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I. Introduction 

General equilibrium theory, as summarized for example in Debreu's (1959) 
Theory o f  Value, can be applied wholesale to obtain a theory of value for 
security markets, as shown by Arrow (1953). The modern theory of value for 
security markets, however, elaborates or extends general equilibrium theory in 
at least the following major ways: 

(1) It explicitly treats general multi-period trading opportunities under 
uncertainty and in incomplete markets. 

(2) It investigates, in remarkable depth, implications of the law of one price, 
that is, of arbitrage-free prices. 

(3) In order to represent security returns in convenient and testable ways, it 
places strong restrictions on preferences and exploits a great deal of probability 
theory, especially the theories of Markov processes and stochastic integration, 
separately and together. 

By looking in these and other directions, finance theory has been a catalyst 
for further developments of the general equilibrium model, particularly for 
equilibrium existence theorems with incomplete markets, infinite-dimensional 
consumption spaces or asymmetric information. In the other direction, general 
equilibrium theory has offered financial economists a benchmark for market 
behavior that was missing before Arrow (1953) and Arrow and Debreu 
(1954). 

As financial market theory grows, it laps over the boundaries of the general 
equilibrium paradigm in order to focus on the process of price formation. The 
"microstructure" of security markets has come under increasing scrutiny; the 
theory of specialist market makers, for example, is gradually being filled out. 
The need to address asymmetric information, in particular, has led to strategic 
models of investment behavior. 

For conventional purposes such as asset pricing, however, general competi- 
tive equilibrium models are still the norm. Indeed, it may be argued that the 
Walrasian notion of price-taking suits large financial exchanges better than 
most other markets. Thus, despite the diverse aims of financial economic 
theory, in this chapter we summarize developments in finance that rest or 
build on general equilibrium theory, emphasizing the valuation of financial 
assets. 

This chapter is organized into four sections: Early milestones, Basic asset 
pricing techniques, Continuous-time general equilibrium and Derivative asset 
pricing. The chapter concludes with further notes to the literature on these 
topics and references to related topics. 
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2. Early milestones 

We review in this section some of the major milestones along the path of early 
theoretical developments to models of security market equilibrium: (i) Arrow's 
"Role  of Securities" paper, the central paradigm of financial market equilib- 
rium theory, (ii) the Modigliani-Miller theorem on the irrelevance of cor- 
porate financial policy, and (iii) the Capital Asset Pricing Model (CAPM) of 
Sharpe (1964), Lintner (1965) and Black (1972). 

2.1. Arrow's "Role of  Securities" paper 

The first major milestone is Arrow's (1953) paper, "The Role of Securities in 
the Optimal Allocation of Risk Bearing," still a standard reading requirement 
for doctoral finance students. Among others, Hicks (1939) had earlier worked 
toward general models incorporating markets for claims to future value, that is, 
securities. Arrow (1953), however, had the first general closed model of 
equilibrium for markets in which both spot commodities and securities are 
traded. This milestone preceded even the presentation by Arrow and Debreu 
(1954) as well as McKenzie (1954) of techniques suitable for demonstrating the 
existence of equilibrium in such a model. 

We follow here with a reprise of Arrow's model in a slightly extended form. 
There are S possible states of the economy, one of which will be revealed as 

true. Before the true state is revealed, n securities are traded. Security number 
j is a vector d r E ~s, representing a claim to dsj units of account ("dividends") 
in state s, for each s E { 1 , . . . ,  S}. A portfolio 0 E ~" of securities thereby lays 

n claim to 0- ds = 2j=~ 0/d~j units of account in a given state s E {1 . . . .  , S}. A 
portfolio 0 is budget-feasible given a vector q E ~n of security prices if 
0- q ~< 0. After the true state is revealed, agents collect their dividends and 
trade on spot commodity markets. In each state s, each agent i ~ {1 . . . .  , m} is 
endowed with a bundle e~ E ~t of 1 commodities, whose respective unit prices 
are given by some vector Ps ~ ~t. 

A consumption plan is a vector c in ~ ' ,  written {c~ E 0~+ - 1 ~< s <~ S} for 
convenience, with c~ denoting the planned consumption vector in state s. (In 
looking at consumption sets defined only by non-negativity, we are letting 
generality slip through our fingers in orders to focus on a few main ideas, and 
will continue to do so.) Given security prices q ~ ~n and spot commodity prices 
p E ~ ,  a pair (0, c) is a budget-feasible plan for agent i if 0 is a budget-feasible 
portfolio and c is a consumption plan satisfying 

ps.(Cs-e's)<~O.ds, s@{1 . . . .  , S } .  
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Each agent i has a utility function U~ :R~s-->E. Given prices (q ,  p ) E  
~ " x ~ S ,  a pair (0, c ) ~ R " x R  's is an optimal plan for agent i if it is 
budget-feasible and if there is no budget-feasible plan (0', c ' )  such that 
Ui(c' ) > Ui(c ). A security-spot market  equilibrium for the economy ((Ui, el), 
(di)), i @ { 1 , . . . , m } ,  j E { 1 , . . , n } ,  is a collection (( q, p) ,  (Oi, ci)), i E  
{1 . . . . .  m}, satisfying: 

(1) for each i E  {1 . . . .  , m},__(O' c i) is an optimal plan for agen t / g iven  the 
security-spot price pair (q ,  p) ,__u~" × ~,s; 

(2) markets clear: E i 0 i = 0 and Z i (c ~ - e i) = O. 
For purposes of comparison, a complete contingent-commodity market  

equilibrium for the economy (Ui, ei), i E {1 . . . . .  m}, a concept also appearing 
for the first time in Arrow's  paper,  is defined as a collection (/~, (ci)), 
i ~ { 1 , . . . , m } ,  where /7@R~ and, for each i E { 1  . . . .  ,m} ,  c i E  
arg maXceu~ Ui(c ) subject to ~ .  c <~ /7. e i, with E i c i - e i --  O. We t r e a t / 7  as the 
price, before the true state is revealed, of a contract promising delivery of one 
unit of commodity number  c if state s is revealed to be true, and nothing 
otherwise. 

It is widely felt that Arrow showed a security-spot market  equilibrium to be 
Pareto optimal provided that securities span, in the sense described below, a 
first welfare theorem for security markets. This is essentially the stated goal of 
his paper. In fact, however,  Arrow proved a second welfare theorem for 
security markets: if an allocation {c ~ @ E~s: 1 ~< i ~< m} is Pareto optimal, then 
it comprises the consumption plans of some security-spot market  equilibrium, 
under the conditions: 

(1) spanning: span({dj : 1 ~<j <~ n}) = Rs; 
(2) convexity: for each i E {1 . . . .  , m}, U i is quasi-concave; 
(3) strict monotonicity: for each i E {1 . . . .  , m} ,  c > c' => Ui(c ) > Ui(c' ). 

(Arrow's specific assumptions were slightly different.) The proof is in two 
steps. First, given the Pareto optimality of (ci), the usual second welfare 
theorem [Arrow (1951), Debreu  (1951)] implies the existence of contingent 
commodity prices/7 C R~ supporting the allocation ( c )  in a complete contin- 
gent-commodity market  compensated ~ equilibrium (/7, (ci)). The second step is 
to implement the contingent-commodity compensated equilibrium (/7, (ci)) as 
a security-spot market  compensated equilibrium. This implementation is easily 

s done, after choosing an arbitrary "state-price" vector 7r C E++, as follows: 
(1) let qj = EsS=a 7rsdj~, j E {1 . . . .  , n}; 
(2) letp~=/TsTrs, s E { 1  . . . .  ,S} ;  
(3) for i E (1 . . . .  , m - 1}, let 0 i solve the system of linear equations 

I T h e  c o l l e c t i o n  ( ,6 ,  ( c i ) )  is a c o m p e n s a t e d  e q u i l i b r i u m  i f  t h e r e  is a v e c t o r  w ~ E "  ( o f  w e a l t h  

t r a n s f e r s )  s u c h  t h a t  Y.~ c ~ - e i = 0 a n d ,  f o r  a l l  i ,  c ~ ~ a r g  m a x  c U~(c) s u b j e c t  t o  p .  c ~ ~< w~ + p • e ~. 
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Ps (c~ e~) ~ ' • - = O j d # ,  l < - s < - S ;  (1) 
j= l  

(4) let  0 "  = --Ei=lm-I oi. 
The reader can quickly verify as an exercise that (q, p, (0 i, ci)) is a bona fide 

security-spot market equilibrium provided the wealth transfers making (/7, (c~)) 
a compensated contingent-commodity equilibrium are again applied, before 
security trading. The spanning condition on securities provides for the exist- 
ence of solutions to the system of equations (1) defining 0/. 

Of course, there is also a First Welfare Theorem: Any security-spot market 
equilibrium for an economy with strictly monotone utilities and spanning 
securities involves a Pareto optimal allocation of contingent commodities. 
Arrow's (1951) simple "adding-up" argument suffices for proof; convexity is 
not required. Moreover, with the additional assumptions of continuous quasi- 
concave utility functions and interior total endowments, security-spot market 
equilibria exist. The existence proof proceeds by demonstrating the existence 
of a complete contingent-commodity market equilibrium, and then implement- 
ing the allocation in a security-spot market equilibrium by the above four-step 
procedure. 

The theory of existence and optimality of equilibria is quite different, 
however, without spanning, as explained in Chapter 30. Briefly, if individual 
endowments are interior, in addition to the other assumptions, then equilibria 
always exist, but are generically inefficient without spanning. If security 
dividends are defined instead, in terms of commodity bundles, then equilibria 
may exist only generically, that is, except for a closed set of measure zero of 
endowments and securities, under regularity conditions on utility functions. 

2.2. Modigliani-Miller's irrelevance o f  corporate financial structure 

Modigliani and Miller (1958) demonstrated the irrelevance of corporate finan- 
cial structure in the absence of such market "imperfections" as taxes, transac- 
tion costs, bankruptcy costs, asymmetric information, and so on. It is instruc- 
tive to view a version of their results in the setting of Arrow's model of security 
and spot markets. 

First, we extend Arrow's model with the addition of a firm, characterized by 
a production set Y C ~ts and a vector 3' @ ~ of initial shareholdings of the 

m firm among agents, normalized so that E;=~ 3'i = 1. 
We take the firm's production choice y E Y as given. The firm is also free to 

choose a portfolio 0 ° E ~" of securities. Given a spot commodity price vector 
p E R~, the firm's total dividend is the vector 6(y,  p, 0 °) E ~s defined by 
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6 ( y , p , O ° ) . ~ = p s . y s + O ° . d s ,  s E { 1 , . . . , S } .  

The firm finances its portfolio 0 ° by issuing the dividend - 0  °.  q in the first 
period. The firm's shares are traded, like any other security, at some price v. A 
portfolio in this setting is a pair (q~, 0) E ~ x ~" representing q~ shares of the 
firm and a portfolio 0 of the other n securities. A budget-feasible plan for agent 
i, given prices (v, q, p ) E  ~ × ~ " ×  ~ ,  is therefore some triple (q~, 0, c ) E  

× ~" × ~ satisfying 

(q~- 7i)v + q~(-O °. q) + O" q<~O , 

Ps" (cs - e~) <~ ~o6(y, p, O°)s + 2 Off#, s e {1 . . . . .  s } .  
j - I  

The budget constraint for the initial period reflects the share -q~0 °. q of the 
firm's initial dividend allotted to the shareholder. A budget-feasible plan 
(~o, 0, c) is optimal for agent i if there is no budget-feasible plan (q~', 0', c ' )  with 
Ui(c' ) > Ui(c). A security-spot market equilibrium, given the firm's production 
and financial plan (y ,  0 °) ¢ Y x E", is a collection (v, q, p, (q~g, 0/, c~)), i 
{ 1 , . . .  , m}, satisfying: 

(1) for i @ { 1 , . . . , m } ,  ( i,o i,c i) is an optimal plan for agent ig iven  the 
prices (v, q, p),  

(2) markets clear: E i q i = 1, Z i 0 i = 0 and Y'i ci - ei = Y. 
By the "irrelevance of corporate financial structure," we mean a result of the 

following sort, a version of Modigliani and Miller's assertions found, in a more 
general form, in DeMarzo (1988). 

Proposition 1. Suppose (v, q, p,  (~i, 0 i, ci)), i @ { 1 , . . .  , m}, is a security-spot 
market equilibrium given the firm's choice (y,  0 °) E Y x ~n. Let ~o @ ~ ,  be any 
other portfolio choice by the firm, and let ~i= oi + i(oO - ~o) be revised 
portfolios for  the agents, i E  {1 . . . .  , m}.  Then (v, q, p, ( i, ~i, ci)), i@ 
{ 1 , . . . ,  m}, is an equilibrium given the firm's alternate choice (y,  0o)@ 
Y x R " .  

Proof is left as an easy exercise. Interpreting, an adjustment in the financial 
policy of the firm causes no change in its market value v. Moreover, every 
shareholder is indifferent to changes in the firm's financial structure, given the 
ability of each shareholder to adjust his or her own portfolio strategy so as to 
exactly offset any changes in the firm's financial structure. 

The notes in Section 6 indicate a number of directions that one can take in 
order to overturn the irrelevance of corporate financial policy. The notes also 
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introduce the literature on the role of spanning in shareholder unanimity, or 
lack thereof,  concerning the production policy of the firm. 

2.3. The capital asset pricing model (CAPM) 

Due to Sharpe (1964), Lintner (1965) and, with no riskless asset, Black (1972), 
the Capital Asset Pricing Model (CAPM) can also be viewed in Arrow's  (1953) 
setting. First, we suppose there is only one commodity consumed in each state. 
Second, we fix this spot commodity,  usually called "consumpt ion,"  as the 
numeraire,  so that Ps = 1 in each state s E {1 . . . .  , S}. This allows us to view a 
security d r as a claim to units of account or to units of consumption. Finally, we 
append to the state set J2 = {1 . . . . .  S} the o--algebra o~ = 2 of all subsets as 
well as a probability measure P on ~ ,  which (for concreteness and fairness to 
the strength of the preference assumptions to follow) is taken to represent the 
common probability assessments 2 of the agents. In fact, for the CAPM, we 
could let (J2, o%, P)  be an arbitrary probability space, provided one restricts 
attention in the following calculations to random variables with finite variance. 

For  convenience, the utility function U~ is defined on the whole space Es. For  
each agent i, the restriction of U i to Z=span({d~: l< . j<~n} )  is variance- 
averse if, for any c and c'  in Z with E(c)= E(c'), we have Ui(c ) > Ui(c' ) 
provided va r ( c )<  var(c ' ) ,  where var(-) denotes variance, treating a consump- 
tion vector  c in Es as a random variable c : g2---> E. In infinite-state settings, if 
{dj} is jointly normally distributed, variance-aversion is implied by expected 
concave utility. This implication is generalized from normally distributed to 
spherically distributed dividends by Chamberlain (1983a). 

We adopt the following principal assumptions. 

Assumption 1 (variance-aversion). For  all i E  { 1 , . . . ,  m}, U i is variance- 
averse when restricted to the span of security dividends, Z = span({dj : 1 ~<j ~< 
n}). 

Assumption 2 (endowment-spanning). For all i ~ { 1 , . . .  , m}, e i ~ Z. 

For the economy ((U~, e i ) ,  (at/)), we take as given an equilibrium (q, (Oi)), 
i E (1 . . . .  , m}, notationally suppressing the spot price Ps = 1 in each state s 
and the consumption plan c i =  e i +  Z~.= 1 0jdj of each agent i. Equilibrium 
existence results can be found in Nielson (1985, 1987, 1989a,b). 

2From an axiomatic point of view, probability assessments are properties of preferences with 
Savage's (1954) framework, which calls for an infinite set of states, but we shall merely take 
probabilities as given. 
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Security pricing is arbitrage-free if O ' q  > 0 for any portfolio 0 with total 
dividend ET= 1 0jdj > 0  and O.q  = 0  whenever ET= ~ 0jdj =0 .  For example, if U i 
is strictly increasing for some agent i and there is a security with non-zero 
non-negative dividends, then security pricing is arbitrage-free. Security pricing 
is risk-neutral if there is a constant K such that qj = KE(dj)  for all j. 
Risk-neutral pricing is possible, but somewhat pathological with variance- 
aversion, 3 so we consider the following. 

Assumption 3. Security pricing is arbitrage-free and not risk-neutral. 

The following proof of the CAPM allows for, but does not require, the 
presence of a riskless asset, some portfolio 0 whose total dividend Ej 0jdj is a 
non-zero constant. The result applies to an arbitrary probability space 
(J2, o%, P),  and to a (closed) possibly infinite-dimensional linear subspace Z 
defining the span of security dividends. We first prove the "price form" of the 
CAPM, later reducing the CAPM to its return (or "beta")  form. 

