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I. INTRODUCTION

This paper makes a modest observation concerning a new formulation of the

consumption and portfolio choice model of Merton (1971), with transactions costs.

Suppose the agent observes his or her current wealth only when making a trans-

action, that transactions are costly, and that the decision to transact can be made

at any time based on all current information. If, at each transaction, the agent

is charged a fixed fraction of current wealth, the optimal interval of time between

transactions is fixed, independent of time and current wealth. We call this a discrete-

continuous time formulation.

Since this paper was submitted for publication, Davis and Norman (1988) have

presented an elegant and natural solution of Merton’s problem with proportional

transactions costs. As far as the volume and timing of trade, of course, the direct

continuous-time models of Merton as well as Davis and Norman are not robust to

lump sum transactions costs. They both call for an infinite number of transactions

during an arbitrarily small interval of time. Our simple solution, on the other hand,

is based on lump sum transactions costs proportional to portfolio value, a restrictive

assumption. For further results on continous-time portfolio choice with transactions

costs, see Leland (1985) and Constantinides (1986).

This paper is organized as follows. Section II describes the setting. In general,

the optimal intervals of time between investment decisions are not independent of

current wealth. Nevertheless, it is shown in Section III that the optimal intervals

are equal constants when the investor is of constant relative risk aversion and there

are “portfolio management fees” as well as proportional transaction costs. The

discrete-time theory can therefore be thought of as a special case of the continuous-

time theory with transactions costs. Section IV extends the model to a market with

m risky securities, and an analogous conclusion follows.

II. MODEL

Uncertainty. Let B = {Bt : t ≥ 0} be a Standard Brownian Motion on its

standard filtered probability space (Ω,F ,F,P). The filtration F = {Ft : t ≥ 0} of

σ-algebras represents information revealed by the Brownian Motion.
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Security markets. There are two securities in the economy: one riskless, one

risky. The risky security has a strictly positive price process S(1) and a cumulative

dividend process D that satisfy

S
(1)
t +Dt = 1 +

∫ t

0

S(1)
s µds+

∫ t

0

S(1)
s σ dBs, t ≥ 0, (1)

for given positive scalars µ and σ. The price process of the riskless security is

S
(0)
t = 1 +

∫ t

0

rS(0)
s ds, t ≥ 0, (2)

for some interest rate r > 0.

There is a medium of exchange and numeraire in the economy, say money.

Only money is exchangeable for consumption; this is the so-called Clower constraint.

Money cannot be borrowed, it can only be acquired by selling the securities. Clearly,

there is no investment demand for money because there exists a riskless security

with a positive interest rate. Money holdings at time t are denoted Mt. One unit of

money can be exchanged at any time for one unit of consumption. For simplicity,

the investor is assumed to receive no further income from non-capital sources, and

starts with the initial stock of money M0 = 0.

A (portfolio) transaction consists of withdrawing wealth in the form of money

from the investment in securities and adjusting the portfolio of securities. Trading

opportunities are available continuously in time, but not costlessly.

Transactions costs. Transactions costs are incurred when information is processed

and a portfolio transaction is made. There are two forms of transactions costs:

withdrawal costs and portfolio management fees. Withdrawal costs are assumed

to be affine; that is, the investor pays fixed plus proportional costs of the amount

of money withdrawn. In addition, the investor pays a fraction ϵ > 0 of the total

wealth in securities at the beginning of each interval, a portfolio management fee.

The portfolio management fee is meant to include the cost of adjusting the portfolio

and the cost of processing information.

For example, if the total wealth in securities immediately before a transaction

at time t is Xt and an amount of money Wt is withdrawn, the total transactions

cost is aWt + b+ (Xt −Wt)ϵ, for non-negative constants a, b, and ϵ.
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Information. We can interpret Ft as the information available at time t. Given

the structure of transactions costs, consumption and investment decisions are, how-

ever, optimally made at intervals. During each interval there is no transaction. All

interim dividends of the risky security are re-invested continually in the risky secu-

rity, and all interim interest income is re-invested continually in the riskless security.

