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We consider a (not necessarily complete) continuous-time security market with semimartingale 
prices and general information filtration. In such a setting, we show that the first-order 
conditions for optimality of an agent maximizing a ‘smooth’ (but not necessarily additive) utility 
can be formulated as the martingale property of prices, after normalization by a ‘state-price’ 
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1. Introduction 

This paper presents a version of the idea of Harrison and Kreps (1979), 
linking the first-order conditions of portfolio optimality to the martingale 
property of normalized security prices, that leads to explicit asset pricing 
formulas with not necessarily additive utilities. 

We consider a continuous-time security market where prices are modeled 
by semimartingales (allowing for jumps, and therefore incorporating discrete 
time as a special case). The underlying information filtration is general, and 
the market is not necessarily complete. In such a setting, we show that the 
first-order conditions for optimality of an agent maximizing a ‘smooth’ utility 
can be formulated as the martingale property of prices, after normalization 
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by a ‘state-price’ process. The latter is given explicitly in terms of the agent’s 
utility gradient, which is in turn computed in closed form for a wide class of 
dynamic utilities, including the stochastic differential utility of Duflie and 
Epstein (1992); habit-forming utilities of the type used by Ryder and Heal 
(1973), Constantinides (1990), and Sundaresan (1989); as well as those 
discussed by Hindy and Huang (1992) over cumulative consumption pro- 
cesses, and generalizations of the above. This analysis is of interest mainly for 
the equilibrium asset pricing formulas under non-additive utilities. It also 
provides an essential intermediate step in the solution of the associated 
equilibrium and optimal portfolio problems. 

The Harrison-Kreps (1979) argument consists of two parts: in the first 
part a separating-hyperplane argument is used to derive a strictly positive 
extension of the pricing functional, and in the second this extension is used 
to derive the martingale property of prices under appropriate normalization. 
In this paper we make no topological assumptions. The first-order conditions 
replace the separating-hyperplane argument, and they are used directly to 
derive the martingale property of normalized prices. (Of course the latter also 
defines a strictly positive extension of the pricing functional,) The ‘non-empty 
interior’ assumption required to apply the separating-hyperplane argument of 
Harrison and Kreps is replaced by an assumption that certain perturbations 
of the optimal trading strategy are feasible. This condition of feasible 
directions can be stated in a number of ways, and can be somewhat delicate 
in the case where consumption can occur only at rates. The argument is 
considerably simpler when consumption can occur in ‘lumps’. 

Following Foldes (1990) and Back (1991), we consider a security market 
where prices are general semimartingales. As Bichteler and Dellacherie have 
shown, semimartingales are, in some sense, the most general type of 
processes that can be used as integrands of stochastic integrals. In this sense, 
they are the most general type of price processes with respect to which we 
can meaningfully define gains from trading. The reader unfamiliar with 
semimartingale theory will have little difficulty following the arguments of 
this paper, by accepting certain properties of semimartingales and Ito’s 
lemma at a formal level. All the required theory (as well as the Bichteler- 
Dellacherie theorem) can be found in Protter (1990). 

The ‘martingale method’ for solving optimal portfolios has been developed 
in papers such as Pliska (1986), Cox and Huang (1989), Karatzas et al. 
(1991) and He and Pearson (1991). All these papers assume a time-separable 
expected utility, and as a result the analysis of the first-order conditions, and 
the computation of the state-price process can be carried out separately for 
each pair of state-of-the-world and time. This simplification is not possible 
with the more general type of utilities considered here. Related work is also 
reported by Kandori (1988) in discrete-time, and by Foldes (1990) and Back 
(1991) in continuous time. All of the above references assume time-separable 
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expected utilities. Detemple and Zapatero (1991) apply the results of this 
paper to solve the optimal portfolio problem for a habit-forming utility 
under Brownian information and complete markets. (Their paper does not 
deal with the arguments that lead to the formula for state prices in terms of 
the utility gradient.) More comments on the optimal portfolio problem are 
given in the concluding remarks. 

The rest of this paper is organized as follows: The primitives of the market 
model and the basic definitions are presented in section 2. Section 3 discusses 
the first-order conditions for optimality. Section 4 makes the connection 
between the first-order conditions for optimality and the martingale property 
of normalized prices. The case of absolutely continuous cumulative consump- 
tion requires some additional technical arguments presented in section 5. 
Section 6 introduces a general class of utilities with temporal dependencies, 
with various examples. The gradients of these utilities are computed in 
section 7. Finally, section 8 contains concluding remarks, and the appendices 
contain proofs and auxiliary mathematical results. 

2. Preliminaries 

We consider a finite time horizon [0,7’j and a filtered probability space 
(12, %, [F, P). [The infinite-horizon case is briefly discussed in section 8, and 
more extensively in Skiadas (1992).] The filtration IF = {%Gr : t 2 O> is assumed 
to satisfy the usual conditions,’ and, for simplicity, %,, is taken to be trivial, 
in that it contains only events of probability one or zero. We also assume 
that %-,=%. The expectation operator with respect to P is denoted E, and 
the corresponding conditonal expectation given 8, is denoted E,. All 
equality statements between random variables are in the almost sure sense 
with respect to P. 

We take as primitive a convex set X of semimartingales. Any element C 
of X represents some cumulative consumption process, meaning that for 
every time t, C, represents the total net consumption up to, and including, 
time t. The initial value Co of a consumption process C represents an initial 
lump of consumption (that can also be interpreted as free disposal of initial 
wealth). We assume throughout that Co 20 for every CE X. (Typically, 
cumulative consumption processes are also assumed to be non-decreasing, 
but we are not going to need that property in any of our arguments.) 

