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SIMULATED MOMENTS ESTIMATION OF MARKOV MODELS 
OF ASSET PRICES 

BY DARRELL DUFFIE AND KENNETH J. SINGLETON' 

This paper provides a simulated moments estimator (SME) of the parameters of 
dynamic models in which the state vector follows a time-homogeneous Markov process. 
Conditions are provided for both weak and strong consistency as well as asymptotic 
normality. Various tradeoffs among the regularity conditions underlying the large sample 
properties of the SME are discussed in the context of an asset-pricing model. 

KEYWORDS: Monte Carlo simulation, generalized method of moments, geometric 
ergodicity, uniform strong law of large numbers, model estimation. 

1. INTRODUCTION 

THIS PAPER PROVIDES CONDITIONS for the consistency and asymptotic normality 
of a simulated moments estimator (SME) of the parameters of asset-pricing 
models with time-homogeneous Markov representations of the stochastic forc- 
ing process. SME's for economic models have been proposed by McFadden 
(1989) and Pakes and Pollard (1989) for i.i.d. environments, and by Lee and 
Ingram (1991) for a time series environment. The SME for time series models 
examined in this paper is as follows. The state vector Yt that determines asset 
prices is assumed to follow a time-homogeneous Markov process whose transi- 
tion function depends on an unknown parameter vector 3)0. Asset prices, and 
possibly other relevant data, are observed as f(Yt, ,0), for some given function f 
of the underlying state and parameter vector. In parallel, a simulated state 
process {Y]} is generated (analytically or numerically) from the economic model 
and corresponding simulated observations f(YJ3, 13) are taken, for a given 
parameter choice f3. The parameter , is chosen so as to "match moments," that 
is, to minimize the distance between sample moments of the data, f(Y,8030), and 
those of the simulated series f(Yt/, f3), in a sense to be made precise. 

The proposed SME extends the generalized method-of-moments (GMM) 
estimator (Hansen (1982)) to a large class of asset-pricing models for which the 
moment restrictions of interest do not have analytic representations in terms of 
observable variables and the unknown parameter vector. We provide conditions 
on the transition function of Yt and the observation function f under which the 
SME of 030 is consistent, and characterize the normalized asymptotic distribu- 
tion of the estimator. For two reasons, neither the regularity conditions underly- 
ing Hansen's (1982) analysis of GMM estimators for time-series models without 

1 We are grateful for several useful conversations with the co-editor Lars Hansen and Whitney 
Newey, and for the comments of Peter Bossaerts, Andrew Lo, Neil Pearson, Bruce Lehmann, and 
the referees. Singleton acknowledges funding from the National Science Foundation. Duffie 
acknowledges the support of a Battery March Fellowship. 
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simulation, which were also used by Lee and Ingram (1991) for their SME 
estimator, nor those imposed by McFadden (1989) and Pakes and Pollard (1989) 
for simulated moments estimation in i.i.d. environments, are applicable to the 
estimation problems posed in this paper. First, in simulating time series, 
pre-sample values of the series are typicallyrequired. In most circumstances, 
however, the stationary distribution of the simulated process, as a function of 
the parameter choice, is unknown. Hence, the initial conditions for the time 
series will generally not be drawn from their stationary distribution and the 
simulated process will generally be nonstationary. Second, functions of the 
current value of the simulated state depend on the unknown parameter vector 
both through the structure of the model (as in any GMM problem) and 
indirectly through the generation of data by simulation. The feedback effect of 
the latter dependence on the transition law of the simulated state process 
implies that the first-moment-continuity condition used by Hansen (1982), or the 
generalizations proposed by Andrews (1987), in establishing the uniform conver- 
gence of the sample to the population criterion functions are not directly 
applicable to the SME. Furthermore, the nonstationarity of the simulated series 
must be accommodated in establishing the asymptotic normality of the SME. 

We address these difficulties by assuming geometric ergodicity as a condition 
on the state process ensuring that the simulated processes are asymptotically 
stationary with an ergodic distribution that is independent of starting values, 
and by imposing a damping condition on the feedback effect of parameter 
choice on the law of motion of the state process. Under these conditions, the 
nonstationarities associated with simulation are shown to be inconsequential for 
the asymptotic distribution of the SME. 

The remainder of the paper is organized as follows. Section 2 uses a simple 
asset-pricing setting to illustrate in more detail the econometric issues that arise 
with estimation by simulation. The formal structure of the estimation problem 
and the definition of the simulated moments estimator are laid out in Section 3. 
Section 4 provides conditions for consistency, both weak and strong, the key 
ingredient being an appropriate extension of the uniform law of large numbers. 
Section 5 characterizes the asymptotic distribution of the SME, while Section 6 
provides several extensions of the SME. 

2. AN ILLUSTRATIVE ASSET-PRICING MODEL 

In this section we describe a simple dynamic asset-pricing model that illus- 
trates many of the econometric problems that arise in the use of simulation 
methods in estimation. The model is an extended version of the stochastic 
growth model studied by Brock (1980) and Michner (1984). After briefly 
describing the model, the use of simulation methods is given a more extensive 
motivation. Several econometric issues related to estimation using simulation 
are then introduced in the context of this model. This section is intended as an 
informal backdrop to the simulated moments estimator presented in Section 3 
and analyzed in Sections 4 and 5. 
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Suppose that production of the single consumption commodity is determined 
by 

(2.1) F(kt , zt) = ztkO+, 0 < < 1, 

for some function F, where kt is the level of the capital stock at date t and zt is 
a technology shock. The firm rents capital from consumers at the rental rate rtI 
and pays out the profits to the owners of its shares in the form of dividends, dt. 
In each period, the firm solves the following static optimum problem (maximiza- 
tion of profits) 

(2.2) d = argmax zk-t rtk} 
k, 

in order to choose the level kt of capital to rent from the consumer. In 
equilibrium, this is equivalent to maximization of share market value (see, for 
example, Duffie (1988, Section 20)). 

Given the price pt of a share of the firm, the representative consumer faces 
the budget constraint 

(2.3) ct + kt+1 +ptst+i = (dt +pt)st + (rk + p)kt, 

where ct and st denote consumption and shares of claims to the dividend 
stream of the firm, respectively, and (1 - ,) denotes a constant depreciation 
rate on the capital stock. Subject to this constraint, the representative consumer 
chooses consumption and share holdings so as to maximize utility for the 
infinite-horizon consumption process {ct}. Allowing for an unobserved (to the 
econometrician) taste shock {ut} and adopting a typical additively-separable 
utility criterion, the agent's problem is then 

(2.4) maxE E > tb5t - _ a <0, 

where a is the constant coefficient of relative risk aversion and 8 E (0, 1) is a 
subjective discount factor. 

The vector Xt' = (zt, ut) is assumed to be a Markov process satisfying 

(2.5) Xt = h(Xt- 1, ?t X Po), 
where {(e} is a two-dimensional i.i.d. stochastic process, h is a transition 
function, and po is an unknown parameter vector. For the moment, we also 
assume that {XJ} does not exhibit growth over time. 

In order to estimate the unknown parameter vector 030 = (0, a, Po' ,u, 8)', a 
point in some compact parameter set 69, we proceed as follows. The economic 
system (2.1)-(2.5) is solved analytically or numerically for the equilibrium 
transition function H generating the augmented state process Yt = (Xt', kt)', 
according to 

(2.6) Yt+1 = H(Yt,8 t+1,f8o). 