Proposition 2 (CAPM: price form). Under Assumptions 1-3, for any equilib- 
rium ( q, (oi)), there are constants k and K such that the equilibrium security 
prices satisfy 

q j = k c o v ( e ,  d j ) + K E ( d j ) ,  j E ( 1 , . . . , n } ,  

where e = E i e i is the aggregate consumption. 

(2) 

Proof. We take the case of no riskless asset, leaving the easier case with a 
riskless asset for the reader. Our proof is inspired by Chamberlain's (1988). We 
can endow Z = s p a n ( { d j : l < ~ j < ~ n } )  with the Hilbert-space inner product 
(c, c')~-~cov(c, c'). (Assumption 3 implies that Z is at least 2-dimensional.) 
Since security pricing is arbitrage-free, the linear functional r l  : Z--~ ~ defined 
by 

= 2 q,o,, z :  2 
j = l  j - 1  

is represented [as in Luenberger (1969)] by a unique 1r E Z in the form 

/ / ( z )  = cov (z ,  ~ ' ) ,  z ~ z .  

Likewise, let the expectation functional E : Z--~ ~ be represented by ~/E Z. 

3For  example, let e 1 = d 1 = - d  2 = - e  2 and U 1 = U2, which implies risk-neutral pricing. 
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For any agent i, let ~ denote the orthogonal projection of c ~ onto 
span({~r, r/}), and let 0 i denote any portfolio satisfying 

^ i  ~i e ~ + Ojdj = c . 
/=1 

By the definition of orthogonal projection, H(O ~ -  C i) = 0, S O  Oi  is budget- 
feasible. Since E(6 i - c i) = 0 and cov(6 i, 6i _ c i) = O, 

v a r ( c i ) = v a r [ 6 i +  (c i -  6i ) ]=var (d i )  + v a r ( c  i - ~i)>~var(~i). 

We therefore  know that C i=  ~i, for otherwise ~ i  is strictly preferred to c i and is 
achieved by the budget-feasible portfolio 0i. Thus e = E i c i E span({~-, ~7}). 
Using Assumption 3, ~- = ke + K~? for some constants k and K with k ~ 0. It 
follows that,  for any c C Z, 

H(c)  = k cov(e, c) + K covQ/, c) = k cov(e, c) + K E ( c ) .  

This produces the result in the absence of a riskless asset. With a riskless asset, 
the proof  uses the inner product  (c, c ' ) ~  E(cc ' ) .  

The return of any portfolio 0 @ En of securities with non-zero market  value 
q • 0 is defined as the random variable 

o,4 
R o - q ' O  

By the endowment-spanning assumption, there is a portfolio M ~ E  ~ of 
n ~ m securities with total dividend E j= 1 Mjdj e ---- Ei= 1 C i, the equilibrium aggregate 

consumption. We refer to M as the market  portfolio.  

Assumption 4 (non-triviality). q" M ~ 0 and var(RM) ¢ 0. 

Under  Assumption 4, the beta of any portfolio 0 (of non-zero market  value) 
is defined by 

c o v ( R o ,  R M )  

to  - var(RM ) 

Corollary (CAPM: return form). Under Assumpt ions  1-4,  there is at least one 
port fol io q~ with non-zero market  value and with 18 = O. Fixing q~, fo r  any 
port fol io 0 with non-zero market  value, 
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e ( R o )  - e(R ) = / 3 0 [ e ( n M )  - . (3) 

I f  there is a riskless asset with non-zero market value, we can take ~ to be that 
riskless asset. 

Proof. The fact that there exists a "zero-beta" portfolio q~ follows from 
Assumption 3, which implies that Z is at least 2-dimensional and that some 
point in Z is uncorrelated with R M and has non-zero price. Equation (3) 
follows from (2) and a few algebraic manipulations. 

The proof of Proposition 2 also shows a "mutual fund theorem." There exist 
two portfolios of securities, say ~0 z and 8 ,  such that, for each agent i, the 
equilibrium consumption c i is financed by some portfolio ai~o z + bi~ B of these 
two mutual funds. For example, we could l e t  m and B be portfolios such that 

n A n B Zj=~ q~j dj =~7 and E~= 1 ¢pjdj = ~-. This follows from the fact that, for all 
i, c' Espan({Tr, r/}). A more natural choice would be to let one of the two 
mutual funds be M, the market portfolio. If a riskless asset exists, it would 
serve as the other mutual fund. 

3. Basic asset pricing techniques 

In this section, we review two basic theoretical techniques used in pricing 
securities. The first, arbitrage pricing, is transparent in concept, but deep in its 
application, for example, in continuous-time settings such as those illustrated in 
Section 5. The second, "representative-agent pricing," is merely a simple 
application of the standard formula equating ratios of prices with marginal 
rates of substitution. We will see representative-agent asset pricing first in the 
two-period setting of Arrow (1953) and then in an infinite-horizon setting. In 
Section 4, representative-agent pricing reappears in a multi-agent continuous- 
time setting. 

3.1. Arbitrage pricing 

Still maintaining the structure of Arrow's (1953) model as outlined in the 
previous section, consider a security-spot market equilibrium (q, p, (0 i, d))  for 
the economy ((dj), (U/, ei)), j E {1 . . . .  , n}, i E ( 1 , . . .  , m}. As in the CAPM, 
arbitrage-free security pricing implies the existence of a unique linear function- 
a l / / o n  Z = s p a n ( { d j : l < - j < - n } )  by 

j= l  j = l  
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Arbitrage-free pricing also implies that H is strictly positive, that is, any 
portfolio with total dividend z > 0 has a positive total price H(z)  > 0 (through- 
out, "z  > 0" means z/> 0 and z # 0.) 

Lemma.  Any  strictly positive linear functional II  on a linear subspace Z of  a 
Euclidean space R s has a strictly positive linear extension ffl : ~s___~ ~. 

This well known result, found for example in Gale (1960), can be proved by 
using the theorem of the alternative, and yields the following state-pricing 
result, which first appeared in Ross (1976c, p. 202). 

Corollary (state-pricing). I f  security pricing b arbitrage-free, there is some 
(state-price) vector cr E ~s+ + such that 

S 
= 

s = l  

z @ Z .  

The state-price vector ~r is uniquely determined if and only if Z = R s. 
Suppose some portfolio 0 has a dividend z = E~= 1 ~dj >>0 (me_aning z s > 0  

for all s). Assuming that (d, q) is arbitrage-free, we know that q-  0 = H(z)  > O. 
We can therefore normalize prices and dividends relative to the price and 
dividends of O, respectively, by defining 

qj 
j E ( 1  . . . . .  n},  

it# d# - ,, , s @ ( 1  . . . . .  S } , j E { I  . . . .  , n } .  
~ j = l  t~djs 

Security pricing for the normalized pair (c), d) is also arbitrage-free, implying 
an associated state-price vector ~- @ ~s+  with 

S 

Oj -- j E (1, . . . .  n } .  
s = l  

For the portfolio O, we have O. c) = 1 and ~;=10jCljs = ] for all s. This implies 
S that Es=~ ~rs = 1, so we may treat ~- as a vector of probability assessments of 

the states. Endowing ~Q = { 1 , . . .  , S} with the o--algebra ~ consisting of all 
subsets, and giving (~ ,  ~ )  the probability measure Q defined by Q({s})  = ~rs, 
we have 

c~ j=EQ(d~) ,  j ~ E { 1 , . . . , n } ,  (4) 
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where E Q denotes expectations under Q. (As with the CAPM, we are treating 
an element of R s as a random variable on g2 into E.) In summary, by choosing 
an appropriate numeraire and probability assessments, one can always view the 
price of an asset as the expected value of its dividends. 

The measure Q is called an equivalent martingale measure by Harrison and 
Kreps (1979), who extended this idea to a continuous-time setting, as ex- 
plained in Section 5. There is no general infinite-dimensional result, however, 
guaranteeing the existence of strictly positive linear extensions, which is 
annoying, since many financial models are by nature infinite-dimensional. 
There are, however, results such as the Kre in-Rutman Theorem implying 
(weakly) positive linear extensions of positive linear functionals on a linear 
subspace with a positive interior point. Ross (1978a) was the first to apply this 
sort of result to infinite-dimensional asset pricing. For a strictly positive linear 
extension, it is typical, instead, to follow the lead of Harrison and Kreps (1979) 
and Kreps (1981) in assuming the existence, for some agent with convex 
continuous strictly increasing preferences, of an optimal consumption choice in 
the interior of a convex consumption set. The separating hyperplane theorem 
then produces a satisfactory strictly positive continuous linear extension of the 
price functional. Because of technical issues, even a strictly positive continuous 
linear extension does not guarantee the existence of an equivalent martingale 
measure. Rather than reviewing the infinite-dimensional case in more detail 
here, we refer readers to Section 5. 

3.2. Representative-agent pricing 

The object here is a formula relating the aggregate consumption level of the 
economy (which is, arguably, an observable macro-economic variable) to the 
linear functional H that prices securities. An example is the CAPM. 

Suppose, to begin, that there is a single commodity (l = 1) and a single agent 
( m = l )  with a differentiable strictly monotone concave utility function 
U" ~s---> E and a consumption endowment e >>0. As with the CAPM, we 
normalize so that the equilibrium consumption price is Ps = 1 in each state 
s E {1 . . . .  , S}, and assume that the security dividends (dis) are defined in 
terms of this same numeraire. By inspection, an equilibrium is given by the 
consumption choice c = e, the portfolio choice 0 = 0, and the security price 
vector q E ~" defined by 

qj=VU(e)d j ,  j ~ { 1 , . . . , n } ,  

where VU(e) denotes the vector of partial derivatives of U at e. Suppose, as 
previously, that O = { 1 , . . . ,  S} is endowed with the structure of a probability 
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space and that vectors in R s are treated as random variables. We consider the 
utility function U defined by U ( c ) = E [ u ( c ) ] ,  for some differentiable 
u : ~+ ~ R. In this case 

qi = E[u ' ( e )d j ] ,  j ~ {1 . . . .  , n } .  (5) 

Despite its simplicity, this is a basic asset pricing formula used in much of 
financial economics and macro-economics. A multi-period analogue, suitable 
for econometr ic  analysis, is reviewed in the next subsection. 

Turning to the case of heterogeneous agents, we assume spanning: 

span({dj: 1 ~<j ~< n}) = I~ s . 

As stated in Section 2, with this spanning assumption an equilibrium consump- 
tion allocation (c ~) = {c ~ E ~ s  : 1 ~< i ~< m} is Pareto optimal for the agents 
(U~, ei), i E { 1 , . . . ,  m}, provided, for example,  that, for all i, U i is increasing 
and strictly concave. 

For  any given "utility weights" A E ~ ,  let U~ : R s --~ ~ be defined by 

U~(x) = max ~ t~iUi(xi). 
xl+'"+xm~x i-1 

By the Pareto optimality of (ci), we can choose A so that U~(e) = ziml t~iUi(ci), 
m e i. In order  to give an interpretation of prices in terms of where e = Zi=l 

marginal uti!ity, we want to guarantee that the equilibrium consumption 
allocation (c')  is interior. For this, it is enough that IIvu,(c)ll-- ~ for c in the 
boundary of  the positive cone. Pareto optimality then implies the co-linearity 
of {VUi(ci): 1<_ i < _ m} .  The implicit function theorem 4 implies that U~ is 
differentiable, and the equilibrium security price vector is then given by 

qj = kVUA(e)dj ,  j ~ { 1 , . . . ,  n } ,  

for some constant k > 0. Again, we have related security prices to aggregate 
consumption. 

In order  to exploit the special case of von Neumann-Morgens te rn  (expected 
utility) preferences,  we let O = {1 . . . . .  S} be given the structure of a prob- 
ability space (12, ~ ,  P) ,  and treat any x E R s as a random variable x : g2--* ~. 
We assume, for each agent i, the preference representation Ui(x ) = E[ui(x)] , 
where u,. is differentiable, increasing and strictly concave. The representative- 
agent utility function Ux is then of the form 

4For details and the required regularity on utility functions, see Mas-Colell (1985). 
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V ~ ( x ) =  E [ u ~ ( x ) I ,  x ~ S ,  

1629 

where u A : R+ ~ N is defined by 

u~(a) = max ~,  )tiui(ai) 
( a l  . . . . .  am)~-~r~ i = I  

subject to al + . . .  + a , , < ~ a .  

It follows that 

qj = kE[u'~(e)d~] = k l E ( d j )  + k 2 cov[u~(e), dr],  j E {1 . . . . .  n } ,  (6) 

for positive constants k, k I and k 2. Constantinides (1982) developed a finite- 
dimensional multi-period version of this construction. 

If u i is locally quadratic at the equilibrium consumption level c i, then 
u~(c i) = a i + bic i for some constants a i and bi, and thus u'a(e ) = a + be for some 
constants a and b. We then have 

q~ = kEIu'~(e)di] = k ,E(d j )  + k2b cov(dj, e ) ,  j ~  ( 1 , . . . ,  n} ,  

from which we recover the CAPM. Of  course, we could have obtained the 
CAPM directly from the fact that concave quadratic expected utility is var- 
iance-averse. 

3.3. Recurs ive  representative-agent pricing 

The work of LeRoy  (1973) and Rubinstein (1976) on asset pricing in an 
infinite-horizon setting was capped off by Lucas (1978) with a simple recursive 
pricing relation known as the "stochastic Euler  equat ion."  As shown by 
Kandori (1988), few assumptions are required for the existence of equilibria 
with this pricing formula,  given the usual outright assumption of a single agent. 

In order  to see this model in a simple form, let (J2, o%, P)  be a probability 
space and let gr = { ~ :  t ~ N} denote a sequence of sub-o--algebras of ~ that is 
increasing in the sense that t/> s implies that ~,  C ~,. The set o~ of events 
represents information available at time t. A sequence {X , }  of random 
variables is adapted if, for all t, X t is o~t-measurable. Naturally, all economic 
processes in the model are adapted. 

Let  L denote the space of bounded adapted sequences, with the usual 
positive cone L+. The single agent in the model is represented by an 
endowment  sequence e ~ L and a utility function U : L +  ~ [~, There are n 
securities represented by a collection d = (d 1 . . . .  , d n) ~ L n of dividend se- 
quences. The economy is therefore completely specified by the list 
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((g2, ~ ,  P) ,  U:, (U, e), d ) .  

As in the CAPM, we take it that the securities' dividends are paid in units of 
the single consumption commodity. Given a vector of security price processes 
S = (S ~, . . . ,  S ' )  E L", a budget-feasible plan for the agent is a security trading 
strategy 0 = ( 0 1 , . . . ,  on)~ L" satisfying, for all t E N ,  

c~=--et+Ot_ ~ . d , - S , . ( O , - O t _ , ) > ~ O ,  

with 00 = ( 1 , . . . ,  1). That is, 0 is feasible if the associated consumption 
sequence c o is non-negative. A budget-feasible trading strategy 0 is optimal if 
there is no budget-feasible strategy q~ such that U(c ~) > U(c°). An  equilibrium 
is a security price process {S,} such that the (no-trade) strategy 0", defined by 
0* = ( 1 , . . . ,  1) for all t, is an optimal trading strategy. 

For simplicity, we suppose that 

U(c) = , (7) 
tEl~ 

where u : •+ ~ E is, say, bounded and measurable and/3 E (0, 1). Extensions 
are discussed at the end of this subsection. 

The following proposition states that an equilibrium is defined by a separat- 
ing hyperplane argument. Since there is but a single agent, there is no need to 
apply (as is commonly done) fixed point theory, Markovian assumptions, or 
Bellman's principle of dynamic programming. 

Proposition 3. Suppose u is increasing, bounded, differentiable and strictly 
concave. Let  c* = e t + E~ d/ define the total consumption process c*. I f  c* > 0 
almost surely for all t, then equilibrium is defined by 

, I z s , ,  ] 
St u'(e,) E L S > t  /3 U (cs)d , W* t , a.s., t E N .  (8) 

Proof. For the given price process {St}, we need only show optimality of the 
trading strategy 0". The associated consumption process is c*. The proof here 
is the same as that used in Duffle, Geanakoplos,  Mas-Colell and McLennan 
(1988). Let q~ be an arbitrary budget-feasible policy. 

