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STOCHASTIC EQUILIBRIA: EXISTENCE, SPANNING 
NUMBER, AND THE 'NO EXPECTED FINANCIAL GAIN 

FROM TRADE' HYPOTHESIS 

BY DARRELL DUFFIE1 

Stochastic equilibria under uncertainty with continuous-time security trading and con- 
sumption are demonstrated in a general setting. A common question is whether the current 
price of a security is an unbiased predictor of the future price of the security plus 
intermediate dividends. This is the hypothesis of "no expected financial gains from trade." 
The relevance of this hypothesis in multi-good economies is called into question by the 
following demonstrated fact. For each set of probability assessments there exists a corre- 
sponding equilibrium, one with the original agents, original equilibrium allocations, and 
no expected financial gains from trade under the given probability assessments. The 
spanning number of the economy is defined as the fewest number of security markets 
required to sustain a complete markets equilibrium (in a dynamic sense made precise in 
the paper). The spanning number is linked directly to agent primitives, in particular the 
manner in which new information resolves uncertainty over time. The spanning number 
is shown to be invariant under bounded changes in expectations. Several examples are 
given in which the spanning number is finite even though the number of potential states 
of the world is infinite. 

KEYWORDS: General equilibrium, martingales, finance, stochastic equilibrium. 

1. INTRODUCTION 

THIS PAPER POSES a problem for an economy whose primitives are a set of agents 
with preferences for, and endowments of, random streams (stochastic processes) 
of consumption goods: How does the manner in which agents receive new 
information determine the nature and number of financial securities permitting 
dynamically complete markets equilibria? 

The receipt of new information is given by a filtration, basically a specification 
of the times at which events are revealed to be true or false. In a stochastic 
economy each agent, given stochastic price processes, formulates a plan for 
purchases at each point in time, based on information available at that time. In 
equilibrium, if one exists, the agents' plans must be preference-maximal subject 
to budget constraints and clear markets. 

The results are as follows. Regularity conditions are given for the existence of 
a stochastic equilibrium. More importantly, however, the equilibrium shown has 
the property that a small number of financial securities is sufficient to dynamically 
span the high dimensional space of all contingent claims. Although markets are 
not complete at any one time, they are dynamically complete in the sense that 
any consumption process can be financed by trading the given set of financial 
securities, adjusting portfolios through time as uncertainty is resolved bit by bit. 
The discrete time case is effectively subsumed by the continuous time setting. In 
discrete time, a large finite-dimensional consumption space can be dynamically 
spanned by a smaller number of financial securities. The discrete time case was 
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1162 DARRELL DUFFIE 

studied by Kreps (1982) using a different approach. In continuous time, an 
infinite-dimensional consumption space can be dynamically spanned by a finite 
number of securities, provided the information filtration has finite martingale 
multiplicity, a key concept outlined later in this introduction and defined precisely 
in the body of the paper. Several examples are given in Section 6. 

The "no expected gains from trade" issue is addressed, that is, whether the 
current price of a security is an unbiased predictor of its value at a future date 
plus any intermediate dividends. The importance of fixing a relevant unit of 
account and set of expectations before testing this hypothesis is brought out by 
the following result. Having demonstrated, with a given set of expectations and 
numeraire, a stochastic equilibrium in which there are no expected gains from 
trade, a new set of expectations is specified, arbitrary except that the class of 
random variables with finite variance must be preserved. A new regime of financial 
securities and spot prices is constructed such that there exists an equilibrium 
with the original equilibrium allocations and with no expected gains from trade, 
under the new set of expectations. 

The spanning number of a stochastic economy is characterized as the smallest 
number of financial securities having the dynamic spanning property stated. The 
spanning number is characterized directly in terms of the exogeneous information 
filtration and agents' probability assessments as oneplus the martingale multiplicity. 
This is the case in both discrete and continuous time settings. 

This work draws directly and significantly from a number of key sources. First, 
as mentioned, David Kreps (1982) is mainly responsible for the notion of dynamic 
spanning, following up on a long line of literature instigated by the Black-Scholes 
option pricing formula. The methods of Kreps (1982) do not carry over to this 
general setting however. Michael Harrison and David Kreps (1979) showed the 
key relationship between security price processes and martingales. A martingale, 
defined more precisely later, is a stochastic process whose expected future value, 
given current information, is merely its current value, for all future and current 
times. Harrison and Kreps demonstrated that if a stochastic equilibrium exists, 
in fact under even weaker conditions, security price processes must be martingales 
under some probability assessments, at least under a convenient choice of 
numeraire. That work was the central clue in the detective work leading to the 
present results, although it was not directly applied. The mathematics of con- 
tinuous-time security trading, first applied by Merton (1971), was formalized by 
Harrison and Kreps (1979) and extended by Harrison and Pliska (1981), followed 
by Duffie and Huang (1985), to the point where it is again applied and extended 
here. 

That brings to three the count of key ideas flowing into the present work. The 
fourth is the approach of showing the existence of stochastic equilibria by a 
dynamic implementation of an Arrow-Debreu (1954) equilibrium, opening up 
just enough markets to obtain dynamically complete markets. This idea appears 
in Kreps (1982), and was carried out in generality in Duffie and Huang (1985). 
The fifth line of work drawn on is a theory giving conditions for an Arrow-Debreu 
equilibrium in a sufficiently general setting. This breakthrough was made by 
Mas-Colell (1986). 
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STOCHASTIC EQUILIBRIA 1163 

How martingale multiplicity theory, a recent mathematical advance, can be 
exploited for dynamic security market spanning is reported in Duffie and Huang 
(1985). In Duffie and Huang (1985) an Arrow-Debreu economy with consumption 
at two points in time, 0 and T, was placed in a Radner setting; agents may learn 
information and trade securities during [0, T]. Conditions were stated under 
which a given Arrow-Debreu equilibrium can be implemented by continuous 
trading of a basis set of financial securities. This previous work did not prove 
that a continuous trading stochastic equilibrium actually exists, treat economies 
in which consumption occurs over time, characterize the spanning number directly 
in terms of agent primitives, nor show its variance under changes in expectations. 