For any admissible parameter vector ,l3 E 6, we can also generate a simulated 
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state process {YW} according to the same transition function H, but using a 
shock sequence {(E'} that is identically and independently distributed of {(e}; that 
is, 

YtO+ 1 = H (Ytp, ?t+ 1 '9 

From this, a history {Yt,-}1 of 9 simulated equilibrium states can be gener- 
ated. 

Next, for some chosen observation function f, in each period t an observation 
ft =f(Yt,Yt,1 ... ,Yt-1+) is made of a finite "I-history" of state information. 
Likewise, a corresponding observation ftf can be formed for each i-history of 
simulated states. The components of ftf may be known analytic functions (for 
example, k0 -kt ) or determined numerically as functions of the i-history of 
simulated states (for example, equilibrium asset prices or consumption). Finally, 
the SME is a value of , chosen to minimize the distance between the sample 
mean of {ft}t`1 and the sample mean of {ft*)}'1, where T is the number of 
historical observations on ft*. 

Several considerations motivate the simultaneous solution of the model and 
SME estimation of ,. First, solving for the stochastic equilibrium of the model 
permits an assessment of the goodness-of-fit directly in terms of aspects of the 
joint distribution of asset returns, consumption, and capital.2 Furthermore, 
estimation of asset-pricing models using Euler equations (Hansen and Singleton 
(1982)) is not always feasible, as in the version of this model with taste shocks. 
Third, temporal aggregation may lead to inconsistent GMM estimators of 030 
(Hall (1988), Hansen and Singleton (1989)), but temporal aggregation can often 
be accommodated using the SME. 

For several reasons, this illustrative estimation problem is not a special case 
of either Hansen's (1982) GMM estimation problem or the simulated moments 
problems examined by McFadden (1989) and Pakes and Pollard (1989), or Lee 
and Ingram (1991). The most important difference between the estimation 
problem with simulated time series and the GMM estimation problem discussed 
by Hansen (1982) lies in the parameter dependency of the simulated time series 
{ft}. In the stationary, ergodic environment studied by Hansen (1982), one 
observes f(Yt, 30), where the data generation process {YtJ is fixed and 80 is the 
parameter vector to be estimated. In contrast, fLO =f(Yt/, 13) depends on 8 not 
only directly, but indirectly through the dependence of the entire past history of 
the simulated process {Yt} on ,. In Section 4, we present versions of uniform 

2 Several alternative numerical methods for solving discrete-time dynamic rational expectations 
models have recently been proposed in the literature; see Taylor and Uhlig (1990), Tauchen and 
Hussey (1991), and the references cited therein for useful summaries. Many of the algorithms 
discussed involve approximations to either the distributions of the forcing variables or the model 
itself. Additional approximations are involved when the underlying model is expressed in continuous 
time and a discrete-time approximation is being estimated. These approximations affect the large 
sample properties of the SME since, as sample size increases, one obtains a consistent estimator of 
the approximate model. At a minimum, the methods described in this paper apply to the 
approximate model if approximations are used to solve for equilibrium asset prices. They may apply 
to the original model if the approximation error can be made negligible as the sample size increases. 
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weak and strong laws of large numbers that accommodate this parameter 
dependency of the data generation process for simulated time series. 

Furthermore, in contrast to the simulated moments estimators for i.i.d. 
environments, the simulation of time series requires initial conditions for the 
forcing variables Y. Even if the transition function of the Markov process {YJ} is 
stationary (that is, has a stationary distribution), the simulated process {Y/3} is 
not generally stationary since the initial simulated state Y/3 is typically not 
drawn from the ergodic distribution of the process. In this case, the simulated 
process {(f} is nonstationary. 

A related initial conditions problem, common to the GMM and SM estima- 
tion of asset-pricing models, occurs with capital accumulation. Specifically, the 
current equilibrium capital stock can typically be expressed as a function of the 
previous period's stock plus investment in new capital. Measurements of invest- 
ment are often more reliable than measurements of the stock of capital, which 
may not be based on compatible assumptions about depreciation. Accordingly, 
in constructing a time series on the capital stock to be used in estimation, one 
may wish to accommodate mismeasurement of the initial stock.3 

In Section 4, we present a set of sufficient conditions for the Markov process 
{YJ} to be geometrically ergodic, which (among other things) implies that the 
large-sample properties of functions of Y, are invariant to the choice of initial 
conditions used in simulating both exogenous (taste and technology shocks) and 
endogenous (e.g., the capital stock) state variables. 

Throughout this discussion we have assumed that the Markov process de- 
scribed by (2.5) does not exhibit growth. In fact, there is real growth in output, 
and hence in certain asset prices. If the technology shock {zt, for instance, 
exhibits growth over time, then the implied trends for the components of Y, are 
restricted by the structure of the model.4 Conversely, the structure of the model 
restricts the class of admissible trend specifications. Furthermore, accommodat- 
ing these trends typically requires that the implied form of the trends in Y, is 
known, and that it is possible to build an adjustment for trends directly into the 
function f of the data and to simulate a trend-free version of the model. 

Following Eichenbaum and Hansen (1988), the implied restrictions on deter- 
ministic trends in the decision variables can be imposed in estimation by 
appending the moment conditions associated with least squares estimation of 
the trend equations to the moment equations involving f* and f . The 
subsequent discussion in this paper extends to this case using arguments similar 
to those in Eichenbaum and Hansen (1988) for GMM estimators of (2.11). If the 
forcing variables exhibit stochastic trends (unit roots), then our estimation 

3See Dunn and Singleton (1986); Eichenbaum, Hansen, and Singleton (1988); and Eichenbaum 
and Hansen (1988) for examples of studies of Euler equations using GMM estimators in which this 
type of initial condition problem arises. 

4See Eichenbaum and Hansen (1988) and Eichenbaum, Hansen and Singleton (1988) for a 
discussion of restrictions on trends implied by Euler equations. Singleton (1987) discusses the 
analogous restrictions on deterministic seasonal components of agents' decision variables. 
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strategy applies only if the entire model, including the forcing variables, can be 
transformed to a model expressed in terms of trend-free processes. 

3. THE ESTIMATION PROBLEM 

This section defines the simulated moments estimator. The basic primitives 
for the model are: 

(i) a measurable transition function H: R1N RP X (9 -N, with compact 
parameter set 69 c RIQ, for some positive integers N, p, and Q; 

(ii) a measurable observation function f: RNl> X (9 -M, for positive integers 1 
and M, with M> Q. 

A given RNI-valued state process {YJ71 is generated by the difference equa- 
tion 

(3 1) Yt+ 1 = H( Yt, 9 t+ 1 , i30) , 

where the parameter vector 030 is to be estimated, and {(e} is an i.i.d. sequence 
of R P-valued random variables on a given probability space (Q2, $1, P). The 
function H may be determined implicitly by the numerical solution of a model 
for equilibrium asset prices. Let Zt = (Yt,Yt ... Yt-,+,) for some positive 
integer 1 < oo. Estimation of 80 is based on moments of the vector ft* f(Zt, 13 )* 

For certain special cases of (3.1) and f, the function mapping ,3 to E[f(Zt, ,3)] 
is known and independent of t. In these cases, the GMM estimator, 

r T T' 1 T 
(3.2) bT= argmin - f, -E[f(Zt/3)] WT E ] 

E=-0 t=l t=l - 

for given "distance matrices" {WT}, is consistent for 130 and asymptotically 
normal under regularity conditions in, for example, Hansen (1982). The require- 
ment that ,3 - E[f(Zt, ,3)] is known, however, limits significantly the applicabil- 
ity of the GMM estimator to asset-pricing problems. 