The first step is to show that, for any given T E N, 

T 

+/3TE[u'(C~c)Sr " (¢r -- 0})1. (9) 
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We prove (9) by induction. For T = 1, (9) is true since concavity of u i implies 
that u(cT) >-- u(cq~) + u ' (cT)(cT - c~). Next, we show, for any ~- E ~,  that if (9) 
is true for T = ~-, then (9) is true for T = ~- + 1. By the construction of S, 

u ' ( c * A S ,  ( ~  o7) ' * - , • - = / ~ e [ u  ( C ¢ + l ) ( S , r +  1 -'b d e + l )  [ ~.~r] " (¢~. 0~.) a . s .  

In addition, concavity of u implies that 

u(c;+~)/> u ( C + , )  + u ' (c :+,) (c ;+,  - C + , ) -  

Then (9) follows for T = ~-+ 1 by combining the last two relations with the 
identity 

( S t +  1 "l- d r + l ) .  (~O r --  0"~) Jr- e ; +  1 - -  c ~ +  1 = S~_+l • (~t)~.+l - -  0 ~ + 1 )  . 

Thus (9) follows for all T by induction. Since u and c* are bounded and u is 
concave, { u ' ( c * ) c * }  is bounded. Thus {St} is (as presumed) bounded. Since 
{~Pt- 0"} is also bounded,  it follows that { u ' ( c * ) S  t • (q~t-  0")} is bounded. 
From this, [ 3 r E [ u ' ( c ~ ) S r  • (q~r -  0~)]---~0 as T--.oo. Combining this fact with 
(9), we have U(c*)  >~ U(c¢) .  Since ~p is arbitrary, 0* is optimal, so {St} is an 
equilibrium. Uniqueness is shown with an argument by contradiction that we 
leave to the leader. 

Corollary (stochastic Euler equation). Under  the same  condit ions,  f o r  the 
unique equi l ibrium {S,} and  any t ime t, 

S, fl E [ u  (Ct+l)(St+ 1 + d,+,) ffS] a.s. u'(c*) 

Proof. This follows from substitution of the equilibrium equation (8) for S,+ 1 
into the equilibrium equation (8) for S t , and by applying the law of iterated 
expectations. 

Just as in the previous subsection, one can extend the representative-agent 
asset-pricing formula shown here to economies with heterogeneous agents, 
provided the securities are spanning and all consumption choices are interior. 
Rather than pursue this here, we return to it in the continuous-time framework 
of the following section. 

3.4. Ex tended  recursive preference  mode ls  and t ime consistency 

The additively separable utility criterion (7) is restrictive. For example, this 
utility criterion cannot reflect any attitude toward the timing of the resolution 
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of uncertainty, as pointed out by Kreps and Porteus (1978). For settings like 
the present, a utility model developed by Epstein and Zin (1989a) retains the 
recursive structure of the additively separable model while admitting prefer- 
ences for early or for late resolution of uncertainty, and for independent 
adjustment of intertemporal elasticity of substitution and risk aversion. The 
two basic primitives of the Epstein-Zin utility model are: 

(i) a certainty equivalent functional m : ~(~)- -~  ~ (where ~ ( ~ )  denotes the 
probability measures on the real line) and 

(ii) an aggregator W : ~÷ × ~---~ ~. 
The certainty equivalent m is defined so that m(Sx) = x for any dirac measure 
tSx, consistent with indifference between any distribution/z of utility in the next 
period and the deterministic utility m(/z). An adapted stochastic process V is 
by definition the utility process for a consumption process c if V uniquely 
satisfies, for all t, 

V, = W[c , ,  m(-V~÷,l~,)], 

where -V,+ 1 [fit is the conditional distribution of V,+ 1 given ~ .  (We could also 
append the condition that V t = lira r V, r, where V r is the utility process for c in 
a T-horizon model with Vr  r = 0.) We then have the utility function U on L+ 
defined by U ( c ) =  1/1. As a special case, we can recover the additively 
separable criterion (7) W(x ,  y)  = x + f l y  and re(u)  = ~ x d/z(x) (expectation). 

The relaxation of the additively separable criterion (7) to general recursive 
utilities, such as the Epstein-Zin model, opens the way to a rich set of 
implications of attitudes towards risk for security pricing. For example, one can 
immediately study, using an appropriate certainty equivalent m, various forms 
of Machina's (1982) relaxation of the independence axiom of expected utility, 
or an alternative axiomatization of risk preferences such as that of Dekel 
(1986) and Chew (1989). Other extensions of the additively separable criterion 
(7) are cited in Section 6.6. 

In a multi-period model, one reconsider the optimality of an initially chosen 
strategy at intermediate dates, after the passage of time and revelation of 
information, setting up the issue of "time consistency" examined by Johnsen 
and Donaldson (1985). In treating this problem, one usually restricts attention 
to preferences defined at each date and each state of the world that are 
t ime-consistent,  in the sense that: for any c and ~" in L and any stopping time T, 
if c t = ~, for all t ~< T and if the continuation of c beginning at time T is strictly 
preferred to the continuation of ~" beginning at time T, then c is strictly 
preferred to ~" beginning at time zero. If we denote by V c the utility process for 
c under recursive preference primitives (m, W), we can then define c to be 
preferred to ~ at time t if V t > V~ almost surely. Monotonicity conditions on m 
and W are then sufficient for the time-consistency of recursive preferences, 
including the additively separable criterion. 
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4. Continuous-time equilibrium in security markets 

This section reviews the main concepts of general equilibrium and equilibrium 
asset pricing models in a continuous-time financial setting. 

4.1. General  equi l ibr ium in cont inuous- t ime 

The objective in this first subsection is to formulate and demonstrate general 
equilibria in a continuous-time setting with security markets. The approach is 
basically an extension of Arrow's model of Section 2. We will eventually 
presume that the available securities are dynamically spanning; that is, given 
the possibilities of continuous trading, markets are effectively complete. By 
using recent infinite-dimensional conditions for (static) complete contingent- 
commodity market  equilibria discussed in Chapter  5, we can then implement a 
complete contingent-commodity equilibrium consumption allocation within a 
continuous-time security-spot market  equilibrium. 

The setting for uncertainty is a filtered probability space (~ ,  if, U:, P)  for the 
time set 9 - =  [0, T], as described in the appendix, where U: = {~t: t E  [0, T]} 
satisfies the usual conditions and if0 contains all subsets of zero probability 
events. The o--algebra fit represents the information available at time t. A 
cumulative dividend process is an integrable predictable semimartingale. For  a 
dividend process D, the random variable D t represents the cumulative number  
of units of account paid by the security in dividends up to and including time t. 
A semimartingale is right continuous with left limits, so D t = limsu D s for all t 
almost surely and D,_ ~ limst , D s exists for all t almost surely. The difference 
A D  t = D ,  - O t_  is the jump of D at t, a lump sum dividend. Let  @ denote the 
space of dividend processes. If S is the stochastic price process of a security 
with the dividend process D, then G, = S, + D, represents the number  of units 
of account at time t due to an agent holding one unit of the security from time 
0 to time t. We call the process G = S + D the gain process  of this security. If 
one holds 0 t units of the security from time t until time ~-, one realizes a 
dividend gain of O t ( D  ~ - Dr) and a capital gain of Ot(S ~ - St) ,  adding up to the 
total gain O,(G~ - G,) .  If one varies one's holdings of the security at times 
to, tl . . . . .  t~ (with 0 = t o < t~ < • • • < tk) ,  then the total gain through time t k is 

k - 1  

E o,,(o,,+,- G,). 
/ - 0  

Extending to the case of "continual trading," if G is a semimartingale and one 
chooses, as a strategy for the number  of units of the security to hold at each 
time in [0, T], some process 0 from the space L I [ G ]  (the space of predictable 
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processes described in the appendix), then the total gain between any times t 
and ~- is the stochastic integral J'[ 0 s dG  s. 

One of the primitives of our economy is a vector D = (D °, . . . ,  D N) E @N+I 
comprising N + 1 dividend processes. With only a small loss in generality, we 
take D O to be a unit discount bond payable at T; that is, D t = 0 ,  t < T and 
D T = 1. Letting 5 e denote  the space of semimartingales, a gain operator  is a 
linear function H : ~ - - - ~  b ° mapping each dividend process D to its gain 
G = I I ( D ) .  Given H, we can define the gain process G = ( G O . . . ,  G N) by 
G ' =  H ( D ' ) .  Given (H, D) ,  a trading strategy is an ~u+l-valued process 
0 = (0 °, . . . .  O N) in L ~[G], with 0, representing the portfolio of securities held 
at t ime t. The total gain process for 0 ~ L I [ G ]  is .f 0, dG,.  

For  1 given commodities, a consumption process is a predictable process 
c : O × [0, T]---~ R l with E( fo  r c , .  c t dt) < ~. As usual, two consumption pro- 
cesses are treated as equivalent if they are equal almost everywhere on 
O × [0, T]. We let L denote the space of (equivalence classes o f )consumpt ion  
processes. For  a given consumption process c E L, the vector c, represents the 
rate (per  unit of time) at which the ~e commodities are consumed at time t. 
Likewise, a spot price process is some element  p of L,  with p, representing the 
vector of unit prices of the l commodities at time t. Given p ,  a consumption 
process c is therefore financed by paying units of account at the rate p , .  c, at 
time t. Each agent i E {1 . . . .  , m} is defined by an endowment  e i in the usual 
positive cone L+ of L and by a utility function U i : L+ ~ ~. 

Given a gain operator 1I, which defines the security price process S = 
H ( D )  - D, and given a spot price process p E L ,  a trading strategy Ofinances a 
consumption process c E L at an initial cost of ~b(c) if: 

(i) Oo.S o = O(c); 
(ii) for all t C  [0, T], O,.(S,  + AD, )  = Oo. S o + .[o O~ d G  s - fo Ps .c~ ds; 

(iii) 0 T . ( S  v + ADT)  = O. 
The cost O(c) represents the required initial investment; the terminal con- 

straint (iii) requires that the terminal market  value of the trading strategy is 
zero; while the intermediate constraint (ii) requires that the interim value of 
the trading strategy is precisely that generated by security trading gains net of 
consumption purchases. If, as in the equilibria we are about to describe, 
S r = O, then (iii) is superfluous. 

Given (/ / ,  p),  a budget-feasible plan for agent i is a pair (0, c) consisting of a 
trading strategy 0 and a consumption process c such that 0 finances the net 
consumption purchase c - e i at an initial cost of zero (since there is no initial 
endowment  of securities). A budget-feasible plan (0, c) is optimal for agent i if 
there is no budget-feasible plan (0', c ' )  such that Ui(c' ) > Ui(c ). 

A security-spot market  equilibrium for the economy 

~ = ( ( ~ , ~ , F , P ) , D , ( U ~ , e ~ ) ) ,  i E { 1 , . . . , m ) ,  
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is a collection (1I, p,  (0 ~, ci)), i E{1 . . . .  , m}, such that, given the gain 
o p e r a t o r / / a n d  spot price process p, for each agent i E { 1 , . . . ,  m}, the plan 
(0', c') is optimal, and markets clear: Zi~ ~ c i - e' = 0 and Elm1 0 / = 0. 

This is clearly a continuous-time analogue of Arrow (1953). Just as in that 
model, sufficient conditions for an equilibrium are conditions ensuring a (static) 
Walrasian equilibrium for the complete contingent-commodity markets 
economy (U i, ei), i E {1 . . . . .  m}, as well as a spanning condition on the 
security dividends D. 

Since L is a Hilbert lattice under the inner product ('1") defined by 

T 

 lc,=E(f 
0 

we can exploit utility conditions developed by Mas-Colell (1986) for the 
existence of a (static) contingent-commodity market equilibrium. Let I lcll 2= 
(clc) define a topology on L, and define a utility function U to be v-proper on 
X, for some v E L+ and X C  L+, if there exists a scalar e > 0  such that, for all 
x in X,  a in [0, o~), and z in L+, 

For further details, see Chapter 34. We have the following variant of Mas- 
Colell's (1986) Theorem. 

Theorem 1. Let e = Eirn=l e ~. Suppose, for  each agent i ~ { 1 , . . .  , m}, that U~ is 
quasi-concave, continuous, locally non-satiated in the order interval [0, e], and 
e-proper on [0, e]. Then (U i, e ~) has a complete contingent-commodity market 
equilibrium (~b, (ci)), where ~b : L--~ ~ is a continuous linear price functional 
and the allocation (c ~) is Pareto optimal. 

The properness assumption is satisfied, for example, if Ui has an additive 
representation of the form 

T 

E[f  , 
0 

c L+, (lo) 

where  U i : ~  l X [0, T]--~R is strictly increasing and concave such that 
D+~ui(O, t), the right derivative of ui(., t) at zero, is bounded in t. For later 
purposes of pricing securities, however, we will need to work with a pointwise- 
interior equilibrium allocation (c I > 0 a.s. for all t for all i), and will therefore 
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D c ui(O, t) = later cite an alternative existence result using the Inada condition + 
+do for all t. 

In order to formulate a dynamic spanning condition, we consider first the 
following related definition. An NN-valued martingale M = (M a . . . .  , M N) is a 
martingale generator for (12, ~ ,  g:, P)  if, for any martingale X, there exists 
q~ E L l [M]  such that for all t, X t = X o + ~o q~s dM,  almost surely. 

Assumption (dynamic spanning). There exists a probability measure Q on 
(12, i f ) ,  uniformly equivalent 5 to P, such that the martingales M7 = 
EQ(Drl f fS) ,  t E [ 0 ,  T], n E{1 . . . .  , N ) ,  form a martingale generator for 
(12, o%,D:, Q). 

The dynamic spanning assumption is discussed in the setting of Brownian 
Motion in the next subsection. The semimartingale property and the definition 
of f 0 dS are invariant under the substitution of an equivalent probability 
measure. The definition of L~[G] is also invariant under the substitution of a 
uniformly equivalent measure Q for P, and vice versa. Likewise, the definition 
and topology of the consumption space L is invariant under substitution of Q 
for P, and vice versa. Consider the gain operator H Q defined by HO(D) t  = 
EQ(D~I~,). 

Lemma (spanning). Suppose D satisfies the dynamic spanning condition under 
the probability measure Q. Given the gain operator FI ~ and a spot price process 
p,  any consumption process c is financed at the (unique) initial cost ~b o (c) = E Q 

p ,  . c ,  a t ) .  

Proof. Let  (p,  c) E L x L be arbitrary. Under the dynamic spanning condi- 
tion, the Q-martingales M = (G 1 . . . .  , G N) defined by G n = I IQ(D ~) form a 
martingale generator for (g2, ~-, Y, Q). Let 

T 

0 

Since X is a Q-martingale, by dynamic spanning there exists p = 
(q 1,..., . ,  q s )  E L I[M] such that X t = X o + So q~s dM,  almost surely, t ~  [0, rl .  
Let 0 n = p", 1 ~ n ~ N, and let 0 ° be defined by 

O°t = X , -  p s ' c s d s -  ~,  O;(S t + A D t ) ,  t ~ [ O , T ] .  (11) 
n = l  

0 

5A probability measure Q is uniformly equivalent to P if the Radon-Nikodym derivatives 
dQ/dP and dP/dQ are essentially bounded. 
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The predictability of D implies, by an argument left to the reader, that 0 ° is 
predictable. Since G O= H ° ( D  °) is identically equal to 1, we know that 
S 0° d G ° - - 0 .  By construction, conditions (ii) and (iii) for 0 to finance c are 
satisfied, and 00 • S O = X o = ~bp°(C). The uniqueness of 0 o • S O (over all 0 financ- 
ing c) follows immediately. 

T h e o r e m  2. Suppose that (U i, ei), i E {1 . . . . .  m} ,  has a (static) complete 
contingent-commodity market equilibrium (~b, (ci)). (For this, it suffices that U~ 
satisfies the regularity conditions of  Theorem 1.) I f  the dividend process D 
satisfies the dynamic spanning condition, then ((qt, ~,  ~:, p) ,  (Ui, ci), D) has a 
security-spot market equilibrium with the same consumption allocation (ci). 