Given this long list of credits, the reader should have some notion of how the 
work proceeds. After setting up the economy and defining a stochastic equilibrium, 
a sizeable chore undertaken in Section 2, an Arrow-Debreu equilibrium is 
demonstrated for a complete markets static "scratchpad" version of the economy. 
The Arrow-Debreu equilibrium price functional ( * ) is associated with a candi- 
date spot market price process if for the stochastic economy, such that the 
Arrow-Debreu market value 11(c) of any consumption process c is its total 
expected future spot market cost, E[f Ti/(t)c(t) dt], where T is the terminal 
date of the economy. Given a collection of financial securities, a particular 
consumption process c is marketed if there is a strategy for trading the financial 
securities through time such that the stream of spot market values required to 
finance the consumption process is precisely that generated by dividends and net 
sales of financial securities. When the martingale multiplicity of the given informa- 
tion filtration is N. a set of N+ 1 securities can be constructed such that every 
consumption process is marketed, or dynamically complete markets. How? The 
gain process G for a financial security is defined as the sum of its price process 
and cumulative dividend process. If the martingale multiplicity is N. one can 
construct N gain processes Gl, .. ., GN with the property that, for any martingale 
X under consideration, there exist "appropriate" stochastic processes 0= 

{019 ... ON} such that 

N Ct 
Xt = Xo + f On ((r) dGn (7r) 

n=1 o 

for all t : 0. This is basically the definition of martingale multiplicity: the smallest 
number of martingales with this "spanning" property. Several examples of infor- 
mation filtrations whose martingale multiplicities have been characterized are 
given in Section 3. These include event trees, and diffusion or Poisson "state 
variable" information. The martingale X in the above definition could represent 
the current conditional expected total spot market cost of an arbitrary consump- 
tion process c, or Xt = Et[f T c(s)+/(s) ds]. Each On is a stochastic process describ- 
ing the number of units of the nth security held in a portfoliio whose value 
replicates X through time. The integral JO On dGn represents the "gains" (or losses) 
from trading the nth security up until time t. A security whose price process 
is identically one is also introduced to ensure that agents are able to meet their 
intermediate budget constraints when following the prescribed trading strategy 
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0, by borrowing or lending risklessly in numeraire terms. The Arrow-Debreu 
market value I(c), is identical with the required initial portfolio investment of 
XO= IP(c). 

Now each agent can be allocated a security trading strategy that precisely 
finances the stream of spot market payments required to purchase that agent's 
Arrow-Debreu equilibrium allocation of goods. It can also be shown that no 
other budget feasible trading strategy yields a strictly preferred stream of con- 
sumption. Market clearing is obtained in the spot markets by Arrow-Debreu 
market clearing, and in the security markets by a simple argument. In short, a 
dynamically complete markets stochastic equilibrium that implements the pre- 
viously demonstrated Arrow-Debreu equilibrium allocation is easily constructed. 
All of this happens in Section 3. 

In Section 4, a new set of expectations is fixed, one given by an arbitrary 
probability measure P that preserves the class of finite variance random variables. 
A stochastic equilibrium is constructed in which the "spanning" N+ 1 securities 
have gain processes that are martingales under P. A family of such equilibria 
exist, all with the same agents and consumption allocations. An obvious by- 
product is the above mentioned caveat: when empirically or theoretically testing 
the hypothesis of "no expected financial gains from trade," one must carefully 
specify in advance the "ambient" unit of account and expectations. In general, 
with more than a single consumption good, there is no special numeraire that is 
canonical, in the sense that the "no expected gain from trade" hypothesis has 
an unambiguous economic relevance under the given numeraire. 

In Section 5, we show that not only is the martingale multiplicity plus one 
a sufficient number of securities for dynamically complete markets, it is 
also necessary, and is thus characterized as the spanning number. This 
number is shown to be invariant under changes in expectations preserving the 
class of finite variance random variables. Concluding remarks are found in 
Section 6. 

In the interests of simplicity this paper leaves out several embellishments found 
in the original working paper (Duffie, 1984a). For example, that paper expands 
the choice space to include preferences for terminal wealth. By virtue of a different 
approach (Duffie, 1986) to the existence of Arrow-Debreu equilibria, production 
is also encompassed in Duffie (1984a). Some comments on the addition of 
production to the model are included in the concluding section. One particularly 
important difference between Duffie (1984a) and the present 
paper lies in the formulation of security markets. In Duffie (1984a), a "security" 
is taken to be a claim to a specified stream of consumption goods, in the tradition 
of Radner's original model (1972). Here, instead, we find a considerable sim- 
plification is allowed by treating a security as a claim to a stream of financial 
payments, or "dividends", which are exchangeable on spot markets for consump- 
tion goods. This is in the tradition, and in some sense is a direct extension, of 
the fundamental work of Arrow (1953). In marrying Radner's "equilibrium of 
plans, prices, and price expectations" in a "sequence of markets" with Arrow's 
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STOCHASTIC EQUILIBRIA 1165 

model of "the role of financial securities in the optimal allocation of risk bearing," 
one might describe the result as an Arrow-Radner equilibrium concept. 

2. THE ECONOMY 

This section describes the primitives for a stochastic economy: a model for 
uncertainty and revelation of information over time, a consumption space, endow- 
ments, and preferences. Some fundamental nonprimitive properties of a stochastic 
economy are also defined: the available financial securities, their price processes, 
and the admissible trading strategies. 

Finally, the definition of a stochastic equilibrium for this economy is given. 

2.1 Uncertainty and Information Revelation 

This subsection outlines a general model for uncertainty and revelation of 
information for an economy comprising a finite number of agents indexed by 
i E J= f ,**, I}- 

Let n be the set of all possible states of the world which agents commonly 
believe could occur in a given economy. A "state of the world" w E l2 is an 
exogenous train of circumstances occurring from time 0 to time T which deter- 
mines the realization of every exogenous random variable relevant to the economy. 
The tribe2 9 describes the set of events, or subsets of 2, to which agents are 
commonly able to assign probabilities, that is, measurable subsets of Q2. Let Pi 
denote agent i's subjective probability measure on (12, i), for i E S. We make 
the assumption that there are bounds on the heterogeneity of probability assess- 
ments. Specifically, there exist constants K and K such that, for any event BE e 
and any agent i 

(2.1) KPi(B) Pj(B) < KPi(B), Vj E J. 

In other words, agents' subjective probability measures are assumed to be uni- 
formly absolutely continuous with respect to one another (Halmos, 1950, p.100). 
This restriction makes the subsequent analysis tractable since the class of finite 
variance random variables is preserved if and only if the change of probability 
measure is of this sort. When two probability measures P and Q are uniformly 
absolutely continuous, we will write P Q. Equivalent conditions for the uniform 
absolute continuity of two measures are given by Halmos (1950) and Allen (1983). 

There is no loss in generality for the purposes of this paper, however, in 
proceeding as though agents have common probability assessments given by any 
probability measure P which is uniformly absolutely continuous with respect to 
the agents' probability measures (for instance, take P = PJ), and we shall do so. 
This follows from the fact that all topological properties of the consumption 
space described in the next section are invariant under changes of probability 
measure of this sort. 

2 Tribe is merely a simple term for a-algebra. 
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1166 DARRELL DUFFIE 

Without loss of generality, 9 is assumed to be complete for P. Thus 
uncertainty for our economy can be described by the complete probability space 
(Q, i, P). Since all probability measures to appear are equivalent,3 there is no 
ambiguity in using the symbols "a.s." for almost surely, or P-almost everywhere. 

Uncertainty is resolved over time according to some filtration F = { ;t, t E [0, T]}, 
a right-continuous increasing4 family of subtribes of i, with 1T= i, and 90 
almost trivial5 (meaning Q2 is the only event of non-zero probability in 90). The 
tribe it may be interpreted as the set of events which could occur at or before 
time t. The descriptions of go and ?T imply that agents have no information 
about the state of the world at time 0, and that all information to be revealed is 
available by or at time T. The filtration is basically a specification of the order 
in which uncertain events are revealed to be true or false over time. For example, 
F might represent the information revealed by an event tree or by observing a 
collection of "state variable" stochastic processes. 