An agent, fixed throughout the paper, is characterized by a utility function 
U : X + R, and a semimartingale W representing a cumulative private endow- 
ment. There are N + 1 securities available for trading. The nth security 
(n=O, 1 , . . . , N) is characterized by a cumulative dividend process D" and 

‘That is, F is right-continuous, and .F,, contains all null events. 
2Protter (1990) and Dellacherie and Meyer (1982) are general references on semimartingale 

theory and stochastic integration. 
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an ex-dividend price process S”, both of which are semimartingales. Let 
D - [DO,. . . ,DN] and S=[S’,... ,SN]. Security prices and dividends are all 
measured in common consumption units. A trading strategy is any vector- 
valued process of the form 8~ [e” ,. . . , ON], with each component a real- 
valued, locally bounded, predictable process. 

The gain process G is defined as G = S+ D. The agent’s net ex-dividend 
gains, when following trading strategy 8, are given by the stochastic integral3 
J0dG. A trading strategy 8 finances consumption C in X, using 
securities (S,D), if the following budget equations hold:4 

eT qs, + AD,) = dcT 

e;(S,+dD,)= j 8,dG,-C,_, t~C0,T-j. 
o- 

The statement ‘0 finances C using (S,D)’ is compactly denoted 0UC. 
A price deflator is any strictly positive semimartingale. Given deflator j?, 

and any semimartingale Y that represents a cumulative quantity (in our 
setting these are the elements of X, the components of D, and W), we define 
YB by letting: Y~E/?~Y~ and dYt=p,_ dK+ d[/I, Y-J,, t~[0, T]. On the other 
hand, if Y is a process that represents a non-cumulative quantity (such as S”, 
nE{O,..., IV}), we define YB =/3,E;, t E [O, 7’J We also let SB = [SOS,. . . , SNs], 
Da E [DOB , . . . , D”@], and GB E SB + DO. A special case of the following lemma is 
given in Huang (1985): 

Lemma 1. For all CEX and any deflator /I, 

t3UC if and only if 0u CB. 

We take as primitive a set IZ of price deflators. For technical convenience, 
we assume that GB is integrable’ for all /?EIZ. In formulating the agent’s 
optimization problem, we wish to exclude pathological trading strategies, 
such as doubling strategies, that generate expected gains from trade even 
when the security gain process is a martingale. This sort of pathology should 
be impossible under any reasonable class of state price processes. Further- 
more, we only allow trading strategies that finance feasible consumption 

‘For the purposes of this analysis, we treat j19dG as the sum ~~zO~OndG”. It is known, 
however, that this definition of an integral with respect to a multivariate semimartingale is 
rather limited, especially in its connection with martingale representation results. For the more 
general definition, also suitable for our purposes, see Jacod and Shiryaev (1987). 

4Given any process Y with left limits, Y- denotes the process {q- : t E[O, T]}, with the 
convention that YO- ~0, and AYE Y- Y-. We also follow the notational convention that 
c _ q, dx = q.d Y. + ji Q d x, whenever the quantities involved are meaningful. 

5That is, E 1 G:” 1 < co for all t and n. 



D. Dufjie and C. Skiadas, Continuous-time security pricing 111 

plans. We summarize these requirements in the following detinition. A 
trading strategy 8 is admissible if 

(a) For any ~EH and n~{0,..., N} such that GnB is a martingale, ~8”dG”~ is 
also a martingale. 

(b) There exists C E X such that 0-C - W. 

We denote the set of admissible strategies 0. 

Example 1. Suppose J7= {a: GB~xZ} # @, with 2’ defined in Appendix B. 
Using the facts of Appendix B, we can show that every LCRL (Left 
Continuous and with Right Limits) 0 such that E[(sup, 18, I)‘] < 00 satisfies 
condition (a) of the above definition. The requirement that n = @ is not very 
severe. In fact, given any price deflator fi, there is always a measure 
equivalent to P and with bounded Radon-Nikodym derivative under which 
GBe%’ [see Dellacherie and Meyer (1982, VII.58 and 63)]. 

A pair (0, C), consisting of an admissible trading strategy and a consump- 
tion plan, is budget feasible if 8uC and &, . GO + CO 5 W,. A budget feasible 
pair (8, C) is optimal if, for any other budget feasible (0, C), we have 
V(C) s U(C). 

3. First-order conditions for optimality 

In this section we state our basic assumption on the nature of the utility 
U, and we state the first-order conditions for optimality as a ‘no-expected- 
gains’ condition. 

Throughout the paper, we fix a reference budget-feasible pair (8, C). A pair 
(0, C), where 0 is a trading strategy and C is a semimartingale, is a feasible 
direction if 0-C and (8, C) +s(& C) is in 0 x X for all sufficiently small 
positive E. We denote by F, and F, the projections of the feasible direction 
set F on X and 0, respectively. The following basic assumption on the 
nature of the utility U is maintained from this point. 

Assumption 1. The Gateaux derivative6 vU(c, C) exists for all C in F,. 
Futhermore, there exists 7c in n such that, for all C in F,, V U(c C) = E(C;). 