P r o o f .  Let Q be uniformly equivalent to P such that G - - H Q ( D )  is a 
martingale generator. Since L is a Hilbert space, the given contingent- 
commodity market equilibrium price function ~b has a representation of the 
form 

@(c)= EQ(f p,.c, dt), c L, (12) 

for a unique spot price process p ~ L+. Since D satisfies the dynamic spanning 
condition, by the previous lemma the consumption process c' - e ~ is financed 

• i • Q i i • Q i - by some trading strategy 0 at the unique cost ~p(c  - e ). Since (~bp, (c))  is a 
contingent-commodity market equilibrium, however, q , p ~ ( i  e i ) = 0 .  Thus 
(0', c') is a budget-feasible plan for i. We can choose O' in this fashion 
for i < m. Since c e m , ,-  1 i i m__ =--Eg= x C -  e,  and by linearity throughout,  the 
trading strategy 0 m m-1 0 i C m e m = -E i=  1 finances - at an initial cost of zero, so 
(Om, C m) is a budget-feasible plan for agent m. The plans (0 i, ci), i ~  
{ 1 , . . . ,  m}, are market clearing. It remains to show optimality: that there is 

^ i  A i  • A i  i no budget-feasible plan (0, c ) for some agent t such that Ui(c ) > Ui(c ). 
We will show a contradiction, assuming that such a superior plan (0~, 6i) 

exists. Since Ui(~ i) > Ui(c i) and (g,p~, (ci)) is a complete contingent-commodity 
market equilibrium, gtQ(O i) > tpOp(Ci). If b i finances o i  _ _  i : e,  however, it does so 
at the unique cost ~b~(~' - e') > q ,°p(c-  e i) = 0, which contradicts the assump- 
tion that (0 i, oi) is budget-feasible• This proves optimality• 

4.2. The dynamic spanning condition and Girsanov's Theorem 

This subsection discusses sufficient conditions for a dividend process to satisfy 
the dynamic spanning condition. 
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As explained in the appendix, an integrable semimartingale X is character- 
ized by the fact that it can be written as the sum M + A of an integrable 
process A of finite variation and a martingale M. If D is an EN-valued 
semimartingale of the form M + A, where M is a martingale generator,  there is 
no guarantee that the ~N-valued process X defined by X t = E ( M  T + Arl~,), 
t E [0, T], defines a martingale generator.  On the other hand, under technical 
regularity conditions, one can apply the Girsanov-Lenglar t  Theorem for the 
existence of a new measure Q under which D is a martingale and inherits the 
martingale generator  property of M. Further  discussion of this appears in 
Section 5.9. 

For  a concrete example, suppose that Y is the standard filtration of a 
Standard Brownian Motion B in ~d, for some dimension d. Then B is itself a 
martingale generator,  as is any martingale in ~ N  of the form X, = f0 q~s dBs, 
t E  [0, T], if and only if {~s} is a (N × d)-matrix-valued process of essential 6 
rank d. Now, suppose that d D , =  bt, d t +  o-tdB . where f o' tdB t has the 
martingale generator property (that is, o- has essential rank d.) Under  technical 
regularity conditions on or and /x, there exists an equivalent probability 
measure Q and a Brownian Motion /~ in R a under  Q such that dD t = o- t d/3,, 
which implies that D is itself a martingale generator  for (12, o%, ~, Q).  With 
d = N for instance, it is enough that /x and or are bounded and that o-~ has a 
uniformly bounded inverse. In that case, Q is defined by 

T T 

d P  = exp q~1 dBl - ~ ~,. q~, dt , (13) 
0 0 

where q~t = o ' t l / ' L t  " Moroever ,  /~ is defined by /~, = B t - f o  ~s ds. Indeed this 
construction of /}  and Q succeeds under the weaker  regularity conditions of the 
following theorem. 

Theorem 3 (Girsanov). Suppose ~ is an ~d-valued predictable process for  
(12, ~ ,  ~:, P) ,  where ~: is the standard filtration o f  a Standard Brownian Motion 
B in R d. Provided E[exp(½ fo r q~t" q~, dt)] < ~, the R a d o n - N i k o d y m  derivative 
given by (13) defines a probability measure Q such that 

/ 3 , = B , - f q s d s ,  t@[0,  T ] ,  
0 

is a Standard Brownian Motion on (O, 0 %, ~:, Q).  

6The essential rank of ~ is d if rank[q~(w, t)] = d almost everywhere on 12 × [0, T]. 
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As pointed out by Harrison and Kreps (1979), and further illustrated in 
Section 5, Girsanov's Theorem can sometimes lead to an explicit calculation of 
the arbitrage price of securities. 

Aside from the case of Brownian filtrations, well known examples of 
filtrations with an identifiable martingale generator include the standard filtra- 
tions of event trees (including finite-state Markov chains), point processes 
(such as a Poisson process) and Azema's  martingale. 

4.3. The representative-agent asset pricing formula 

Here, we specialize to a setting that produces a continuous-time multi-agent 
analogue to the multi-period representative-agent formula of Section 3. This 
subsection and the next are based on Duffle and Zame (1989). We take our 
original definition of a continuous-time security-spot market model 
((J2, o%, I:, P) ,  (U~, e/), D) ,  i E { 1 , . . .  , m}, but adopt the assumption that 
there is only 1 = 1 commodity,  and that for all i, U~ has a utility representation 
of the form 

T 

0 

c~_L+ , 

where u i : ~  + x [0, T]--> ~ is regular, in the sense that ui is smooth (say C 4) 
restricted to (e, oo) for any • > 0, and, for all t, u~(-, t) : ~+ --> R is increasing 
and strictly concave with unbounded derivative uic(-, t). Under all of these 
conditions, we say that U~ is additively separable and regular (us). As men- 
tioned previously, the Inada condition of "infinite marginal utility at zero" 
implies that Pareto optimal consumption levels must be strictly positive almost 
everywhere, which is useful for our purposes. Unfortunately, the unbounded- 
hess of uic is also inconsistent with the properness condition used in Theorem 
1. Nevertheless, we can exploit the additively separable restriction on utility for 
the following result, which was independently shown by Araujo and Monteiro 
(1989) and Duffle and Zame (1989). This type of result was later given new 
and successively simpler proofs by Karatzas, Lakner, Lehoczky and Shreve 
(1988) as well as Dana and Pontier (1989). 

Proposition 4. Suppose, for  all i, that U i is additively separable and regular. I f  
the total endowment e = Ei~=l e i is bounded away from zero, then the economy 
(Ui, ei), i E {1, . . . , m}, has a complete contingent-commodity market equilib- 
rium (~, (ci)), i E {1, . . . , m}, with c i bounded away f rom zero for any agent i 
having e i ~ O. 
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Uniqueness of equilibria is discussed by Karatzas, Lakner,  Lehoczky and 
Shreve (1988). Araujo and Monteiro (1987) have pointed out the restrictive- 
ness of assuming that e is bounded away from zero. One may relax this 
assumption in a production economy. 

Given an equilibrium (~b, (c~)) for the complete contingent-commodity mar- 
ket economy (U, ei), a representative agent is a utility function U A : L+ ---> ~ of 

m the form, for some A E R+, 

Ux(x) = max ~ l~iUi(x i) subject to ~ x i <~x, (14) 
xicL+, i E { I  . . . . .  m}  i = l  i = 1  

such that (g,, e) is the (no-trade) equilibrium for the single-agent economy 
(Ua, e). Equivalently, a representative agent for (~b, (ci)) is defined by agent 
weights A ~ ~7 such that e E arg max c U~(c) subject to ~b(c) ~ ~(e). 

Proposition 5. Suppose, for all i, that U i is additively separable and regular 
(ui), and that e = ~ i  ei is bounded away from zero. There is a complete- 
contingent commodity market equilibrium (~b, (ci)) with a representative agent 
Ua for  some A ~ ~"~. Let u A : ~+ x [0, T]---~ ~ be defined by 

m 
Ua(a, t ) =  max 2.~ Aiui(ai, t) subject to ~ a i <~ a .  

° l C R ~  l i = 1  i = l  
(15) 

Then, U~ is additively separable and regular (u a), and A can be chosen so that, 
for any c E L, ~b(c) = [fo r uAc(e,, t)c, dt]. 

The representative-agent part of the proof, due to Huang (1987), is an 
extension of the representative-agent construction of Section 3.2 to this 
infinite-dimensional setting. 

Combining Proposition 5 with Theorem 2 of Section 4.2, we have the 
existence of a security-spot market equilibrium (II, p, (0 i, ci)), i ~ {1 . . . .  , m}, 
provided the dividend process D satisfies the dynamic spanning condition. 

Given an equilibrium (1I, p, (0 i, ci)), i E { 1 , . . . ,  m},  we now study the 
"real"  security price process S defined by S, = S,/p,, t E [0, T]. By "real ,"  we 
mean the price relative to the numeraire defined at each time t by the 
consumption commodity. If the integral /9, = f0 (1/Ps)dDs is well-defined, 
t hen /9  is the associated real dividend process. We can also define a real security 
to be a finite variation dividend process Y representing a cumulative claim to Y, 
units of the consumption commodity through time t. If the integral D r = 
fo Ps d Ys is a well-defined 7 (nominal) dividend process, we say that Y is 

7If Y is an integrable semimartingale, then, under the conditions of Proposition 4 S P, dY, is 
automatically well-defined since the spot-price process p is predictable and bounded. 
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admissible. Any consumption process c E L, for example, generates an admiss- 
ible real dividend process Y defined by Y, = J'0 cs ds, which has the correspond- 

Y t ing nominal dividend process D Y defined by D t = .fo psc~ ds. The introduction 
of any admissible real security Y has no effect on the equilibrium shown in the 
proof of Theorem 2. 

Proposition 6. Suppose ((12, o%, 0:, P), (Ui, ei), D )  is a security-spot market 
economy such that: 

(i) for  all i, U i is additively separable and regular (ui), 
(ii) the aggregate endowment  e = ~,,im_l e i is bounded away f rom zero, 

(iii) the security dividend process D satisfies the Dynamic Spanning con- 
dition. 

Then there is a security-spot market equilibrium (H, p,  (0 i, ci)), i E {1 . . . . .  m}, 
with a representative agent Ux that is additively separable and regular (uA), and 
for  which the real price process S y o f  any admissible real dividend process Y 
satisfies 

T 

, if ] Sv, - u ,c (e , , t  ) E u ,c (e , , s )  d Y  , ~,  a.s., t e l 0 ,  T].  (16) 
l 

Proof. The existence of an equilibrium (H, p, (0;, c;)), i E {1 . . . . .  m}, is 
guaranteed by Proposition 5 and Theorem 2 of Section 4.2, with the gain 
operator 

I I ( D )  = HQ(D)  = E°(DTI~,), t ~  [0, T] ,  

for an appropriate probability measure Q. From Proposition 4, we can also 
take it that the underlying complete contingent-commodity market equilibrium 
(q,, (c;)) has a price functional of the form 

T 

4' 
0 

We know that, for a unique p in L,  

T 

= =  o(f 
0 

c @ L .  

It follows that Pt = U,c(e,, t)/~:,, t @ [0, T], where { ~,} is the density process for 
Q; that is, ~, = E ( ( d Q / d P ) t ~ , ) .  [One can review Duffle (1986) for the details 
on this last point.] 
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Let Y be an admissible real dividend process. The (nominal) gain process of 
Y is defined by 

T 

0 

T 

~s 
t 

T 

1 

t 

t ~ [0, T] .  

The last equality relies on an application of Fubini's Theorem for conditional 
expectations, which can be found in Ethier and Kurtz (1986, p. 74). Since 
(j, = uac(e,, t ) /p , ,  the corresponding real price process S Y is therefore given by 

T 

p, - uA~(e,, t) E ua~(e ~, s) d ~,  , tE[O,  T I ,  
t 

which completes the proof. 

The representative-agent real security pricing formula (16) is an obvious 
analogue of the discrete-time single-agent multi-period asset pricing formula of 
Section 3. 

Example (the term structure). As an application of this asset pricing model, let 
Y denote the cumulative dividend process representing the payoff of a zero- 
coupon default-free bond of unit principal maturing at time ~-E [0, T]. This 
means that I1, = 0 for t < r, while Yt = 1 for t/> r. Equation (16) then implies 
that the price of this bond is zero after maturity, and at any time t before 
maturity has the price E[uac(e ~, r)l ff°t]/uac(e ,, t). Various parametric assump- 
tions concerning the distribution of the aggregate endowment process e and the 
representative-agent utility u, are sometimes used to calculate this conditional 
expectation. The most famous example is the term structure model of Cox, 
Ingersoll and Ross (1985a). 

4.4. The consumption-based C A P M  

Continuing to narrow our focus, we restrict ourselves in this subsection to the 
standard filtration Y of a Standard Brownian Motion B in ~u, for some 



Ch. 31: The Theory of  Value in Security Markets 1643 

dimension d. With additively separable and regular utility, this produces the 
Consumption-Based Capital Asset Pricing Model (CCAPM) of Breeden 
(1979). Breeden's original proof assumes the existence of an equilibrium with 
pointwise interior consumption choices and optimality characterized by a 
smooth solution to the Bellman equation for Markov dynamic programming. 
This subsection shows that that representative-agent pricing approach allows 
for primitive conditions leading directly to an equilibrium satisfying the 
CCAPM. 

Before proceeding, we need to record the following version of Ito's Lemma. 
In this setting, an Ito process in R" is a semimartingale of the form 

X t = x + i i x s d s + f o ' ~ d B , ,  t E  [0, T] ,  
0 0 

where ix is an R"-valued adapted process and o- is an n x d matrix-valued 
predictable process. The stochastic differential form for X, which is purely 
formal notation, is 

dX t = /x  t dt + ~r t dB t . 

It is a common abuse of the meaning of this representation of X to treat ixt as 
the "instantaneous conditional expectation of d X , , "  and likewise to treat o-to- t 
as the "instantaneous conditional covariance matrix of dXt ."  Of course, this 
can be justified for square integrable X by passing to limits the mean and 
covariance matrix of Xt+ ~ - X t, conditional on oft, as 6 ---> 0. For the following, 
fx denotes the partial derivative of a function f : ~" x [0, T]---> ~ with respect to 
x, and likewise for f, and fx~. 

Ito's Lemma. For any ~n-valued Ito process X with d X  t = ix, dt + or, dB,  and 
any C 2 function f "  ~" x [0, T] ~ ~,  the process Y defined by Yt = f ( X t ,  t),  
t@ [0, T], is also an Ito process with d Y  t = ixf(t) dt  + fx (X, ,  t)o- t dB,, where 

Ixr(t) = fx(X,, t)ix, + f,(X,, t) + ½ tr[~rlr f~x(X,, t)o',]. 

The conditions for Ito's Lemma can be weakened in many directions. 
We now fix an economy ((£2, .~, ~:, P) ,  (Ui, ei), D ) ,  i @ { 1 , . . .  , m}, satisfy- 

ing the conditions of Proposition 5, where F is the filtration generated by a 
Standard Brownian Motion B in ~d. By that proposition, there exists an 
equilibrium satisfying the representative-agent real asset pricing formula 

T 

' [I SVt - uAc(e,,-----~) E Uac(e s, s) d ~ , t E [0, T] ,  
t 
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for any admissible real dividend process Y, where ua defines the associated 
representative-agent utility function. 

Since the CCAPM is by nature a statement about the "instantaneous 
covariance of de," with other variables, we need something like the following 
condition on the aggregate endowment. 

Ito Endowments. The aggregate endowment e is an Ito process. 

It is in fact enough for most of the following that e is a semimartingale. We 
henceforth write de, =/~e(t) dt  + (re(t) dB, .  Using Ito's Lemma and the fact 
(verified with the Implicit Function Theorem) that u~c is a C 2 function, the 
process ~-, = Uac(et, t) has the stochastic differential representation 

d~r t = [uAc,(e,, t)tze(t ) + u~t(e , ,  t) + ½uxc~c(e ,, t)oT(t ) • ~r~(t)] dt 

+ ua~(e, ,  t)o'e(t) d B , .  