In summary, our model for uncertainty and revelation of information over 
time is the filtered probability space (Q,F,P). 

2.2 The Consumption Space 

There are alternatives to the following setup which achieve roughly the same 
results. We have simply chosen one which is relatively easy to work with from 
among those which are reasonably general. The basic model is a choice space 
for agents who have preferences for consumption over time in the form of 
multi-dimensional consumption processes. 

A stochastic process6 X is adapted to the filtration F if Xt is measurable with 
respect to the tribe it, for all t E [0, T]. One could say that X is adapted to F if 
the value of X at any time depends only on information revealed by F up to 
and including that time. A process is optional if measurable with respect to the 
tribe C generated by right-continuous left-limits (RCLL)7 processes. In effect, an 
optional process is one whose values depend on the information generated by 
observing only right-continuous adapted processes, rather than arbitrary adapted 
processes. For technical convenience we limit agents to optional consumption 
processes c = {ct; t E [0, T]} satisfying E[JT c2 dt] < x. This can be relaxed slightly 
(Chung and Williams, 1983, pp. 63-64), but can hardly be considered restrictive. 
For example, any process that depends measurably on RCLL "state variable 
processes", such as diffusion or Poisson processes, is optional. This incorporates 
the continuous-time pricing models of finance, such as those of Merton (1973), 

3 Two probability measures P and Q on 9 are equivalent provided P(B) = 0 if and only if Q(B) = 0, 
for all B E i; that is, P and Q assign zero probability to the same events. 

4 The filtration F is right-continuous provided 9;t = n ,> 9;5 for all t. This basically means that 
any event known at all times after t is also known at time t. The filtration F is increasing provided 
.V ' ,F whenever s 2 t, meaning roughly that nothing is forgotten. 

5 A subtribe is almost trivial if it is the tribe generated by 12 and all zero probability events in i. 
6 For our purposes a stochastic process is any function X: n x [0, T] -* R. 
7 Call X a right-continuous (RC) process if, for all (w, t) E 12 x [0, T], lim.lj X(w, s) = X(w, t). The 

analogous definitions for left continuous and left limits (LL) (meaning the left limit exists) are taken. 
Some authors take "RCLL" to mean RCLL almost surely. See Chung and Williams (1983) for details. 
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STOCHASTIC EQUILIBRIA 1167 

Breedon (1979), and Cox, Ingersoll, and Ross (1985). Of course, any RCLL 
process is itself optional. An integer number, say M, of different goods are 
available for consumption at any time t E [0, T]. The overall consumption space 
is thus the vector space V of M-dimensional square-integrable optional processes 
C = (c1, . . ., CM). As usual, we identify two processes that are the same almost 
everywhere. We then choose the norm8 

- T M 

Ilcil = E [J E I Cm (t)I dtl, c E V, 
O m=l 

in order to define convenient continuity conditions on preferences. Let V+ denote 
the positive cone of V, the subset of positive consumption processes. We will 
write "c ? O" if c is in V+ and "c > O" if c is in V+ and c 5 O. 

Let P denote the vector space of essentially bounded M-dimensional optional 
processes 4/ = (iI'j,..., 4IM). We will take ( as the space of spot price processes, 
leaving the terms of trade for the M goods at time t given by a (random) vector 
+(t) = (4(t)j, . . . , (t)m). In other words, with spot price process if E P, q/m(w, t) 
is the unit price of the mth good in state co E Q at time t E [0, T]. 

2.3. Agents 

Each agent i E J is characterized by a consumption endowment c,i E V, and a 
complete transitive binary preference order ?i on V+. As usual, > i denotes the 
strict preference relation induced by ?j. A preference relation > on a subset X 
of V is uniformly proper if there exists some scalar e > 0 and vector v E V such 
that, for all x E X the relation x - av + z >- x, for z E V and a E_ R+, implies that 
llzll B ae. In other words, the consumption choice v is so desirable that z can 
only compensate for some loss of v if z is sufficiently large in norm. This concept, 
which can be viewed as a smoothness condition on preferences, is due to 
Mas-Colell (1986). Richard (1985) has shown conditions under which preferences 
are uniformly proper. The choice v in the definition is said to be extremely 
desirable for >-, in the terminology of Yannelis and Zame (1984). We record the 
following assumptions for each agent i E J: 

AsSUMPTION (Al): ce V+, ke V, and k>O imply that c+k>i-c. 

AsSUMPTION (A2): The graph of >j is relatively open. 

AsSUMPTION (A3): EJ= 1 CJ is extremely desirable for w. 

AsSUMPTION (A4): Vc E V+, {z E V+: z ,i c} is convex. 

ASSUMP TION (A5): ci > 0. 

The agent assumptions may be interpreted as: (Al) strictly monotonic pre- 
ferences, (A2) continuous preferences, (A3) extremely desirable aggregate endow- 
ments, (A4) convex preferences, and (A5) positive nonzero endowments. These 

8This norm generates the same topology as the product L1(Q x [0, T], V, P x A)-norm topology, 
where A denotes Lebesgue measure. The fact that a square-integrable consumption process has finite 
Li norm follows from the Cauchy-Schwarz inequality and the fact that the underlying measure is finite. 
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assumptions can be weakened somewhat given the recent work of Zame (1985) 
and Yannelis and Zame (1984). In particular, the completeness and transivity 
assumptions on preferences can be eliminated with some additional work. If the 
preference relations are represented by utility functionals of the form 
E[JT ui(c,) dt], sufficient conditions for Assumptions (A1)-(A4) are that ui be 
concave, strictly increasing, with a finite right derivative at zero, and that Eic^i be 
bounded away from zero. These conditions, however, are far more restrictive 
than Assumptions (A1)-(A4). 

2.4. Financial Securities, Gain Processes, and Trading Strategies 

We will formulate a model of financial securities in the tradition of Arrow 
(1953). A security is taken to be a claim to financial dividends that are convertible 
on spot markets for goods at current spot market prices. For illustration, a security 
paying "one dollar" in dividends at a particular time and in a particular state of 
the world entitles its owner to any bundle of consumption goods at that time 
and state with a total spot market value of one dollar. This is formalized as follows. 

A dividend process is an adapted RCLL process D whose value D(t) at 
any time t represents cumulative dividends paid by the underlying security up 
to and including time t. The price process of the corresponding security is defined 
by an adapted process S whose value S(t) at any time t represents the market 
value at that time of a claim to all future dividends paid by the security, as they 
are paid. Our convention is that security values are ex dividend, meaning that 
S(t) is the market value of the security at time t after dividends at time t have 
been paid, and that trades occur ex dividend. For illustration, if an agent buys 
one unit of the security at time t and sells it at a later time s, then the agent 
receives a total amount of dividends D(s) - D(t) in the interim, and realizes a 
further gain (or loss) from the two transactions of S(s) - S(t). Dividends can be 
paid in lump sums or rates; our model of D is quite general. For example the 
jump AD(t) D(t) -limsT, D(s) in the dividend process D at time t represents 
a lump sum payment of AD(t) to each share of the security at time t. If, on the 
other hand, the security pays at rates of time given by a stochastic process 8, 
then a holder of one share receives Jt 8(r) dr in dividends between times s and 
t. More generally, an agent will vary the holdings of a security according to a 
stochastic process 0, where O(w, t) represents the number of units held at time 
t c [0, T] in state cl E (2. For a technically sound framework, as explained in 
earlier research on continuous-time trading (Duffie and Huang, 1985; Harrison 
and Pliska, 1981), a trading process 0 must be predictable9 meaning roughly that 
0(t) must be chosen on the basis of information received up to, but not including, 
time t. This effectively precludes arbitrage opportunities which would otherwise 
be present when a price process jumps. 