Since there is a lump sum cost for processing each transaction, a continually varying

trading strategy would involve infinite costs. The investor therefore chooses (possi-

bly random) instants of time at which to process information and make consumption

and investment decisions. In other words, even though information is available con-

tinuously through the filtration {Ft : t ≥ 0}, the investor, in the presence of decision

costs, chooses to receive information via a controllable filtration H = {Ht : t ≥ 0},
with Ht = Fτk , t ∈ [τk, τk+1), where τk is a Hτk−1

-measurable stopping time at

which the k-th transaction occurs. The filtration H is controllable in the sense that

the investor is allowed to choose any sequence τ = {τk : k = 1, 2, 3, . . .} of such

transaction times with τ0 ≡ 0. Let T = {Tk ≡ τk+1 − τk : k = 1, 2, 3, . . .} denote

the corresponding sequence of transaction intervals . Finding an optimal stopping

policy τ is clearly equivalent to finding an optimal interval policy T .

Preferences. The consumption space C for the investor consists of positive H-

adapted consumption processes C = {Ct : t ≥ 0} satisfying
∫ t

0
Cs ds < ∞ almost

surely for all t ≥ 0 and

U(C) ≡ E

[∫ ∞

0

e−ρtu(Ct) dt

]
< ∞, (3)

where ρ is a strictly positive scalar discount factor and u(c) = cα/α for some

α ∈ (0, 1). The investor has the utility function U defined by (3).

Feasible policies. Let Vτk be the market value of the investment in the risky

security chosen at time τk. Let T denote the space of sequences of strictly positive

transaction intervals; W, the space of positive H-adapted money withdrawal pro-

cesses; and V, the space of H-adapted investment processes for the risky security.

A policy is a quadruplet (T, V,W,C) ∈ T×V ×W ×C.

We need to characterize budget feasible policies. Given a policy (T, V,W,C),
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the money holding at any time t is

Mt =
∑

{k: τk≤t}

[
(1− a)Wτk − b

]
−
∫ t

0

Cs ds. (4)

Let X(τk) denote the total wealth invested in securities at time τk, before

the k-th transaction. Of this amount, W (τk) is withdrawn, and a fraction ϵ of

the remainder, X(τk) − W (τk), is paid in management fees, leaving Z(τk) = (1 −
ϵ)[X(τk) −W (τk)] for re-investment. Of this, V (τk) is invested in the risky asset,

with a per-dollar payback of Γk+1 at the next transaction date, including continually

reinvested dividends. Based on (1) and Ito’s Lemma,

Γk+1 = exp

[(
µ− 1

2
σ2

)
Tk + σ(Bτk+1

−Bτk)

]
. (5)

The remainder, Z(τk)−V (τk), is invested risklessly at the continuously compound-

ing interest rate r. The total wealth invested at the time of the (k+1)-th transaction

is therefore

X(τk+1) = [Z(τk)− V (τk)]e
rTk + V (τk)Γk+1

= (1− ϵ)[X(τk)−W (τk)]e
rTk + V (τk)(Γk+1 − erTk)

(6)

Since M0 = 0, X0 is the initial wealth endowment for the investor. The policy

(T,W, V,C) is budget feasible if the associated invested wealth process X of (6) and

money process M of (4) are non-negative. If b ̸= 0, the appropriate definition of the

non-negative wealth constraint is a bit delicate, but all of our formal results apply

to the case b = 0.

The control problem for the investor is thus summarized by:

U(X0) ≡ sup
(T,W,V,C)∈Φ

E

[∫ ∞

0

e−ρtu(Ct) dt

]
, (7)

where Φ denotes the space of budget feasible policies.

Technical conditions. In solving the control problem, we will restrict the param-

eters (µ, σ, ρ, α, a, b, ϵ) in order to guarantee the existence of a solution. A precise

restriction will be stated when necessary.
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III. MAIN RESULTS

Because there is no investment demand for money, it is not optimal for the

investor to withdraw more money than the amount needed for consumption before

the next transaction. This is proved as Lemma 1 in Appendix 1. An optimal policy

must therefore satisfy∫ τk+1

τk

Ct dt = (1− a)Wτk − b, k = 1, 2, 3, . . .

