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1 Introduction

Computationally eÆcient methods for simulating default times for positions
with numerous counterparties are central to the credit risk-management and
derivative-pricing systems of major �nancial institutions. The likelihood of
default of a given counterparty or borrower in a given time period is typically
small. Computing the distribution of default times or losses on a large port-
folio to reasonable accuracy may therefore require a signi�cant number of
simulated scenarios. This paper describes several computationally eÆcient
frameworks for simulating default times for portfolios of loans and OTC
derivatives, and compares some of the features of their implied distributions
of default times.

Our focus is on the simulation of correlated credit-event times, which
we can treat for concreteness as the default times of a given list of entities,
such as corporations, private borrowers, or sovereign borrowers. To put the
computational burden of a typical risk-management problem in perspective,
consider a hypothetical portfolio consisting of 1,000 randomly selected �rms
rated Baa by Moody's, and suppose the risk manager is interested in 10-
year scenarios. As indicated by the average default rates for 1970-97 in
Figure 1, Baa �rms experienced default at a rate of 0.12% per year, on
average, over this period. Our sample portfolio of 1,000 Baa �rms would
thus have experienced a total average rate of approximately 12 defaults per
year over this period. A \brute-force" simulation of default times for the
portfolio using, say, weekly survival-default simulation would call for 10 �
52 � 1000 = 0:52 million survive-or-default draws per 10-year scenario for
this portfolio. One also must update, week by week, the conditional default
probabilities of each entity, for another 0.52 million draws. Given random
variation in exposures at default, we �nd that an order of magnitude of
roughly 10,000 independent scenarios may be appropriate for estimation of
\long-tail" con�dence levels on total default losses for this sort of portfolio.
(Reduction in the computational burden would likely come from variance-
reduction or importance-sampling methods.) Simulation of 10,000 scenarios
by the brute-force approach would thus call for on the 10 billion of survive-or-
default random draws for each set of model parameters. In order to conduct
stress testing calibration, many such exercises may be called for.

Fortunately such computationally intensive algorithms are unnecessary
for many risk-management and pricing applications. Instead, one can use a
variant of the following basic recursive event-time simulation algorithm for
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Source: Moody's 1998
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Figure 1: One year, weighted-average default rates by Moody's rating.

generating random multi-year scenarios for default times on a portfolio:

1. Given the simulated history to the last default time Tk, simulate the
next time Tk+1 of default of any entity. If Tk+1 is after the lifetime of
the portfolio, stop.

2. Otherwise, simulate the identities of any entities defaulting at Tk+1, as
well as any other variables necessary to update the simulation model
for the next default time.

3. Replace k with k + 1, and go back to Step 1.

Algorithms based on recursive event-time simulation are relatively eÆcient
for large portfolios of moderate or low credit risk. For our hypothetical port-
folio of 1,000 Baa counterparties, ignoring migration of credit quality for
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the moment, the recursive event-time algorithm would call for an average
of about 12 random inter-default-time draws, and 12 draws for the identi-
ties of the defaulting entities, per 10-year scenario. We will present several
frameworks that allow for random variation in an entity's credit-quality over
time, while still allowing for the basic eÆciency of the recursive event-time
simulation algorithm. Moreover, recursive event-time simulation accommo-
dates correlation among default times, including correlations caused by credit
events that induce simultaneous jumps in the expected arrival rates of default
of di�erent counterparties.

For bank-wide risk management decisions, one may be interested in the
likelihood that there will exist some interval of a given length, say 10 days,
within the given multi-year planning horizon, during which default losses ex-
ceed a given amount of a bank's capital. This could be useful information,
for example, in setting the bank's capital, structuring its portfolio for liquid-
ity, or setting up provisional lines of credit. For accuracy in this calculation,
it would be necessary to simulate the default times of the di�erent entities
to within relatively �ne time slots, say daily.1 Under the obvious proviso
that the underlying probabilistic model of correlated default times is appro-
priate, we show that the recursive event-time algorithm is also well suited
for this task, as it generates the precise default times implied by the model,
scenario by scenario. When implemented for some hypothetical portfolios,
we �nd that such measures as the distribution of losses for the \worst two
weeks within 10 years" are particularly sensitive to one's assumption about
correlation among entities.

2 Economic Framework

Throughout this analysis, we take as given a formulation of the default prob-
abilities of each of the counterparties. We remain agnostic about the nature
of the economic information driving default and the structural model linking
this information to the default event. By way of background, we begin by
presenting a brief discussion of the frameworks that one might consider when

1For example, given a loss on a certain day, a subsequent loss 11 days later should not
enter the associated 10-day loss window, whereas a loss 9 days later should. If one is only
interested in measures of default losses over �xed accounting periods, say quarterly, then
the compuational burden of the brute-force simulation approach can be reduced somewhat
by moving from daily to perhaps quarterly frequency for survival-default random draws.
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modeling default events.
For corporate entities, foundational research on corporate debt pricing

by Black and Scholes (1973) and Merton (1974) suggests modeling default
probabilities at a given horizon as the likelihood that assets will not be suf-
�cient to meet liabilities. Important variants and extenstions of the model
allowing treatment of term-structures include those due to Geske (1977), Le-
land (1994), Leland and Toft (1996), and Longsta� and Schwartz (1995).
This class of models is the theoretical underpinnings of the popular commer-
cial \EDF" measure of default probability supplied by KMV Corporation.2

That it has predictive power for rating migrations and defaults is shown, for
example, by Delianedis and Geske (1998).

As far as implementation of this corporate-�nance framework for pur-
poses of simulating correlated default times for a list of �rms, at least two
methodologies are feasible:

A. Simulate the underlying asset processes until \�rst-passage" of assets
to default boundaries, as follows:

(a) From equity or bond (or both) price data, �t correlation and
volatility parameters of log-asset-value processes, modeled, say,
as Brownian motions.

(b) Fit, as well, boundaries, possibly time dependent, that determine
the default time of each �rm as the �rst time that its assets cross
its default boundary.

(c) Simulate the sample paths of the underlying correlated Brownian
motions, and record the �rst passage times for each �rm.

B. The \intensity" of default for a given �rm is the conditional expected
arrival rate of default, which may depend on many observables. (A
constant intensity implies a \Poisson arrival" of default.) One can �t
stochastic default-intensity models to publicly traded borrowers, from
market data on equity and bond prices, and perhaps other data such as
transition histories or macroeconomic business-cycle variables.3 Then

2See Kealhofer (1995).
3For example, Wilson (1997) proposes to �t transition intensities to country-level eco-

nomic performance measures. This implies independence of default times for within-
country entities, conditional on domestic business-cycle variables. One could model cor-
relation induced by industry performance by a similar mechanism.
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simulate correlated default times using well known algorithms, some
reviewed below, for simulation of stopping times with given intensities.