For any admissible real dividend process Y, with real equilibrium price process 
V = S v, the process Z defined by Z, = f0 Its dYs + 7rtV, is a martingale since, for 
any interval [t, s], 

1 E ~r~dY~ ~-~ ,~, E(Z~]o%,) = 7r~ d Y ,  + E 7r~ dY" + Trs 7r~ 
0 t s 

= f 7r~ dY~ + 7rtE = Z, • 
0 

Suppose Y is an Ito process of the form d Y  t = izv(t ) d t  + ~ry(t) dB, .  This 
implies (by Ito's Lemma) that the real price process V is also an Ito process, 
with a representation of the form dV, =/Xv(t ) d t  + O-v(t ) d B , .  Again applying 
Ito's Lemma, 

d Z  t = [Trtlxr(t ) + ~,l . tv(t  ) + Vtlx (t  ) + u~¢c(et, t)(re(t  ) • Cry(t)] dt 

+ '~z(t) d B , ,  

for some O-z(t ) that we need not calculate here. An Ito process dX, = 
izx( t )  d t  + O'x(t ) d B  t is a martingale if and only if iZx(t ) = 0 almost everywhere. 
Since Z is a martingale, we therefore have, almost everywhere, 

,rrtI/~y(t ) + ~v(t)] + Vd~( t  ) + mcc(e, ,  t)o-e(t ) • O-v(t ) = O . 
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Assuming that lit ~ 0, we can divide through by 7r, V~ and rearrange to obtain 

t~ ( t )  + lxy(t) -uxcc(et,  t) fiv(t) 
Vt - r ,=  ua~(et , t )  Vt . ~ ( t ) ,  (17) 

where r, =-g ,~( t ) /Tr t .  Formally speaking, if we treat (d E + dY~)/V~ as the 
"instantaneous real re turn"  on the security, it is natural to treat 

R, -  v(t) +  y(t) 
V, 

as the "instantaneous mean rate of re turn"  and (trv(t)/V~). fie(t) as the 
"instantaneous covariance between the return dV~/V~ and aggregate consump- 
tion increment det ,"  following the heuristic conventions outlined earlier. If the 
return is "riskless," that is, if trv(t ) = 0, then we h a v e / ~  = r,, so we call r~ the 
riskless rate of return. Since ~', = uAc(e,, t) is the "representative-agent margi- 
nal utility," we can therefore view the riskless rate r, = - t z ~ ( t ) / c r ,  as the 
exponential rate of decline of the representative-agent marginal utility, a 
characterization uncovered (in a more narrow single-agent Markov setting) by 
Cox, Ingersoll and Ross (1985b). The difference R t - r t is known as the excess 
mean rate of  return of the asset, and based on (17) satisfies the proportionali ty 
restriction 

-Uxcc(et, t) 
g t -  r t -  Uxc(et ' t) oR(t ) • fie(t), (18) 

where fiR(t) = fiv(t)/V,.  In words, the mean excess rate of return on a security 
is proportional to "instantaneous covariance" with aggregate consumption 
increments. The constant of proportionality is the risk aversion coefficient of 
the representative agent. This is a form of the CCAPM. We summarize as 
follows. 

Proposition 7 (CCAPM).  Suppose the conditions o f  Proposition 5 are satis- 
fied, that ~ is the standard filtration o f  a Standard Brownian Motion B in ~a, 
and that the aggregate endowment  process e is an Ito process. Then there exists a 
security-spot market equilibrium in which, at any time t, the return o f  any 
security (with non-zero price) satisfies (18). 

We can also view the CCAPM in a traditional "be ta"  form. Because of the 
dynamic spanning condition, one can assume without loss of generality that 
there is some security whose real price process, say V*, has a diffusion process 
or* with o-* = kto- e for some positive predictable k, characterizing the security 
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as one whose return is "instantaneously perfectly correlated" with aggregate 
consumption increments. For such a security, the instantaneous mean rate of 
return, denoted/~*, satisfies the CCAPM, implying that 

_ Ua~c(e ,, t) 
R *  - r t uac(e, ,  t) ~rR*( t ) ' ° ' e ( t ) '  (19) 

where trR.(t  ) = ~r*(t) /V*, .  One defines for any given security the "instanta- 
neous regression coefficient" 

~rR(t)" ~rg.(t) 
fin(t) = o_R.(t), o.R.(t ) 

(assuming that ~rn.(t ) ~ 0), as the beta of that security relative to aggregate 
consumption. Combining this expression with the originally stated form (18) of 
the CCAPM, we have the traditional "beta form" 

R , -  r, = f l g ( t ) ( R *  - r , ) ,  (20) 

satisfied by all securities (with non-zero market values). The beta form (20) is 
implied by, but does not imply, the representative-agent form (18) of the 
CCAPM since (20) applies even if the representative-agent risk aversion 
coefficient defined by -uAcc (e  t, t ) /u~c(e , ,  t) is replaced in (18) by any other 
coefficient. For example (under strong conditions on an equilibrium), a version 
of the beta form of the CCAPM is satisfied even without dynamic spanning. 
The supporting arguments may be found in Breeden (1979). At this writing, 
however, primitive conditions for multi-agent equilibrium that do not require 
dynamic spanning remain to be shown. 

Of course, Sections 4.3 and 4.4 are based on the strong assumption of 
additively separable utility; for extensions, see Section 6.6. 

5. Continuous-time derivative asset pricing 

5.1. P r o l o g u e  

This section characterizes, with the aid of martingale theory, the arbitrage-flee 
pricing of derivative assets, those whose dividends can be financed by trading 
other "primitive" securities. Under the assumption of no arbitrage oppor- 
tunities, the price of a derivative asset is the initial investment cost in primitive 
securities required to replicate the dividends of the derivative asset. If this were 
not the case, a position in the derivative asset combined with an offsetting 
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position in the replicating trading strategy would produce an arbitrage. This 
obviously ignores transactions costs. 

Of course, the primitive securities must themselves be priced, say by an 
equilibrium asset pricing model or even by actual financial markets, but it is 
nevertheless useful to have a model that prices some (derivative) securities 
relative to other (primitive) securities. The most famous example of this is the 
Black-Scholes (1973) formula for the price of a European call option on a 
security whose price process is a geometric Brownian motion. Arbitrage pricing 
is perhaps the most actively used asset pricing technique in practical applica-- 
tions. 

A large part of this section follows the lines of Harrison and Kreps (1979), 
establishing, in the manner of Section 3.1, that the absence of arbitrage implies 
the existence of an equivalent martingale measure. From this, any derivative 
security price can be calculated as the expected discounted present value of the 
security's dividend stream, substituting the equivalent martingale measure for 
the originally given probability measure in calculating the expectation. 

5.2 .  The  se tup  

A basic primitive is a filtered probability space (/2, o %, ~:, P) ,  where 0: = 
{o%,: t E [ 0 ,  T]} is an augmented filtration of it-algebras satisfying the usual 
conditions, as explained in the Appendix. The o--algebra ~t is the set of events 
characterizing information held by investors at time t. For simplicity, we take it 
that o% 0 is almost trivial, in that it includes no events with probability in (0, 1), 
and without loss of generality take f f  = o% r. 

The shor t - t e rm  rate,  if it exists, is an adapted process r satisfying ~0 c Ir,] d t <  
almost surely, with r t interpreted as the dividend rate demanded at time t on 

a security whose price is always equal to 1. That is, r t is the continuously 
compounding interest rate on riskless deposits at time t. The existence of the 
short-term rate is itself an assumption that can be avoided for the following, at 
some cost in concreteness. We actually assume, henceforth, that the short-term 
rate exists and is bounded. 

By initially investing one unit of account at the short-term rate and continu- 
ally reinvesting the original deposit and accumulated interest dividends at the 
short rate, the total balance Z t held at time t is determined by the ordinary 
differential equation 

d Z  t 
d t  - r~Z~ , Z o = 1 .  

The solution is of course Z, = exp(f0 r s ds). 
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Likewise, investing one unit of account at any time t in the same short-rate 
investment strategy yields by time ~" 

  =exp(f rs4 
l 

Also given are N securities with cumulative dividend processes D ~ , . . . ,  D u 
and price processes S 1, . . . ,  S N. By definition, these are integrable semimar- 
tingales, with D predictable. We let {D O = f 0 r s d s :  0 ~ < t ~  < T} denote  the 
cumulative interest dividends on the short-term deposit security, with associ- 
ated price process S O identically equal to 1. This makes for the vector dividend 
process D = (D ° . . . , D N) and price process S = (S °, . . . ,  Sn). The associated 
gain process is G = D + S. 

Unless otherwise stated, we continue to use the convention that the price 
processes are ex dividend, meaning that the cum dividend market value of a 
unit of security n at time t is S7 + ADT, the price plus any lump sum dividend 
paid at that time t. 

As in Section 4, a trading strategy is an ~N+l-valued process 0 E LI[G]. 
Aside from the natural informational constraint, the restriction that 0 E L I[G] 
is technical, mildly limiting the speed and sizes of trades, and is automatically 
satisfied in a finite-dimensional setting. Several alternative sets of technical 
assumptions will lead to the basic conclusions of this section, as shown for 
example by Dybvig and Huang (1988). 

5.3. Arbitrage and self-financing strategies 

A dividend process C is financed by a trading strategy 0 if 

O,.S,=Oo. S o + f O s d G s - C , _ ,  t E  [0, T ] ,  
0 

(21) 

meaning that the current market  value O,.S, of the strategy at time t is the 
initial investment value 00 • So, plus the trading gains fo Os dGs, less the 
cumulative dividends C t removed from the strategy by time t. 

An  arbitrage is a trading strategy 0 with initial investment value 00 • S O ~< 0, 
financing a non-negative dividend process D °, and having a non-negative 
cum-dividend final value Or.(S r + ADr) ,  with one of these three non-zero. 
The basic goal of this section is to characterize the prices of securities under  an 
assumption of no arbitrages. 
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A trading strategy 0 is self-financing if it finances a zero dividend process, 
meaning that the strategy neither generates nor requires income during (0, T). 

Lemma 1. There is an arbitrage if and only i f  there is a self-financing arbitrage. 

Proof. A self-financing arbitrage is an arbitrage. Suppose there is an arbitrage 
0. By the definition of a dividend process, the dividend process D o financed by 
0 is a semimartingale. Consider the trading strategy q~ = (q0, . . . .  q N) defined 
by q~ = 0, j ~ 0  and ~o ° = J'0 fs., dD°.  In other words, ~p re-invests the dividends 
financed by 0 at the short rate. The strategy 0 + ~o is then a self-financing 
arbitrage. (It is clearly an arbitrage, and is self-financing by a calculation using 
Ito's Lemma.) 

If T is the terminal date of the economy, it seems compelling that S T = 0 
since there are no dividends after time T. As pointed out by Ohashi (1987), 
this is actually an assumption that goes beyond the absence of arbitrage, since 
it may be impossible to carry out an arbitrage with S T ~ 0  if S T is not 
measurable with respect to ~ r - ,  the left limit of the filtration at T. This may be 
viewed as a technical limitation of the model that can be eliminated by any of 
several minor assumptions. For example, we could allow an extra round of 
~r-measurable trades at time T, or could extend the time horizon of the 
economy to [0, ~). Unless otherwise stated, we do not assume that S T = 0. 

5.4. The arbitrage pricing functional 

Let O denote the space of self-financing trading strategies and M = {0 T • (S T + 
ADT): 0 U O) C L l (p) ,  the marketed subspace of potential final values. 

Proposition 8. There is no arbitrage i f  and only if  there is a unique strictly 
positive linear functional 4' : M---> • defined by 4'[0 T • (S T + ADT) ] = 00 • S 0. 

Proof. Suppose there is no self-financing arbitrage. For two self-financing 
strategies 0 and q~ satisfying 0 T • (S T + ADT) = q~T" (ST + ADT), we claim that 
00" So = q~0" So- If not, say if 00 • S O > q~0" So, then ~o - 0 is a self-financing 
arbitrage. Thus ~b is well defined. Strict positivity of 4' follows directly from the 
definition of an arbitrage. Conversely, if 4' is uniquely well defined and strictly 
positive, there is no self-financing arbitrage. By Lemma 1, it suffices to 
examine self-financing arbitrages. 

Our objective now is to characterize, under the assumption of no arbitrage, 
the arbitrage pricing functional 4' given by Proposition 8. 



1650 D. Duffle 

5.5. Numeraire-invariance 

Before proceeding, we will put in place for later use a natural fact: changing 
the numeraire for prices and dividends has no real effects. A price deflator is a 
positive predictable semimartingale/3 that is bounded and bounded away from 
zero. For example, /3, could be the reciprocal of the price of a particular 
security (such as a foreign currency) or commodity (such as gold). The 
following proposition states the obvious fact that re-expressing all prices and 
dividends with respect to a price deflator has no impact on the ability of a 
trading strategy to finance a dividend process, nor on the real price at which it 
is financed. First, let D e be the deflated dividend process defined by Dff = 
S0 [3s dD~, and S e be the deflated price process defined St ~ = [3tSt. 

Proposition 9 (numeraire-invariance). Let [3 be any price deflator. Suppose 0 
finances a finite variation dividend process C, given securities defined by the 
dividend process D and price process S. Then, given the securities defined by the 
deflated dividend process D t3 and deflated price process S t3, the same trading 
strategy 0 finances the deflated dividend process C e defined by C~ = So [3s dCs. 

The proof by Huang (1985a) is a lengthy application of lto's Lemma for 
semimartingales and is not repeated here. The following corollary is immediate 
from the definitions of M, 6) and ~0. 

Corollary. If  (D, S) admits no arbitrage, then (D e, S e) admits no arbitrage. 
The marketed subspaces M under (D, S) and M e under (D t~, S t~) are related by 
x E M if and only ifx[3~ E M e. The respective spaces 6) and 6)e o f  self-financing 
trading strategies are the same. In the absence of  arbitrage, the respective 
arbitrage pricing functionals ~O and ~e are related by [3oqJ(x) = t, oe(x[3~). 

5.6. Equivalent martingale measure 

We now consider the price deflator 6 defined by 6 t = Z t  1 ~-- exp( - f0  r s ds), and 
define the deflated gain process G ~ by G ~ = D ~ + S ~. This is merely the gain 
relative to the numeraire defined by the market value Z of the short-rate 
re-investment strategy. An equivalent martingale measure is a probability 
measure Q, equivalent to P, such that G ~ is a Q-martingale. That is, under an 
equivalent martingale measure Q, for any times t and ,r >i t, EQ(G~I,~t)---- G~, 
where E ~ denotes expectation with respect to Q, implying that 

T 

s,  = g, e Q d D ,  + , (22) 
l 

a useful formula. 
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In spirit, based on the same arguments used in Section 3.1, the existence of 
an equivalent martingale measure is equivalent to the absence of arbitrage. 
Unfortunately, in an infinite-dimensional setting, this equivalence can be upset 
by various technical problems, as explained for example by Back and Pliska 
(1989). The principal difficulty is that there is no general result guaranteeing 
that the arbitrage pricing functional ~b can be extended to a strictly positive 
linear functional on L~(P). If o% is finite, the extension follows immediately 
from the finite-dimensional lemma of section 3.1. For now, we will merely take 
:T to be finite, and later return to provide other sufficient conditions for a 
strictly positive linear extension. The following theorem is conceptually the 
same as the main result of Harrison and Kreps (1979). 

Theorem 4 (Harrison-Kreps). Suppose ,~ is finite. Then there is no arbitrage if 
and only if there is an equivalent martingale measure. 

The following proof is written as though o% is general, since the arguments 
are general, with the exception of the extension result, and can be used again 
later. 

Proof. (Only if): Suppose there is no arbitrage. Let q, be defined by 
Proposition 8. By the extension lemma of Section 3.1, q, has a strictly positive 
linear extension qt : LI(P)--*ffL By a result sometimes known as Choquet's 
Theorem, any non-negative linear functional on L I(P) is continuous, so that 
is continuous. [See, for example, Schaefer (1974).] By the Riesz Representa- 
tion Theorem for L t(P), there is a unique bounded strictly positive random 
variable 7r such that 

= x 

We define a measure Q on (O, i f )  by 

Q(A)= E(1AZTTr ) ,  A E ~ .  

We have Q ( O ) =  E(ZrTr)= ~b(ZT)= 1, since Z T is by definition the final 
payoff of a strategy requiring an initial investment of 1 unit of account. Thus Q 
is a probability measure, and is equivalent to P since ZTTr is strictly positive 
almost surely. For any random variable x integrable with respect to P, the 
expectation of x with respect to Q is well defined since the Radon-Nikodym 
derivative dQ/dP  = ZTIr is bounded. 

For any security j, we will show that {J'0 6s dD~ + ~,S~: t E [0, T]} is a 
martingale under Q, completing the "only if" portion of the proof. This is 
trivial for j = 0. For any j 1> 1, it is enough to show, for any times t and s > t 
and any event A E ~ ,  that 
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s 

EQ(1AC tS{) = E°[1A(f 8o dD{+ 6sS{)] • 
t 

(23) 

To this end, consider the trading strategy 0 defined by: 
(1) at any time r <~ t, let 0, = 0; 
(2) at any time r E (t, s], let 

(a) 0{ = 1 A, 
(b) 0~ = 0, k ~ ' { 0 ,  j} ,  

- J fo.¢ d D ~ ) ;  (C)  0 r  0 = 1 A (  StL,r -~- f ;  
(3) at any time ~-E (s, T], 

(a) 0~ =0 ,  k ¢ 0 ,  

(b) 0 ° : Vsfs.,, where Vs = IA(S ~ - f t ,sS{ --]- f ;  fv.s dD~). 
The strategy 0 merely holds one share of security j between times t and s in 

event A, financing the cost S{ by borrowing at the short rate, and continually 
re-investing the dividends at the short rate. At  time s, the unit of security j is 
sold, and the entire resulting balance V s is re-invested at the short rate until 
time T. 