This implies that Mτk = (1 − a)Wτk − b for all τk. The control problem (7) is

therefore equivalent to

U(X0) ≡ sup
(T,W,V,C)

E

[∫ ∞

0

e−ρtu(Ct) dt

]
, (8)

subject to ∫ τk+1

τk

Ct dt = (1− a)W (τk)− b, k = 1, 2, 3, . . . , (9)

X(τk+1) = (1− ϵ)(Xτk −Wτk)e
rTk + Vτk(Γk+1 − erTk) ≥ 0, k = 1, 2, 3, . . . (10)

Since

E

[∫ ∞

0

e−ρtu(Ct) dt

]
= E

[ ∞∑
k=1

e−ρτk

∫ τk+1

τk

e−ρ(t−τk)u(Ct) dt

]
,

we can solve (8)-(10) in two steps. In the first step, we solve the control problem for

consumption between transaction intervals given any feasible (T,W, V ). This is a

deterministic continuous-time control problem because C is adapted to the filtration

H.

For an investor with horizon t and initial money endowment y, the deterministic

control problem for consumption is

K(t, y) ≡ sup
{Cs: 0≤s≤t}

∫ t

0

e−ρsu(Cs) ds (11)

subject to ∫ t

0

Cs ds ≤ y. (12)
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In the second step, the investor chooses a budget feasible (T,W, V ) to maximize

E
[∑∞

k=1 e
−ρτkK(Tk,Mτk)

]
. This step is similar to a stochastic discrete-time control

problem except that the sequence T of transaction intervals is controllable.

We solve the deterministic control problem (11)-(12) in Appendix 1 and report

the corresponding value function K in Lemma 2.

Lemma 2. The optimal value function K(t, y) for the deterministic control problem

(11)-(12) is

K(t, y) =

(
1− α

ρ

)1−α [
1− exp

(
−ρ

1− α
t

)]1−α
1

α
yα. (13)

Hence, for k = 1, 2, 3, . . .,

K(Tk,Mτk) = (1− a)α
(
1− α

ρ

)1−α [
1− exp

(
−ρ

1− α
Tk

)]1−α
1

α
(Wτk − b1)

α ,

where b1 = b
1−a > 0.

proof: Please refer to Appendix 1.

Since α and a are less than one, we can leave out the term (1−a)α(1−α)1−αρα−1

in the following discussion. When b = 0, the coefficient a of proportional withdrawal

costs does not affect the consumption-portfolio decision. This is a special feature

of investors with constant relative risk aversion.

In general, the optimal transaction intervals are random, with the length of

each interval depending non-trivially on the total wealth at the beginning of each

interval. We will first proceed with a conjecture that the value function is well-

behaved and that there is some transactions interval N such that it is optimal to

choose T1 = T2 = · · · = N > 0. Later, we can confirm this conjecture in the case

b = 0. It is fairly plain that the conjecture is false for b ̸= 0.

By (5), the returns Γ2,Γ3, . . . are i.i.d. and equivalent in distribution to

ΛN ≡ Γ2 = exp

[(
µ− 1

2
σ2

)
N + σBN

]
.
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Let QN ≡ 1− e
−ρN
1−α . From (13), the modified control problem is

U(X0) = sup
{N>0,W∈W,V ∈V}

E

[ ∞∑
k=1

e−ρτkQ1−α
N

1

α
(Wτk − b1)

α

]
, (14)

subject to

Xτk+1
= (1− ϵ)(Xτk −Wτk)e

rN + Vτk(Γk+1 − erN ) ≥ 0. (15)

Of course τk = (k − 1)N . The Bellman principle implies that, for k = 1, 2, 3, . . .,

U(Xτk) = sup
(Wτk

,Vτk
,N)

{
Q1−α

N

1

α
(Wτk − b1)

α + e−ρNE
[
U(Xτk+1

)
∣∣ Hτk

]}
. (16)

Assuming differentiability and technical conditions, the necessary conditions for

(16) are

Q1−α
N (Wτk − b1)

α−1 = (1− ϵ)e−(ρ−r)NE
[
U′(Xτk+1

)
∣∣ Hτk

]
,

E
[
U′ (Xτk+1

) (
ΛN − erN

) ∣∣ Hτk

]
= 0,

1

α
ρQ−α

N e
−ρN
1−α (Wτk − b1)

α = e−ρN

(
ρE
[
U(Xτk+1

)
∣∣ Hτk

]
−

∂E
[
U(Xτk+1

)
∣∣ Hτk

]
∂N

)
.