The process 71 is the Riesz representation of VU at C. Intuitively, the above 
assumption requires the existence of a strictly positive marginal utility 

6The Gateaux derivative V U(c; .) : F+ R is defined by 

VU(C;C)Glim u(C+aC)-U(C), &F, 
010 a 

provided the limit exists and is finite. If linear, VU(c;) is the gradient of U at c. Luenberger 
(1969) is a general reference on Gateaux derivatives and their use in optimization theory. 



112 D. Dufie and C. Skiadas, Continuous-time security pricing 

density II,(W) for consumption at time t and state of the world w. For 
example, if U(C) = E[jc u(dCJdt) dt] for smooth u: R+R and absolutely 
continuous C, then mild regularity implies that n, =u’(dC,/dt). In section 5, 
we show that Assumption 1 is satisfied for smooth versions of most dynamic 
utilities used in practice (under mild technical conditions), including a wide 
variety of (not necessarily separable utilities for which the Riesz represen- 
tation rr is given explicitly in closed form. The assumption that rt is a 
semimartingale is of technical importance, and is further discussed in the 
concluding remarks. 

It is convenient for us to extend the definition of U to 0 by letting 
U(0) = U(C), whenever 0-C. Clearly, the restriction of U to 0 also has a 
Gateaux derivative at 8, given by 

VU(B;@=E(C”), (~,C)EF. 

Also, we observe that (8, C) is optimal if and only if B is optimal, in the sense 
that 

BEarg max{U(8):8E@, &,~G,~W,}. 

The Lagrangian for this problem is given by: _Y ((&A) = U(e) + A( W, - 8,. G,), 
and the associated Slater condition is stated in the following assumption: 

Assumption 2. BO. Go < W, for some 8 E 0. 

Assumption 2 is a mild condition. For example, it is satisfied if W, > 0 and 
0 E 0. The Saddle-Point Theorem states [see, for example, Holmes (1975, 
Theorem 14G)] that if 0 is optimal and the Slater condition is satisfied, then 
there exists 120 such that 

9 (8, n) 2 2 (63 L 9 (e,3, ed, 220. w-v 

Conversely, if the saddle-point condition, (SPC), is satisifed for some 220, 
then B is optimal. 

Lemma 2. Under Assumption I, (SK) implies 

ZJ; in addition, U is concave, then (FOC) implies (SIT). 

ProoJ: The first-order necessary conditions for (SPC), that are also sufticient 
under concavity of U, are: 
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But if (0, C) EF, Assumption 1 and Lemma 1 imply that VU@ Q=E(C”,)= 
E(& 0,dG:). Cl 

4. Martingale characterization of optimality 

In this section we provide conditions under which optimality of (8, c) is 
equivalent to the martingale property of G”. The importance of the latter in 
the theory of asset pricing is well known. In particular, G” is a martingale if 
and only if 

S,=;E, ( i(n,_dD,+ d[n,D],)+X& 
> 

, tEC0, rl. 

If the components of D are of finite 
the standard asset pricing formula: 

variation, the above equation reduces to 

Also, the martingale property characterizes short-term interest rates. To show 
that, let us assume that security zero represents short-term borrowing, in the 
sense that So z 1 and Do is of bounded variation. If K is a special 
semimartingale (for example, if it has bounded jumps) then it has a unique 
decomposition 7c= M + A, where M is a local martingale, A is of bounded 
variation and predictable, and A, =O. If Gon= X+~A dD” is a martingale, 
then it must be that the bounded variation part is constant. Therefore 
dDf = -dA,/n,. For the case in which A is absolutely continuous, we have 
dA, = pt dt, for some adapted process p, and dDF = I, dt, where I, = -p,/n,, a 
familiar formula for the short-term interest rate process [see, for example, 
Cox et al. (1985)]. 

The martingale property immediately implies optimality under concavity 
of the utility function: 

Proposition I. Suppose Assumption 1 holds, U is concave, and G” is a 
martingale.’ Then (8, c) is optimal. 

Proof: If G” is a martingale, then (FOC) holds with I= no, and the result 
follows by Lemma 2. 0 

‘That is, G”” is a martingale, for every n. 
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In the remainder of this section, we concern ourselves with the converse of 
this result, for which additional assumptions are required (although con- 
cavity is not needed). Our argument will make use of the following well- 
known lemma [see, for example, Dellacherie and Meyer (1982, VI.13.)]: 

Lemma 3. An integrable adapted process {I’, : t E [0, Tj} is a martingale if and 
only if EY, = E Y, for every stopping time r. 

Consider the trading strategy, denoted 8(n,z), that holds one unit of 
security n from time 0 up to a stopping time z, and nothing else. In symbols, 

0(n, 7): - 1 (OSt5r, i=n). 

Lemma 4. Suppose that Assumptions I and 2 hold, and that f&n, Z)E F, for 
every stopping time z. Then optimality of B implies that G”” is a martingale. 

Proof: By Lemma 2, (FOC) holds for some X20. In particular, with 
8= + e(n, z), for any stopping time r, we obtain that E(Gp) =JG”,. In 
particular, when r =O, we conclude that either G”,=O, or X= no (or both). In 
either case, Lemma 3 applies, giving the martingale property of G”“. 0 

Of course if the assumptions of Lemma 4 are satisfied for each n, we can 
conclude that G” is a martingale. More generally, we can adopt the following 
assumption: 

Assumption 3. Given any stopping time z, and any security n#O, there 
exists a trading strategy 0, such that: 

(a) fe~F,. 

(b) 0: = l{ojtjr). 
(c) ek=O, for all k${O,n}. 

In addition, + e(O, z) E Fe. 