The obvious generalization of the above illustration of gains from trade is as 
follows. The financial gain up to any time t - 0 realized by holding a security 

9A predictable process X is one that is measurable with respect to the tribe P on (2 x [0, T] 
generated by adapted left-continuous processes. 
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with price process S and dividend process D in amounts specified by a trading 
process 0 is the sum of JO 0(s) dD(s) and JO 0(s) dS(s), presuming the notation 
represents some meaningful integral which is well defined. In order to define 
integration in the general sense of a stochastic integral, we will define a price 
process for any security with dividend process D to be an adapted process S 
such that {G(t) = S(t) - S(O) + D(t); t E [0, T]} defines a semimartingale10 G. 
This semimartingale G, termed the gain process for (D, S), describes the gain 
realized by holding one unit of the security. A trading process for a security with 
a nonzero gain process G is then defined to be a predictable process 0 such that 
the stochastic integral J 0 dG is well-defined and such that 

(A) E(J o(t)2d[G]t) <oo, 

where [G] denotes the quadratic variation process"1 of G. The class of predictable 
processes 0 satisfying condition (A) is commonly denoted L2[G]. Conditions on 
0 ensuring existence of the stochastic integral 5 0 dG may be found in Dellacherie 
and Meyer (1982) or Jacod (1979). For gain processes to be found in this paper, 
however, 0 c L2[G] is itself a sufficient condition. For a security whose gain 
process G is identically zero-we have a numeraire in mind-any adapted process 
0 is a valid trading process since the gain from trade J 0 dG is trivially defined 
to be zero. The stochastic integral J 0 dG represents the total gain from trade, 
circumventing separate definitions of "dividend gain" J 0 dD and "capital gain" 
J 0 dS. 

Security markets will generally be characterized by a collection of N ? 1 
securities with a vector dividend process D = (D1, ..., DN) and a corresponding 
vector price process S = (S, ... ., SN). The associated vector gain process is 
denoted G = (G1, . ..., GN). A vector process 0 = (01 ... ., ON) is a trading strategy 
provided On, is a trading process for security n, for all n E {1, ..., N}. The space 
of trading strategies is denoted @ (G). By the Kunita-Watanabe inequality (Jacod, 
1979), @(G) is a vector space. In other words, a linear combination of any two 
trading strategies is also a trading strategy. The stochastic integral f 0 dG, for 
0 @ O(G), is merely the sum fNt1 J On, dGn, defining total financial gains from 
trade for all N securities. 

It is a key fact that whenever X is a martingale and 0 E L2[X], then f 0 dX is 
also a martingale (Chung and Williams, 1983). As an important illustration, if 
G is a square integrable martingale gain process and 0 is a trading process with 
respect to G, then there are no expected financial gains from trade since f 0 dG 
is a martingale. In general, if G is a vector gain process for the economy, we say 
there is no expected gain from trade if f 0 dG is a martingale for all 0 E @(G). 

10 A semimartingale is a process that is the sum of a local martingale, an adapted increasing process, 
and an adapted decreasing process. For the definition of local martingales, which include martingales, 
one can refer for instance to (Dellacherie and Meyer, 1982) or (Jacod, 1977). 

11 One may refer to Dellacherie and Meyer (1982) or Jacod (1977) for a precise definition of 
stochastic integration and quadratic variation. 
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Limiting the model to gain processes that are semimartingales is not actually 
restrictive. Any known model of gains or losses from trading securities, whether 
in discrete or continuous time, is equivalent to a stochastic integral with respect 
to a gain process. Jacod (1979, pp. 278-279) points out that the only integrator 
(gain) processes that achieve the required sense of stochastic integration are 
semimartingales. 

2.5 Definition of Stochastic Equilibria 

A stochastic economy is now defined as a collection of the previously defined 
primitives: Ws = (', F, D), where ' is the underlying Arrow-Debreu economy 
(V+,aci, ? ; i E ) ),F is the information filtration, and D is the vector of dividend 
processes defining available securities. 

A price system for 's is a pair (if, S) consisting of a spot price process i/ E P 
and a vector price process S for the available securities. Let G denote the 
corresponding vector gain process. A pair (c, 0) E V+ x @(G) is a budgetfeasible 
plan for agent i, given a price system (i/, S), if the consumption process c and 
trading strategy 0 satisfy the budget constraint: 

(2.2) 0(t) * [S(t) + AD(t)] 
rt rt 

= 0(0) * S(O) + 
A 

(s)* [(s) - c(s)] ds + 0(s) dG(s) 
o o 

for all t in [0, T], and 

(2.3) 0(T) * [S(T) + AD(T)] O0 a.s. 

Since there is no endowment of securities, the term 0(0) * S(O) is necessarily zero 
and can be ignored. Relation (2.2) states that, at any time, the current market 
value of the securities portfolio is the cumulative to date spot market value of 
consumption endowments net of consumption purchases, plus gains (or losses) 
from securities trading. Relation (2.3) rules out terminal debt. A budget feasible 
plan (c, 0) is optimal for i provided there is no budget feasible plan (b, b) such 
that b >i c. A stochastic equilibrium for 9, is a collection (,S,(ci, 0'); i e) 
where (+, S) is a price system for 's and (ci, 0i) is an optimal plan for each agent 
i E J given (i/, S) such that security and spot markets clear, or EiL O' = 0 and 

I- j(Ci_Ai)=O. 

3. EXISTENCE OF STOCHASTIC EQUILIBRIA 

In this section we apply Mas-Colell's (1986) proof of existence of quasi- 
equilibria for Arrow- Debreu economies, along with the machinery for implement- 
ing Arrow-Debreu equilibria in a Radner setting developed in Duffie and Huang 
(1985), to demonstrate equilibria for stochastic economies. 

3.1 The Scratchpad Economy 

The first step on the road to a stochastic equilibrium is the demonstration of 
an Arrow-Debreu equilibrium for the Arrow-Debreu economy '= 

(V+, 9c j i , si). For an Arrow-Debreu equilibrium, of course, every con- 
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sumption process is assumed to be available for trade at time zero, leaving no 
incentive for markets to remain open after time zero. An Arrow- Debreu equilibrium 
for ' is defined as a nonzero linear (price) functional I on V and allocations 
ci E V+ for each iE EJ satisfying: 

(3. 1a) IF(ci) -< IF( ̂  ), 

(3.1b) z>jicj X /(z)>V/(cj) VzG V+, 

and 
I 1 

(3.1c) E ci= ci. 
i=l i=l 

PROPOSITION 3.1: Given Assumptions (Al) through (A5), W has an Arrow- 
Debreu equilibrium whose pricefunctional VI is of theform, for some unique positive 
spot price process t E 0, 

(3.2) 11(c) = E( (t). c(t) dt) Vc C V. 