(17)

A proof similar to that of Theorem 1 by Hakansson (1970) shows that, given N ,

the optimal value function and unique solution to (16) satisfy, for k = 1, 2, 3, . . .,

U(Xτk) = Q1−α
N Aα−1

N

1

α
(Xτk − YN )α, (18)

Wτk = AN (Xτk − YN ) + b1, (19)

Vτk = (1− ϵ)(Xτk − YN )(1−AN )ΠN , (20)

where

AN = 1− [(1− ϵ)αe−ρNΩN ]
1

1−α ,

YN =
b1(1− ϵ)erN

(1− ϵ)erN − 1
,
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and where ΩN and ΠN are defined by the optimization problem:

ΩN ≡ E
([

erN +ΠN (ΛN − erN )
]α) ≡ sup

{π}
E
([

erN + π(ΛN − erN )
]α)

, (21)

subject to

P
(
erN + π(ΛN − erN ) ≥ 0

)
= 1. (22)

(Appendix 2 shows that ΩN and ΠN are well-defined.)

We will derive an equation forN and later confirm that a solution is the optimal

choice for N . Based on equation (6), we show in Appendix 3 that (at least for the

relevant case b = 0)

∂E
[
U(Xτk+1

)
∣∣ Hτk

]
∂N

=E

[[
r(Xτk+1

− Vτk+1
) + µVτk+1

]
U′(Xτk+1

) +
1

2
σ2V 2

τk
U′′(Xτk+1

)
∣∣ Hτk

]
. (23)

After substituting (18)-(23) into (17), tedious simplification yields

(Xτk−YN )h(N) = e−ρNrYNαQN [(1− ϵ)(1−AN )]
α−1

E
([

erN +ΠN (ΛN − erN )
]α−1

)
,

(24)

where

h(N) = ρe
−ρN
1−α AN + (1−AN )QN

[
αr + α(1− ϵ)(µ− r)(1−AN )ΠN

− 1

2
σ2α(1− ϵ)2(1− α)(1−AN )2Π2

N − ρ

]
. (25)

Equation (24) has only one unknown variable, N . With b ̸= 0 (and accordingly,

YN ̸= 0), the right hand side of (24) is not equal to zero. Then either equation (24)

has no solution or the solution depends non-trivially on Xτk . In either case, there

is a contradiction to fixed transactions intervals with b ̸= 0. With b = 0, however,

we will show the existence of a solution in N to (24).

So far, we have implicitly assumed that the optimal value function U(Xτk) in

(18) is finite, meaning that the control problem (14)-(16) has a solution givenN > 0.
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This is equivalent to AN > 0, or (1− ϵ)αe−ρNΩN < 1. A sufficient condition1 is

ρ > αr + α1{µ≥r}(µ− r) = max(αµ, αr), (26)

where 1{·} is the indicator function. For µ ≥ r, which is natural, this condition is

merely ρ > αµ.

Lemma 3. Suppose b = 0 and ρ > max(αµ, αr). Then the equation in N defined

by (24) has a solution.

proof: Since

exp
[
N(αr − ρ)

]
≤ e−ρNΩN ≤ exp (N [max(αµ, αr)− ρ]) ,

we have limN→0 e
−ρNΩN = 1 and limN→∞ e−ρNΩN = 0. Recalling that QN =

1− e
−ρN
1−α ,

lim
N→0

h(N) = ρ
[
1− (1− ϵ)

α
1−α
]
> 0.

On the other hand,

h(N) ≤ ρe
−ρN
1−α AN + (1−AN )QN

[
αr + α(1− ϵ)(µ− r)(1−AN )ΠN − ρ

]
≤ ρe

−ρN
1−α AN + (1−AN )QN

[
max(αµ, αr)− ρ

]
.

The last inequality follows from the fact that AN ∈ (0, 1) and ΠN ∈ [0, 1]. Letting

N → ∞, we have

lim
N→∞

h(N) ≤ max(αµ, αr)− ρ < 0.

1 A necessary and sufficient condition for (22) is π ∈ [0, 1]. From (21), Jensen’s
inequality yields, for α ∈ (0, 1),

αe−ρNΩN ≤ e−ρN
[
erN +ΠN

(
E(ΛN )− erN

)]α
= e−ρN

[
erN +ΠN (eµN − erN )

]α
= e−ρN

[
erN + 1{µ≥r}(e

µN − erN )
]α

= exp
[
αr + α1{µ≥r}(µ− r)− ρ

]
< 1, if ρ > αr + α1{µ≥r}(µ− r).
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If h(N) is continuous in N , there exists therefore some N such that h(N) = 0. It

remains to show continuity of h. The only point to verify is continuity of ΠN as a

function of N , which follows from the first order conditions of (21) and the implicit

function theorem.