A special case of the intensity-based Approach B is the CreditMetrics
model of JP Morgan, for which one �ts a model of credit-rating transitions,
with correlations in rating changes that are implied by estimated correlations
in changes in �rm values. In e�ect, the default-time distribution for a given
�rm is based on historical rating transition and default data, while corre-
lations in ratings changes can be \calibrated" to market cross-�rm equity
return correlations.4

In principle, Approaches A and B both allow one to use information about
the prices of corporate securities when �tting a default-timing model. Use of
this information seems desirable, because:

� Equity and corporate bond prices re
ect market views of both asset
valuations as well as asset volatilities. For individual entities, this
provides enough information, in the context of the model, to derive
\risk-neutral" default probabilities. Time-series data may supply risk
premia with which one could estimate intensities.

� Correlation in the timing of default among di�erent entities can be
inferred through the model.

For the �rst-passage simulation method, Approach A, simulation of the
paths of asset levels until �rst passage to default boundaries is burdensome
for a large number of entities over long time horizons. Moreover, for long
time horizons, it is not obvious how to control this simulation method for
realistic re-capitalization possibilities. Calibration to reasonable long-term
default probabilities may be intractable, if not unrealistic.

In the remainder of this paper, we focus on default-time simulation us-
ing Approach B, based on various models of default-arrival intensities. We

4The algorithm is roughly as follows: (i) Estimate the correlations of the various
entities asset re-valuations, based on historical equity returns. (ii) For each entity, choose
various levels of asset returns as cuto� boundaries for ratings or default so as to match
the desired (say, historically estimated) rating transition probabilities. See, for example,
Introduction to Credit Metrics, J.P. Morgan, New York, April 1997, page 26. By scaling
arguments, volatilities are irrelevant given transition probabilities, unless one incorporates
mean-return e�ects. (iii) Simulate a joint Gaussian vector for asset returns of all entities,
and allocate the entities to their new ratings, or default, based on the outcomes.

7



emphasize, however, that to the extent permitted by the data, it is advan-
tageous to �t the model of stochastic intensities of the entities to market
equity or bond price behavior, economy-wide business cycle data, industry
performance data, and the historical timing of ratings and default. Bijnen
and Wijn (1994), Lennox (1998), Lundstedt (1999), McDonald and Van de
Gucht (1996), and Shumway (1997) provide some examples. Intensity-based
simulation is consistent in theory with �rst-passage simulation. For exam-
ple, DuÆe and Lando (1998) present a simple model in which, because of
imperfect observation of a �rm's assets (or the default boundary), there is a
default intensity that can be estimated from asset reports.

3 Multi-Entity Default Intensity

This section reviews the basic ideas of intensity modeling for multi-entity
portfolios. Appendix A reviews the more primitive underlying single-entity
intensity model.

Throughout, we use the fact that the sum N = Nr +NR of independent
Poisson arrival processes Nr and NR, with respective intensities r and R,
is itself a Poisson process with intensity r + R. The same property applies
with randomly varying arrival intensities, under certain conditions, the most
critical of which is that the arrivals cannot occur simultaneously. With si-
multaneous default, one can instead formulate separate credit events that
could cause more than one entity to default at the same time, and to model
the intensity of such joint credit events, as we shall see.

3.1 Constant and Independent Default Risk

Suppose, for illustration, that there are nA counterparties of type A, each
with default at intensity hA, and nB of type B, each with default intensity hB.
The time horizon T is �xed for this discussion. The intensities are assumed
to be constant. We assume, for now, that two �rms cannot default at the
same time. In this case, we can simulate the defaulting �rms, and times
of their defaults, by the following simple version of the recursive event-time
algorithm.

1. We �rst simulate a single Poisson process up to time T , with intensity
H = hAnA + hBnB. For example, with nA = 1000 A-rated counterpar-
ties, each with default intensities of hA = 0:001 per year, and nB = 100
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B-rated counterparties, each with with an intensity of hB = 0:05 per
year, we have a total intensity of H = 1 + 5 = 6 defaults per year.
The inter-arrival times T1, and Ti � Ti�1, for i > 0, are simulated as
independent exponentially distributed variables of parameter H, and
successively added together to get the times T1; T2, : : : . This gives us
the default times and the number of �rms defaulting before T .

2. At each default time Ti, the �rm to default is of type A with probability
a = nAhA=(nAhA + nBhB), and is of type B with probability 1 �
a. We draw a random variable Y , called a \Bernoulli trial," whose
only outcomes are A and B, with P (Y = A) = 1 � P (Y = B) =
a. If the outcome of Y is A, we select one of the remaining type-A
�rms to default at time Ti, at random. (That is, each �rm is drawn
with probability 1=nA.) If the outcome of Y is B, we draw one of the
remaining type-B �rms, again at random.

3. We could adjust the arrival rates of default events of each type as �rms
default or otherwise disappear. This nuisance can be avoided simply
by \not counting" �rms that have already defaulted once. For some
portfolios, such as revolving portfolios of bonds or loans underlying
collateralized debt obligations, one can accomodate the introduction
of new entities over time based on the simulated performance of the
portfolio to date as well as simulated market data such as interest rates.
One could extend the contagion model of Davis (1999) by modeling a
jump in the default intensity of one entity with the default by some
other entity.

In this way, we obtain, for each scenario, a list of the counterparties that
default and times at which each defaults. Because, typically, only a small
fraction of counterparties default in a given simulated scenario, this may be
an eÆcient computational method for simulating total default losses. Rela-
tively few market values and netting e�ects need to be computed.

3.2 Joint Credit Events

Certain credit events may be common to a number of counterparties. These
could include:

� Severe catastrophes (for example, \Earthquake in Tokyo").
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� Systemic default or liquidity breakdowns.

� Sovereign risks, such as a default, a moratorium on capital out
ows, or
a devaluation.

� Counterparties linked to each other through contracts or capital struc-
ture.

With joint credit events, some of the default intensity of each entity is
tied to an event at which any entity may default, with some given probability.
The total default intensity of entity i at time t is

hit = pitJt +Hit;

where, at time t,

� Jt is the intensity for arrival of joint credit events.

� pit is the probability that entity i defaults given a joint credit event.

� Hit is the intensity of arrival of default speci�c to entity i.

With this model, the intensity of arrival of any kind of event is

Ht = Jt +H1t + � � �+Hnt:

In order to simulate defaults, one can adopt the following variant of the
recursive event-time algorithm, which allows for correlation both through cor-
related changes in default intensities, as well as through joint credit events.
For now, we will assume that default intensities are changing deterministi-
cally between defaults and credit events. Later, we allow them to be general
correlated random processes, subject to technical conditions and of course
the tractability necessary to apply our general algorithmic approach.

1. Generate the next credit event time t, conditional on current informa-
tion, based on the total intensity process H. If t > T , stop.

2. At the event time t, allocate the event, as joint, with probability,
pJ(t) = Jt=(Jt+H1t+� � �+Hnt); or not joint, with probability 1�pJ(t).

10



3. If the type of event is simulated to be joint, then survive-or-default
draws are simulated for each entity, independently or with correlation,
depending on the model speci�cation, entity i defaulting with proba-
bility pit.

4. If the simulated event is not joint, then one of the counterparties
is drawn at random to default. Entity i is drawn with probability
Hit=(H1t + � � �+Hnt):

5. Any defaulting counterparties are deleted from the list.

6. According to the model speci�cation, the intensity processesH1; : : : ; Hn; J
and event-conditional default probabilities p1; : : : ; pn are reset, condi-
tioning on the history to date, and one returns to Step 1.

