n′−2

i (ω3n′−2) =

(k, J, 1)), then Lemma E.16 (1) implies that

Qω
3n′−2

3n′−1

(
N̂3n′−1
ikl − N̂3n′−2

ikl = 1
)

= Qω
3n′−2

3n′−1

(
ĝ3n′−1
i = l

)
' q̂kl

(
ρ̃3n′−2

(
ω3n′−2

))
;

if β̂3n′−2
i (ω3n′−2) 6= (k, J), then the construction of the dynamic matching model implies that

Qω
3n′−2

3n′−1

(
N̂3n′−1
ikl − N̂3n′−2

ikl = 1
)

= 0. By Equation (F.3) and Lemma E.14, we can obtain that

1

∆t
(EΘkl(t+ ∆t)− EΘkl(t))

' 1

∆t

n+∆n∑
n′=n+1

∫
Ω3n′−2\V 3n′−2

∫
I
Qω

3n′−2

3n′−1

(
N̂3n′−1
ikl − N̂3n′−2

ikl = 1
)
dλ0dQ

3n′−2

' 1

∆t

n+∆n∑
n′=n+1

∫
Ω3n′−2\V 3n′−2

ρ̂3n′−2
kJ

(
ω3n′−2

)
q̂kl

(
ρ̃3n′−2

(
ω3n′−2

))
dQ3n′−2

' 1

∆t

n+∆n∑
n′=n+1

∫
Ω3n′−2

ρ̂3n′−2
kJ

(
ω3n′−2

)
q̂kl

(
ρ̃3n′−2

(
ω3n′−2

))
dQ3n′−2

=
1

∆t

n+∆n∑
n′=n+1

E
[
ρ̂3n′−2
kJ

(
ω3n′−2

)
q̂kl

(
ρ̃3n′−2

(
ω3n′−2

))]

' 1

∆n

n+∆n∑
n′=n+1

E
[
ρ̂3n′−2
kJ

(
ω3n′−2

)
∗θkl

(
ρ̃3n′−2

(
ω3n′−2

))]
. (F.4)
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Fix any ∆n′ ∈ T0 such that ∆n′

M is infinitesimal. For any p̃ ∈ ∆̃, let p̂ be the marginal probability

distribution of p̃ on ∆̂. Let f be a real valued function on on ∆̃ such that f(p̃) = p̂kJθkl(p̂) for

any p̃ ∈ ∆̃. Then, it is clear that f is continuous on ∆̃.

It follows from Lemmas E.3 and E.14 that for any ω3n ∈ Ω3n\V 3n, ρ̃3n(ω3n) ' U3n
1 (ρ̃0) '

Eρ̃3n. Since f is continuous on the compact set ∆̃, ∗f
(
ρ̃3n(ω3n)

)
' ∗f

(
Eρ̃3n

)
for any ω3n ∈

Ω3n\V 3n. Since f is continuous on the compact set ∆̃, it is bounded. Then, by Lemma E.14,

we have ∣∣E ∗f(ρ̃3n)− ∗f(Eρ̃3n)
∣∣

=

∣∣∣∣∫
Ω3n

(∗f(ρ̃3n)− ∗f(Eρ̃3n)
)
dQ3n

∣∣∣∣
=

∣∣∣∣∣
∫

Ω3n\V 3n

(∗f(ρ̃3n)− ∗f(Eρ̃3n)
)
dQ3n

∣∣∣∣∣+

∣∣∣∣∫
V 3n

(∗f(ρ̃3n)− ∗f(Eρ̃3n)
)
dQ3n

∣∣∣∣
'

∣∣∣∣∣
∫

Ω3n\V 3n

(∗f(ρ̃3n)− ∗f(Eρ̃3n)
)
dQ3n

∣∣∣∣∣ ' 0.

Fix any n′ between n+ 1 and n+ ∆n′. The above equation implies that

E ∗f
(
ρ̃3n′−2

)
− E ∗f

(
ρ̃3n
)
' ∗f

(
Eρ̃3n′−2

)
− ∗f

(
Eρ̃3n

)
.

By Lemma E.10, ||Eρ̃3n′−2 − Eρ̃3n||∞ is infinitesimal. Since f is continuous on the compact

set ∆̃, we know that ∗f
(
Eρ̃3n′−2

)
− ∗f

(
Eρ̃3n

)
is infinitesimal, which implies E ∗f

(
ρ̃3n′−2

)
−

E ∗f
(
ρ̃3n
)

is also infinitesimal. By the definition of f , we can obtain that

1

∆n′

n+∆n′∑
n′=n+1

E
[
ρ̂3n′−2
kJ

∗θkl

(
ρ̂3n′−2

)]
' 1

∆n′

n+∆n′∑
n′=n+1

E
[
ρ̂3n
kJ
∗θkl

(
ρ̂3n
)]

= E
[
ρ̂3n
kJ
∗θkl

(
ρ̂3n
)]
.(F.5)

As noted above, Lemmas E.3 and E.14 imply that for P -almost all ω3n ∈ Ω3n,

ρ̃3n
(
ω3n
)
' U3n

1

(
ρ̃0
)
' Eρ̃3n,

which implies that ρ̂3n
(
ω3n
)
' Eρ̂3n for P -almost all ω3n ∈ Ω3n. Since p̂kJθkl(p̂) is also

continuous on ∆̂, Equation (F.5) implies that

1

∆n′

n+∆n′∑
n′=n+1

E
[
ρ̂3n′−2
kJ

∗θkl

(
ρ̂3n′−2

)]
'
(
Eρ̂3n

kJ

) ∗θkl (Eρ̂3n
)
.

It follows from Equation (E.8) that p̌(t) = Ep̂(t) ' Eρ̂3n. Hence, we have

1

∆n′

n+∆n′∑
n′=n+1

E
[
ρ̂3n′−2
kJ

∗θkl

(
ρ̂3n′−2

)]
' p̌kJ(t) θkl (p̌(t)) .
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Note that p̌kJ(t) = p̄k(t) and θkl (p̌(t)) = θkl (p̄(t)). By the Spillover Principle and Equation

(F.4), we obtain that

lim
∆t→0

1

∆t
(EΘkl(t+ ∆t)− EΘkl(t)) = p̄k(t)θkl (p̄(t)) ,

which implies that EΘkl(t) is differentiable and dEΘkl(t)
dt = p̄k(t)θkl (p̄(t)) .
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