For example, parts (b) and (c) of Assumption 3 are satisfied by P= e(n, z). 
More generally, Assumption 3 allows for the possibility that the dividends of 
security n up to time z, and the gains (or losses) after it is sold at time r, are 
not necessarily consumed, but can be partly or fully invested in security zero. 

Proposition 2. Suppose that Assumptions 1, 2, and 3 hold. Then optimality of 
8 implies that G” is a martingale. 

Proof: By Lemma 4, Go” is a martingale. We will now show that, given any 
n # 0, G”” is also a martingale. Let r be any stopping time, and 8” a trading 
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strategy satisfying the conditions of Assumption 3. Condition (FOC) and the 
fact that +~“EF, and Go” is a martingale, imply that 

The proof is then completed just as in Lemma 4. IJ 

One limitation of the above approach is that cumulative consumption 
must be allowed to jump. In many utility and equilibrium models, however, 
cumulative consumption is assumed to be absolutely continuous, and the 
above arguments do not apply. In the following section we deal with that 
technical issue. Since the basic ideas are the same as those of this section 
(modulo some approximation procedures) the reader can go directly to 
section 6 on a first reading. 

5. The case of absolutely continuous consumption 

In this section we show that a version of Proposition 2 can be formulated 
even when cumulative consumption is restricted to be absolutely continuous. 

We begin with a generalization of Proposition 2, and then show how it 
applies to the case of absolutely continuous consumption. The following 
generalizes Assumption 3: 

Assumption 4. Given any stopping time z and security n, there exists a 
sequence {e(m):m= 1,2,.. . } of trading strategies, such that 

(a) &0(m) E F,, for every m. 
(b) On {t 5 z}, 0”(m) = 1 and f?(m) =O, for all k 4 (0, n} and all m. 

(4 lim,,, E(JT e,(m) dG:) = 0. 

The intuition behind Assumption 4 is as follows. For n =O, it postulates the 
existence of a sequence of trading strategies that, up to time r, hold a unit of 
security zero and none of the others, while all dividends are consumed. After 
time r consumption is increased so that all available wealth is consumed very 
fast, as expressed by condition (c). For n#O, Assumption 4 postulates the 
existence of a sequence of strategies that, up to time r, hold one unit of 
security n, and none of the others except for security zero, which is used to 
store all wealth created by unconsumed dividends. After time 7, all wealth is 
quickly consumed in the sense of condition (c). Finally, in all of the above 
cases, the corresponding consumption plans and their negatives must be 
feasible perturbations of C. 

The following generalizes Proposition 2: 
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Proposition 3. Under Assumptions 1, 2 and 4, optimality of I!J implies that G” 
is a martingale. 

Proof: The proof consists of mimicking the arguments of Lemma 4 and 
Proposition 2, with the trading strategies e(m) of Assumption 4 in place of 
~(O,Z) and 8”. We then obtain, for any n and stopping time r, that 

The result then follows by letting m+oz, and applying Lemma 2. 

In the following example we introduce a setting of absolutely continuous 
cumulative consumption, and we give conditions under which Proposition 3 
applies. 

Example 2. We define a linear space 59 of processes, by letting CE~ if and 
only if 

C,=C,+jc,dt, t<T, 
0 

for some progressively measurable integrable process c. In this example, we 
assume that X s%‘. Notice that a cumulative consumption C in X may still 
have a jump on the terminal date T, which is another way of saying that the 
terminal value of the portfolio may affect the agent’s utility. The only other 
restriction placed on X is that it is an order interval. More precisely, let 5 
represent the order induced on V by the usual positive cone of non- 
decreasing processes. Then we assume that for all x,y EX, and any z E%?, 
xsz Iy implies that z EX. We let E be the progressively measurable process 
such that dC, = ~,dt, t < T. In this example we assume that security zero 
represents short-term borrowing; in particular, for all t E [0, T-J SF = 1 and 
Dp = so r, ds for some progressively measurable integrable process r. 

Given any security n and any C E %7, let 

d( 0: - C,) + AC,, tEC0, Tl. 

This is the cum-dividend value process [0(S + AD)] associated with a trading 
strategy (0) that holds a unit of security n, finances cumulative consumption 
C, and reinvests all remaining dividends in short-term borrowing or lending 
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(that is, security zero). In this setting, we have the following two proposi- 
tions, whose proofs can be found in Appendix A. 

Proposition 4. Suppose that P{ 1 E, 1 ~0, for almost all t lo} = 1, and 
G’“E&‘~. Gioen any security nE (0,. . . . . N} and any stopping time 24 T, 
suppose there exists a CEW such that: 

(a) H(W?ex~j~ 1 r,,j W21 < *. 
(b) fc’~F~, where’ C,=C;+S:“‘)&Ids+ IV:(C)(exp(jT(r,Idu)ll,=r,. 

Then Assumption 4 holds. 

Proposition 5. Suppose that P{ ) r, I ~0, for almost all t lo} = 1, and 
G’“E~‘. Given any security nE (0,. . ., N} and any stopping time 75 T, 
suppose there exists a CEW such that: 

(a) 
(b) 

E( y(C)‘) < 00. 
+CEF~, where e,=C:+ 1 V:(C)I~:“Ir,(ds+ ) V:(C)1 lft=Tj. 

Then Assumption 4 holds. 

The above propositions are only two examples of many possible variations of 
the same theme. This completes Example 2. 