Lemma 4. Let α(k) ≡ (1− e
−ρTk
1−α )1−α. Suppose that f is a real-valued function on

[0,∞) satisfying the two conditions:

(i) For all k,

f(Xτk) = sup
(Wτk

,Vτk
,Tk)

{
α(k)

1

α

(
Wτk − b1

)α
+ E

[
e−ρTkf(Xτk+1

)
∣∣ Xτk

]}
. (27)

(ii) For any feasible policy,

lim
k→∞

E
[
e−ρτkf(Xτk)

]
= 0. (28)

If (W ∗
τk
, V ∗

τk
, T ∗

k ) achieves the maximum in (27) for all k, then f is the value function

for the control problem (8)-(10), and {W ∗
τk
, V ∗

τk
, T ∗

τk
} is an optimal policy.

proof: We have:

f(X0) = sup
(W0,V0,T1)

{
α(1)

1

α

(
W0 − b1

)α
+ e−ρT1E

[
f(Xτ2)

]}
≥ α(1)

1

α

(
W0 − b1

)α
+ e−ρT1E

[
f(Xτ2)

]
for any feasible W0, V0, and T1. By induction, for any (W,V, T ) ∈ W×V×T and

any k,

f(X0) ≥ E

[
k∑

i=1

e−ρτiα(i)
1

α

(
Wτi − b1

)α
+ e−ρτk+1f(Xτk+1

)

]
.

Let k → ∞, it follows by condition (ii) that

f(X0) ≥ E

[ ∞∑
k=1

e−ρτkα(k)
1

α
(Wτk − b1)

α

]
.

This holds for an arbitrary feasible policy (T,W, V ), so f(X0) ≥ U(X0). On the

other hand, U(X0) ≥ f(X0) by the definition of U(X0). We have f(X0) = U(X0)

and, consequently, {W ∗, V ∗, T ∗} is an optimal policy.
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Theorem. Suppose b = 0 and ρ > max(αµ, αr). An optimal policy (T, V,W,C)

exists and the optimal transaction intervals {Tk} are equal constants.

proof: With b = 0, equation (24) is equivalent to h(N) = 0. By Lemma 3, there

exists a scalar N > 0 such that h(N) = 0. Consider the following withdrawal and

investment policy, and function f :

f(Xτk) = Q1−α

N
Aα−1

N

1

α
Xα

τk

Wτk = ANXτk

Vτk = (1− ϵ)(1−AN )ΠNXτk (29)

Tk = N.

From the proof of Theorem 1, we know that f(Xτk) satisfies (27) and (Wτk , Vτk , Tτk)

achieves the maximum in (27) for all k. Letting KN ≡ 1
αQ

1−α

N
Aα−1

N
,

E
[
e−ρτk+1f(Xτk+1

)
]
= e−ρkNKNE

(
Xα

τk+1

)
≤ e−ρkNKNE{W≡0}

(
Xα

τk+1

)
≤ e−ρkNKN (1− ϵ)αΩNE{W≡0}

(
Xα

τk

)
≤ e−ρkNKNXα

0

k+1∏
i=1

(1− ϵ)αΩN

= KNXα
0

[
(1− ϵ)αΩNe−ρN

]k+1

,

where E{W≡0} denotes expectation under the zero-money-withdrawal policy. The

second and the third inequalities above follow by (21) and (29). Since (1−ϵ)αΩN e−ρN <

1, for any feasible policy, (28) is satisfied. By Lemma 4, the theorem has been

proved.

With proportional transactions costs and portfolio management fees, the continuous-

time consumption and portfolio problem for an investor with constant relative risk

aversion is therefore equivalent to a deterministic continuous-time control problem

for consumption between transaction intervals combined with a stochastic discrete-

time portfolio selection problem.

12



V. EXTENSION

Let B = (B(1), . . . , B(L)) be an L-dimensional2 Standard Brownian Motion,

and let S = (S(1), . . . , S(m)) and D = (D(1), . . . , D(m)) denote the vector of price

processes and the vector of cumulative dividend processes of the m risky securities.