The final market value of the strategy is 0 °. Since the initial investment is 
0 o • S o = 0, we have, by definition of ~0, 

0 = q,(0 ° )  - E( 0 ° )  :- (24) 

The definition of 0 ° in 3(b), however,  implies that (23) and (24) are equiva- 
lent, proving the "only if" part of the result. 

(If): Suppose Q is an equivalent martingale measure. Let 0 be a self- 
financing trading strategy. The numeraire-invariance Proposition 9 implies that 

T 

8T[Ov'(S y + A D r ) ] = O  o" S o + f 0 t d G ~ .  
0 

(25) 

Since d Q / d P  is bounded (because o% is finite) and 8 is bounded,  0 is in 
L~[G~] ,  where the notation indicates expectation relative to Q. That is, 
J" 0 d G  ~ is a martingale with respect to Q. Taking expectations with respect to 
Q on each side of (25) leaves 

EQ[6rOT • (S T + ADT)  ] = Oo. S o . 

This defines the pricing functional q; of Proposition 8 by qJ(x)= EQ(STX), 
X E M. As such, q; is linear and strictly positive, implying the absence of 
arbitrage. 
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5. 7. Alternate sufficient conditions for equivalent martingale measures 

Theorem 4 is the main result of this section, but relies on the assumption that 
there is only a finite number of distinct events. There are at least two other 
sufficient conditions that have been studied in the literature: 

(1) the existence of an optimal policy for some agent whose preferences 
satisfy regularity conditions; 

(2) the absence of a free lunch, an approximate notion of arbitrage due to 
Kreps (1981). 

We will state the sufficiency of these conditions in turn. We omit proofs, 
since these alternative sufficient conditions for equivalent martingale measures 
merely shore up the natural intuition of Theorem 4 with the technical 
qualifications required in an infinite-dimensional setting for a strictly positive 
linear extension of the arbitrage pricing functional. 

Consider some agent with a utility function U:  LI(P)- -~N facing the 
problem 

max U[O T • (S T + ADT) ] . (26) 
0 E O  

Proposition 10. Suppose U is quasi-concave, continuous and strictly increas- 
ing. Then there exists an equivalent martingale measure i f  problem (26) has a 
solution. 

Harrison and Kreps (1979) call the existence of a solution to (26) viability. 
Their proof of a result essentially the same as Proposition 10 will also suffice 
here. Naturally, the proof first uses the fact that viability implies lack of 
arbitrage. The arbitrage pricing functional ~0 has a strictly positive linear 
extension given by a re-scaling of the linear functional defining a separating 
hyperplane between: 

(1) the upper contour set {x E L1(P): U(x) >! U(x*)} at x* = 0~- (S~ + 
ADr),  the final wealth financed by a solution 0* to (26), and 

(2) the budget feasible set {x E M: 0(x) ~< ~0(x*)}. 
Given this extension of 0, the proof of an equivalent martingale measure 
follows the "only if" part of the proof of Theorem 4. The basic idea of the 
result extends to a model with preferences over multiple commodities and over 
consumption processes on [0, T]. Essentially, the desired extension of 0 is a 
shadow price or Lagrange multiplier for the final wealth budget constraint. 

Now we record the fact that the absence of a free lunch, a construction due 
to Kreps (1981), is also a sufficient condition for the existence of an equivalent 
martingale measure. In the context of securities with no arbitrage, with 
associated marketed subspace M and arbitrage price functional ~0, a free lunch 
is a sequence {(m,,  x,)} in M × L I ( P )  satisfying: 
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(1) m. >i x,,, 
(2) x. converges in L~(P) to some non-zero k ~ LI(P)+, and 
(3) lim inf ~(m.)  <~ O. 
The three conditions suggest the possibility, in a limiting sense, of obtaining a 
payoff k "better than zero" at a zero or negative price. The absence of free 
lunches implies the absence of arbitrages, and a bit more. 

Proposition 11. Suppose (O, o %, P) is separable. I f  there is no free lunch, then 
there exists an equivalent martingale measure. 

The separability of (O, o%, p) is a mild regularity condition that is satisfied, 
for example, if ~ is the o--algebra generated by a Standard Brownian Motion 
in some Euclidean space. The proof by Duffle and Huang (1985) shows that 
the absence of free lunches implies that the arbitrage pricing functional 0 has a 
strictly positive linear extension. 

In general, we can draw on the following result for other possible sufficient 
conditions. 

Proposition 12. Suppose there is no arbitrage and the arbitrage pricing func- 
tional qJ has a strictly positive linear extension to L i(p). Then there is an 
equivalent martingale measure. 

Again, the proof is the "only if" portion of the proof of Theorem 4. 

5. 8. Equivalent martingale measure and the state price process 

Given the setup ((~, if, D:, P), (D, S)) of Section 5.2, suppose the hypotheses 
of Proposition 12 are satisfied. Then there is an equivalent martingale measure 
Q, where the Radon-Nikodym derivative dQ/dP  is bounded. Recall from 
Section 4 that the density process ~: for Q is defined by s~t = E((dQ/dP)/ ,~) .  

We now pick a particular security of the N + 1, with price process, say V, 
and dividend process, say C. For the next result, we will use the assumption 
that C is of finite variation. For example, C is of finite variation if defined by 
C, = fo Ps "cs ds for some multi-commodity consumption process c and spot 
price process p whose product is integrable. More generally, as described in the 
Appendix, a finite variation process is a semimartingale that can be written as 
the sum of an increasing and a decreasing process. 

From (22), for any times t and ~- with r 1> t, 

7 

1 if ] V t = ~ t E Q  6sdCs +6.~V.~ '~t • 
t 

(27) 
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The following result s makes a connection between the equivalent martingale 
measure and the state price process. 

Proposition 13. Let 7r be the process defined by 7"F t = 6 t ~  t • I f  C is o f  finite 
variation, then for any times t and ~" >i t, 

T 

x if ] V, = - -  E ~r, d C~ + ~r V, ~,  . 
lr, 

! 

The proof  follows the lines of the proof  of Proposition 6, where the state 
price process ~r is identified as the marginal utility process {uxc(e t, t)} for a 
particular representative-agent equilibrium with additive separable utilities. 

5.9. Arbitrage pricing of  redundant securities 

Once again, consider the setup described in Section 5.2, with the no-arbitrage 
hypotheses of Proposit ion 12. An equivalent martingale measure Q for (D, S) 
is fixed for this subsection. In addition to the given set (D, S) of securities, 
consider a new security with a dividend process C and price process V. We are 
interested in knowing whether  the same equivalent martingale measure Q will 
also serve to price C, that is, whether  (27) applies for all t and ~-i> t. In that 
case, we say that C is priced by Q. An  obvious sufficient condition is the 
existence of a trading strategy 0 that finances C. 

Lemma 2. Suppose ((D, C), (S, V))  admits no arbitrage. I f  (ST, VT) = 0 and 
there exists a trading strategy 0 that finances C, then C is priced by Q. 

Proof. Suppose that 0 finances C. Pick any time t. By writing down the 
financing condition under  the deflator 6, taking expectation at t given ~t, and 
using S T = O, we have 

T 

1 o C  ¢ i f , ) .  

t 

It remains to confirm (27) by showing that V, = 0,- S t. If this is not the case, say 
if V t > 0 t • S t on some event A in o% t with P ( A ) >  0, consider the following 
trading strategy. Let  q~ be the trading strategy that invests at the short rate, at 
any time s, ft,s(V~--Ot'St)l(t,T)×z(S), plus the RN+2-valued trading strategy 
1A ×(t.T](0, -- 1), holding - 1 units of C and adopting the strategy 0 from time t. 

8At the author's request, Steven Shreve constructed a counter-example for the case of a dividend 
process C that is not of finite variation. 
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Then ~o is a self-financing arbitrage, with zero initial investment and final value 
equal to ft,r(V~ - 0,. St)l A > 0. This contradicts the assumed absence of arbi- 
trage, proving the result. 

The lemma suggests that we can price C according to the same equivalent 
martingale measure Q if C is redundant, in the sense that it can be financed by 
trading the original securities. (The qualification that ($7-, Vr)= 0 is to be 
expected given the discussion at the end of Section 5.3.) It is natural to expect 
redundancy of any dividend process C given (D, S) if D satisfies a dynamic 
spanning condition like that described in Section 4. The next result develops an 
alternative spanning condition directly on the martingale component of the 
gain process G = D + S. As an integrable semimartingale, each gain process 
G j can be written as the sum of a martingale M / and a bounded variation 
predictable process A j with A~ = 0. A special semimartingale is a semimartin- 
gale (or vector of semimartingales) with a unique such decomposition. For 
example, any semimartingale with bounded jumps (in particular, any continu- 
ous semimartingale) is special. 

Proposition 14. Suppose the gain process G is special and dP/dQ is bounded 
or every Q-martingale has bounded jumps. I f  the martingale component of  G is 
a martingale generator under P, then G ~ is a martingale generator under Q and 
any dividend process can be financed by some trading strategy. 

Proof. Let M be the martingale component of G. It is immediate that Y is a 
martingale generator when defined by Y, = J0 6s dMs. By Lemma 3.2 in Duffle 
(1985), Y is special under Q. By the uniqueness of the decomposition of Y 
under Q, it follows that G ~ is the martingale component under Q of Y, which 
by Theorem 3.2 in Duffle (1985) implies that G ~ is a martingale generator 
under Q. The remainder of the proof is an obvious extension of the proof of 
the spanning iemma of Section 4.1. 

Corollary. Under the assumptions of  Proposition 14, there is a unique equiva- 
lent martingale measure. 

Proof. The fact that G ~ is a martingale generator under an equivalent 
martingale measure Q implies that M = L I(p). This requires that, for any 
event A E ~,  Q(A) = ~ ( Z T I A )  , which fixes Q. 

5.10. The Brownian case: spanning and Girsanov's Theorem 

This subsection explores the implications of the last in a setting of Brownian 
information. We continue under the hypotheses of Proposition 12 and fix an 
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equivalent  mart ingale  measure  Q. T he  hypotheses  of  Propos i t ion  14 are easily 
checked if 0: is gene ra t ed  by some S tandard  Brownian  Mot ion  B,  say in R d. In  
that  case, let M deno te  the  mart ingale  par t  of  G. As s ta ted in Section 4.2, B is 
itself a mar t ingale  genera to r ,  so we can always write,  for  some  predictable  
process o" that  is K x d matr ix-valued,  M, = J'0 °'s dBs, 0 <~ t ~< T. Provided  the 
rank of  o- is d a lmost  everywhere ,  M is a mart ingale  genera tor ,  and the 
condit ions o f  Propos i t ion  14 are satisfied since every  mar t ingale  on a Brownian  
filtration has con t inuous  sample  paths (almost surely).  

The  Brownian  case is also part icular ly nice because  it allows us to calculate 
Q. Suppose ,  for example ,  that  G is an I to  process.  In  that  case, we can always 
write 

dG7 = bet dt  + 6,o-, d B , ,  

for  some adap ted  (vector) drift process  be, with o- as descr ibed in the last 
paragraph.  Assuming  that  or has rank  d almost  everywhere ,  we can define an 
Ra-valued adap ted  process  ~o wi th  otq~ t = - b e , ~ 6  t almost  everywhere .  Ignor ing  
integrabili ty for  the m o m e n t ,  let B t = B,  - .fo ~°s ds.  T h e n  9 

dG7 = bet d t  + ~,o-7 dBt  

= bet dt  + 6,o-,(d/~ t + q~t dt)  

= be, d t  + 6,o" t d / )  t - bet d t  

= 6,o-, d B , .  

Since Q is uniquely  defined,  according  to the corol lary to  Propos i t ion  14, Q 
must  be that  measure  ob ta ined  by an applicat ion of  Gi r sanov ' s  T h e o r e m .  That  
is, it must  be the case that  d Q / d P  is defined by (13) and t h a t / 3  is a S tandard  
Brownian  Mot ion  unde r  Q. 

In  short ,  this provides  us with a direct  calculat ion of  d Q / d P ,  which can then 
be used to calculate the price of  any security,  say by (27). The  qualification in 
L e m m a  2 that  " V  T = 0"  is automat ical ly  satisfied in this setting, since every 
semimart ingale  on a Brownian  filtration is predictable.  1° 

For  example ,  consider  an addit ional  security with dividend process  C defined 
by C t = O ,  t ~ ' ,  and C t = H ,  t i>% where  ~- is a s topping t ime and H is 

9For disciples of semimartingale theory, a more direct way to see this representation of G ~ under 
Q is to check that the matrix-valued "sharp brackets" process (G ~, G ~) is preserved under a 
change of equivalent measure. Since this process is differentiable with respect to time and G ~ is a 
martingale under Q, there exists a Brownian motion /) under Q such that dG7 = ~to~t dJ~,. For 
details, see, for example, Jacod (1979). 

1°This predictability is proved in a written communication from Kai Lai Chung and Ruth 
Williams. See also Proposition 4 of Ohashi (1987), which is relevant since the Brownian filtration is 
left-continuous. 



1658 D. Duffle 

o ~ - m e a s u r a b l e .  In o t h e r  words ,  C pays  a l u m p  sum d i v i d e n d  of  H at  the  
s t o p p i n g  t ime  r. A s s u m i n g  o- has  r ank  d a lmos t  e v e r y w h e r e ,  (27)  impl ies  tha t  
the  un ique  a rb i t r age  f ree -p r ice  p rocess  V of  t he  add i t i ona l  secur i ty  satisfies 

1 E o _ ( 6 ~ H I ~ t  ) t < ' c  (28) v , = g ,  , , 

where  

T T 

 Q exp(f d t if ) d P  - ~ Ct" q~t d t  , 
0 0 

and  w h e r e  q~ is def ined  by  cr, q~ t = - t x t / 6  ,. 

In m a n y  app l i ca t ions ,  D = 0  and  H = g ( S ~ , ~ ' )  for  some  g : ~ N + l ×  
[0, T]----> R. W e  can t ake  it tha t  d S  t = ut d t  + o" t d B ,  for  some  dr i f t  p rocess  u. W e  
k n o w  tha t  S a = G a is a mar t i nga l e  u n d e r  Q,  so an app l i ca t ion  o f  I t o ' s  L e m m a  
impl ies  tha t  

d S  t = r t S  t d t  + o" t d[~, , (29) 

w h e r e / ~  is t he  S t a n d a r d  B r o w n i a n  M o t i o n  u n d e r  Q cons t ruc t ed  above .  R a t h e r  
than  us ing d Q / d P  expl ic i t ly  as in (28),  we can  in s t ead  use the  expres s ion  (29) 
for  dSt  u n d e r  Q to r e p r e s e n t  the  a r b i t r a g e - f r e e  p r ice  of  the  add i t i ona l  secur i ty  
in the  fo rm 

1 
V , =  E [6 g(ST, "r)lo ] , t < r . 

A s  a spec ia l  case,  suppose  N = d = 1, r t ~-/~ for  some  cons tan t  /~ and  
o- t = ~S ,  for  some  cons t an t  ~. By  I to ' s  L e m m a ,  S T = S O exp[(/~ - ~ 2 / 2 ) r  + / ~ ] ,  
y ie ld ing  the  a rb i t r age  f ree  ini t ial  pr ice  

Vo -- EQ[e-R g(S , 

T h e  bes t  k n o w n  e x a m p l e  is the  B l a c k - S c h o l e s  (1973) op t i on  pr ic ing  f o r m u l a ,  
for  which  ~- = T and  g ( x ,  T) = (x - 2 )  + is the  exp i ry  va lue  11 o f  a E u r o p e a n  call 
o p t i o n  with  exerc ise  pr ice  2. In  tha t  case ,  we have  the  expl ic i t  ca lcu la t ion ,  

11The option gives its owner the right, but not the obligation, to purchase the underlying asset at 
the exercise price ~ fixed in advance. If the underlying price X T at the expiry date T of the option 
exceeds the exercise price, the option holder will exercise the option for a net payoff of X T - ~. 
Otherwise, the option expires with no value. Thus g(x, T)  = (x - £)+ =- max(x - ~, 0). 
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known as the Black-Scholes option pricing formula, 

V0 = S0~(da) - e-kr~q ' (d l  - & V ~ ) ,  

where @ is the standard normal cumulative distribution function and 

1 / S e kr\ t~V~ 
d~- ~ W  l o g ~ - - ) +  ~ -  

The Black-Scholes formula was originally computed more tediously by a direct 
solution of a partial differential equation studied in the next subsection. 