In the simplest version of the model, the only adjustment of intensities in the
last step is to replace the intensity process Hi and event-conditional default
probability pi of any defaulting entity with zeros. More general versions are
discussed below.

3.3 Example: Multivariate-Exponential Default Times

A special case of this approach is the classical multivariate-exponential dis-
tribution of failure times, reviewed in Appendix A, under which all individual
intensities (Hi and J) and conditional default probabilities (pi) are constant.
In this case, each entity's default time is literally a Poisson arrival.

The main advantage of the multivariate exponential model is its sim-
plicity. Simulation is easy. Numerous statistics (moments, joint survival
probabilities, and so on) are easily calculated explicitly. For example, for
�rst-to-default swap pricing, the impact of correlation is easily captured.

On the other hand, the model is not easily calibrated to data that bear
on the term structure of default probabilities, such as bond or equity price
data. For example, with risk-neutral bond investors, the term structure of
credit yield spreads for the multivariate exponential model of default times
is literally 
at, because the default hazard rates are constant, whereas credit
spreads often exhibit substantial slope, volatility, and correlation. (Term-
structure e�ects could also be in
uenced by time-variation in conditional
expected recoveries at default, as in Das and Tufano (1996), or in risk pre-
mia.)
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Moreover, it is somewhat unrealistic to suppose that two or more �rms
would default literally simultaneously, unless there is a parent-subsidiary or
similar contractual relationship. While the di�erence between simultaneous
and nearly-timed default may not be critical for expected default losses or
for the pricing of certain credit derivatives, it may indeed be an important
distinction for measurement of the likelihood of a given sized loss within a
given time window. With the multivariate exponential model, to the extent
that correlations in the incidence of defaults within a given year are realisti-
cally captured, the model may imply an unrealistic amount of default within
a given week or month.

4 Default Time Simulation Algorithms

Given stochastic intensity processes h1; : : : ; hn for each entity, our objective
is to simulate the associated default times �1; : : : ; �n, as well as the identities
of the defaulter at each default time. Two of the basic algorithms, coming
from the reliability literature on failure-time modeling,5 are reviewed below.
In some cases, as we shall point out, these algorithms are computationally
burdensome for general correlated multi-variate di�usion models for intensi-
ties. In later sections, we suggest some tractable models.

4.1 Single-Entity Default Time Simulation

The primitive for the single-entity case is a stochastic intensity process h for
a default time � . As a �rst step, it is helpful if one can tractably compute,
at any time t before default, the conditional probability p(t; s) of survival
to any given time s > t. Under certain conditions, the conditional survival
probability p(t; s) is given by

qt(s) = Et

�
exp

�Z t

0

�h(s) ds

��
; (1)

where Et denotes conditional expectation given the information available at
time t. A key condition6 for this result is that, for the �xed time horizon s,
the process fqs(t) : t � 0g de�ned by (1) does not jump at � . For example,

5See, for example, the survey by Shaked and Shanthikumar (1993).
6For more on this condition, see DuÆe, Schroder, and Skiadas (1996). Kusuoka (1998)

provides some interesting examples in which this condition fails.

12



it is enough that h is a di�usion process, or a jump di�usion with jump times
that are not default times. We would want a model for h allowing qt(s) to be
easily computed. Several such models are discussed in the following section.

In any case, there are two well known algorithms for simulation of the
default time � :

(A) Inverse-CDF Simulation: Build a model in which the survival prob-
ability p(0; t) is easily calculated. Simulate a uniformly distributed
random variable U , and let � be chosen7 so that p(0; �) = U .

(B) Compensator Simulation: Build a model in which the accumu-
lated intensity, H(t) =

R t

0
h(u) du, often called the \compensator," is

feasibly simulated. Simulate, independently of H, a standard (unit
mean) exponentially distributed variable Z. Let � be chosen8 so that
H(�) = Z.

Compensator simulation can be intractable unless the compensator can be
easily simulated. For di�usion models of intensity, exact compensator simula-
tion is relatively computationally intensive if the sample paths of the underly-
ing di�usion must be simulated. One could use Euler or higher-order schemes
for discrete-time approximate simulation of the stochastic di�erential equa-
tions underlying the intensities. Depending on the number of discrete time
periods and the number of scenarios, this may be relatively expensive.

4.2 Multi-Entity Default Time Simulation

Suppose the event times �1; : : : ; �n have respective intensity processes h1; : : : ; hn.
For simplicity, simultaneous default is ruled out. (That is, the probability
that �i = �j is assumed to be zero for i 6= j. Otherwise, one reduces to
simulation of the underlying event times at which simultaneous default may
occur.)

One can simulate the times �1; : : : ; �n with the correct joint distribution
(including correlation of course) by either of the following basic algorithms,
letting T denote the time horizon, assuming that one is interested in knowing
the outcome of �i only if it is in the interval (0; T ).

7This assumes that p(0; t) ! 0 as t ! 1. If not, then let � = infft : p(0; t) � Ug,
which may have +1 as an outcome.

8This assumes that H(t)!1 as t!1. If not, then let � = infft : H(t) � Zg, which
may have +1 as an outcome.
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(A) Recursive Inverse-CDF Simulation: Extending the single-entity
algorithm, one proceeds as follows,9 letting Tk denote the k-th to occur
of the default times, Ik the identity of the k-th defaulter, A(k) the set
of undefaulted entities after Tk�1, and

Wk = f(T1; I1; Y1); : : : ; (Tk; Ik; Yk)g;

the set of conditioning variables available at time Tk, where Yk denotes
a list of any additional state variables used for computing the CDF
p(Tk; � ) of the next default time Tk+1. For example, if intensities are
assumed to functions of a Markov state variable X, then X(Tk) would
be included in Yk. We let h(k) =

P
i2A(k) hi denote the total intensity

of default over the remaining entities, and we let

qk(t; s) = E

�
exp

�Z s

t

�h(k)(s) ds

� ���� Wk�1

�
: (2)

We have p(Tk; s) = qk(Tk; s) for any s > Tk provided that qk( � ; s) does
not jump at Tk+1, which we assume. Under technical conditions, the
conditional probability given (Wk�1; Tk) that i is the defaulting entity
at Tk is

gi(k) = P (Ik = i jWk�1; Tk) =

i(Tk�1; Tk)P

j2A(k) 
j(Tk�1; Tk)
;

where10 for each s > Tk�1,


i(Tk�1; s) = E

�
exp

�Z s

T (k�1)

�h(k)(u) du

�
hi(s)

���� Wk�1

�
: (3)

The steps of the algorithm are as follows.

1. Let k = 1, T0 = 0, and A0 = f1; : : : ; ng.

2. At time Tk�1, simulate, by inverse-CDF simulation using p(Tk�1; � ),
the next-to-default time Tk:

3. If Tk > T stop.

9We leave out technical conditions and details.
10For more, but not all, details, see DuÆe (1998a).

14



4. Simulate the identity Ik of the k-th defaulter from A(k), with the
conditional probability that Ik = i equal to gi(k).

5. Simulate the additional \state" variables Yk, with their distribu-
tion given the conditioning variables Wk�1; Tk; Ik.