The simulated moments estimator circumvents this limitation by making the 
much weaker assumption that the econometrician has access to an RlP-valued 
sequence {^} of random variables that is identical in distribution to, and 
independent of, {(e}. Then, for any [AN-valued initial point Y1 and any parame- 
ter vector ,l3 E 9, the simulated state process (Yt} can be constructed inductively 
by letting Yf = Y1 and 

( 3*3 ) Yt+ 1 = H( YtP, 8t+13) . 

Likewise, the simulated observation process {ft} is constructed by ftp = f(Zt 13), 
where Zt9 = (Yti,...Yt 1 +1). Finally, the SME of 10 is the parameter vector b 
that best matches the sample moments of the actual and simulated observation 
processes, (ft*} and {ft}. 

More precisely, let T9': N --- define the simulation sample size 7(T) that is 
generated for a given sample size T of actual observations, where 7(T) --> oo as 
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T -- oo. For any parameter vector /, let 

1 T 1 5(T) 
(3.4) GT(f3)= Eft* Ef' 

denote the difference in sample moments. If {ft*} and {ff} satisfy a law of large 
numbers, then hiMT GT(j3) = 0 if ,3 = ,38. With identification conditions, 
hiMT GT(j3) = 0 if and only if 13 =,130. We therefore introduce a sequence 
W= {WT} of MX M positive semi-definite matrices and define the simulated 
moments estimator for 030 given (H, e, , Y1, W) to be the sequence {bT} given 
by 

(3.5) bT= argmin GT(/3)'WTGT(,l3) argmin CT( ). 

The distance matrix WT is chosen with rank at least Q, and may depend on the 
sample information {f1,f * * , f T} U l ...* fX-: (T)1 E &}. 

Comparing (3.2) and (3.5) shows that the SME extends the method-of-mo- 
ments approach to estimation by replacing the population moment E[f(Zt,,13)] 
with its sample counterpart, calculated with simulated data. The latter sample 
moment can be calculated for a large class of asset-pricing models. Extensions 
of the SME are provided in Section 6. 

4. CONSISTENCY 

The presence of simulation in the estimator pushes one to special lengths in 
justifying regularity conditions for the consistency of method-of-moments esti- 
mators that, without simulation, are often taken for granted. As illustrated in 
Section 2, there are two particular problems. First, since the simulated state 
process is usually not initialized with a draw from its ergodic distribution, one 
needs a condition that allows the use of an arbitrary initial state, knowing that 
the state process converges rapidly to its stationary distribution. Second, one 
needs to justify the usual starting assumption of some form of uniform continu- 
ity of the observation as a function of the parameter choice. With simulation, a 
perturbation of the parameter choice affects not only the current observation, 
but also affects transitions between past states, a dependence that compounds 
over time. We will present a natural (but restrictive) condition directly on the 
state transition function guaranteeing that this compounding effect is of a 
damping, rather than exploding, variety. 

Initially we describe the concept of geometric ergodicity, a condition ensuring 
that the simulated state process satisfies a law of large numbers with an 
asymptotic distribution that is invariant to the choice of initial conditions. Then 
ergodicity of the simulated series is used to prove a uniform weak law of large 
numbers for GT(O3) and weak consistency of the SME (that is, bT-*PO in 
probability). Weak consistency is proved under a global modulus-of-continuity 
condition rather than the more usual local condition underlying proofs of strong 
consistency. Subsequently, we present Lipschitz and modulus of continuity 
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conditions on the primitives (H, e, f) that are sufficient for strong consistency 
(that is, bT -- I3o almost surely). Though weaker than the damping conditions 
typically used to verify near-epoch dependence (Gallant and White (1988)), 
these conditions nevertheless exclude an important class of geometrically er- 
godic processes. This fact is the primary reason for our initial focus on weak 
consistency. Finally, various tradeoffs in choosing among the regularity condi- 
tions leading to weak and strong consistency are discussed in the context of the 
illustrative model presented in Section 2. 

4.1. Geometric Ergodicity 

In order to define geometric ergodicity, let P,t denote the t-step transition 
probability for a time-homogeneous Markov process {Xj}; that is, P,t is the 
distribution of X, given the initial point Xo = x. The process {XJ} is p-ergodic, 
for some p E (0, 1], if there is a probability measure 7r on the state space of the 
process such that, for every initial point x, 

(4.1) P-tIIP,-7TjIv-O0 as t->*oo, 

where 11 "i, is the total variation norm.5 The measure 7r is the ergodic distribu- 
tion. If {XJ} is p-ergodic for p < 1, then {XJ} is geometrically ergodic. In 
calculating asymptotic distributions, geometric ergodicity can substitute for 
stationarity since it means that the process converges geometrically to its 
stationary distribution. Moreover, geometric ergodicity implies strong (a) mixing 
in which the mixing coefficient a(m) converges geometrically with m to zero 
(Rosenblatt (1971), Mokkadem (1985)). 

In what follows, for any ergodic process {Xj, it is convenient for us to write 
"Xx'' for any random variable with the corresponding ergodic distribution. We 
adopt the notation IIXIIq = [E(I IXlq)]llq for the Lq norm of any RAN-valued 
random variable X, for any q E (0, oo). We let Lq denote the space of such X 
with II X IIq < 00, and let II xli denote the usual Euclidean norm of a vector x. 

General criteria for the geometric ergodicity of a Markov chain have been 
obtained by Nummelin and Tuominen (1982) and by Tweedie (1982). We will 
review simple sufficient conditions established by Mokkadem (1985) for the 
special case of nonlinear AR(1) models, which includes our setting. 

A key ingredient for ergodicity is positive recurrence,6 for which a key 
condition is irreducibility. For a finite Markov chain, irreducibility means 
essentially that each state is accessible from each state, obviously a sufficient 
condition in this case for both recurrence and geometric ergodicity. Mokkadem 
(1985) uses the following convenient sufficient condition for irreducibility of a 
time-homogeneous Markov chain {X,) valued in RN with t-step transition 
probability P. 

5The total variation of a signed measure A is 1lAllI = SUPh: th(y)I _ 1fh(y) dA(y). 
6 For a finite-state Markov chain, recurrence means essentially that each state occurs infinitely 

often from any given state. See, for example, Doob (1953) for some general definitions. 



SIMULATED MOMENTS ESTIMATION 937 

CONDITION B: For any measurable A c RN of nonzero Lebesgue measure and 
any compact K c RN, there exists some integer t > 0 such that 

(4.2) inf Pxt(A) > 0. 
x EK 

It is obviously enough that Px(A) is continuous in x and supports all of RN 

for each x, but this single-period "full support" condition is too strong an 
assumption in a setting with endogenous state variables. For example, the 
process for Yt given by (2.6) fails this single-period full-support condition 
because the distribution of the capital stock kt+1 given Xt is degenerate, but 
often passes the weaker Condition B. To be more concrete, consider the special 
case of (2.1)-(2.6) with ut= 1 for all t, ,A = 0 (100% depreciation), and a = 1 
(logarithmic utility). Also, suppose that the law of motion for the technology 
shock is given by 

(4.3) Inzt+1= Z+pInzt +t+lX 

for constants Vz and p. Under these simplifying assumptions, the implied 
equilibrium asset-pricing function and law of motion for the capital stock are 
(Michner (1984)): 

(4.4) Pt = ( )z k, (1-8)t 

dt= (1 - )ztkt 

(4.5) kt+1 = S(PztkOt 

If {(e} is say i.i.d. normal, then {YtJ for this illustrative economy satisfies 
Condition B. More generally, Condition B is not a strong condition on models 
with endogenous state variables provided the endogenous state variables do not 
move in such a way that some states are inaccessible from others. 