The proof of this proposition might be overlooked by those readers not 
interested in the technical details, which are somewhat unrelated to the main 
purpose at hand. 

PROOF: First we will verify that ' has a quasi-equilibrium, defined as a collection 
(I, ci; i E 6) satisfying (3.1a), (3.1c), and the following substitute for (3.1b): 

(3. 1d) z wi ci X= W(z) :-W(cj) Vz C V+. 

The consumption space V is a normed vector lattice. Although Mas-Colell's 
theorem of quasi-equilibrium existence (1986) assumes V is complete under its 
norm 11 11, that fact is not actually required. (See Duffie (1986, Theorem 4.2).) The 
only condition for Mas-Colell's theorem that is not obviously met is his "Closed- 
ness Hypothesis." For this, we will take advantage of the fact that 11 - 11-continuous 
preferences are automatically 1 -112-continuous by virtue of the Cauchy-Schwarz 
inequality, where 11 112 denotes the product L2 norm on V. For each i and each 
zE V,, the preferred feasible allocation set {c E V,: c -> j' 1 a ;c -i z} is 1l112- 
weak compact by Alaoglu's Theorem. This follows from convexity of preferences 
(A3), the 11-112-continuity of preferences (A2), and the fact that the closure of a 
convex set is invariant under a duality preserving change of topology (Schaefer, 
1971). Thus F has a quasi-equilibrium (VI, ci; i c J). By construction, I is 
positive, linear, and continuous (in either norm's topology). Thus, by an extension 
theorem due to Namioka reported in Schaefer (1971, p. 227), VP can be extended 
to a continuous positive linear form on the underlying space L1(Q2 x [0, T],49, ,k). 
Since P is isomorphic in the usual form of the Riesz representation theorem to 
the dual of this space, I has a unique representation as in (3.2). 

The second step is to verify that (3.lb) obtains for the given quasi-equilibrium, 
or that each agent has an allocation that is optimal. It is a consequence of 
Mas-Colell's proof of quasi-equilibrium and the extreme desirability of aggregate 
endowments (A3) that '( I 1 ci) > 0. Then, for some agent j, ['(Cj) > 0. First 
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suppose, for some nonzero co e V+, that Vf (w) =0. By strict monotonicity of 
preferences z = c + Cj >j cj and 1It(z) = Vf (cj). Then, for some scalar a E (O, 1), 
by continuity of preferences (A2), we would have az ?j cj and f (az) < I'(cj). 
But this contradicts the definition of a quasi-equilibrium. Thus VI (w) > 0, 
whereupon ' is strictly positive, and IF'(ci)> 0 for each agent i. Then, by a 
similar argument, each agent i satisfies (3.1b). Q.E.D. 

3.2. Martingale Multiplicity 

A square-integrable martingale on the filtered probability space (Q2, F, P) is an 
adapted process X satisfying E[X( T)2] < oo and E[X(t)I IY] = X(s) for all t - s. 
The space of square-integrable martingales X such that X(O) =0 is denoted XP. 
A given vector of N square-integrable martingales m = (mi, .. . iMN) generates 

tp if it has the following representation property. For any square-integrable 
martingale X there exist On E L2[Mn], for 1 - n - N. such that 

N rt 

Xt=Xo+ { On(s) dMn (s) a.s. Vt O. 
n=1 o 

In other words, the vector m of martingales generates the space of all square- 
integrable martingales provided any martingale X in A2 can be represented as 
the sum of stochastic integrals with respect to the basis set m. Such a vector m 
of martingales is known as a martingale generator (Jacod, 1979). For intuition 
we could think of X as the gain from trade (price plus dividend process) for 
some candidate extra security and m as the vector of gains G of the available 
N securities. If G happens to generate Xt4 then the candidate security would be 
redundant, for the gains achieved by holding one share could be replicated by 
some trading strategy 0 as X = XO+ | 0 dG. 

The multiplicity of X4p is the minimum number of martingales required to 
generate Xt2. We could therefore think of the multiplicity as, in some sense, the 
dynamic analogue to the dimension of a vector space. Instead of spanning in the 
sense of vector addition, the multiplicity states the minimum number of martin- 
gales required to span in the sense of stochastic integration. If the martingale 
multiplicity is equal to N and m = (Mln ... 9 MN) is a martingale generator, we 
refer to m as a martingale basis for A2 . The zero martingale multiplicity case 
corresponds to a degenerate probability space, in other words, a deterministic 
setting. Although formally subsumed in our framework, we will ignore this case. 

The following examples may provide some intuition and concreteness for 
martingale multiplicity, a central concept in this paper. For the results to have 
any interesting content we must demonstrate some finite multiplicity examples, 
in particular some examples in which the martingale multiplicity is significantly 
smaller than the "number of states of the world", which can be interpreted as 
the dimension of L2(Q2, i, P). Here are a few such examples. 

EXAMPLE 1. Event Trees: Suppose the information structure is an event tree, 
or "finite filtration." This is the natural setting for the popular "state preference" 
models. In this case L2(Q2, i, P) has as its dimension the number of terminal 
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nodes in the event tree. This is generally much larger than the martingale 
multiplicity, the maximum number of branches leaving any node in the tree, 
minus one. (See Duffie and Huang (1985) for a proof and an algorithm for 
constructing a martingale basis.) For instance, if the economy lives on a Markov 
chain, the martingale multiplicity is one less than the cardinality of the Markov 
state space, barring degeneracy. In this case a linear system of equations for 
designing a market completing set of financial securities is easy to set up and 
solve. This example also illustrates how discrete-time economies with a suitable 
information structure are subsumed within the general model. 

In the following examples agents learn information by observing the evolution 
of a set of "state variable" processes. That is, F is the filtration generated by a 
family of processes that may be interpreted as descriptions of the uncertain state 
of the world. 

EXAMPLE 2. Brownian Motion: The information structure is the filtration 
generated by an N-dimensional Wiener process (a vector of N independent 
Standard Brownian Motions). The dimension of L2(Q2, i, P) is of course infinite, 
while the martingale multiplicity is N, as shown originally by Kunita and 
Watanabe (1967). 

EXAMPLE 3. Diffusion State Variable Information: Generalizing from Example 
2, suppose information is generated by an N-vector of diffusion "state variable" 
processes. Under suitable conditions on the diffusion coefficients the martingale 
multiplicity is N. The details for this case are developed extensively in Huang 
(1986). This has been a popular model in financial economics because of the 
stochastic control methodology which is available for diffusions. Further 
extensions of this case include "generalized diffusions" (or "Ito Processes", which 
need not be Markov) and reflected diffusions. The martingale multiplicity is again 
N. See Jacod (1977) for details. In these cases any N-dimensional vector diffusion 
process with zero drift vector and positive definite diffusion matrix satisfying 
Lipschitz and growth conditions forms a martingale basis. 