6. Remove Ik from A(k � 1) to get A(k), and unless A(k) is empty,
advance k by 1, and go back to Step 2.

(B) Multi-Compensator Simulation: Under technical conditions, the
following algorithm generates stopping times11 �1; : : : ; �n with the given
intensity processes h1; : : : ; hn. It is assumed that the compensator
Hi(t) =

R t
0
hi(u) du can be simulated for each i and t.

(a) Simulate n independent unit-mean exponentially distributed ran-
dom variables Z1; : : : ; Zn.

(b) For each i, if Hi(T ) < Zi, then �i > T:

(c) Otherwise, let �i = minft : Hi(t) = Zig:

The compensator simulation approach is also possible, in a more com-
plicated form, if one computes the intensities when conditioning only the
history of the default times and identities of defaulting entities. This in-
formation structure is sometimes called the \internal �ltration," and the
resulting intensities in this setting are often called conditional hazard rates.
The failure-time simulation is then called the \multivariate hazard construc-
tion," proposed12 by Norros (1986) and Shaked and Shanthikumar (1987).
The multivariate-hazard construction is preferred if the hazard rates relative
to the internal �ltration can be computed explictly.

For our numerical results in later sections, we use recursive inverse-CDF
simulation.

5 Conventional Stochastic Intensity Models

A wide range of models of stochastic intensity processes with a signi�cant
level of analytical tractability have been used for modeling individual default

11There is no claim of uniqueness. Uniqueness in distribution is however implied if one
assumes that, conditional on the paths of the intensities h1; : : : ; hn, the stopping times
�1; : : : ; �n are independent.

12This is based on a result of Meyer (1971).
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times. We will brie
y consider some of these. We later propose some alterna-
tive models that are relatively simple and tractable for correlated default-time
simulation. As we shall see, they have rather di�erent implications for the
impact of correlation.

We note the helpful analogy between survival probabilities and discount
functions, as it is apparent from (1) that, for risk-neutral bond investors, qt(s)
is mathematically equivalent, under technical conditions, to a zero-coupon
bond price at time t, for maturity s, at short interest rate h. This suggests
convenient classes of intensity processes that have already been used to model
interest rates.

5.1 Di�usion Intensities

A convenient di�usion model of intensities would take hi(t) = fi(Xt), for
some state-space process X of a simple, say Cox-Ingersoll-Ross (1985) (CIR)
or more generally aÆne,13 form. Because the \discount" qt(s) is explicit for
this family of models, provided fi is itself aÆne, it is simple to simulate in-
dividual entity default times. One can likewise simulate the �rst-to-default
time T1 = min(�1; : : : ; �n) by the inverse-CDF method as the CDF of T1
is easily computed.14 In order to simulate subsequent chronologically or-
dered default times T2; T3; : : : , there are di�erent approaches. For example,
suppose T1 and the �rst entity I1 to default have been simulated as in the
recursive inverse-CDF algorithm above. In order to simulate T2, the second
default time, one could �rst simulate the state vector X(T1) determining in-
tensities at time T1, and then given X(T1), compute the new CDF p(T1; � )
for the second default time T2, and so on. The conditional distribution of
X(T1) given (T1; I1) can be computed easily for CIR models15 although it
need not be easily simulated in multivariate CIR cases. Compensator simu-
lation is feasible through simulation of the sample paths of X, but may be
computationally intensive. One could alternatively undertake compensator
simulation using the multivariate hazard construction, that is, with respect
to the internal �ltration, although the detailed hazard-rate calculations have
not yet been worked out for non-trivial cases beyond the CIR model, to our
knowledge.

13See DuÆe and Kan (1996).
14See, for example, DuÆe (1998a).
15See DuÆe (1998a).
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5.2 Finite-State Continuous-time Markov Chains

Jarrow, Lando, and Turnbull (1996) proposed the use of �nite-state continuous-
time Markov chains as a model of intensities, for purposes of term-structure
modeling for defaultable bonds. They identi�ed states with credit ratings.
Arvanitis, Gregory, and Laurent (1998), Lando (1998b), Li (1998), Nakazato
(1998), and Tepla (1999) have extended the model to allow stochastic varia-
tion of intensities within rating.

As for multi-entity correlated rating-transition models, Lando (1998a)
considered correlation within the framework of �nite-state continuous-time
Markov chains for each entity's intensity, by taking each of the states to
correspond to a particular list of ratings, by entity. For example, with 2
entities and 3 ratings, A;B; and C, the states are

fAA;AB;AC;BA;BB;BC;CA;CB;CCg;

where, for example, AB is the state for which entity 1 is currently in rating
A and entity 2 is in rating B. This leads to an exponential growth in the
size of the state space as the number of entities and ratings grow.

For a more tractable version of this approach, one could assume symmetry
conditions among entities, and that transition times for all entities within one
rating to any other particular rating or default are multivariate exponential.
Given the �rst time of a default or transition out of a particular rating,
symmetry calls for drawing the identity of the defaulting or transitioning
entities by picking at random, equally likely, some entity currently in that
rating. One then re-sets the total-intensity model for various transitions,
draws another transitition time, and so on. A typical element of the state
space is simply a list consisting of the number of entities in each rating.16

5.3 HJM Forward Default Probabilities

One can formulate Heath-Jarrow-Morton (1992) (HJM) style models of the
term structure of survival probabilities, by again exploiting the analogy be-
tween bond prices and survival probabilities. One formulates the conditional
probability at time t of survival to time s as the process

p(t; s) = exp

�
�

Z s

t

f(t; u) du

�
; (4)

16The state space is f1; : : : ; ngK , where n is the number of entities and K is the number
of ratings.

17



where for each �xed s, one supposes that f( � ; s) is an Ito process. One can
add the jumps to the formulation of f . From the model speci�ed for f , and
the HJM \drift" restriction17 imposed on f by the fact that fp(t; s) : t � 0g
is a martingale, one obtains indirectly a stochastic model for the intensity
process h(t) = f(t; t). The default time � can then by simulated, for example
by inverse-CDF or compensator simulation.

HJM-style models of survival probabilities could be used to simulate cor-
related default times for the various entities by compensator simulation, al-
though this may be compuationally burdensome.

6 Correlated Jump Intensity Processes

One example that we have explored is a model in which individual entities
have default intensities that mean revert, with correlated Poisson arrivals of
randomly sized jumps. By formulating the individual-entity default intensity
jump times as multivariate exponential, one arrives at a relatively simple but
useful model for simulating correlated defaults.

6.1 Mean-Reverting Intensities with Jumps

First we formulate a single entity's intensity process as a mean-reverting
process with jumps. Speci�cally, the intensity process h of a typical entity's
default time has independently distributed jumps that arrive at some con-
stant intensity �, and otherwise h mean reverts at rate k to a constant �. A
sample path for such an entity, su�ering 4 modest jumps to its intensity, is
illustrated in Figure 2. For this illustration, and our examples to follow, the
mean-reversion rate is k = 0:5. One can easily generalize.