If the state process {Xj is valued in a proper subset S of RN, Condition B 
obviously does not apply, but analogous results hold if Condition B applies 
when substituting S everywhere for RN (and relatively open sets for sets of 
nonzero Lebesgue measure). 

A second key ingredient for ergodicity is aperiodicity. For example, the 
Markov chain that alternates deterministically from "heads" to "tails" to 
"heads" to "tails," and so on, is not geometrically ergodic, despite its recur- 
rence. 

With these definitions in hand, we can review Mokkadem's sufficient condi- 
tions for geometric ergodicity of what he calls "nonlinear AR(1) models," which 
includes our setting. 

LEMMA 1 (Mokkadem): Suppose {YtJ, as defined by (3.1), is aperiodic and 
satisfies Condition B. Fix p and suppose there are constants K > 0, 8 E (0, 1), and 
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q > 0 such that H(*, ej 13): R N -* Lq is well defined and continuous with 

(4.6) ||H( Y, ?,, 6) llq < SIIYII, IlYll > K. 

Then {YJ is geometrically ergodic. Moreover, {IYl,Illq} and IIY2LIIq are uniformly 
bounded over t. 

Condition (4.6), inspired by Tweedie (1982), means roughly that {YtJ, once 
outside a sufficiently large ball, heads back into the ball at a uniform rate. 

4.2. A Uniform Weak Law of Large Numbers 

Since geometric ergodicity of {Yt,} implies a-mixing, it also implies that {Yt} 
satisfies a strong (and hence weak) law of large numbers. For consistency of the 
SME estimator, however, standard sufficient conditions require that a strong or 
weak law holds in a uniform sense over the parameter space 69. For example, 
the family {{ffft}: / e 69} of processes satisfies the uniform weak law of large 
numbers if, for each 6 > 0, 

i T] 
(4.7) lim P sup E(f) --EfT > 1 O. 

In our setting of simulated moments, {Z,} is simulated based on various choices 
of 13, so continuity of f(Zf, ,/) in ,8 (via both arguments) is useful in proving 
(4.7). We will use the following global modulus of continuity condition on {f,}. 

DEFINITION: The family {ff} is Lipschitz, uniformly in probability, if there is a 
sequence {Kt} such that, for all t and all 18 and 0 in &, 

Ilft -ft1ll < Ktllp - 011, 

where KT= T-'ET Kt is bounded (with T) in probability. 

LEMMA 2 (Uniform Weak Law of Large Numbers): Suppose, for each 38 E 0, 
that {Yt} is ergodic and that E( If! I) <00. Suppose, in addition, that the map 
,8 E(f!) is continuous and the family { f,} is Lipschitz, uniformly in probability. 
Then {{ff}: 8E E &} satisfies the uniform weak law of large numbers. 

The proofs of this and all subsequent propositions in Section 4 are provided 
in the Appendix. 

The ergodicity assumption on {Y,} in Lemma 2 can be replaced with 
Mokkadem's conditions for geometric ergodicity on the transition function H 
and disturbance Et, summarized in Lemma 1. 
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4.3. Weak Consistency 

Next, we summarize several important assumptions that are used in our 
proofs of both consistency and asymptotic normality of the SME. 

ASSUMPTION 1 (Technical Conditions): For each /3 e 0, {11ffp112+a: t = 1, 2, . . . } 
is bounded for some 8 > 0. The family {ff} is Lipschitz, uniformly in probability, 
and ,8 -* E(f4) is continuous. 

ASSUMPTION 2 (Ergodicity): For all f8 E (9, the process {Yt,} is geometrically 
ergodic. 

The hypotheses of Lemmas 1 and 2 are sufficient for Assumptions 1 and 2 
provided Mokkadem's conditions apply for some q > 2. 

We impose the following condition on the distance matrices {WT} in (3.5). 

ASSUMPTION 3 (Convergence of Distance Matrices): X0 is nonsingular and 
WT -* WO = -' almost surely, where (for any t) 

00 

(4.8) -X0- E E([ft*-E(ft*)I[ft'-j-E(ft_j)]) 
j= O00 

For the second moments in this assumption to exist, and their sum to 
converge absolutely, the assumptions that (lIf* 112+5: t = 1,2,... } is bounded for 
some 8 > 0 and geometric ergodocity of {Yt} together suffice, as shown by Doob 
(1953, pp. 222-224). Also, as with Hansen's (1982) GMM estimator, the choice 
of W0 in Assumption 3 leads to the most efficient SME within the class of 
SME's with positive definite distance matrices. 

Notice that X0 in Assumption 3 is a function of the moments of {ff,} alone; in 
particular, X0 depends neither on ,8 nor on the moments of the simulated 
process {ff}. Thus, X0 can be estimated using, for instance, the approaches 
discussed by Andrews (1991).7 Given the definition of X0 and the fact that 
geometric ergodicity implies a-mixing, it follows that the Newey-West estimator 
is consistent for X0 in our environment. 

Alternatively, X0 could be estimated using simulated data {f,}. Since the rate 
of convergence of spectral estimators is slow and one has control over the size 
Y(T) of the simulated sample, this alternative may be relatively advantageous. 
A two-step procedure for estimating X0 is required, however, so in establishing 
consistency of a simulated estimator of X0 one would need to account both for 
dependence of {ft} on an estimated value of ,X and the parameter dependence 
of simulated series. One approach to establishing consistency would be to 

7Several estimators of Xo have been proposed in the literature. See, for example, Hansen and 
Singleton (1982), Eichenbaum, Hansen, and Singleton (1988), and Newey and West (1987). In 
general, E[f,t* - Ef,* XfA1j - Eft* )'] is nonzero for all j in (4.8) and the Newey-West estimator is 
appropriate. 
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extend the discussion of consistent estimation of spectral density functions using 
estimated residuals without simulation, found in Newey and West (1987) and 
Andrews (1991), to the case of simulated residuals. 

Under Assumptions 1-3, the criterion function CT(/3) converges almost 
surely to the asymptotic criterion function C: e -* Rl defined by C(,8)= 
G0(,8)' WoGc(f3). 

AssuMPrIoN 4 (Uniqueness of Minimizer): C(,80) < C(3), 83 E E, 938 [,80. 

Our first theorem establishes the consistency of the SME {bT: T > 1} given by 
(3.5). 

THEOREM 1 (Consistency of SME): Under Assumptions 1-4, the SME {bT} 

converges to [3 in probability as T -* oo. 

4.4. Strong Consistency 

The Uniform Weak Law of Large Numbers (UWLLN) underlying the discus- 
sion in Sections 4.2 and 4.3 maintained the uniform continuity condition in 
Assumption 1. In this subsection we provide primitive conditions on H, 8, and f 
for a local modulus of continuity condition with simulation, and thereby explore 
in more depth the nature of the requirements in simulation environments for 
{fU} to satisfy the Uniform Strong Law of Large Numbers (USLLN): 

1iT 
sup - Ef-E(f) o as T-*oo. 
peo T t=1 

The basic nature of the conditions are of three forms: continuity conditions, 
growth conditions, and a contraction (or "damping") condition on the transition 
function H that we call an "asymptotic unit-circle (AUC) condition." 