6. Dynamic utilities 

In this section we define a wide class of dynamic utilities, that includes as 
special cases: time-separable expected utilities, stochastic differential utilities, 
and habit-forming utilities. In the following section the gradients of these 
utilities are computed explicitly. 

Let f : Sz x [0, T] x R” x R-+08 be a function satisfying the following 
conditions: 

(a) f(*;, z, u) is a progressively measurable process, for every (z, v). 
(b) Un$orm Lipschitz condition in utility: There exists a constant K such that 

If(w,t,z,u)-f(O,t,z,0)I 5Klu-ol for all(o,t,z,u,u). 

(c) Growth condition in consumption: There exists a constant K such that 

(f(w,4z,O)( SK(l+ ~~z~~) for all (a,4z). 

sWe adopt here the standard notation C to represent the process that is equal to C on [O,r], 
and equal to C, on [r, T]. 



118 D. Du@e and C. Skiadas, Continuous-time security pricing 

We take as primitive a function 2 on X, valued in9 %“r 
[L2(Q x [O, T], 0, A)ln (the power n denoting a Cartesian product), where 0 is 
the optional o-algebra,” and 1 is the product measure of P and Lebesgue 
measure on [O,ZJ (restricted to 0). The space 3 is equipped with the usual 
norm: 

(1~11 =(E)Izt[/idt)1'2, zcd. 

The class of utilities we will be considering is characterized by the following 
result of Duffie and Epstein (1992):” 

Theorem 1. For every C E X, there exists a unique process V(C) such that 

4 .L(ZAC), K(C)) ds > 3 tECQT3. 
* 

Throughout this section, and the next one, we assume that the utility 
U : X+Iw is given by U(C) = V,(C), where V(C) is the unique process of 
Theorem 1. 

Remark. The discussion of this section and the next one can be extended in 
a straightforward way by adding a term g(dCr) in the integrand of the utility 
expression in the statement of Theorem 1, where g is assumed to satisfy a 
growth condition. This extension allows for the possibility that utility 
depends on the final payoff. For simplicity, we only consider the case of 
g=o. 

Example 3 (stochastic differential utility). In the setting of Example 2, 
suppose Z,(C) = c, whenever dC, = c, dt, t < IT: and assume that Z(C) E 3’ for 
any CEX. Then U assumes a form of stochastic differential utility studied by 
DulIie and Epstein (1992). For example, when f takes the form ft(c,v)= 
u,(c) - ptv, we recover the classical time-separable utility over consumption- 
rate processes: 

U(c)=E 
0 

‘For simplicity, we assume that 2 is valued in an L2 space. All the arguments to follow 
extend immediately to the case where Z is valued in some LP space, p 2 1. 

“‘The optional a-algebra is generated by the RCLL (Right-Continuous and with Left Limits) 
adapted processes. 

“Dufftie and Epstein (1992) in fact prove the result in a slightly more general setting in which 
Z is valued in an Lp space for some p > 1. Antonelli (1992) extends the argument to the case of 
p=l. 
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Example 4 (habit formation). In the setting of Example 2, habit formation 
can be modeled by defining the function 2, so that Z,(C) =(ct, z,), where 
dC, = c, dt, t < T, and 

zt = z. + j h(c,, z,)ds, teC0, q, 
0 

for some h : R2+R that is uniformly Lipschitz in its second argument and 
satisfies a growth condition in its first argument. Again we assume that 
Z(C) E ?,Y for any C EX. This is a generalization, suggested by Duftie and 
Epstein (1992), of the habit-forming utilities adopted by Ryder and Heal 
(1973), Sundaresan (1989), and Constantinides (1990). There is of course no 
difficulty in extending this example (and its continuation in the next section) 
to the case in which h is state and time dependent. 

Example 5 (Hindy-Huang-Kreps utilities). Another formulation of habit 
formation is suggested by Hindy and Huang (1992), extending the work of 
Hindy, Huang and Kreps (1992) in a space of cumulative consumption 
processes. Their model can be incorporated in our setting, by simply 
defining: Z,(C)=Sbk,_,dC,, where k is a progressively measurable bounded 
process. 

7. Computation of utility gradients 

In this section we explicitly compute the Gateaux derivative of the 
dynamic utilities just introduced, and give an explicit formula for the Riesz 
representation of the utility gradient in each of the examples of the last 
section. 

The following smoothness assumption will be used: 

Assumption 5. The process Z has a square-integrable uniform Gateaux 
derivative at C, meaning that, for every C in F,, there is a process AZ(c; C) in 
3 such that: 

lim sup AZ,(C;C)_ z’(c’ac)-z’(c) =O. 

al0 f II a I/ 

Assumption 6. f,(w, ., .) is continuously differentiable for all (0, t), and there 
exists a constant K such that 

Il$$w)~l SK(l+ Ilzll), (0,Z,V)EQXR”XR, tc[O,T-J. 
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Theorem 2. Under Assumptions 5 and 6, the Gateaux derivative VU(c C) 
exists for all C in Fx, and is given by: 

where 

iI3 af,(z,(e),~(~)VZ,(C;C)dt 
O taz 

The above result can be used directly in computing the Riesz representation 
of utility gradients: 

Example 3 (continued). In the case of stochastic differential utility, we have 
VZ,(c; C)=c,, whenever dC, =c,dt, t < T. Under Assumption 6, it follows 
from Theorem 2 that U has a utility gradient at C with Riesz representation: 

rr,=B&,v,), tE[O,7--J. 