If the dividend g(ST, r) is paid at a stopping time r chosen by the owner of 
the security, the absence of arbitrage implies that T is rationally chosen so as to 
maximize the market value of the security. That is, 

V 0 = sup E O [ ¢ g ( S ~ ,  ~-)]. 
T 

For instance, an American put option has payoff g(S , ,  .c) = ( £ -  ST) + at an 
exercise date ~- chosen by the holder of the option. Progress on this problem 
has been made in sources cited in Section 6.10. 

5. 11. The M a r k o v  case: the P D E  f o r  derivative asset prices 

This subsection characterizes arbitrage-free derivative asset prices in a Markov 
state space setting. We will derive a partial differential equation (PDE) for the 
derivative asset price, and then provide sufficient conditions for the existence 
of a smooth solution. Of course, the solution is exactly that defined by the 
conditional expectation (27), but the equivalent martingale measure Q is 
implicit, rather than explicit, in the PDE. Finally, we mention several tech- 
niques that are commonly used for solving the PDE, at least numerically. In 
practice, a Markov setting is the most commonly found in application because 
of its computational and econometric advantages. 

The state of the market model is defined by an ~K-valued process {X,} 
satisfying the stochastic differential equation 

d X  t = l,(Xt, t) d t  + ~l(Xt, t) dB '  , X o = x , 

where B is a Standard Brownian Motion in ~d and u : ~ × [0, T]--~ I~ r and 
~ : E r ×  [0, T]---~E K×d satisfy regularity conditions ensuring existence and 
strong uniqueness of solutions. Details can be found, for example, in Chung 
and Williams (1989); it is enough that both v and r /are  Borel measurable and 
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satisfy a Lipschitz 12 condition as well as a growth 13 condition, both with respect 
to their first (state) argument. 

The "primitive" securities are defined by functions (6e, 8, R)  on •K >~ [0, T] 
that satisfy regularity conditions to be added later. Specifically, the RN-valued 

( , , . .  function 9 ° defines the N "risky" security prices by ~(Xt ,  t) = S1 . , 
The corresponding N dividend processes are defined by D~ = J'0 ~(Xs ,  s )ds ,  
j /> 1. As usual, security number  zero has price identically equal to 1 and a 
dividend rate equal to the short rate process r, in this case given by r, = 
R(X, ,  t). For  convenience, we depart  from our  usual convention and take the 
cure dividend security pricing convention. 

For  a full general equilibrium setting with this form of price behavior,  
consider the equilibrium described by Proposit ion 6. Suppose the exogenous 
Markov process X determines the aggregate endowment  process e for that 
economy by e, = h(Xt,  t) for some smooth function h, and suppose each 
primitive security j ~  1 has a real dividend process of the form D~ = 
f0  (xs, s) ds, t < r and = for  (Xs, s) ds + gj(XT, for measurable fj 
and gj. Relation (16) and the calculation r, = - I ~ ( t ) / ~ ( t )  of the short rate 
imply that S t = (1, 6e(Xt, t)) and that r t = R ( X ,  t) for measurable functions 6 e 
and R. See Huang (1987) for extensive analysis of such a Markovian 
equilibrium. 

An additional security, to be priced, has a dividend process C defined by 
C, = So f (Xs ,  s) ds, t < T and C r = fo r f(X~, s) ds + g (Xr ,  T) ,  where f and g 
are real-valued functions on E r ×  [0, T] with properties to be specified. In 
many applications, such as the original Black-Scholes  model ,  the state process 
X is actually the security price process S itself. In that case, the additional 
security to be priced is called derivative because its dividends are functions of 
the underlying asset price process. For  example,  in the Black-Scholes  call 
option pricing model,  X is a geometric Brownian Motion describing the price 
of a given security (that has no dividends), and the derivative dividend process 
is defined by f = 0 and g(x, T)  = (x - 3?) +, where J? is the option's exercise 
price, as explained in Section 5.10. 

We presume that the dividend process C defined by f and g can be financed 
given (D, S),  and later return to provide sufficient conditions for this assump- 
tion, as well as several other assumptions made (rather loosely) along the way 
to a conjectured solution for the price process V. At  the final stage, w e c a n  
state a formal theorem. 

The absence of arbitrage implies restrictions on the price process V for C. 
Rather  than pursuing the existence of an equivalent martingale measure,  
however,  we will use the redundancy of C and the absence of arbitrage to 

~2There exists a constant k such that IIn(x, t) - "q(y, t)ll ~ kllx - yH for all x andy and all t. 
13There exists a constant k such that IIn(x, t)H ~< k(1 + Ilxll) for all x and all t. 
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derive a PDE in R E × [0, T] whose solution J, if sufficiently well behaved, 
evaluates V as V t = J ( X  t, t). 

Assuming that J is sufficiently smooth for an application of Ito's Lemm& 
V t = J ( X  t, t) implies that 

d V  t = ~ J ( X t ,  t) dt  + J~(Xt, t)r/(Xt, t) dBt  , 

where, for any smooth function H, 

~ H ( x ,  t) = Hx(x ,  t ) v (x ,  t) + Ht(x ,  t) + 1 tr[~?(x, t ) V H ~ ( x ,  t)*l(x, t ) ] ,  

(30) 

with subscripts indicating the obvious partial derivatives. 
By assumption, a trading strategy 0 finances the dividend process C. Barring 

arbitrage, this means that, for all t, 

• s ,  = v ,  (31)  

0,- S t = 00-S O + f 0 s dG  s - C t . 
0 

(32) 

and 

Substituting the various functions applied above, and denoting 0 ° = b, and 
(01 . . . . .  O N) = a t, relation (31) implies that 

a t • 5e(Xt, t) + b t = J (Xt ,  t ) ,  t E [0, T] .  (33) 

From (31) and (32), with the obvious notational shorthand, 

d V  t + f ( X t ,  t) dt  = a t • [6(Xt, t) dt + ~5t(Xt, t) dt + 5ex(Xt, t)•(Xt, t) dBt] 

+ b t R ( X , ,  t) d t .  (34) 

Ito processes are special semimartingales and can therefore be uniquely 
decomposed as the sum of a constant, a stochastic integral with respect to the 
Brownian motion B and an ordinary Lebesgue integral with respect to " t ime"  
t. This means that we can equate the coefficients of dB,  and dt separately in 
(34), using (30), to derive several necessary conditions for no arbitrage and the 
fact that 0 finances C. First, equating coefficients in dB t from (34) leaves 
(almost everywhere) 

a,b°x(Xt, t )r l (X t, t) = J~(Xt,  t)r/(X,, t ) ,  t E [ 0 ,  T] .  (35) 
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In order to find a t satisfying (35), it is enough (and close to necessary) that b°x 
is everywhere of rank K, in which case 

a, = J~(X,, t)f~x(Xt, t)T[sex(Xt, t)Sfx(X,, 07] -1 . (36) 

Next, (33) and (36) imply that 

b t = J ( S t ,  t) - J~(S,, t)~°x(St,  t ) [ ~ x ( S t ,  t )~x (X  . t)T]-~Se(X,, t ) .  (37) 

Finally, equating the coefficients of dt in (34), using (36) and (37), leaves 

R(Xt ,  t)J(X,,  t) = Jx(X,, t)lx(X,, t) + J~(X,, t) 

+ ½ tr[n(X,, t)TJxx(X,, On(X,,  t)] + f (X , ,  t ) ,  (38) 

where IX : ~ :  x [0, T] ~ R K is defined by 

Ix(x, t) = Sx(x, t)T[sex(X, t)fPx(X, t) TI- ' [R(x ,  t)Se(X, t) -- 6(X, t) -- oWt(X, t) 

-- ½ q(x ,  t ) ] ,  (39) 

t) t),7(x, t)]. and where q/(x, t) = tr[~/(x, • J 
Of course, (38) is automatically satisfied if J solves the parabolic PDE in 

R/~ x [0, T] given by 

R(x,  t)J(x, t) = J~(x, t)Ix(x, t) + Jr(x, t) 

+ ½ tr[n(x, t)TJxx(X, t)rl(X, t)] + f(X, t ) .  (40) 

The boundary condition imposed on (40) by equating the cum dividend final 
market value J(Xr ,  T) with the final payoff g(Xr,  T) is 

J(x, T) = g(x, T ) ,  x E  ~K.  (41) 

We can immediately conjecture a solution to (40), (41) by applying Ito's 
Lemma. For each (x, t )E  RKX [0, T], assuming the expectation is well de- 
fined, let 

T 
r ~  

t 

where x., {Ys : t ~ < s ~ T )  solves 
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f X , t  yx,t x +  ix(Y~ , r )  d r +  r/( "" = Y ,  , r ) d B ,  , 
t t 

and where 
$ 

 o(s) = f x,  R( Y ," , r) dr  
t 

s ~  t ,  (43) 

A unique solution to (43) exists under the usual conditions on ix and ~7 
mentioned above. If J is indeed well defined by (42) and smooth enough for an 
application of Ito's Lemma, it follows immediately from Ito's Lemma that J 
solves the PDE (40) with boundary condition (41). This is often called the 
Feynman-Kac  solution of the PDE. 

All of the above calculations can be justified with known conditions on the 
functions (ix, r/, 6, R, f, g) under which (42) is well defined and generates the 
unique solution J to (40), (41) satisfying a growth condition in the state 
variable. Typical alternative sets of conditions are due to Dynkin (1965), 
Freidlin (1985) and Krylov (1980). The following result is representative. 

Krylov's  Theorem.  Suppose ix and ~ satisfy a Lipschitz condition in the state 
variable, and that all o f  the functions ( t , ,  77, 6, R, f, g) are Borel measurable, 
have two continuous derivatives with respect to the state variable, and that the 
functions and their first and second derivatives with respect to the state variable 
satisfy a growth condition with respect to the state variable. Then (42) defines a 
solution J to the P D E  (40), (41), the unique solution satisfying a growth 
condition with respect to the state variable. 

I f  ~ v  has eigenvalues bounded away from zero (or "uniform ellipticity"), 
Krylov's smoothness conditions can be weakened significantly. Our prior 
analysis now justifies the following claim. 

Corollary. Suppose ( ( D , C ) , ( S , V ) )  admits no arbitrage, rank(b°x)=K 
everywhere, and (ix, ~7, 6, R, f,  g) satisfies Krylov's conditions. Then J is well 
defined by (42), C is financed by the trading strategy (b, a) defined by (36) and 
(37), and the price process V o f  C is given by V t = J(X, ,  t). 

As an example, we can take the case 6 = 0 and 5¢(x, t) = x, in which case 
Ix(x, t) = R(x ,  t)x. Then 

T 

J \  t '  

0 

(44) 
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where Y is the "pseudo-price process" defined by the stochastic differential 
equation 

dYt=r(Yt,  t)Ytdt+tT(Yt, t)dBt,  Y0 = X0, (45) 

and where ,p(t) = J'0 r(Ys, s) ds. Of course, the distribution of the pseudo-price 
process Y under P is the same as that of the price process S itself under the 
equivalent martingale measure Q, as shown by comparing (29) and (45), and 
the solution given here for V 0 is exactly that obtained in Section 5.10. 

In particular, we can easily recover the Black-Scholes formula in the case 
K = 1, R(x, t) = R, f = O, g(x, t) = (x - a?) + and tr(x, t) = ~x, where/~, 2? and t~ 
are positive constants. It follows from (44) that 

v0 = E[e -kT(VT -- g ) + ] ,  (46) 

where YT = X0exp[(R-t~2/2) T +  &B~]. Relation (46) defines the Black- 
Scholes option pricing formula, as stated in the Section 5.10. Of course, the 
payoff function (x, t ) ~ ( x - £ ) +  is not as smooth as required by Krylov's 
conditions, being non-differentiable at £, but those conditions can be extended 
to incorporate a function g that is continuous with finitely many pieces that are 
smooth in Krylov's sense, yielding a solution J that is smooth in R/< × [0, T), 
but not of course at T. 

5.12. Approximate solution of the arbitrage PDE 

The Black-Scholes option pricing formula is one of several closed-form 
solutions available for arbitrage pricing of particular derivative securities in this 
setting. (Some of the other examples are cited in Section 6.10.) As a practical 
technique for pricing many different forms of derivative securities, however, 
one typically relies on approximate solutions, usually obtained with the aid of a 
computer. Commonly used algorithms involve Monte-Carlo simulation of the 
expectation in (43) or direct numerical solution of the PDE (40), say by 
finite-difference or finite-element algorithms (see Section 6.10 for references). 
For simple problems based on a geometric Brownian price process, solutions 
are also frequently estimated by approximating the "pseudo-price" process Y 
with a binomial process, calculating the discrete analogue to (42) by a 
backward recursion, and then improving the approximation error by reducing 
the length of a trading period. The latter approach was popularized by Cox, 
Ross and Rubinstein (1979), who showed by an explicit calculation (involving 
the central limit theorem) that a natural binomial approximation of the price 
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process X leads to a sequence of option prices converging, with the number of 
trading periods per unit of time, to the Black-Scholes formula. 

5.13. Extensions o f  the PDE method 

The same PDE approach can be extended so as to allow T to be replaced by a 
stopping time z defined as the hitting time of (Xt, t) on some regular set, or 
"liquidation boundary." Dynkin (1965), for example, shows sufficient condi- 
tions on the coefficient functions and the liquidation boundary for an analogue 
to Krylov's Theorem. 

In principle, although there are few available results, the PDE (40) also 
extends to the pricing of securities that the holder may exchange at any time 
for a pre-arranged liquidation value, the classic example being an American 
put option, whose liquidation value is  the excess (if any) of the option's 
exercise price over the current price of the underlying security. Recent 
literature on the American put is cited in Section 6.10. Although it is 
unrealistic to expect a closed-form solution for the American put, there has 
been much progress in defining the optimal liquidation boundary in the 
Black-Scholes setting. The optimal liquidation boundary is that yielding the 
supremum arbitrage-free value for the derivative security. The PDE (40), with 
the associated free boundary, is often termed a Stefan problem. 

The PDE approach can also be extended in like generality to the pricing of 
continuously re-settled securities, such as futures and futures options, as shown 
by Black (1976), Cox, Ingersoll and Ross (1981b) and Duffle and Stanton 
(1988). 

6. Further reading 

This section points to additional sources of reading on the topics presented in 
this chapter, as well as a range of literature on related topics that have not 
been reviewed. 

6.1. General references 

There are a number of monographs presenting the topics of this chapter at 
various levels, including Fama and Miller (1972), Mossin (1973), Fama (1976), 
Ingersoll (1987), Jarrow (1988), Huang and Litzenberger (1988) and Duffle 
(1988). Survey articles include those of Kreps (1979), Merton (1987), 
Rothschild (1986), Marimon (1987), Radner (1988), DeMarzo and Van Nuys 
(1988) and Constantinides (1989). 
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6.2. Finite-dimensional general equilibrium in security markets 

Chapter 30 reviews the literature on existence, optimality, and multiplicity of 
finite-dimensional security-market equilibria. We will therefore limit ourselves 
here to mentioning, in addition to Arrow (1953), the key contributions of 
Debreu (1953), Radner (1967, 1972) and Hart (1975) in formulating the 
central issues. For existence of equilibria with references defined directly on a 
linear space of portfolio choices, see Hart (1974), Nielson (1986b) and Werner 
(1987). 

6.3. Spanning and the behavior of the firm 

The Modigliani and Miller (1958) results on the irrelevance of financial policy 
are given a general finite-dimensional treatment in incomplete markets by 
Duffle and Sharer (1986) and DeMarzo (1988). Financial policy is relevant 
under almost any departure from the neo-classical assumptions, such as taxes 
[Miller (1977)], asymmetric information [Jensen and Meckling (1976), Ross 
(1977), Myers and Majluf (1984), Duffle and DeMarzo (1988)], introduction of 
options on the firm [Detemple, Gottardi and Polemarchakis (1989)] or bank- 
ruptcy [Hellwig (1981)]. 

There is not yet a generally accepted paradigm for the production decisions 
of the firm without some sort of spanning condition. Arrow and Debreu (1954) 
merely took it as an axiom of competitive behavior that firms maximize their 
market value. With complete spanning, of course, shareholders unanimously 
support this objective, since it generates maximal budget-feasible choice sets 
for shareholders. This unanimity result was extended by Diamond (1967) and 
Ekern and Wilson (1974) to the case of security markets that span the set of 
feasible dividends of the firm. Makowski (1983) pointed out that this spanning 
condition is automatically satisfied if shareholders act as though the span of 
security markets is fixed, independently of the firm's choice. Duffle and Shafer 
(1986) showed that, if shareholder's do not treat the span of markets as fixed, 
then, generically, all but at most one shareholder objects to maximizing market 
value. Of course, the very objective of value maximization is not well defined 
unless firms have conjectures concerning the value of securities outside of the 
current span of markets. Duffle and Shafer (1986) show generic existence of 
equilibria when conjectures are defined by state-prices, in the sense of Section 
3.1. Dr6ze (1974), instead, takes it as an axiom that firms maximize according 
to state prices defined by a weighted sum of agents' marginal rates of 
substitution (given by the vector VUi(ci), in the notation of Section 3.2), with 
weights proportional to shareholdings. This objective generates constrained 
Pareto optimal allocations with a single spot consumption commodity, although 
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Geanakoplos, Magill, Quinzii and Dr~,ze (1987) overturn this optimality 
property with multiple spot commodities. 