Our proof of strong consistency of the SME proceeds in three steps.8 First, 
we introduce the AUC condition, which assures that current shocks have a 
damping effect on future simulated observations. Under the AUC condition, it 
is shown that, for each [3, there exists a stationary and ergodic process {Yt-} 
that satisfies (3.1) and can be substituted for {Yt} in proving consistency (and 
asymptotic normality) of the SME. Second, we show that the AUC condition 
and certain continuity and growth conditions imply a version of Hansen's (1982) 
modulus of continuity condition for simulation environments. Strong consistency 
of the SME then follows from results in Hansen (1982). 

DEFINITION (The Asymptotic Unit-Circle Condition): The transition function 
H and shock process ? satisfy the Asymptotic Unit-Circle Condition if, for each 

8 The strategy of using a unit-circle condition with a Lipschitz coefficient that changes geometri- 
cally toward zero in proving strong consistency of the SME was suggested to us by Lars Hansen in 
his discussion of an earlier version of this paper. 
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0 E 9, there is some 8 > 0 and a sequence of positive random variables {p,(8t)} 
satisfying 

l T 

(4.9) lim - , lnp6(E,)=a6<O a.s. 
T t=l 

such that, whenever 1113 - oil S 8, for any x and y, 

|| H( y, 1, ?) -H(x , 3?ct) | ( < p(t)IIy -xlx 

In other words, for the AUC condition, H(, 1,, Et) must have a Lipschitz 
coefficient pg(Et) with the property that H1t=_0p6() declines geometrically 
toward zero as t -->oo. This is a weaker requirement than the unit-circle 
condition used by Gallant and White (1988) to verify near-epoch dependence of 
a process. 

We say that f is 9-locally Lipschitz if, for each 0 E 9, there is a 8 and a 
constant k such that, whenever 11,8 - 011 S 8, the function f(, 3) has the 
Lipschitz constant k. Next, we define f to be S-smooth (sufficiently smooth) if f 
is 9-locally Lipschitz and, for each z E R14Nl, the function f(z, * ): e -*> RP has a 
Lipschitz constant C1(z), where C1 satisfies a growth condition.9 Obviously, if f 
is Lipschitz, then f is S-smooth, but a Lipschitz condition is unnecessarily 
strong and is not satisfied in many applications. (Take, for example, f(z, /) = 
,/z.) We say that H is S-smooth if, for each 0 E 9, there is a 8 small enough 
that 11/3 - OII < 8 implies that, for all y E RN and ? E RP, 

|| H( y9, ?) -H( y, 0,?) II < CAY911 y,? -0119 

where C2 satisfies a growth condition. 
The smoothness assumption on f and the AUC condition imply that the 

nonstationarity induced by the initial conditions problem can be ignored when 
studying the large sample properties of the SME. We establish this result in the 
following two lemmas. 

LEMMA 3: If (H, ?) satisfies the AUC condition, then for each /3 in e there 
exists a stationary and ergodic process Yt-: - Xo < t < oo} such that, for all t, Ytf3 
is measurable with respect to {'t s: s > 0} and Yt+l = H(Yt, ?t+1t /3). 

Next we argue that {Yt}, simulated with an arbitrary initial condition, can be 
replaced by {YtP} for the purpose of proving a USLLN. 

LEMMA 4: Iff is S-smooth and (H, ?) satisfies the AUC condition, then 

(4.10) sup -E fp--E ff E|O as T->oo, 
'8E=- T t=1l t=l 

where ft = f[(Yt, Yt-l,_ * * * Yt-.,+1) /3 

9A real-valued function F on a Euclidean space satisfies a growth condition if there exist 
constants k and K such that for x, IF(x) I 6 k + KIIxII. 
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The final step in proving strong consistency of the SME is showing that {ft } 
satisfies a USLLN. Toward this end, for each 0 in e and 8 > 0, let 

mod, (8, 0) sup {IIft 0 -ft 1:11 - 011 < 38 EE 0) 

denote the "modulus of continuity" of the process {fPt} at 0, defined o by w. 
Consider the following: 

ASSUMPTION 5: For each 0 E 0, there is a 8 > 0 such that E[modt (8, 0) < r. 

With this, combined with our earlier assumptions, Hansen's (1982) Theorem 
2.1 implies that {ft } satisfies a USLLN and that {bT} is a strongly consistent 
estimator of f80. We summarize with the following theorem. 

THEOREM 2 (Strong Consistency): Under Assumptions 3-5, the AUC condi- 
tion, and the assumption that f is S-smooth, the SME {bT} converges to I0 almost 
surely as T o-* o. 

The assumption in Theorem 2 that E[mod, (8,0)] <00 is not known to be 
implied by the AUC condition. However, by strengthening the statement of the 
AUC condition, Assumption 5 becomes redundant. Specifically, we introduce 
the following strong AUC condition: 

DEFINITION (L2 Unit-Circle Condition): The transition function H and the 
shock process ? satisfy the L2 Unit-Circle condition if, for each 0 E 9, there is 
some 8 > 0 and a sequence of positive random variables {pe(Et)} satisfying 
E[p9(Et)2] < 1 such that, whenever 1lk - Oil < 8, for all x and y, 

IIH(y,,9 Et) -H(x,I, Et) II Apo(Et)lly -Xli. 

By Jensen's inequality, ln E[p6(Et)] > E[ln p6(Et)], so that the L2 Unit-Circle 
Condition (L2 UC condition) implies the AUC condition. Hence the lemmas 
preceeding Theorem 2 continue to hold under the L2 UC condition. 

This strengthening of the unit-circle condition leads to the following theorem. 

THEOREM 3: Under Assumptions 3-4, the assumption that H and f are S- 
smooth, and the L2 UC condition, the SME is a strongly consistent estimator 
of p0. 

4.5. Regularity Conditions and Dynamic Asset-Pricing Models 

Weak consistency was established by assuming that the simulated processes 
are geometrically ergodic and that {fft} satisfies a uniform Lipschitz condition in 
,p. In contrast, strong consistency was established assuming a unit-circle condi- 
tion on the transition function H and an i.i.d. shock process {(}. Thus, the 
AUC condition substitutes in part for the Lipschitz condition in Assumption 1 
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and in part for geometric ergodicity in Assumption 2. Indeed, the L2 UC 
condition implies geometric ergodicity. On the other hand, there is an important 
class of geometrically ergodic processes that do not satisfy the L2 UC condition, 
and this is a primary motivating reason for our analysis of weak consistency. 

In order to see this, consider again the example in Section 2 and suppose that 
the law of motion of the technology shock is given by 

(4.11) z,= +pz,1 +ocv7y E, y < 1, O> 0, IPI <1, 

where vt =zt if zt > 'q > 0 and vt = 'q otherwise, and suppose that E(Et) = 0 for 
all t. This representation of a shock process is similar to several widely studied 
representations of conditionally heteroskedastic processes. Let h(z, ?, 3) denote 
the right hand side of (4.11). Then 

IIh(z, E, 13) - h(z' , c, ) 112 = P + o-E (Z - z) Iz - z' 11. 