Example 4 (continued). The uniform gradient of Z for the case of habit 
formation is given in the following result: 

Lemma 5. Suppose that h is continuously dzrerentiable, ah/&z satisfies a 
growth condition in consumption,” and ah/& is bounded. Then Assumption 5 is 
satisfied, and 

v&(C;C)=($$, bexp(j~(Z.(C))du)~(Z.(C))dC,). 

Suppose now that Assumption 6, and the assumptions of Lemma 5 are 
satisfied. Then an application of Theorem 2 and Fubini’s theorem13 shows 
that U has a utility gradient at C with Riesz representation: 

where the obvious arguments have been omitted. 

“That is, there exists constant K such that 1 c%(c,z)/dc 1 5 K( 1 + 1 c I), for all (c, z). 
‘jThe version of Fubini’s theorem for conditional expectations that we need here can be 

found, for example, in Ethier and Kurtz (1986, Proposition 4.6). 
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Example 5 (continued). In Example 5, since 2 is linear, we have VZ(C; C) = 
Z,(C). Again by Fubini’s theorem, it follows from Theorem 2 that under 
Assumption 6, U has a utility gradient at C with Riesz representation: 

8. Concluding remarks 

We conclude this paper with a discussion of some related issues and 
unanswered questions. 

lnjinite horizon. The extension of the contents of this paper to an inlinite- 
horizon setting is straightforward, after requiring that for every admissible 
trading strategy 8, and any rr in ZZ, lim f_ ,&Jt. S: = 0. The utility gradient 
computations also extend without much difficulty. The details are all spelled 
out in Skiadas (1992). 

Equilibrium existence. There is as yet no equilibrium result of any kind for 
the space of cumulative consumption processes considered by Hindy and 
Huang (1992), except for the result by Mas-Cole11 and Richard (1991) in the 
case of certainty. Neither is there any result in continuous time for 
equilibrium without dynamically complete markets. A complete markets 
equilibrium existence result in a continuous-time setting in which agents 
maximize stochastic differential utility [of Duflie and Epstein (1992)] is 
presented by Duflie, Geoffard and Skiadas (1992). 

Representative agents and semimartingale state prices. Huang (1987) shows 
how Constantinides’ (1982) demonstration of a representative agent in linite- 
dimensional settings can be extended to an appropriate continuous-time 
setting with additive utility. Aside from its own merits, the existence of a 
representative agent is important in order to establish that there exists a 
semimartingale equilibrium state price process, that is, a price deflator rcell 
such that G” is a martingale. For example, with a single agent maximizing a 
time-separable utility over consumption-rate processes, and having additive 
utility index u, if the aggregate consumption (rate) level w is a semimart- 
ingale, and if u is C3, then rr= u’(w) is the Riesz representation of the utility 
gradient and, by Ito’s lemma, is a semimartingale. With heterogeneous 
agents, the assumption of complete markets and smooth additive utilities 
satisfying Inada conditions implies the same result, since the representative 
agent’s utility function is additive and (by the implicit function theorem) 
smooth. [See Huang (1987).] From this, we can recover the consumption- 
based capital asset pricing model of Breeden (1979) directly from the tirst- 
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order conditions for optimality, as shown in Duffie and Zame (1989) and 
Back (1991), rather than relying on a Markov setting and the existence of 
smooth solutions to each agent’s Hamilton-Jacobi-Bellman equation. Even if 
the representative agent’s additive utility is not C3, one can apply the fact 
that the composition of a convex function and a semimartingale is a 
semimartingale, as in Karatzas et al. (1990). Duffie, Geoffard and Skiadas 
(1992) extend the arguments for the additive case to the recursive case of 
Example 3, showing smoothness and Inada conditions under which any 
Pareto optimum has semimartingale state prices. In the setting of Hindy and 
Huang (1989), continuity of a utility gradient automatically implies that the 
state price process is a semimartingale. Beyond these cases, not much is 
known concerning the form of state prices. 

Optimal portfolios. The results of this paper show that the martingale 
approach can be used without the assumption of time-separability of utilities. 
Detemple and Zapatero (1991) have shown this for the case of habit 
formation. More generally, under complete markets, the martingale approach 
consists of the following steps: 

Step 1. Given is an Arrow-Debreu state-price density process p. This may 
arise, for example, from a set of security prices with no arbitrage opportuni- 
ties, after using a Girsanov-type theorem to compute the equivalent mart- 
ingale measure. Another starting point is a given equilibrium with known 
state prices. 
Step 2. Compute the gradient of the agent’s utility and its Riesz represen- 
tation as in the examples of this paper. By the basic result of this paper, the 
Riesz representation of the gradient also gives the Arrow-Debreu state prices 
X(C) as a function of the agent’s consumption plan c. 
Step 3. Solve the first-order condition z(c)=p for the optimal consumption 
plan c. A trading strategy that finances c can then be obtained by a 
martingale representation theorem. 

In the above sequence, Step 3 presents the challenge inverting the Riesz 
representation rr, in order to solve for the optimal consumption plan. We 
have not pursued general existence results for this problem, although 
Antonelli’s (1992) work may be of direct use here. In incomplete markets, of 
course, Step 3 is severely complicated since state prices are not unique. 

Appendix A: Proofs 

This appendix contains the proofs omitted in the main text. 