With this simple model, the default arrival intensity h(t) of the default

17Suppose, for each �xed s, that df(t; s) = �(t; s) dt+�(t; s) dBt, where B is a standard
Brownian motion in Rd and � and � satisfy certain measurability and integrability con-
ditions. Then, under additional technical conditions, the martingale property of p( � ; s)
implies that �(t; s) = �(t; s) �

R s
t
�(t; u) du, for t � s. This is often called the \HJM drift

restriction." See Heath, Jarrow, and Morton (1992) for the drift restriction on f , given
its volatilities, and DuÆe (1998b) for more details on the application to default risk. It is
literally the case that f(t; s) is the hazard rate for default at s, conditional on information
at t. Simulation of f therefore makes for easy updates of conditional survival probabilies.
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Figure 2: A simulated path of default intensity.

time � , in between jump events, satis�es the ordinary di�erential equation

dh(t)

dt
= k(� � h(t)): (5)

Thus, at any time t between jump times, we have a simple solution

ht = � + e�k(t�T )(hT � �); (6)

where T is the time of the last jump and hT is the post-jump intensity at
time T .

For example, suppose that jumps in intensity are exponentially distributed
with mean J . The initial condition h(0) and the parameters (k; �; J; �) de-
termine the probability distribution of the default time. In fact, it can be
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shown18 that the conditional probability at any t < � of survival from t to s
is

p(t; s) = e�(s�t)+�(s�t)h(t); (7)

where

�(t) = �1�e�kt

k

�(t) = ��
�
t� 1�e�kt

k

�
� �

J+k

�
Jt� ln

�
1 + 1�e�kt

k
J
��

:

For example, suppose � = 0:001, k = 0:5, � = 0:001, J = 5, and h(0) =
0:001, meaning an initial mean arrival rate of default of once per thousand
years (10 basis points). For comparison, the average rate of default arrival
for both A-rated and Aa-rated corporate issuers from 1920 to 1997 was 9
basis points, according to Moody's,19 as illustrated in Figure 1.

At these parameters, a jump in default risk is likely to be devastating, as
a mean jump in intensity of 5 implies a mean expected remaining life of less
that 3 months. This model is slightly less risky20 than one in which an issuer
defaults at a constant intensity of 20 basis points. (For reference, the average
default arrival rate for all Baa-rated corporate issuers for 1920 to 1997, as
measured by Moody's, is 32 basis points, as indicated in Figure 1.)

So-called \risk-neutral" versions of this calculation can also be used as
part of a term-structure model for defaultable debt, for example to calibrate
parameters or to price credit derivatives. Suppose for simplicity that there
are no credit risk premia. (The parameters (k; �; �; J) could be adjusted to
account for risk premia, in a \risk-neutral" version of the model.) The t-year
credit yield spread S(t) for zero-recovery instruments (say bond coupons) is
then given by

S(t) = �
�(t) + �(t)h(0)

t
: (8)

18The relevant ordinary di�erential equations for � and � are easily found, and then
solved, given the conjectured form of p.

19See \Historical Default Rates of Corporate Bond Issuers, 1920-1997," Moody's In-
vestor Services, Global Credit Research, February, 1998.

20This comparison follows from the fact that the jump-intensity model, at these param-
eters, starts an entity with a total arrival rate of 20 basis for a default or a potentially-
survivable jump in intensity.
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Credit spreads for a low-risk and a high-risk issuer are plotted in Figure 3.
The two issuers have the same parameters (� = 10 basis points, k = 0:5,
J = 5, and � = 10 basis points). The low-risk issuer, however, has an initial
default intensity h(0) of 5 basis points. The high-risk issuer has an initial
default arrival rate of 400 basis points. (For reference, the average default
rates of B-rated corporate issuers for 1920-97, as measured by Moody's, was
442 basis points.)

In summary, this jump-intensity model is appealing on grounds of sim-
plicity and tractability. As we shall see, it is also tractable and appealing as a
foundation for modeling correlation in default times among various entities.
In order to capture the e�ects of daily volatility in yield spreads (and quality),
one can easily extend to multiple jump types, at di�erent respective arrival
rates, or aÆne dependence of h on an \aÆne" di�usion state variable. All of
the above calculations can be extended to this case, giving easily calculated
survival probabilities and default-time densities.21

6.2 Correlated Jump Intensity Processes

Suppose that entities 1; : : : ; n have correlated multivariate exponential event
times, not for default, but rather for the times of sudden jumps of default-
arrival intensities, in the context of the jump-intensity model just described.
Once the individual parameters (ki; �i; �i; Ji) are �xed, the only parame-
ters to be chosen are those determining correlation across the multivariate-
exponential jump times of the individual entity's intensities.

This model is particularly tractable for simulation of successive defaults,
as all intensities (for individual entities' default times, for the arrival times of
jumps in intensities, for the arrival of any default, and so on) are deterministic
between credit event times (jumps in intensities or defaults). Thus, the next
event time and the identity of the next event, conditional on the simulation
to date, both have explicit cumulative distribution functions (CDFs), and
can therefore be simulated by two indepedendent uniform-[0; 1] draws. The
�rst draw determines the time � of the next credit event using the explicit
inverse-CDF. The second draw determines the identity of the event, condi-
tional on � , as a jump time or a default time, and if a default, which entity
defaulted. These various events have conditional probabilities proportional
to their respective intensities at � , which are in turn explicitly determined

21See DuÆe, Pan, and Singleton (1998) for details.
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from (6).22

This general class of intensity models is a special case of multivariate
\aÆne" jump-di�usion intensity models, for which survival probabilities as
well as moments, Laplace transforms, and Fourier transforms of default times
and state variables can be computed by analytical means.23

6.3 Numerical Example

For illustration, consider an example in which entities' default times have
the same parameters (k; �; �; J) determining the distributions of their indi-
vidual default times. Suppose, for simplicity, that the sizes of jumps to in-
tensities are independent (across time and counterparties) and exponentially
distributed. It would not be diÆcult to allow for multivariate exponential
jump sizes among entities a�ected by simultaneous jumps in intensities.

For a simple symmetric version of this model, we suppose that all corre-
lation in the intensity jump times arises from a common Poisson process
Nc, with intensity �c. There are also \idiosyncratic" Poisson processes
N1; : : : ; Nn, with common intensity parameter �. At the k-th jump time
Tk of Nc, for any k, the default intensity hi of entity i jumps by an expo-
nentially distributed amount Yik with mean J , if and only if Uik = 1, where
Uik has outcomes 1 and 0 with probabilities p and 1� p, respectively. At the
k-th jump time Tik of Ni, there is (with probability one) an exponentially
distributed jump Zik in hi with mean J . All of these event times and jump
sizes are independent.24

The parameters �c, p, and � are chosen to provide a given amount of
correlation (within the limits imposed by the model structure), maintaining

22If the mean-reversion rates k1; : : : ; kn are identical and equal to k, then the total
current intensity h(t) =

P
i2A(t) hi(t), where A(t) is the set of surviving �rms at time

t, satis�es piecewise, between credit event and default times, the same ODE (5), taking
� =

P
i2A(t) �i. Even without the common mean-reversion assumption, it can be seen with

a few calculations that, at any time, given the current intensities, the time-to-next default
or jump event has an explicit probability distribution and can therefore be simulated by
the inverse-CDF method.