We assume that S and D satisfy

G
(i)
t ≡ S

(i)
t +D

(i)
t = 1 +

∫ t

0

S(i)
s µi ds+

∫ t

0

S(i)
s σ′

i dBs, t ≥ 0, i = 1, 2, . . .m,

for given scalars µi and vectors σi ∈ IRL. Let µ = (µ1, . . . , µm) and σ = (σ1, . . . , σm).

The price process of the riskless security is given by (2) in Section II.

We use the notation defined in Section II, modifying scalars to vectors where

necessary. The market value at time τk+1 of a unit of wealth invested in the i-th

security at time τk, with interim dividends continually re-invested, is

Γ
(i)
k+1 = exp

[
(µi −

1

2
σ′
iσi)Tk + σ′

i(Bτk+1
−Bτk)

]
, i = 1, 2, . . .m. (30)

The total wealth in securities at the (k + 1)-th transaction is

X(τk+1) = (1− ϵ)(Xτk −Wτk) +

∫ τk+1

τk

[
r(Xt + V

′
t(µ− r1)

]
dt+

∫ τk+1

τk

V
′
tσ dBt,

where 1 is a m-dimensional vector with all elements equal to 1.

The control problem corresponding to Theorem 1 is:

U(X0) ≡ sup
{N>0,W,V }

E

[ ∞∑
k=1

e−ρτkQ1−α
N

1

α

(
Wτk − b1

)α]
,

subject to

X(τk+1) = (1− ϵ)
(
Xτk −Wτk

)
erN + V

′
τk
(Γk+1 − erN1) ≥ 0.

2 In this section, a vector or a matrix will be denoted by a bar above the

character, and B
′
is the transpose of B. All vectors are column vectors.
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Given any N > 0, arguments similar to those made in the proof of Theorem 1

show that, for each k, an optimal policy must satisfy

U(Xτk) = Q1−α
N (AN )α−1 1

α
(Xτk − YN )α,

Wτk = AN (Xτk − YN ) + b1,

V τk = (1− ϵ)(Xτk − YN )(1−AN )ΠN ,

(Xτk − YN )h(N) = e−ρNrYNαQN [(1− ϵ)(1−AN )]α−1E

([
erN +Π

′
N (ΛN − erN1)

]α−1
)
,

where

h(N) = ρe
−ρN
1−α AN + (1−AN )QN

[
αr + α(1− ϵ)(1−AN )(µ− r1)′ΠN

− 1

2
α(1− α)(1− ϵ)(1−AN )2Π

′
Nσσ′ΠN − ρ

]
,

AN = 1− [(1− ϵ)αe−ρNΩN ]
1

1−α ,

YN =
b1(1− ϵ)erN

(1− ϵ)erN − 1
,

and where ΩN and ΠN are defined by the optimization problem:

ΩN ≡ E
([

erN +ΠN
′
(ΛN − erN1)

]α)
≡ sup

{π}
E
([

erN + π′(ΛN − erN1)
]α)

,

subject to

P
(
erN + π′(ΛN − erN1) ≥ 0

)
= 1.

Similarly, it follows from Appendix 2 that ΩN and ΠN are well-defined.

By analogy with (26), we assume that

ρ > αr + α
m∑
i=1

1{µi≥r}(µi − r) (31)

in order to guarantee a solution for the control problem. All the arguments made in

Lemma 3, Lemma 4, and the theorem are valid with condition (26) replaced by (31).

Hence, with withdrawal costs proportional to total wealth, the optimal transaction

intervals are equal constants for an investor with constant risk aversion.

14



APPENDIX 1

We prove that the investor will not withdraw more money than the amount

needed for financing consumption.

Lemma 1. An optimal policy (T,W, V,C) must satisfy∫ τk+1

τk

Ct dt = (1− a)Wτk − b, k = 1, 2, 3 . . .

proof: Suppose there exists an interval [τj , τj+1) such that∫ τj+1

τj

Ct dt < (1− a)Wτj − b.

Let d = (1− a)Wτj − b−
∫ τj+1

τj
Ct dt > 0. The investor will be better off if he or she

invests the extra amount of money d in the riskless security from τj to τj+1, and

consumed the increased interest income d
(
erTj − 1

)
in the next interval. That is,

the policy (T,W, V,C) is strictly dominated by a feasible policy (T,W, V,C) defined

by:

W τj =
1

1− a

[∫ τj+1

τj

Ct dt+ b

]
,

W τj+1 = Wτj+1 + derTj > Wτj+1 ,

Ct = Ct +
1

Tj+1
d
(
erTj − 1

)
> Ct, t ∈ [τj+1, τj+2),

Ct = Ct,W τk = Wτk , otherwise.