EXAMPLE 4. Processes with Jumps: Jacod (1977) provides several examples of 
filtrations generated by processes with jumps whose multiplicities can be charac- 
terized. If the filtration is generated by a Poisson process JN for example, then 
{1N(t) - t; t - O} describes a martingale basis (Dellacherie, 1973 and 1975). 

3.3. Spanning Security Markets 

A pair (D, S) consisting of a vector dividend process D and corresponding 
vector price process S is market completing provided, for any spot process af E 

and consumption process c E V, there exists a trading strategy 0 such that 

(3.3) 0(t) c [S(t)+AD(t)]= O(O) - S(O)?+ 0 (s) dG(s)J- I(s). c(s) 
[ T 

Vt c[0, T] 
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and 

(3.4) 0(T) [S(T)+AD(T)]=O a.s., 

where G denotes the vector gain process for (D, S). If (V, S) defines the available 
security markets and is market completing, we say markets are dynamically 
complete, which is verbally interpreted as follows. For any given consumption 
plan c there is some trading strategy 0, requiring an initial investment of 
0(0) * S(O), that finances the stream of spot market payments required over time 
to purchase the consumption plan c, leaving no terminal financial obligation or 
surplus. In this case, that is when (c, 0) E Vx @ (G) satisfies (3.3) and (3.4), we 
say Ofinances c, with initial investment 0(O) * S(O). 

Let H denote the function mapping the space of integrable dividend processes 
to the space of security price processes defined by 

(3.5) S(t)-=lH(D)t E[DT -Dtlgt], t c[0, T]. 

In other words, H assigns the current market value of a security to be the 
conditional expectation of the remaining dividends to be paid by the security. It 
then follows immediately that the gain process G for (D, H(D)) is a martingale. 
The notion of assigning price processes in this manner is suggested by the work 
of Harrison and Kreps (1979), who showed that equilibrium price processes will 
always be of this form, at least after selecting a numeraire and adjusting probability 
assessments. Here we have fixed probability assessments in advance, and will 
demonstrate an equilibrium by allowing spot price processes to adjust to clear 
both spot and security markets. Harrison and Kreps (1979), of course, dealt with 
consumption only at the terminal date T and with securities paying only terminal 
dividends, but the extension of their work to a setting such as this is straightfor- 
ward, at least conceptually. Independently of this paper, Huang (1984) has 
extended the Harrison-Kreps results to economies with intermediate consumption 
and dividend payout. Here, however, the goal is not to show the martingale 
property as a necessary property for a given equilibrium, but to demonstrate an 
equilibrium with this property. 

A fundamental dividend process is a vector dividend process 9 with N +1 
elements having the following two properties. First, there exists a martingale 
generator m = (ml ..., iMN) such that .lJ (T) = mn(T) for n = 1, . . ., N. For 
example, we could let 2I,, = mn. A polar case is to let 2li (t) = 0 for 0 - t < T and 
?1,( T) = m( T). With the price process Sn, = H(Dn), the former case leaves S- 0; 
all gains from trade are in the form of dividends, much in the manner of the 
"market-to-market" nature of modern futures contracts. The latter polar case 
leaves all gains from trade, except at the terminal time, in the form of capital 
gains, such as with a forward contract. The second defining property of a 
fundamental dividend process is that it includes a numeraire security, say the 
zeroth security, with dividend process 2o defined by Go(t) = 0 for 0 - t < T and 
20 T) = 1. 

PROPOSITION 3.2: Suppose 2 is a fundamental dividend process. Then, with 
associated vector price process S = H(2), the dividend-price process pair (i, S) is 
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market completing. Furthermore, given any spot price process af E P and any c c V, 
every trading strategy 0 that finances c has initial investment 

(3.6) 0(0) * S(O) = E[j (t) * c(t) dtl. 
PROOF: Let il E P and c E V be arbitrary. By Jensen's inequality and the essential 

bounds on the elements of il, we know x +(t) * c(t) dt is an element of 
L22 i, P). Then {X, E(x I it), t c [0, T]} defines a square-integrable martin- 
gale X (once a version of the conditional expectation process is fixed). We can 
therefore apply the definition of a martingale generator to get the representation: 

N 't 

(3.7) Xt==Xo+ { On(s) dGn(s) Vtc[O, T] a.s., 
n=1 o 

where on E L2[Gn], 1 - n - N. Let the trading process 00 be defined by the adapted 
process 

't N 

(3.8) 00( t) = xt -l/(S) * c(s) ds- fi On (t)Sn (t), t E [0, T]. 
O n=1 

Since Go- 0, we have f 00 dGo- 0 trivially, and thus 0 = (00, ..., ON) E 6?(G). 
Relation (3.6) follows immediately and relation (3.3) can be verified by sub- 

stituting (3.7) into (3.8). Relation (3.4) follows by evaluating the result at time 
T, using the definitions of X and x. Thus (i, H(2)) is market completing. 

Q.E.D. 

3.4. The Main Theorem 

THEOREM 3.1: Suppose the Arrow-Debreu economy ' = (V+, c, j ; i C 
satisfies assumptions (Al) through (A5). Fix a fundamental dividend process 2. 
Then the stochastic economy 9, = ( , F, i) has an equilibrium with a Pareto optimal 
allocation, dynamically complete markets, and no expectedfinancial gainsfrom trade. 

PROOF: Let (., (ci), i E J) be an Arrow-Debreu equilibrium for the Arrow- 
Debreu economy W, where the equilibrium price functional W is represented 
uniquely by the spot process il E 1 (Proposition 3.1). Let the securities claiming 
the vector dividend process 2 be assigned the vector price process S = H(9). 
By Proposition 3.2, (i, S) is market completing. By the definition of an Arrow- 
Debreu equilibrium, for each agent i E , we know 'F(a - cj) =0, or 
E[f T/4(t) [A(t) -ci(t)] dt] = 0. Thus, by Proposition 3.2, for each agent i s 
{1,.. ., I - 1}, there exists a trading strategy O' such that 

t rt 

(3.9) i()*[() (t] fS*[c^i(s) -ci(s)] ds + Oi(s) dG(s) 

Vt e [0, T] a.s., 

where G is the vector gain process defined by (ii, S), and 

(3.10) Oi(T) [S(T)+?A!(T)]=O a.s. 
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Equations (3.9) and (3.10) show that the chosen trading strategies for agents 
1,.. ., I - 1 allow them to meet their budget constraints (2.2) and (2.3) with the 
plans (ci, 0'). Let 0' = Oi. Since @(G) is a linear space, 0' E 9(G). From 
the fact that c,1 = ci- j ci and the linearity of stochastic integration, 
relations (3.9) and (3.10) also hold for agent I. 