23See DuÆe, Pan, and Singleton (1998).
24To be precise, W = fNc; N1; : : : ; Nn; fUik; Yik; Zik : 1 � i � n; k � 1gg are in-

dependent, and conditional on W , the default times �1; : : : ; �n have the conditionally
deterministic intensity processes h1; : : : ; hn just described. In fact, conditional on Nc,
the default times are independent, and one can therefore simulate default times by �rst
simulating the jump times of Nc, and then generate default times independently given Nc.
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the arrival intensity

� = p�c + � (9)

of a given entity's jumps in intensity.
Referring to Appendix A, we calculate the correlation between the multivariate-

exponential jump times of any 2 entities to be

� =
p2�c

�c(2p� p2) + 2�
: (10)

It will be noted that as J goes to in�nity, the model approaches the
multivariate exponential default-time model. As p approaches 0, the model
converges to one of independent default intensities. As p converges to 1 and
� converges to 0, the model approaches one of perfectly correlated jump
intensities.25

For our base case, we take the parameters for individual-entity default
risk to be those,

(� = 0:001; � = 0:002; k = 0:5; J = 5);

used in our previous individual-entity illustration. For correlation parame-
ters, we take

(p = 0:02;�c = 0:05); (11)

so that the rate of arrival of \idiosyncratic" jumps in an entity's default
intensity is

� = �� p�c = 0:001:

This implies, for example, that the probability that hi jumps at t given that
hj jumps at t is p�c=(�c + �) = 1%.

For this base-case model, we simulated 20,000 independent scenarios for
the correlated default times of 1000 entities over a 10-year period. This means
that, in e�ect, we simulated defaults covering 200 million entity-years.26

25For perfectly correlated (that is, identical) default times, take p = 1, � = 0, and let
J !1, so that all entities default at the �rst jump in Nc, and not otherwise.

26The total CPU time expended for a Sun UltraSparc processor was approximately 3
hours. The software was written in MatLab. Simulation was pseudo-random, with no
variance-reduction techniques.

24



Year

T
ot
al
D
ef
au
lt
A
rr
iv
al
In
te
n
si
ty
(p
er
ye
ar
)

2 2.2 2.4 2.6 2.8 3 3.2 3.4 3.6 3.8 4
0

50

100

150

Figure 4: A portion of a simulated sample path of total default arrival in-
tensity (initially 1,000 �rms). A square indicates a market-wide credit event.
An x indicates a default event.

25



A portion of a typical sample path for the total arrival intensity h of
defaults for the 1000 original entities for this base-case model is illustrated
in Figure 4. Along the horizontal (calendar-time) axis, a \box" is marked to
show the arrival time of a jump in Nc, which on this sample path instigated
(at random) jumps in default intensity for a number of entities. As some of
these entities default, at times indicated by the symbol \�" on the horizontal
axis, and the intensities of default for the surviving �rms revert back to
typical levels, the total arrival intensity h for defaults drops quickly, moving
back near its pre-event levels within roughly one year.

Opinions one may have about the reasonableness of the illustrated be-
havior may suggest adjustment of the parameters. Of course, ideally, the
parameters could be �t to price, rating, default, and other data. For exam-
ple, after adding risk premia to �c, �, and J , one could calibrate to credit
spreads using the explicit spread formula (8), after adjusting the parameters
for risk premia.

Fixing individual default-time distributions, we consider variations in the
correlation structure:

� Zero correlation (�c = 0).

� \High" correlation (�c = 0:1; p = 0:02): This implies that � = 0; and
therefore that the probability that hi jumps at t given that hj jumps
at t is 0.02. Higher correlation is of course possible by reducing �c and
increasing p, holding � constant.

The probability of experiencing at least n defaults of the original 1000
�rms in a particular quarter is shown in Figure 5, where we pick for illustra-
tion the �rst quarter of the 5th year. Other quarters show similar results, as
indicated in an appendix.

Perhaps more telling, from the point of view of the impact of correlation
on credit-risk management and measurement, is the likelihood of the exis-
tence of some m-day interval during the entire T -year time horizon during
which at least n entities defaulted. For a time horizon of T = 10 years, n = 4
entities, and time intervals of various numbers of days (m), the results for the
uncorrelated, base case, and high-correlation models are shown in Figure 6.
Additional results are found in Appendix B.

These �gures reveal the impact of correlation, albeit in the limited context
of this model, for the ability of a given pool of bank capital to support a
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given level of credit risk when it is anticipated that �rm-speci�c or market-
wide illiquidity shocks may prevent re-capitalization of a bank within a time
window of a given size.

7 Correlated Log-Normal Intensities

In this section, we illustrate another simple example of multivariate corre-
lated intensities. In this example, intensities are log-normally distributed
and, for computational tractability, are assumed to be piece-wise constant,
changing at a given frequency, say once per quarter or once per year.

For example, given the sparse data available and statistical �tting ad-
vantages, it may not be unreasonable to assume that, for counterparty i,
the intensity hit in year i is generated by a log-normal model with mean
reversion, given by

loghi;t+1 = �i(log hi � log hi;t) + �i�i;t+1;

where

� �i is a rate of mean reversion.

� loghi is the steady-state mean level for the log-intensity.

� �i is the volatility of intensities.

� �i;1; : : : ; �i;t is an independent sequence of standard-normal random
variables.

One can introduce correlation in default risk through the correlation �ij
between �it and �jt.

7.1 Numerical Example

For this piece-wise log-normal model, we simulated default times and losses
upon default, assuming that exposures are independent and exponentially
distributed.27

27Exposures could equally well be simulated as the positive parts of joint-log-normals,
correlated with the underlying intensities, at little or no additional computational burden.
One could also take multivariate exponential exposures, also allowing for correlation.
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We take two classes of �rms. Type A �rms, of which there are nA, each
have a mean exposure of 100 million dollars. Type B �rms, of which there
is a smaller number nB = n � nA, each have a mean exposure of 10 million
dollars. All exposures are independent of each other and of the intensities.

The base case for our simulation is speci�ed as follows. We take intensity
update intervals of D = 1 year, n = 5000 �rms, nA = 4500, a time horizon
of T = 10 years, mean reversion parameter �i = 0:5, intensity volatility
parameter �i = 0:4. For type-A entities, we take hi(0) = hi = 0:0005. For
type-B, we take hi(0) = hi = 0:005. We take the base-case intensity-shock
correlation parameter �ij = 0:50 for all i and j.

Figures 7 and 8 show the estimated median, 75%, 95%, and 99% con�-
dence levels on default losses and number of defaults for the �rst quarter of
each year, for years 1 through 10. The results are shown for 10,000 indepen-
dent scenarios, requiring a total workstation cpu time of approximately 100
minutes.28

7.2 Check on Sampling Error

In order to check the Monte Carlo sampling errors of the reported con�dence
levels for default losses, we reduce the number of scenarios to 5,000, and
conducted 10 independent samples of this type. Tables 1 and 2, found in
Appendix C, report the sample means and standard deviations of selected
con�dence intervals for default loss and number of default events. At 5,000
scenarios, the estimated standard deviation of the sampling error of even the
99% con�dence levels for total default losses in a �xed quarter are under
4 percent of those respective con�dence intervals. The estimated sampling
errors of the median losses are slightly higher in fractional terms, but much
lower in absolute terms.