Proof of Lemma 1 

Suppose 0uc, and let K = 8; S, and F’f -b, l$ Then the budget equation 
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gives dy = 8,(dG, - AD,) - dC, + AC,. In particular, A r/; = 8,A S,, which implies 
that l$ = q -A K = 19, * S, _ . The rest of the proof is an exercise in integration 
by parts for semimartingales [see Dellacherie and Meyer (1982, VIII.18) or 
Protter (1990, 11.6)]. We have 

=/I-(B,(dG,-AD,)-dC,+AC,) 

= et@-ds, +S,-dB,+dCB, Xl, + B,(dD, - AD,) +d[& D- AD],) 

-B,(dC,-AC,)-dCB,C-Acl 

= UWV,) + A - dD, + W 01, 

-l&W -A-G -4X Cl, +B,AG 

= 8,(dG; - AD!) - dC; + AC!. 

The converse is the same result applied to B- ‘. To see this we note that if Y 
is any of SD, G, C, or I/, then (Y ) fi i/p= I: We now prove this in the 
non-obvious case, in which Y represents a cumulative quantity: 

d(YB):,P=~(B~_dr;+d[A rl,)+d f ;, JB-dY+CB, Yl 1 f 
J;dg+@d;+ $,/I ,Y t [ 11 

=dY,+d[l, Y-j,=dy. 

Proof of Proposition 4 

For simplicity we will write y instead of V:(6). We define the process 2 
and X(m) by 

X,(m)--jer~rudud(D:-C,)l~,,,, 
0 
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and then the stopping time a(m)~inf{t~O:X,+~(m)=O} A(T-z). Define the 
strategies (0(m); m = 1,2,. . .) by letting 

1 0 5 z) if n=k#O; 

XtW{t5,+,(,,, if n#k=O; 
e:(m) E 

1 (t9r)+Xt(m)l~,,t,,+.(,,) if n=k=O; 
0 otherwise. 

One can verify that &m)uC(m), where 

r”t 

C,(m)=C:+m s ~rdt+X,+,(,,(m)l(t=.,. 

Given any integer M, on the set E, f ( ) V, ) exp (ST 1 r, ) du) 5 M, t 2 z} c Sz, we 
have 

(X,(m)\ SM-m{/F,(ds. 

Let a(m)~inf{tLO:~:“)~~~ds~M/m). Then a(m)ja(m)+O as m-+oo on E,. 
Since UgEOEY=S2, it foll ows that o(m)+0 as m+co a.s. Assumption 2(c) 
then follows by Emery’s inequality (Appendix B) and dominated conver- 
gence. The rest of Assumption 2 can be easily verified. 

Proof of Proposition 5 

The proof proceeds exactly as that of Proposition 4 except for the fol- 
lowing modifications. The definition of 2 is modified by 

G’(l(“,>o)- l(“r<o,) I Krt I ltttrf. 

It follows that, on {thz}, we have 

=(er~IruIdu(l-m)+m)) V,). 

Therefore o(m)+0 as m+oo, and on {zStSz+a(m)}, with mZ2, 
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Therefore, for m large enough, ( X,(m) 11 ~rSr6r+a(mj~52( <I. The proof is 
completed as in Proposition 4. 

Proof of Theorem 2 

We let A V,(c; C) = y(e + C) - K(e), and define AZ,(c; C) analogously. We 
also define A&z, u; 6) = l;(z + 6, u) - f(z, u), and A,f,(z, u;“) E f(z, u + 6) - 
6’;;~). The pointwise Gateaux derioatiue, V V,(C; C), of V, at C with increment 

VF(C; C)=lim 
A v,(c; ah) 

=I0 o! ’ 

whenever the limit exists almost everywhere on 1(2.14 Let 

B,, -exp 
( 

j$YZ.(C), K(C))du , 
> 

OStlssT. _ _ 

We will show that VV,(C; C) = G,. The theorem is then proved by specializing 
to the case t = 0. 

We first show a lemma that characterizes G as the unique solution to an 
integral equation. The proof will then proceed by showing that the difference 
quotient of I/ satisfies a similar equation. From here on we follow the 
practice of omitting the argument C or (CC). 

Lemma 6. The process G is the unique integrable process that satisfies 

Proof: The reader can verify that G indeed solves the above integral 
equation by a direct calculation. Uniqueness follows by the stochastic 
Gronwall-Bellman inequality (stated in Appendix C). Alternatively, the 

IdThis definition allows for many versions of the pointwise gradient, but we identify proceses 
that are modifications of each other. 
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integral equation can be iterated n times, and then letting n+oo, G is 
recovered. 0 

Returning to the main proof, the recursion of Theorem 1 and the mean 
value theorem lead to the following equations: 

jAaf.(ZS,K;AZ,(C;clC)) 
t 

+A.f,(Z,(C+aC),V,;AV,(C;aC))ds 
> 

ah + &Zs( e + aC), v, + 5:) A v,( c; aC) ds 
> 

, 

where IlCjl 5 ((AZ,(~,aC)~(, and It:] S IAK(,(c;aC)I. Letting 

we then have 

T?f j”(Z,,K)D:+R:ds 
r av 

t~[0,7’-J, 

where 

&!&(Z,, v,) AZ.(:aC) - PZ,(C; aC) 1 
+ G(, +r” v)_af,(z v) AZ,(CaC) 

az t s’ s az s’ s 1 a ’ 

+ [ $j(Z,(C+aC), q+C:)-+(Z,, V,) 
1 
AK(:ac’. 