The ratio (vy - v'D/(z - z') can be made arbitrarily large, as vt -7 'q for small 
-q, in which case the factor of proportionality for liz - z' exceeds unity. 
Similarly, if p, or, and the variance of ? are sufficiently large, then the unit-circle 
condition may be violated. This is the case, for example, if y = 1 and IIP + 0E11 2 
> 1. Furthermore, from the proofs of Lemmas 3 and 4, it is apparent that this 
process will not in general satisfy the AUC condition used to prove Theorem 2. 

The process (4.11) is nevertheless geometrically ergodic. This can be verified 
easily by noting that lPI < 1 and lIz'Il/liz l can be made arbitrarily small for 
large enough z when y < 1. Thus, the process {zt} satisfies strong and weak 
laws of large numbers. If, in addition, {Yt} satisfies Condition B and our weak 
uniform continuity condition is satisfied, then weak consistency of the SME is 
implied by the UWLLN (Lemma 2). 

Though the geometric ergodicity assumption accommodates more general 
processes than the AUC condition, our consistency proof based on the former 
requires the imposition of a uniform Lipschitz condition. This uniform continu- 
ity condition implicitly requires some damping of the effects of past shocks on 
current values of Y". We have not shown that processes of the form (4.11), for 
example, satisfy our uniform Lipschitz condition. Verifying this condition may 
well narrow the gap between the classes of models encompassed by the sets of 
regularity conditions used to prove weak and strong consistency of the SME. 

5. ASYMPTOTIC NORMALITY 

Under the unit-circle conditions introduced in Section 4.4, the stationary and 
ergodic process (Yt,} can be substituted for {Yt} in deducing the asymptotic 
distribution of the SME. Thus, the asymptotic normality of {bT} follows immedi- 
ately under suitably modified versions of the regularity conditions imposed by 
Hansen (1982). If, instead, the regularity conditions used to prove weak consis- 
tency in Section 4.3 are adopted, then Hansen's (1982) conditions are no longer 
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directly applicable because of the nonstationarity of {YO}. Therefore, our 
discussion of asymptotic normality focuses on the case of geometrically ergodic 
forcing processes that may not satisfy an AUC condition. The final characteriza- 
tion of the limiting distribution of the SME is, of course, the same for either set 
of regularity conditions. 

In deriving the asymptotic distribution of {T(bT - ,80)}, we use an intermedi- 
ate-value expansion of GT(1) about the point t80. Accordingly, we will adopt 
the following assumption. 

ASSUMPTION 6: 

(i) 80 and the estimators {bT} are interior to &. 
(ii) f, is continuously differentiable with respect to ,B for all t, co by co. 

(iii) Do E[dfold0/,8I exists, is finite, and has full rank. 

Expanding GT(bT) about 80 gives 

(5.1) GT(bT) = GT(f30) + dG* ( T) ( bT-f0), 

where (using the intermediate value theorem) 8G*(T) is the M x Q matrix 
whose ith row is the ith row of dGT(b )/8, with bT equal to some convex 
combination of 80 and bT. Premultiplying (5.1) by [8GT(bT)/8f31'WT, and 
applying the first order conditions for the optimization problem defining bT, 

(5.2) rGT(bT) 1W ~ ' EdGT(bT) 1 
(5.2) []WTGT(bT) =0= / d WTGT(f30) +JT(bT-/30), 

where 

JT E dGT(bT)]W 

Equation (5.2) can be solved for bT - ,8 if JT is invertible for sufficiently large 
T. This invertibility is given by Assumption 5 (iii) provided 8GT(bT)/8f3 con- 
verges in probability to Do. For notational ease, let Doft = (d/d,/)f(ZPf,,) 
(the total derivative). Under the following additional assumptions, Lemma 2 and 
Theorem 4.1.5 of Amemiya (1985) imply that plimT dGT(bT)/8f3 = Do. 

ASSUMPTION 7: The family {D6f,: ,B E &, t = 1, 2, ... } is Lipschitz, uniformly 
in probability. For all ,B eE 9, E( Dof! l) < oo, and /8 1 E(Dpf!) is continuous. 

Under these assumptions, the asymptotic distribution of FT7(bT -/3) is 
equivalent to the asymptotic distribution of (DX-1D0Y)-1WGT(G8o). The fol- 
lowing theorem provides the limiting distribution of FTGT(/3O). 
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THEOREM 4: Suppose T/ X(T) -* T as T -* oo. Under Assumptions 1-4, and 
6-7, 

(5.3) FGT( f0) =N [O, X0Xo(1+ T)]. 