7.3 Check on Time-Discretization \Error"

While the model is not necessarily to be treated as a discrete-time approxima-
tion of a continuous-time intensity model, it could be. In that case, it makes
sense to shorten the discretization interval D and re-estimate the loss distri-
bution, taking the underlying log-intensity model to be Ornstein-Uhlenbeck

28The software was written in Fortran 90. The CPU time is for a single Sun UltraSparc
processor. We used pseudo-random independent sampling with no variance-reduction
methods.
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Figure 7: Simulated 50%, 75%, 95%, and 99% condidence levels on default
losses for the �rst quarter of each year. 10,000 simulation runs for the base
case.

driven by Brownian motion, controlling for �xed annual mean-reversion and
variance parameters.

We shorten D from 1 to 0.5 and 0.25 years, keeping all else as in the
base case. Again, 10,000 simulation runs are used. The total cpu times
are 140 minutes and 240 minutes, respectively. The reader can review the
results in Table 3, found in Appendix C. The \discretization error" seems
reasonably small in light of parameter uncertainty, for this particular model.
(One notes that, because of the Ornstein-Uhlenbeck model underlying the
discretization, the log intensities at the beginning of each year have a �xed
multivarite Gaussian distribution that is una�ected by discretization in this
setting, an advantage of this model.)
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7.4 Role of Intensity Volatility and Correlation

The impacts of variation in the intensity volatility paramter �i (holding all
else equal) con�dence levels of default losses is shown in Figure 11, found in
Appendix C.

The response of even high-con�dence-level default losses to variation of
the correlation parameter �ij is relatively small at our base-case volatility, in
comparison with the illustrated impact of correlation in the jump-intensity
model. This insensitivity is illustrated in Figure 9. In order to obtain signif-
icantly higher impact of correlation, we apply a 100% volatility parameter,
�i, with unconditional default probabilities roughly on a par with those at
base case in our jump-intensity model. The results appear in Figures 12 and
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13, found in Appendix C.
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Figure 9: Default Loss for the �rst quarter of each year. The four bands
correspond to 50%, 75%, 95%, and 99%-percentile default losses. Within each
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of default intensity are marked by di�erent colors. 20,000 simulation runs
for the base case.
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Appendices

A Review of Intensity Modeling

This appendix reviews the basic idea of default arrival intensities.

A.1 Poisson Arrival

A useful basic model of default for a given counterparty is one of Poisson
arrival at a constant arrival rate, called \intensity," often denoted �. For a
given Poisson with intensity h,

� the probability of default over the next time period of small length �
is approximately �h.

� the probability of survival without default for t years is e�ht.

� the expected time to default is 1=h.

For example, at a constant intensity of 0:04, the probability of default
within one year is approximately 4 percent, and the expected time to default
is about 25 years.

The intensity of arrival of an event, in this sense is sometimes called the
\hazard rate," which is more formally de�ned as f(t) = �p0(t)=p(t), where
p(t) is the probability of survival to t, assuming that p is di�erentiable.
The hazard rates are sometimes called \forward probabilities" in �nance,
and may be thought of as the intensities for a setting in which the only
information resolved over time is the arrival of default. That is, f(t) is the
arrival rate of default at time t, conditional on no other information other
than survival to t. Indeed, with constant intensity, the two terms, \hazard
rate" and \intensity," are synonomous, as the time to default is exponentially
distributed with parameter equal to intensity. This terminology varies.29

29To be more precise yet, the intensity � of the point process N which starts at zero
and jumps to one at the time itself, staying there inde�nitely, is de�ned by the property
that fN(t)�

R t
0 �(s) ds : t � 0g is a martingale, after �xing the probability measure and

�ltration of �-algebras de�ning information. See Br�emaud (1980) for technical details.
Thus, the intensity must drop to zero at the arrival time. We will speak loosely of the
intensity of a Possion arrival to be a \constant" �, even though the intensity drops to zero
after arrival. This loose terminology makes sense if one speaks of intensity at t for t before
arrival.
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The classic Poisson model is based on the notion of independence of
arrival risk over time. For example, the Poisson arrival at intensity h is
approximated, with time periods of small length �, by the �rst time that
a coin toss results in \Heads," given independent tosses of coins, one each
period, with each toss having a probability h� of Heads and 1�h� of Tails.
This \coin-toss" analogy highlights the unpredictable nature of default in
this model. Though we may be an instant of time away from learning that
an issuer has defaulted, when default does occur, it is a surprise.

A.2 Intensity Process

In practice, of course, as time passes, one would want to update the intensity
for default by a given counterparty with new information that bears on the
credit quality of that counterparty, beyond simply survival. That is, though
the default event cannot be fully anticipated, the probability that one as-
signs to default will likely change over time unexpectedly. How much this
probability changes over time depends on the available information about
the issuer's �nancial condition and the reason for the default.

A natural model is to treat the arrival intensity, given all current infor-
mation, as a random process. Assuming that intensites are updated with
new information at the beginning of each year, and are constant during the
year, it can be shown that the probability of survival for t years is

E[e�(h0+h1+h2+���+ht�1)]: (A.1)

In other words, looking forward from today (date 0), (A.1) gives the
probability that the issuer will survive for t years. It is the probability of
surviving the �rst year, times the probability of surviving the second year
given the �rst year was survived, times the probability of surviving the third
year given that the issuer survived until the second year, and so on. For a
quarterly-update model, taking an annualized intensity of ht at time t, the
probability of survival for t years is

E
h
e�

1

4
(h0+h0:25+h0:5+���+ht�0:25)

i
: (A.2)

For a continuous-time model, under certain conditions,30 we have the

30The conditions are reviewed in the text. Interesting exceptions are provided by
Kusuoka (1998).
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survival probability

S(t) = E

�
exp

�
�

Z t

0

h(s) ds

��
:

One can see an analogy between an intensity process h and a short interest
rate process r: survival probability is to intensity as discount (zero-coupon
bond price) is to short rate. In this analogy, the parallel to the \in-t-for-1
forward interest rate" is the \in-t-for 1 forward default rate," which is the
probability of default in the period from t to t+1, conditional on no default
before t. For example, in the constant-intensity model, the in-t-for 1 forward
default rate is the intensity itself. Analogously, with a constant short interest
rate, the forward rates are all equal to the short rate itself.

A.3 Multivariate Exponential Event Times

The simplest of all models of correlated credit event times is the multivariate
exponential. The basic idea of the model is that all types of events, whether
joint or particular to a given entity, have constant intensities. That is, with
this model, each credit event still has a Poisson arrival with constant in-
tensity, but certain entities may be a�ected simultaneously, with speci�ed
probabilities.

There are equivalent ways to specify such a model. The following is un-
conventional but convenient for applications to credit pricing and risk mea-
surement.

The basic ingredients are independent Poisson processes N1; : : : ; Nm with
intensity parameters �1; : : : ; �m. Whenever, for any j, there is a jump in
processNj, entity i has a credit event provided the outcome of an independent
0-or-1 trial, with probability pij of 1, is in fact 1.