Because of the uniform Lipschitz condition of f in the utility argument, we 
obtain 
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1DfJjE,(jK1D:J +R:ds), t~Co,Tl, 
I 

and by the stochastic Gronwall-Bellman inequality (Appendix C) it follows 
that 

(@I SE,(j eK(‘-‘) R: ds . 
t I I> 

The remainder of the proof shows that the right-hand side of the above 
inequality converges to zero, and therefore so does D”, hence completing the 
proof. 

Clearly, Ry+O as aJ0. The result then follows by the dominated conver- 
gence theorem. In order to dominate R”, we use Assumptions 5 and 6, and 
the inequality 

IAJ((C;aC)I SE, j 
t 

ex’“-“$$(ZS+i:,VS)ds , 
> 

which follows from the expression for A V derived after Lemma 6, the uniform 
Lipschitz condition on f, and the stochastic Gronwall-Bellman inequality. 
The details of this tedious, but straightforward, domination argument are left 
to the interested reader. 

Proof of Lemma 5 

The pattern of the proof follows that of the proof of Theorem 2, only now 
the details are simpler. Given Cc% with dC, =ctdt, we define z(c) so that 
Z(C) = (c, z(c)). We write h, and h, to denote the partial derivatives of h with 
respect to its first and second arguments, respectively. We also define 
Az(c; c) = z(c+ c) -z(c), A,h(c, z;6) = h(c + 6, z) -h(c, z), and similarly with A&. 
Let 

> 
h,(Z,( C))c, ds. 

Then G uniquely satisfies 

We now seek a similar integral equation for the difference quotient of z. 
Writing 5 to denote ~(4, we have 
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Az,(E; ac)=i(A,h(C, +ac,,Z,; Az,(E, ac)) +d,h(E,,Ys;ac,))ds 
0 

= i (h,& + cc,, Z, + S,“)Az,(C, ac) + h,(& + t’:, z,)ac,) ds, 
0 

where 15,” 1 I jAz,(C, ac) 1 and I [z I 5 I ac, I. Letting 0: =(Az,(E; ac)/a) - G,, we 
then have 

or=j(h,(Z~(~))D:+R:)ds, 
0 

where 

R~~[h,(E,+ac,,.F~+~~)-h,(C~,FJ]AZf(Cac) 
a 

Therefore, 0; =fo exp@ h&Z,(C)) du)Rz ds. It remains to show that 

lim sup I 0; I =O. 
alO f 

To do that, we first notice that the integral equation for AZ above, can be 
solved to give 

Using the boundedness of h,, the growth condition on h,, and the Cauchy- 
Schwartz inequality, we conclude that there is an integrable random variable 
X,, such that 

A z,(C; a4 < x 
= f, asl, sit. .- 

a 

In particular, lim, 1 o Az,(C; ac) = 0 and therefore limEl 05; = 0. Taking into 
account the continuity of the partials of h, we have lim,loR;=O. Finally, a 
dominated convergence argument shows that jz I RF I dt+0 as aJO, implying 
the uniform convergence of D” to zero. 0 
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Appendix B: JP and Yp spaces 

This appendix surveys some definitions and facts regarding the spaces Yp 
and #’ of processes. The reader is referred to Protter (1990) for details and 
proofs. The results are presented for an infinite horizon, but they have their 
obvious finite horizon counterparts. 

In all that follows we assume PE Cl, co). The norm 1). \lyp is defined by 

and Yp is defined to be the space of all RCLL adapted X, with II X llyp < co. 
Following Protter, we also use the notation II X llyp when X is LCRL to 
denote the LP-norm of the supremum of X. 

The norm II * lldPr is defined over the space of semimartingales by 

IIXllzp= inf [M, M]y2 + 7 1 dA, 1 ’ I”, 

X=M+A 0 >I 
where the infimum is taken over all possible decompositions X= M +A, 
where M is a local martingale, and A is an RCLL adapted process of finite 
variation with A, = 0. We let .?Vp be the space of all semimartingales X, with 

llxll-- <co. The following facts are used in this paper: 

Fact 1. Let M be a martingale such that E(Mf) < cc for all t 20. Then 
E(M:)=E([M,M],),for all tz0. 

Proof 

Fact 2. 

Proof. 

Fact 3. 

Proof. 

Fact 4 

See Corollary 3 of Theorem ii.27 of Protter (1990). IJ 

Zf M is a local martingale then I( M II s2 =(E[M, M],)“2. 

See Corollary to Theorem v.1 of Protter (1990). 0 

There exists a constant C such that for any semimartingale X, 

((X((,GC((X((,I. 

See Theorem v.2 of Protter (1990). 0 

(special case of Emery’s inequality). Suppose X is a semimartingale 
and H is an LCRL adapted process. Then 

II !HdX II xl s IlHlly~ II X 1) ~2. 

Proof. See Theorem v.3 of Protter (1990). 
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Appendix C: Stochastic Gronwall-Bellman inequality 

We state the stochastic Gronwall-Bellman inequality. A proof can be 
found in an appendix of Dufie and Epstein (1992). 

Let (s2,8, F, P) be a filtered probability space whose filtration IF= ( 
Pt: t E [0, T-J> satisfies the usual conditions. Suppose {X,} and {x} are 
optional integrable processes and u is a constant. Suppose, for all t, that 
SHEJ 5) is continuous almost surely. Zf, for all t, I: 5 E,(jT(X, + NY,) ds) + Y,, 
then, for all t, 

I;se”“-“E,(Yr)+E i t( f eaCs-“X, ds) a.s. 

The same result holds if the sense of the above inequalities is reversed. 
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