Further characterization of the theory of the firm in incomplete security 
markets is provided by Aghion and Bolton (1986), Allen and Gale (1987), 
Bester (1982), Brealey and Myers (1984), Burke (1986), DeMarzo (1987), 
DeMarzo and Duffle (1988), Fama (1978), Gevers (1974), Grossman and Hart 
(1979, 1987), Grossman and Stiglitz (1976), Harris and Raviv (1987), Hart 
(1977, 1979, 1987), Jensen and Long (1972), Kreps (1979), Leland (1973, 
1974, 1978), Marimon (1987), Merton and Subrahmanyam (1974), Myers 
(1984), Radner (1974), Satterthwaite (1981) and Stiglitz (1972, 1974, 1982)o 

6.4. Mutual funds and factors in asset prices 

The CAPM is a single-factor pricing model; the factor is the market portfolio. 
The CCAPM is also a single-factor model; the factor at each point in time is 
the growth rate of consumption over the next "instant." A general multi- 
period single-factor model always applies under mild regularity conditions, as 
shown, for example, by Hansen and Richard (1987); the general problem is 
econometric identification of the factor. The CAPM is based on the sufficiency 
of two mutual funds for Pareto optimality; further sufficient conditions are 
given by Cass and Stiglitz (1970) and Ross (1978b); additional recommended 
readings are the papers by Rubinstein (1974), Nielson (1986a) and Stiglitz 
(1989). 

Ross (1976a) described a multi-factor asset pricing model called the APT; 
sufficient conditions are provided by Huberman (1982) and Connor (1984). 
Approximate multi-factor models are characterized by Chamberlain (1983b) 
and Chamberlain and Rothschild (1983). 

6.5. Asymmetric information 

Most of the available asset pricing results with asymmetric information are 
based on strong parametric assumptions, as in Admati (1985), Bray (1981), 
Carino (1987), Dothan and Feldman (1986), Gennotte (1984) and Grossman 
(1976). Hindy (1989) presents a non-parametric but "bounded rationality" 
model. 

Examples of the literature on asset valuation with a specialist market maker 
and asymmetric information include the work of Admati and Pfleiderer (1988), 
Glosten and Milgrom (1985) and Haggerty (1985). This is a very small sample; 
Bhattacharya and Constantinides (1989) have edited a selection of readings on 
the role of information in financial economics. 



1668 D. Duffle 

6.6. Equilibrium asset pricing models 

Further examples of asset pricing models under the additive separable prefer- 
ence assumptions of Sections 3.2, 3.3 and 4.3 include the papers of Back 
(1988), Breeden (1986), Breeden and Litzenberger (1978), Grauer and Litzen- 
berger (1979), Kraus and Litzenberger (1975), and Merton (1973a). 

By relaxing the additively separable model of preferences described in 
Sections 3.3 and 4.3, a range of alternative asset pricing formulas can be 
achieved. Asset pricing models based on alternative preference specifications 
have been described by Bergman (1985), Constantinides (1988), Duffle and 
Epstein (1989), Epstein and Zin (1989a) and Sundaresan (1989). Hindy and 
Huang (1989) formalize the notion of intertemporal substitution of consump- 
tion, relaxing the continuous-time assumption of consumption at rates. 

6. 7. Extended notions of  spanning 

Models of general equilibrium based on multi-period notions of spanning have 
been developed by Friesen (1974), Kreps (1982) and Duffle and Huang (1985), 
which introduces the dynamic spanning condition of Section 4. For technical 
results on the closely associated problem of "martingale multiplicity," the 
reader is referred to Clark (1970), Davis and Varaiya (1974), Kunita and 
Watanabe (1967) and Jacod (1977). 

Static notions of spanning based on the formation of options and compound 
options are due to Ross (1976b), Breeden and Litzenberger (1978), Brown and 
Ross (1988), Jarrow and Green (1985) and Nachman (1988). 

6.8. Asset pricing with "frictions" 

The majority of this chapter is based on the costless formation of unrestricted 
portfolios. For asset-pricing models incorporating one or more of transactions 
costs, taxes, cash-in-advance constraints, credit constraints, and so on, please 
see Back (1986), Back and Pliska (1986), Constantinides (1986), Dybvig and 
Huang (1988), Grossman and Laroque (1987), Lucas and Stokey (1987), 
Leland (1985), Prisman (1985), Ross (1987), Svensson (1988), Scheinkman 
and Weiss (1986) and Townsend (1984). Svensson (1988) and Scheinkman 
(1989) discuss the limited results available on asset pricing results that explicitly 
incorporate the incomplete markets constraint. 
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6.9. Technical references on cont inuous-t ime models  

Brownian motion was actually formulated by Bachelier (1900) as a model of 
stock prices. On diffusion processes and stochastic differential equations~ 
standard references include Arnold (1974), Freedman (1983), Friedman 
(1975), Gihman and Skorohod (1972), Ikeda and Watanabe (1981), Karatzas 
and Shreve (1988), Krylov (1980) and Lipster and Shiryayev (1977). More 
abstract treatments of stochastic integration are provided by Chung and 
Williams (1983), Dellacherie and Meyer (1978, 1982), Durrett (1984), Ethier 
and Kurtz (1986), Jacod (1979), Kopp (1984) and Protter (1989). The 
central results on the behavior of semimartingales under a change of prob-o 
ability measure are given by Girsanov (1960), Lenglart (1977) and Memin 
(1980). 

The technical foundations of continuous-time security prices and trading in 
an abstract setting has been developed in a series of papers by Harrison and 
Kreps (1979), Harrison and Pliska (1981, 1983), Huang (1985a,b) and Pliska 
(1982). 

6.10. Derivative asset pricing 

Varian (1987) is a useful introductory exposition of the arbitrage notion of 
derivative asset pricing. The literature that applies the arbitrage approach to 
the pricing of derivative securities (that is, securities whose dividends are 
functions of the prices or dividends of other securities) is far too voluminous to 
even list here. The most famous example is the option pricing formula of Black 
and Scholes (1973), which is given a detailed treatment in the book by Cox and 
Rubinstein (1985). Other prominent examples are the papers by Breeden and 
Litzenberger (1978), Brennan and Schwartz (1977, 1979), Carr (1987), Cheng 
(1987), Cox, Ingersoll and Ross (1981a,b), Cox and Ross (1976), Cox, Ross 
and Rubinstein (1979), Duffle and Stanton (1989), Geske (1979), Goldman, 
Sosin and Gatto (1979), Heath, Jarrow and Morton (1987), Hemler (1987), 
Ho and Lee (1986), Hull (1989), Ingersoll (1977), Johnson (1987), Margrabe 
(1978), Merton (1973b, 1974, 1976, 1977), Mfiller (1985) and Richard (1978). 
Numerical solution methods are described by Boyle (1977), Jones and 
Jacobs (1986), Miltersen and Nielsen (1989) and Geske and Shastri (1985). 
Progress on the pricing of American options can be found in Geske and 
Johnson (1984), Parkinson (1977), Jamshidian (1989), Carr and Myneni 
(1989), Carr, Jarrow and Myneni (1989), Barone-Adesi and Elliott (1989) and 
Kim (1989). 
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6.11. Infinite horizon recursive models 

The model in Section 3.3 is usually presented in a Markov setting, as in Lucas 
(1978) and Prescott and Mehra (1980). The determination of an equilibrium is 
more interesting with production, as shown by Brock (1979, 1982). The 
monograph by Stokey and Lucas (with Prescott) (1989) is a good source for 
details. 

6.12. Estimation 

The many papers on econometric estimation of the asset pricing models 
presented in this chapter include those of Breeden, Gibbons and Litzenberger 
(1986), Brown and Gibbons (1985), Epstein and Zin (1989), Hansen (1989) 
and Hansen and Singleton (1982, 1983). Singleton (1987) surveys some of the 
econometric work on asset pricing models. 

Appendix: Stochastic integration 

This appendix is provided for the convenience of those readers interested in 
the definition of stochastic integration and the underlying technical details. 
Before beginning, however, we assure the reader that, limiting attention to a 
large subclass of integrands (0) and integrators (G),  the stochastic integral 

0 dG is nothing more than the limit in probability of the obvious sum, 

k - 1  

jE  ° o,,( c,,+, - c,), 

as the maximum length of a time interval t j +  1 - -  t j  converges to zero. For this 
limited but easy definition of the stochastic integral, see Protter (1989). 

As primitives, we have a probability (g2, ~-, P),  a time interval 3- = [0, T] or 
3-=  [0, oo), and a family ~: = {o%,: t E 3-} of sub-o--algebras of 0% satisfying the 
usual conditions: 
(1) o% t C o% s whenever s i> t (increasing); 
(2) o% 0 includes all subsets of zero-probability events in o% (augmentation); 
(3) for all t E  3-, ~ = ~s>t f f s  (right-continuity). 

A stochastic process is a family X = (X,: t @ 3-} of random variables. Unless 
otherwise stated, we take a stochastic process to be real-valued. A process X is 
adapted if X t is o%,-measurable for all t. An adapted process X is integrable if 
E(Ixt[ ) is finite for all t. A martingale is an adapted integrable stochastic 
process X with the property: 
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E(X,]~) = & ,  a.s. whenever  s ~< t ,  

where E ( . i ~ )  denotes conditional expectation. 

Example (Brownian  mot ion) .  A stochastic process B on some probability 
space is a Standard Brownian Motion if: 

(a) for any 0 ~< s < t < ~, B, - B s is normally distributed with zero expecta- 
tion and variance equal to t - s; 

(b) for any 0 ~< t o < t 1 < - . .  < t t < ~, the random variables {B(t0) , B(t~)  -- 
B(tk_l): 1 <<- k <~ l},  are independent;  and 

(c) P ( B  o = O) = 1. 
For d E N ,  a Standard Brownian Motion in R d is an Rd-valued process 
(B  (1), . . . ,  B (d)) made up of d independent  Standard Brownian Motions. 

It is normal to use a filtration U: with respect to which the Standard Brownian 
Motion B is a martingale. For  example, we could take ~, to be the it-algebra 
generated by { Bs: 0 <~ s ~< t} as well as the subsets of zero-probability events in 
~.  The resulting filtration U: = {o~,: t E 3-} is called the s tandard fi l tration of B. 
This ends the example. 

A process X is left-continuous if limtv ~ X,  = X ,  for all s almost surely. The 
predictable o--algebra on £2 × 3 - i s  that generated by the left-continuous 
adapted processes. A stochastic process 0 is predictable if 0 : O × if---> R is 
measurable with respect to the predictable o--algebra. In continuous-time 
settings, it is natural to restrict agents to predictable strategies. 

A martingale X is square-integrable if {X~: t ~ 3-} is an integrable process. 
The quadratic variation of a square-integrable martingale S is the unique 
increasing process denoted  [S] such that, for each t @ J-, 

2 n 1 

[S,]= lim ~ [S( t~+l ) -S( t~) ]  2 , 
n ~  i = 0  

where t~' = i2-nt for 0 ~  < i ~<2". [The limit is in the space L I (P ) .  ] Roughly 
speaking, [St] is the limit of squared changes of S during [0, t], where the 
length of time intervals over  which the changes are measured shrinks to zero. 
For a Standard Brownian Motion B,  [Bt] = t almost surely for all t. 

Let  M 2 denote  the space of square-integrable martingales. For each S ~ M 2, 
let L2[S] denote the space consisting of any predictable process 0 with 

t 

E(I0:  for a,, in 
0 
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(Since [S] is increasing and 0, 2 is positive, the integral 50 0, z dlS], is always well 
defined, although possibly + %  for each t and each w in O as a Stieltjes 
integral.) We will next define a stochastic integral J" 0 dS for S ~ ~ z  and 
0 E L2[SI . 

We first take the case 3--= [0, T]. A stochastic process 0 is elementary if in 
each state 0o E 12 there is partition {(0, q], (t~, t2] . . . . .  (t k, T]} such that 0 is 
constant over each set in the partition. That is, an elementary process is 
piecewise constant and left-continuous. The stochastic integral f0 ~ 0 t dS t is 
easily and intuitively defined for any elementary process 0 as a sum of the form 

T 

foldS,= E 
0 ( k :  tk<-T } 

o ( t ~ _ , ) I s ( t , )  - s(t,_,)]. 

This defines a process y 0 dS = {J'o °T dS~: t C  3-}. Let L2[S]~ = {0 E L2[S]: 0 
is elementary}. The following lemma can be proved as an exercise. 

Lemma. I f S ~ M  2andO@L2[S]~,  then S O d S @ ~ 2 .  

We next define a norm 11" 11~2 o n  M 2 (that gives M 2 the structure of a Hilbert 
space) by 

IlSll~2 = V v a r ( S 0 ,  s ~  ~ 

Likewise, for each S @ j/2,  a semi-norm II'lls is defined on L2[S] by 

T [ ( f  ,11,2 
II011,= E 0~dlS] , ) ]  , OEL2[S]. 

0 

It turns out that 

I[01ls= rOdS ~2, O~L2[SI~, S~/~2, 

which defines an isometry that can be extended to L2[S], allowing us to define 
the stochastic integral f 0 dS for any 0 ~ L2[S] as follows. 

Theorem (definition of stochastic integration). For any S E ~ 2  and any 
2 • - 2 0 E L [S], there extsts a sequence {On} m L [S]~ such that II0n - 011 ~ o .  There 

. . . .  2 o , 
ts a untque martmgale m ill , denoted f 0 dS, such that for any such sequence 
{0,}, {j" 0 ndS} converges in 11-11~2 to y o as. 
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This definition of the stochastic integral is extended from i f  = [0, T] to 
i f  = [0, ~) by defining J" 0 dS on [0, ~) via its restriction to [0, T] for each T. 
While the above definition is perfectly satisfactory for many applications, it 
must be extended to handle more general processes 0 and S. In order  to do 
this, we next define the most general class of such S for which a stochastic 
integral can be defined with reasonable properties;  this is the class of semi-  
martingales. We first need a few additional definitions. 

A i f -valued random variable ~- is a stopping time if the event {to 
g2: r(to) ~< t} is in o%t for all t in if. For an adapted process X and stopping time 
z, the s topped process  X ~ is defined by X~(t)  = X ( t ) ,  t <~ z, and X~(t)  = X('r) ,  
t > ~'. An adapted process X is a local martingale if there is a sequence { % } of 
stopping times with % ~< %+, and limn__,~ % = ~ almost surely such that X ~" is a 
martingale for all n. (In particular, a martingale is a local martingale.) 

A stochastic process X is a f inite variation process if X = A - B, where A 
and B are adapted processes that are increasing (almost surely). A stochastic 
process S is a semimart ingale  if S = M + A for some local martingale M and 
finite variation process A. 

A stochastic integral ~ 0 dS is defined, for predictable 0 and semimartingale 
S, if there is a decomposit ion S = M + A of S as the sum of a local martingale 
M and a finite variation process A such t h a t  j" 0 dM and J" 0 dA are well 
defined. In that case, J ' 0 d S = J ' 0 d M +  f 0 d A  does not depend on the 
decomposition. While we do not define ~ 0 dM and J" 0 dA explicitly, the 
former  is a natural extension of the integral f 0 dM for M C ~ 2  and 0 E 
L2[M], while j'0 r 0 t d A ,  is the classical Stieltjes integral for each to G O. 

For  any semimartingale S, we let L ~[S] denote the set of predictable 0 such 
that the stochastic integral .~ 0 dS is a well-defined and integrable process. 
Given an ~N-valued process S = ( S ' , . . . ,  S N) for which S = is a semimartingale, 
n ~ { 1 , . . . , N } ,  we can define 0 = ( 0 1  , . . . , 0  N ) @ L I [ S ]  and .~0dS by a 
natural extension of the one-dimensional case. For  a precise definition, see 

N O n Jacod (1979). One should think of ~ 0 dS as En= 1 f da n, although, in 
pathological cases, this is only true in a limiting sense. (If  I: is the standard 
filtration of a Brownian motion,  J" 0 dS = E~_, ~ 0 ndS".)  Prot ter  (1989) is an 
excellent introduction to stochastic integration. 
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