This contradicts the fact that (T,W, V,C) is optimal. Hence, for all k,∫ τk+1

τk

Ct dt ≥ (1− a)Wτk − b.

On the other hand, since consumption expenditure must be financed from the stock

of money,

k∑
i=1

∫ τi+1

τi

Ct dt ≤
k∑

i=1

[
(1− a)Wτi − b

]
, k = 1, 2, 3, . . .

An optimal policy must therefore satisfy
∫ τk+1

τk
Ct dt = (1− a)Wτk − b for all k.
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Next, we solve the deterministic continuous control problem (11)-(12) for con-

sumption. Let

ys ≡ y −
∫ t−s

0

Cτ dτ.

K(s, ys) ≡ sup
{Cτ : s≤τ≤t}

∫ s

0

e−ρ(τ−s) 1

α
Cα

τ dτ.

The Bellman equation for (11)-(12) is

0 = sup
(Cs)

{
1

α
Cα

s +K1(s, ys) +K2(s, ys)(−Cs)

}
, (A1)

where Ki(s, ys), i = 1, 2, denotes the partial derivative of K(s, ys) with respect to

the i-th argument. The first order necessary condition of (A1) is

Cα−1
s = K2(s, ys). (A2)

Substituting (A2) into (A1), we have the partial differential equation

(1− α)K
α

α−1

2 (s, ys) + αK1(s, ys) = 0, (A3)

with boundary condition K(0, yt) = 0. The solution to (A3) is

K(s, ys) =

(
1− α

ρ

)1−α [
1− exp

(
−ρs

1− α

)]1−α
1

α
yαs . (A4)

From (A2) and (A4),

C∗
s =

(
1− α

ρ

[
1− exp

(
−ρs

1− α

)])−1

ys. (A5)

The Verification Theorem (for example, Theorem 4.4 of Fleming and Rishel

(1975)) says that if a real-valued function f on IR+×IR+ satisfies (A1) and the pro-

cess C∗ achieves the maximum of (A1) withK(s, ys) being replaced by f(s, ys), then

f(t, y) = K(t, y) and C∗ is an optimal consumption strategy to (13)-(14). Clearly,

K(s, ys) defined by (A4) satisfies (A1) and is strictly concave. Consequently, C∗

defined by (A5) is the unique maximizing process to (A1). We have (13) by the

Verification Theorem.

APPENDIX 2
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Suppose r is a scalar strictly greater than 1, and β1, β2, . . . , βm are positive

real-valued random variables satisfying

P

(
m∑
i=1

(βi − r)θi < 0

)
> 0 for all finite θ1, θ2, . . . , θm.

A lemma by Hakansson [(1970), p. 593] states that the following optimization

problem has a unique solution, with value function

J(v1, . . . , vm) ≡ sup
(v1,...,vm)

E

([
m∑
i=1

(βi − r)vi + r

]α)

subject to

P

(
m∑
i=1

(βi − r)vi + r ≥ 0

)
= 1.

APPENDIX 3

From (6), Ito’s lemma implies that

U[X(τk+1)+] = U(Xτk) +

∫ τk+1

τk

g(t) dt+

∫ τk+1

τk

σU′(Xt)Vt dBt,

where

g(t) ≡
[
r(Xt − Vt) + µVt

]
U′(Xt) +

1

2
σ2V 2

t U
′′(Xt).

If
{
Zt ≡

∫ t

τk
σU′(Xs)Vs dBs : t ∈ (τk, τk+1]

}
is a martingale, we have E

(
Zτk+1

)
=

E
(
Zτk

)
= 0, and equation (23) follows. In order to see that {Zt} is a martingale,

note that, for t ∈ (τk, τk+1],

X
2(α−1)
t V 2

t ≤ X2α
τk

(1− ϵ)2α(1−AN )2αΠ2
Nγk(t)

2 ≤ X2α
τk

γ2α
k (t).

Thus

E

[∫ t

τk

X2(α−1)
s V 2

s ds

]
< ∞, t ∈ (τk, τk+1],

which implies that {Zt} is a martingale.
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