PROOF: From the definition of GT, 

(5.4) FTGAPO T t) = 1[ -E(f*) 

- ~~~~- 
Ir 

L E/() s f= o - E(fWO)Aij 

We do not have stationarity, but the proof of asymptotic normality of each term 
on the right-hand side of (5.4) follows Doob's (1953) proof of a central limit 
theorem (Theorem 7.5), which uses instead the stronger geometric ergodicity 
condition. In particular, we are using the assumed bounds on Ilft112+8 to 
conclude that asymptotic normality of f* and fto (suitably normalized) follows 
from the geometric ergodicity of {YtJ and {YtPo}. (Note that, although Doob's 
Theorem 7.5 includes his condition Do as a hypothesis, the geometric ergodicity 
property is actually sufficient for its proof.) Our result then follows from the 
independence of the two terms in (5.4) and'the convergence of ft/I/ (T) 
to CT;. Q.E.D. 

An immediate implication of Theorem 4 is the following corollary. 

COROLLARY 3.1: Under the assumptions of Theorem 4, FTY(bT - 0) converges 
in distribution as T -0oo to a normal random vector with mean zero and covari- 
ance matrix 

(5 *5) A = ( 1 + T) (D' I -'1DO) 

The form of the asymptotic- covariance matrix A is familiar from the results of 
McFadden (1989), Pakes and Pollard (1989), and Lee and Ingram (1991). As - 

gets small, the asymptotic covariance matrix of {bT} approaches [D'.X-1D0]-1, 
the covariance matrix obtained when an analytic expression for E(f.) as a 
function of ,8 is known a priori. The proposed SM estimator uses a Monte Carlo 
generated estimate of this mean, which permits consistent estimation of ,80 for 
circumstances in which the functional form of E(f ) is not known. In general, 
knowledge of E(f) increases the efficiency of the method of moments estima- 
tor of I30. If, however, the simulated sample size 3(T) is chosen to be large 
relative to the size T of the sample of observed variables {ft*}, then there is 
essentially no loss in efficiency from ignorance of this population mean. Thus, 
the proposed simulated moments estimator extends the class of Markov pro- 
cesses that can be studied using method-of-moment estimators beyond those 
considered previously, with potentially negligible loss of efficiency. 
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These results presume that the model is identified. The rank condition for the 
class of models considered here is Assumption 6 (iii). In many GMM problems, 
verifying that the choice of moment conditions identifies the unknown parame- 
ters under plausible assumptions about the correlations among the variables in 
the model is straightforward. However, inspection of the moment conditions 
used in simultaneously solving and estimating dynamic asset-pricing models may 
give little insight into whether Assumption 6 (iii) is satisfied. This may be 
especially relevant when the model is solved numerically for some of the 
elements of {YP} as functions of the state and parameter vectors. Indeed, in this 
case, it may be difficult to gain much insight into which moment conditions will 
shed light on the values of specific parameters. We recommend that, in practice, 
the sensitivity of the estimates to various choices of moment conditions be 
examined. 

Fortunately, some information about the validity of this assumption can be 
obtained in our environment using the simulated state {IY}. At a given value of 
,3, the partial derivative matrix 

dtSEft] 
(5.6) D(j3) = ap 

can be calculated numerically. For large values of the simulation size $7, D(p3) 
is approximately equal to dE(ff)/Ip. An orthogonalization of D(p3) can be 
examined at various values of 18 in order to gain some insight into whether the 
first order conditions defining the SME form a relatively ill-conditioned system 
of equations at certain points in the parameter space, including at the SME 
estimator of I80. 

6. EXTENSIONS AND CONCLUSIONS 

The SME proposed in this paper can be extended along a variety of different 
dimensions. One obvious extension is to let ft* be a function of 18. In order to 
accommodate this extension, we need one additional primitive, a measurable 
observation function g: R8NL X & > RM, where L is the number of periods of 
states entering into the observation g[(Yt,... , Yt4L1d8] at time t. We can 
always assume without loss of generality that L = 1. We replace the observation 
ft* on the actual state process used in the SME with the observation gl'o- 
g(Z4, /3), and assume that E[gPo -ftfo] = 0. This leads us to consider the 
difference in sample moments: 

1 T 1 (T) 

(6.1) GTO/)= T t-g ( T 5= 
T t=1 7-(T) s=1 

We once again introduce a sequence {WT} of positive semi-definite distance 
matrices, and define the criterion function CT(3) = GT(1Y)'WTGT(,1) as well as 
the extended simulated moments estimator {bT} of 80, just as in (3.5). 
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In this case, we replace X0 defined by (4.8) with the weighted covariance 
matrix, for some positive scalar weight T, 

(6.2) Xf,g,=TX+X, 

where 

00 

(6.3) 1 E E( [ gto-oE(go)] [ gO. - E(gti)]) 
J = _00 

Assuming that the families {ft} and {go} satisfy the technical conditions of 
Assumption 1,10 and that WT W0 = X' , almost surely, the weak consistency 
of this extended SME follows from an argument almost identical to the proof of 
Theorem 1. Furthermore, replacing Assumption 6 (iii) by the assumption that 
Do E[dgtfol/d - df?o/dp] exists, is finite, and has full rank, Theorem 4 
implies that f(bT -13) converges in distribution to a normal random vector 
with mean zero and covariance matrix 

(6.4) Af,g, = (D'X7 1,Do) 

The new rank condition on Do is an identification condition which, among 
other things, rules out trivial sources of underidentification such as got 
and f having the multiplicative representations g1(zt 13')qf(Zt, 132) and 
f1(Z,,p81)q1(Z,,82), with 81 and p82 being distinct. Also, in contrast to the 
matrix A in (5.5), consistent estimation of Af g, Tmust typically be accomplished 
in two steps, using both simulated and observed data. 

Allowing the observation function gf3 to depend on 1 is useful in many 
asset-pricing problems. For instance, one may wish to compare the sample mean 
of the intertemporal marginal rate of substitution of consumption in the data to 
the mean of the corresponding simulated series. 

A second example arises when one or more of the coordinate functions 
defining g, say gj, has the property that hj(p) = E[gj(Z, 13)] defines a known 
function hi of 8. If this calculation cannot be made for every j, one can mix the 
use of calculated and simulated moments by letting fj(z, 1) = hj(p) for all z, 
for any j for which hi is known. This substitution of calculated moments for 
sample moments improves the precision of the simulated moments estimator, in 
that the covariance matrix A fg, T is smaller than the covariance matrix A 
obtained when all moments are simulated. Errors in measurement of ft* are 
accommodated by letting gto = f(Zt, 13) + ut, where {ut} is an ergodic, mean- 
zero RM-valued measurement error. Note that the asymptotic efficiency of the 
SME is increased by ignoring the measurement error in simulation and compar- 
ing sample moments of the simulated {f(zt, p)} and {go}. 

10 Note that the uniform-in-probability Lipschitz condition for {gO} is qualitatively weaker than 
the same condition for {ft}, since gf3 depends only directly on ,3 (that is, Yt is not dependent on ,3). 
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Finally, one of the coordinate functions of the actual state observations, say 
gj, may be of the form 

9j[(Yt,Yt-l, "*" Yt-l+l) ] 

= E[hj(yt+i.. * * yt+1+21 1)1 tIYty- 1 * ..IYt-i+l 11 

for some hi. It may be infeasible to calculate the function gj explicitly, in which 
case the simulated observation gj(Z, 13) is not available, except perhaps by 
numerical approximation. On the other hand, the observation of f(Z3,13)= 