We can think of the jumps of some (or all) of the underlying Poissons
N1; : : : ; Nm as market-wide events that could, at random, a�ect any of n
entities. Correlation e�ects are determined by the underlying credit-event
arrival rates �1; : : : ; �m and by the \impact" probabilities pij.

With this model, the arrivals of credit events for a given entity i is Poisson
with intensity

gi =
mX
j=1

pij�j:
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The intensity of arrival of simultaneous credit events for entities i and k
is

gik =
mX
j=1

pijpkj�j:

Likewise, for any subset A � f1; : : : ; ng of entities, the Poisson arrival rate
of a simultaneous credit event for all entities in A is

gA =
mX
j=1

�j
Y
i2A

pij;

where
Q

i2A pij denotes the product of pij over all i in A.
Conditional on survival of entities i and j to the current date, the corre-

lation between the times to the next credit events for entities i and k turns
out to be31

�ik =
gik

gi + gk � gik
:

Many other statistics regarding the joint distribution of event times can be
worked out explicity.32

Of course, for a credit event such as default, it makes sense to delete
any defaulting entities from the model at default times. After such a time,
the model for the timing of credit events of the remaining entities remains
multivariate exponential.33

B More on the Jump Intensity Model

This appendix provides additional results regarding the jump-intensity model.

31See Barlow and Proschan (1981), p.135, Exercise 8(c). We are grateful to Josh
Danziger of CIBC for bringing this convenient formula to our attention.

32See Barlow and Proschan (1981).
33An alternative for updating the model is to assume that the underlying Poisson pro-

cesses \disappear" at certain (say Poisson) arrival times, and perhaps that others, with
di�erent parameters, \appear" at certain times. In this case, it is easy to update the model
parameters with each appearance and disappearance, so that the model is piecewise-in-
time multivariate exponential. Simulation in this framework is easily accomplished. First
one simulates the appearance and disappearance times, which form \epochs." Then one
simulates the event times within each epoch as exponentially distributed, with right cen-
soring.
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C More on the Log-Normal Intensity Model

Additional results for the log-normal intensity model are provided in this
appendix.
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Figure 11: 95% Default Loss for the �rst quarter of each year. 20,000 simu-
lation runs for the base case with varying volatility of default intensity.
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Table 1: Sample mean and standard deviation (in parenthesis) of Simulated
Decile Estimates for the 1st Quarter Default Losses, in Millions of Dollars.
5,000 simulations for each set of estimates. Sample statistics calculated from
10 sets of estimates.

Year Con�dence Levels
50% 75% 95% 99%

0 13.26 77.45 284.99 485.50
( 0.61) ( 2.60) ( 6.53) (10.83)

1 14.76 85.00 302.04 513.06
( 0.57) ( 3.18) (12.48) (21.19)

2 15.05 87.65 300.96 511.89
( 0.98) ( 4.96) ( 7.66) (17.65)

3 15.02 86.25 299.90 511.19
( 0.54) ( 2.42) ( 8.96) (21.25)

4 15.41 89.03 303.72 512.80
( 0.52) ( 2.97) (13.47) (18.66)

5 15.11 87.45 303.50 513.02
( 0.89) ( 4.48) ( 7.30) (13.90)

6 15.33 88.37 306.74 521.69
( 0.70) ( 2.75) ( 5.37) (21.84)

7 15.04 86.77 299.95 509.42
( 0.73) ( 4.75) ( 8.32) (16.04)

8 14.57 86.03 301.01 509.09
( 0.63) ( 3.08) ( 8.18) (14.79)

9 14.91 90.05 306.48 512.63
( 1.04) ( 2.50) ( 8.17) (22.52)

10 14.92 88.01 303.01 514.17
( 0.48) ( 3.25) ( 8.70) (19.24)

43



Table 2: Sample mean and standard deviation (in parenthesis) of Simulated
Decile Estimates for the 1st Quarter Default Invents. 5,000 simulations for
each set of estimates. Sample statistics calculated from 10 sets of estimates.

Year Con�dence Levels
50% 75% 95% 99%

0 1.00 2.00 3.00 4.00
( 0.00) ( 0.00) ( 0.00) ( 0.00)

1 1.00 2.00 3.00 4.80
( 0.00) ( 0.00) ( 0.00) ( 0.42)

2 1.00 2.00 3.10 5.00
( 0.00) ( 0.00) ( 0.32) ( 0.00)

3 1.00 2.00 3.40 5.00
( 0.00) ( 0.00) ( 0.52) ( 0.00)

4 1.00 2.00 3.50 5.00
( 0.00) ( 0.00) ( 0.53) ( 0.00)

5 1.00 2.00 3.10 5.00
( 0.00) ( 0.00) ( 0.32) ( 0.00)

6 1.00 2.00 3.00 5.00
( 0.00) ( 0.00) ( 0.00) ( 0.00)

7 1.00 2.00 3.00 5.00
( 0.00) ( 0.00) ( 0.00) ( 0.00)

8 1.00 2.00 3.10 5.00
( 0.00) ( 0.00) ( 0.32) ( 0.00)

9 1.00 2.00 3.00 5.00
( 0.00) ( 0.00) ( 0.00) ( 0.00)

10 1.00 2.00 3.00 5.00
( 0.00) ( 0.00) ( 0.00) ( 0.00)
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Table 3: Simulated Decile Estimates for the 1st Quarter Default Losses, in
Millions of Dollars. 10,000 simulations runs.

Year Con�dence Levels
50% 75% 95% 99%

D = 1:0 year
0 13.26 80.56 281.64 483.94
2 15.39 84.88 303.60 498.33
4 14.61 88.26 305.90 500.67
6 15.95 91.86 312.63 529.85
8 14.81 85.19 303.39 504.73
10 14.89 88.65 298.07 523.53

D = 0:5 year
0 14.01 80.99 288.12 485.95
2 15.42 89.15 304.10 499.60
4 14.91 87.72 294.60 512.09
6 14.88 88.76 304.69 483.56
8 13.65 84.31 311.54 526.44
10 14.32 85.58 302.32 521.78

D = 0:25 year
0 13.18 79.61 288.65 517.70
2 15.38 90.34 304.36 517.58
4 14.66 85.50 309.05 522.20
6 15.22 87.00 300.71 504.99
8 15.43 91.28 314.25 529.74
10 15.26 90.37 302.40 513.56

45



n

P
(1
st
-Q
u
ar
te
r
D
ef
au
lt
s
�
n
)

0

0.1

0.2

0.3

0.4

0.5

2 4 6 8 10 12 14 16 18 20

� = 0:95
� = 0:50
� = 0

Figure 12: Probability of n or more defaults in the �rst-quarter of year
10. (1,000 entities, intensity exponential Ornstein-Uhlenbeck, parameters
� = ln(0:0017), � = 1, � = 0:5, pair-wise intensity shock correlation �).
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Figure 13: Probability of an m-day period within 10 years having 4 or more
defaults (1,000 entities, intensity exponential Ornstein-Uhlenbeck, parame-
ters � = ln(0:0017), � = 1, � = 0:5, pair-wise intensity shock correlation
�).
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