We claim that (, S, (ci, 0,); i E J) is a stochastic equilibriumfor s. Every agent's 
plan is budget feasible and markets clear by construction. Suppose, for some 
agent i, there is a budget -feasible plan (c, 0) such that c >i Ci. Then the Arrow- 
Debreu equilibrium market value of c must be strictly higher, or 
E(JT +(t) * [c(t) - ci(t)] dt) > O. Since (j, 0) is budget feasible, we can substitute 
from (2.2) and (2.3) to obtain 

(3.11) E[f 0(t) dG(t) J c(t)[ (t)] dt] >O. 
_ _ 

Since 0e E(G) and G is a martingale, 5 OdG is a martingale, which has zero 
initial value, being a stochastic integral. The first term of (3.11) can thus be 
eliminated, leaving Cf(i - ci) > 0, which contradicts the fact that ci is an Arrow- 
Debreu equilibrium allocation for this agent. Thus each agent's allocated plan 
is indeed optimal. 

Of course the given stochastic equilibrium is Pareto efficient since it achieves 
the same allocations as the corresponding Arrow-Debreu equilibrium, and the 
usual convexity and continuity conditions ensuring Pareto optimality for a Wal- 
rasian allocation have been assumed. (See, for example, Duffie (1986).) 

By construction, markets are dynamically complete and there are no expected 
financial gains from trade. Q.E.D. 

4. EQUILIBRIUM PRICES CAN BE MARTINGALES UNDER VARIOUS EXPECTATIONS 

For this entire section let (qi, S, (ci, 6i); i e ) denote the equilibrium demon- 
strated in Theorem 3.1. For this equilibrium there are no expected financial gains 
(or losses) from trade under expectations given by the probability measure P. Of 
course, P was chosen arbitrarily from the set of probability measures unifoiInly 
absolutely continuous with respect to agents' probability measures, those preserv- 
ing the class of finite-variance random variables. Thus we face little difficulty, at 
this point, in demonstrating an equilibrium with no expected gain from trade 
under an arbitrary new probability measure P uniformly absolutely with respect 
to P, denoted P PR 

Let H denote the mapping that takes any integrable dividend process D to 
the price process S defined by 

S( t) = E 6[ DT - D I irt, t E= [0, T], 
P A A 

where E denotes expectation under P. In other words, H assigns the current 
market value to be the conditional expectation of total future dividends of the 
security, with expectation taken according to P. The corresponding gain process 
G is easily verified to be a P-martingale. It follows that S = H(D) is in fact a 
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price process, in the technical sense that G is a semimartingale, since a martingale 
is of course a semimartingale and the space of semimartingales is invariant under 
an equivalent change of probability measure (Jacod, 1979). 

Rather than starting from scratch, we will see how the original equilibrium 
spot price process qi of the last theorem may be transformed so as to preserve 
agents' budget feasible consumption sets when securities are assigned market 
values according to H rather than H. Let z denote an RCLL version'2 of the 
martingale {E(dP/dPj I), t e [0, T]}, where dP/dP is the Radon-Nikodym 
derivative of P with respect to P. In the terminology of martingale theory, z is 
the density process. Let f e ' denote the spot price process defined by +(t) = 

z( t)-141( t), t E [O,3 T]. 

LEMMA 4.1: E(J(t) * c(t) dt) = E (10 (t) * c(t) dt) VcE V. 

PROOF: The assertion is a consequence of the following sequence of equalities. 
Fubini's theorem will be used twice to reverse the order of integration, relying 
on the joint measurability of optional processes as well as the upper and lower 
essential bounds on the Radon-Nikodym derivative dPIdP= z(T) a.s. for 
integrability. The sixth equality holds for any RCLL version of the conditional 
expectation process of the previous line, since all such versions are indistin- 
guishable.'3 

(lo z(t) ( ) ) (dP[ z(t) / 

= E(z(T)t I 
= c(t) dt) 

=E(f ( d )(f_r(t) dt) 

=f E z(T() ). c(t)) dt 

z(t)] t 

= E ifr(t) c(t) dt)d 

0 

= E ( I )*c( t t) dt 

This completes the proof. Q.E.D. 

12 A process X is a version of a process Y provided, for each time t, X(t) = Y(t) almost surely. 

'3 Two stochastic processes X and Y are indistinguishable if X(t) = Y(t) for all t almost surely, 
or in other words if they have identical sample paths with probability one. 
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Suppose the martingale multiplicity of X'P^ is some integer N. (In the following 
section we will see that the martingale multiplicities of X.A^ and X2t are in fact 
the same!) Let 2 be a fundamental dividend process for (Q,F, P), and let 
S= H1( ) define the associated vector price process. 

LEMMA 4.2: (2, S) is market completing, and for any spot price process 0 E P 
and any consumption process c E V, any trading strategy financing c has initial 
investment equal to EP[JJ T+(t) _c(t) dt]. 

PROOF: Working on (12, F, P) rather than (f2, F, P), the proof is a repeat 
of that of Proposition 3.2, once one notes that L2(, i, P) and L2(Q, , P) 
have the same elements. Q.E.D. 

The following statement is easily verified from the proof of Theorem 3.1, taking 
into account Lemmas 4.1 and 4.2. 

PROPOSITION 4.1: There exist trading strategies Oi for each i eC 9 such that 
(4, S,(ci, 9i); ieJ) is an equilibrium for (E, F, 2). 

To re-emphasize the result, for any new probability measure P preserving the 
set of finite variance random variables, there exists a corresponding stochastic 
equilibrium (under the regularity conditions stated in Theorem 3.1) with no 
expected financial gain from trade under P. Even if the underlying Arrow-Debreu 
equilibrium allocation is unique, there is an entire family of stochastic equilibria 
with fundamentally different price behavior and identical consumption alloca- 
tions. 

5. THE SPANNING NUMBER OF STOCHASTIC EQUILIBRIA 

Under the regularity conditions of Theorem 3.1, we have seen in Propositions 
3.4 and 4.1 that, for any probability measure P uniformly absolutely continuous 
with respect to P, there exists a dynamically complete markets equilibrium with 
as few securities as the martingale multiplicity of A p plus one. Is this the smallest 
number? Does this number depend on the chosen price system, that is, the 
probability measure P? An answer to the first question in a special case was 
proved in Duffie and Huang (1985). We will see a more general result here and 
provide the answer to the second question. 

For the following definition we limit ourselves to economies whose gain 
processes have a finite variance, or E (G( T)2) <oo. For any probability measure 
P let the spanning number under P, denoted P#(p), be the smallest integer number 
of securities permitting dynamically complete markets with no expected gain 
from trade under P. If no such integer exists, the spanning number is defined to 
be infinite. 

PROPOSITION 5.1: For any probability measure P uniformly absolutely continuous 
with respect to P, the spanning number S#(P) is equal to the martingale multiplicity 
of X2dt plus one. 
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PROOF: That this is a sufficient number is given by Proposition 4.1. That no 
fewer will suffice is given by the proof of Proposition 5.2 of Duffie and Huang 
(1985). Although that proposition applies to economies with consumption at 
times 0 and T only, the same proof also serves in this setting (with minor notational 
changes) and need not be repeated. Q.E.D. 

This result states that the smallest number of security markets supporting a 
complete markets equilibrium when there are no expected financial gains from 
trade under expectations given by P is the martingale multiplicity under P, plus 
one. Our terminology and notation leave open the possibility that the spanning 
number may depend on P, that is, on the price system H. This is not the case, 
as one's intuition almost demands, and as will be proved shortly. 