hj(Zf, ,3) is often feasible and, by the law of iterated expectations, has the same 
mean as gj(Z', 13). An important illustration of such a function g1 arises in the 
option pricing literature, where the European option price gj(Z, 3) is the 
conditional expectation of the option's payoff at maturity discounted by an 
appropriate factor. 

Grad. School of Business, Stanford University, Stanford, CA 94305-5015, U.S.A. 
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APPENDIX 

PROOF OF LEMMA 2:11 Since 0 is compact it can be partitioned, for any n, into n disjoint 
neighborhoods Oi?, i.9., in such a way that the distance between any two points in each 19P 
goes to zero as n -x oo. Let ,X31, 82. be an arbitrary sequence of vectors such that P1i E W 

i = 1,...,n. Then, for any e > O, 

(A.1) P SuPr E (ftP-E(f )) > 

[n.l(UP Tt ' ( | ) 

6 Pr sup T (ft -E(fX)) > 
i=l E@in t=l 

+ SPL-T sp SUP Iff-fPI- + S u 
i=l t=l 2@nEi 

where the last inequality follows from the triangle inequality. For fixed n, since {YtPi} is ergodic and 
E( Ift8i) < x, the first term on the right-hand side of (A.1) approaches zero as T -x cc by the weak 
law of large numbers for ergodic processes. 

11 The strategy for proving this lemma, which was suggested to us by Whitney Newey, follows the 
proof strategies used by Jennrich (1969) and Amemiya (1985) to prove similar lemmas. A subse- 
quent paper by Newey (1991) presents a more extensive discussion of sufficient conditions for 
uniform convergence in probability. 
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As for the second right-hand-side term in (A.1), the Lipschitz assumption on {ft} implies that 
there exist Kt such that 

n -1Te 

(A.2) P sup ITtf-ftI+ sup IE(3) E(f4 >)I>j 
i=l Tt=lpe I T 

< E P| sup 1p-13il-EKt+ sup jE(f)-E( > 
ij=_1 -3eEn T t=1 p ee2 

The assumption that KT = T- Et=I Kt is bounded in probability implies that there is a nonstochas- 
tic bounded sequence {AT} such that plim(KT -AT) = 0. Thus, for T larger than some T* and 
some bound B, the right-hand side of (A.2) is less than or equal to 

n 
(A.3) EP sup 113-,P-iI IKT-ATI + sup 1,8I-P1B+ sup IE(f4))-E(ff)I> 2-. 

j=1l3E E=f- e E- en 2E 

By continuity of ,B E(f~), we can choose n once and for all so that 1X3 -P3iB + IE(fg) -E(fsL)I 
< (6/4) for all ,l in 19, and all i. Thus, the limit of (A.3) as T -X o is zero, and the result follows. 

Q.E.D. 

PROOF OF THEOREM 1: By the triangle inequality, 

(A.4) - ( ft* - - E -fs) [E(f f)-E( f)]| 

T t=1 )-ITS = t |+ 1) S= 1 T 

t=1 s=1 

Assumption 2 implies that the first term on the right-hand side of (A.4) converges to zero in 
probability. By Lemma 2, the second term on the right-hand side of (A.4) converges in probability to 
zero uniformly in ,3. Now aT(O) I CT(.3) - C(,B) I satisfies 

(A.5) AT(O) = IGT(P)WTGT(P) - [E(f)- E(f4)] 'Wo[E(f)- E(f)] | 

< I GT(P) -[ E(f.* ) -E( f~)] I WTI I GT( O 

+ |E(f*) - E(f') ( IWT)- WoI IGT(P)I 

+ |E(f: ) -E( f ) lI WV I I GAP( )-[ E(f.* )E( ft)] 

Therefore, letting 'T = suP,, =- e I G (TO) - [E(f *) - E(f,)J 1, 

(A.6) sup ST(P1) < TIWTIbkO++T]+4OIWT WOI [4O+IT]+ kOIWOIIT, 

where 4o - max{ IE(f:*) - E(f) I: ,3 - 69} exists by the continuity condition in Assumption 1. Since 
each of the terms on the right-hand side of (A.6) converges in probability to zero, 
plimT [sup13 G e T(13)] = 0. This implies the convergence of {bT} to P0 in probability as T -x oo, as 
indicated, for example, in Amemiya (1985, page 107). Q.E.D. 

PROOF OF LEMMA 3: We fix /3 and t. For simplicity, we write "E," for E,. For each positive 
integer m, we define {Ylm: t - m < s S t} by the recursion YTP6 = 0 and 

y 
Yt-m+k+1) 
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By construction, YEmP is measurable with respect to {et, et-l . t-m+l} The AUC condition 
implies that 

m 

(A.7) IIYm3 - ym+ 1 311 6 1p,p(e-t-j)j |H(0 St-m+1 13)I19 
j=O 

where 

ln p(et-j) + - ln (max [1, 1H(0, et-m+1 13)11]) ap < 0. 

Hence, 

m l /m 

(A.8) lPO(-t -j) || H(0, et_-m + 1,3)jj11 m a.s .) eaa < 1. 
-j=0 

This, in turn, implies that, given 8 E (eap, 1), there is some event A with P(A) = 1 and, for each 
cl) E A, some integer N(cv, 8) such that 

m 

17Pp(et-j(w))] IIH(0o, t-m+i(wcv),j3) I < am, m >N(60, 8). 
-j=o 

Next, at arbitrary cl Ee A and m > n > N(q, 8), 

jyml3 yn-011 I Im _ ym-l,1311 + jjym-1,P0 _ ym-2,1311 + ..l. +1yn+l,p _ yn- 

m-1 n 

1 r p p(et-j)IIH(0,-t-m9 63)jj + + 11p,P(e1t-j)IIH(Oe-t-n+l193)11 
j=O j=O 

an-l( 1_m-n +1) 8n-1 

68m-1 + sm-2 + K.+ = 1-8 1-8 

It follows that, at each ct E A, {Ytm(cto)} is a Cauchy sequence in m. We conclude that limm ytmP 
=Yt 1 exists almost surely. The limit process {Yt7: - oo <t <oo}, constructed for each t in this 
manner, satisfies the difference equation (3.1) by construction and Yt17O is clearly measurable with 
respect to {et_s: s > O}. Since {ej is an i.i.d. sequence, the stationarity and ergodicity of {Ytl} 
follows immediately. Q.E.D. 

PROOF OF LEMMA 4: Fix H E 0 and without loss of generality set 1= 1. For any ,X3 E 9 such that 

11p3 - oll < 80, 

1T 1TT 

| E fA 
- - 

ft oP | k(H)-E IlYtO - 
YtxP 

iT t 

6k(H)- E H po(ej) I IYYo-YnII, 
t=1 j=O J 

where k(O) is given by the S-smoothness assumption. The AUC condition implies that 

(11T)ETt=j[rE=0p0(ej)] converges almost surely to zero. Thus, given -1 > 0, there is an event A6 

with P(A) = 1 such that, for each cl in A6, there is some T6(cw, 71) with 

1T 1 T 

provided 11p3 - Oll 6 be. 
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Since i9 is compact, it has a finite subset W* defining a finite subcover of "8o neighborhoods," 
0e E9* .Letting A*= nf,l, *A6, and T*(o,i7) = maxeeo>* T,(6G ), it follows that Aq < -, T> T*, 
for all ,3 in 9, which leads to (4.7). Q.E.D. 

PROOF OF THEOREM 4: As noted above, the L2 UC condition implies the AUC condition, so the 
conclusions of Lemmas 3 and 4 continue to hold. Thus, the consistency of {bT} for ,X0 will be 
established by showing that, for each 6 E 9, E[modt (, 6)] < x for some 8 > 0. As before, we write 
"et" for et." 

Fix 6 E e. For purposes of the proof, we can assume without loss of generality that 1 = 1. Since f 
is S-smooth, there is a 8 > 0 such that, for 11,3 - Oll S 8 and for each t, 

If(Yt1p,p) f-f(Y7190) 1= IlIf(ytO7 ) -f( 7P, H) +f(7P, H) -f( 76t H)|| 

S C1(YtP)Ip - Oll +k(6)IIYtP 
- 

Yt191 

It follows that 

(A.10) mod(S,0)<S sup C1(Yt1P)+k(H) sup IIYt,P-Yt1jj. 
I 113-011OI 1- oll<8 

Letting at = IIYt-P - Yt11ll, the L2 UC condition and S-smoothness of H imply that 

(A.11) 'x' 6 P(Et )at_- + C2( yt1- 1, et ) - 

By recursively substituting a,-kg using (A.11), we have for any T 

t t t 

a1t 171 pe(eS)a-aTT+a E C2(Ys'9ES) 11 PO(e7)- 
S=t-T s=t-T T=S+1 

Now, XT a rlH=t=TPO(eS) converges to zero in L2 since E[p,(et)2] < 1 and {eJ is i.i.d. Since 
II at-Tlt2 6 II Yt1TII2 is bounded, the Cauchy-Schwarz inequality implies that 

IIXTat-Till 6 IIXTII21lat-TII2 T 09 

so, in L1, 

t t 

at< 8 lim E C2(Ys76,es) 11 PO(et). 
T Xoo s=t-T T=s+1 

The right-hand side is independent of ,3, and taking expectations, using the independence of {et} 
and the Cauchy-Schwarz inequality, we have 

Etsup IlYt,P - YteIlI 68E[ E C2(Yt 6es) 171 
11 6-0111<1 s= -x0 =s+l1 

8K 
i -p 

where 1p = IIP(et)112 < 1 and where K is a bound on IIC2(Ys , Es)112 implied by the growth condition 
on C2 and the fact that Il1ysP12 and 116s112 are bounded. 

The last term in (A.10) therefore has a finite mean. To establish that the first term on the 
right-hand'side of (A.10) has a finite mean, first note that C1(Yt,) < d, + d2llYtPll, for constants 
dl,d2. Furthermore, 

(A.12) sup IlytI17 6 llytIIll + sup Ilyt - y17611 
-11,0- oll 8 11l- oll <8 

and both terms on the right-hand side of (A.12) have finite means. 
Combining these results with Hansen's (1982) Theorem 2.1 gives the desired result. Q.E.D. 
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