It is without loss of generality that we characterize the spanning number of 
economies with no expected gain from trade under some probability measure. 
As proved by Harrison and Kreps (1979), and in a setting more like the present 
one by Huang (1984), this is always the case under regularity conditions, 
provided no arbitrage exists. The same proof yields this result in the present 
setting. Whether or not it is restrictive to limit ourselves to comparisons among 
uniformly absolutely continuous probabilities, rather than merely equivalent 
probabilities, is an open question. Two probability measures that are not 
equivalent certainly need not have the martingale multiplicity, as is easily shown 
by event tree examples. 

PROPOSITION 5.2 For any probability measures P1 and P2 uniformly absolutely 
continuous with respect to P, S#(P1) = S#(P2). 

Roughly speaking, the spanning number is independent of the probability 
assessments under which expected gain from trade is zero. 

PROOF: The assumptions PI 1 P and P2 P imply PI 1 P2. It has been shown 
(Duffie, 1986) that the martingale multiplicity is invariant among uniformly 
absolutely continuous probability measures. Then the result follows the Proposi- 
tion 5.1. Q.E.D. 

There exists a specific formula (derived in Duffie, 1986) for the transformation 
of a martingale basis under a given probability measure P to a martingale basis 
under a different probability measure P- P. This formula may thus be used to 
design a market completing set of securities for a given "risk-neutral" probability 
measure. 

We can now characterize the spanning number of a stochastic equilibrium 
directly in terms of agent primitives since, under the bounds on heterogenous 
expectations expressed in (2.1), every agent's probability measure is uniformly 
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absolutely continuous with respect to P. That is, the spanning number is invariantly 
the martingale multiplicity plus one. 

6. CONCLUDING REMARKS 

The model developed in this paper pushes the "rational agent" assumption to 
its extreme limit in a Walrasian setting. The central concept of a stochastic 
equilibrium of plans, prices, and price expectations is that agents take the entire 
stochastic processes characterizing terms of trade for assets and spot consumption 
as given, and determine in advance their optimal consumption rates and portfolios 
at each point of time and in each possible state of information. This implies 
preposterous computing and memory ability in all but the simplest schematics 
of an economy. There can be mitigating factors. For instance, Bellman's principle 
of optimality is operative: at any time-state pair the optimal consumption- 
portfolio strategy is merely a "sub-strategy" of the original problem. In that case 
the problem can theoretically be solved by backward recursion. If, furthermore, 
information is Markov in nature (e.g. the filtration F is that generated by a 
Markov process), the existing body of stochastic control theory might be brought 
to bear, with two caveats. First, stochastic control theory is currently extremely 
limited in the range of problems which can actually be solved. Frankly, the 
machinery, although conceptually simple, operates on a fragile foundation of 
regularity conditions and often depends on the solution of obstinate partial 
differential equations. Merton's (1971) solution for consumption-portfolio 
decisions is an exceptional achievement in this regard. Second, and more impor- 
tant, Markov stochastic control is particularly unsuited for determining equi- 
librium prices in the first place (except in single agent economies). The concept 
of adding up agents' Bellman equations to derive aggregate demand for capital 
assets and consumption as functions of prices, and then inverting to get prices 
that clear markets, is a natural one. What is not at all clear, however, is how to 
formulate each agent's stochastic control problem in order to achieve this goal. 
In particular, what is the relevant state description? Are an agent's current 
portfolio holdings, current asset prices, and the current state of the exogenous 
environment sufficient statistics for the control problem? Do these variables 
together form a workable Markov process? These questions are dealt with in 
extenso in Huang (1986). Positive results depend on severely restrictive conditions. 
Even under ideal conditions it has yet to be demonstrated directly using the 
stochastic control approach that multi-agent continuous trading equilibria 
actually exist, despite extensive work on this problem (e.g. Brock and Magill 
(1979), Merton (1973), Breedon (1979), Cox, Ingersoll, and Ross (1985)). Here 
the existence of equilibria is based on the usual abstract topological machinery 
of general equilibrium theory. Although the existence result is greatly simplified 
by the assumed "dynamic spanning" property of the given security dividends, 
recent discrete-time work (Duffie, 1985) indicates that this is not a prerequisite 
for the existence of equilibria in a general setting. Although Hart (1975) showed 
that the existence of equilibria in incomplete (or dynamically incomplete) markets 
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is a delicate issue, the assumption of purely financial rather than real security 
dividends simplifies matters considerably. 

It is nothing new to report that Walrasian equilibria are a rather magical 
phenomenon in complicated economies; the problem is simply more acute here. 
Even if the "right" prices were taken as given by all agents, they could not 
plausibly be supported by isolated rational behavior if the corresponding optimiz- 
ation problems are intractable. This model, then, is not intended as a description 
of how decentralized agent optimizing behavior brings about a competitive and 
efficient equilibrium, although it is consistent with that paradigm. Rather, it is a 
study of the role of security markets in a stochastic economy under uncertainty. 
A full regime of time-state contingent claims is not a prerequisite for what is 
effectively a complete markets equilibrium, as made clear early on by Arrow 
(1953). Relatively few well chosen security markets that are always open can 
often serve the same purpose. The nature and minimum number of these securities 
depend explicitly on the manner in which agents receive information resolving 
uncertainty over time. This is true in both discrete and continuous time in a 
general probabilistic setting. 

Production can be added to the model without changing the basic conclusions 
(Duffie, 1984a). One first demonstrates an Arrow-Debreu equilibrium for the 
underlying static production-exchange economy. The sufficient conditions 
applied in Duffie (1984a) from Duffie (1986) are restrictive. New work by Zame 
(1985), however, includes less restrictive sufficient conditions for this setting. 
Again, one assumes that the exogeneously given dividend process for zero-net 
supply securities have the fundamental dynamic spanning property applied in 
this paper. The spanning role of the firms' shares in a stock market setting is 
then superfluous. In principle, each firm chooses a production process y E V that 
maximizes the market value of the firm's share at each time and in each state of 
the world. From the additive nature of the function H defined in relation (3.5) 
mapping the firm's dividend process {D, = J' i * y, ds, t E [0, T]} to the firm's 
share price process, the Arrow-Debreu value maximizing production plan y also 
serves to maximize the firm's stock market value at all times and in all states. By 
the usual Modigliani-Miller style argument, since markets are dynamically com- 
plete, there is no role for financial decisions by the firm because shareholders 
can themselves make compensating financial adjustments in equilibrium. 

The original working paper (Duffie, 1984a) also allows for the possibility of 
infinite-dimensional spot markets, extending from the M-dimensional spot market 
setting of this paper. An infinite-horizon setting poses no additional difficulties. 
Rather than a terminal budget constraint,' however, one must require that each 
agent select a net-trade spot consumption process whose implicit initial market 
value in terms of securities is zero. 

Graduate School of Business, Stanford University, Stanford, CA 94305-2391, 
U.S.A. 

Manuscript received August 1984; final revision received February, 1986. 
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