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Abstract

In this paper we present a model of the term structure of interest rates with imperfect

information and stochastic differential utility, a form of non-additive recursive utility. A

principal feature of recursive utility, that distinguishes it from time-separable expected

utility, is its dependence on the timing of resolution of uncertainty. In our model, we

parametrize the non-linearity of recursive utility in a way that corresponds to preferences

for the timing of resolution. This way we show explicitly the dependence of prices on the

rate of information, as a consequence of the nature of utilities. State prices and the term

structure of interest rates are obtained in closed form, and are shown to have a form in

which derivative asset pricing is tractable.
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Introduction

In this paper, we consider a parametric model of a single, or homogeneous, agent equilib-

rium, much in the spirit of Lucas (1978), but with imperfect information and stochastic

differential utility. This type of utility was introduced by Duffie and Epstein (1992), and

can be thought of as a continuous-time version of the recursive utility of Kreps and Porteus

(1978) or Epstein and Zin (1989). State prices and the term structure of interest rates are

obtained in closed form in terms of parameters that correspond to the rate of information,

and the curvature of the intertemporal aggregator in its utility argument, which is known

to characterize preferences for the timing of resolution of uncertainty. This way, we obtain

a characterization and interpretation of the role of non-linear intertemporal aggregation in

asset pricing, in terms of the dependence of prices on the timing of resolution of uncertainty.

Time-separable expected utility is known to place overly severe independence restric-

tions across time and states of nature. A simple example, that belongs to the folklore of

the field, consists of two bets A and B. Bet A involves the repeated toss of a coin over a

number of periods resulting in payoffs of, say, $1000 or nothing, depending on the outcome

in every period. On the other hand, B involves the toss of a single coin, resulting in a payoff

of $1000 in every period, or nothing. While bet A is clearly less risky, in some sense, any

time-separable expected utility (even with time or state dependence) must assign the same

utility to both A and B. Considerations such as this have led to an extensive literature on

utility forms that involve some sort of non-additive intertemporal aggregation. Recursive

utility is prominent in this literature, mainly due to the fact that, although recursive utility

accommodates non-linear temporal aggregation, it retains a strong notion of dynamic con-

sistency that allows much of the optimization technology for time-additive utilities to be

still applicable. For further background and discussion of recursive utility the reader can

consult the survey of Epstein (1992).

An important property of recursive utility, that has been studied by Kreps and Porteus

(1978) and others, is that utility depends on the timing of resolution of uncertainty. More-

over, the functional form of the intertemporal aggregator is directly linked to preferences for

the timing of resolution, with a convex aggregator favoring early resolution, and a concave

aggregator favoring late resolution. An additive temporal aggregator then corresponds to

indifference towards the timing of resolution. As an illustration, consider a third bet, C,

that differs from bet A described above only in that all the coins are tossed at once in the

first period, the timing of the payoffs being the same in both bets. Time-additivity implies

indifference towards A and C, a convex temporal aggregator implies that C is preferred to

A, while a concave temporal aggregator implies that A is preferred to C.
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The role of the timing of resolution of uncertainty for the stochastic differential utility of

Duffie and Epstein (1992) is analogous to that for the Kreps-Porteus utility, and is analyzed

in Skiadas (1995). There preferences are defined over pairs of contingent consumption

plans and information filtrations, and preferences for the timing of resolution is defined in

terms of the monotonicity of the utility relative to the information filtration component.

Monotonicity in the filtration is then characterized in terms of the curvature of the temporal

aggregator in its utility argument. The main advantage of this approach over that of Kreps

and Porteus is that it separates the role of information from that of an agent’s beliefs as

expressed by the distribution of consumption plans that Kreps and Porteus take as the

primitive choice objects.

While we refer to Skiadas (1995) for more discussion of preferences for the timing of

resolution, and more generally for information, it is instructive to review here a main intu-

ition that gives rise to such preferences, even when the agent’s utility is ultimately derived

purely out of state and time contingent consumption. With time-additive utility, today’s

felicity from consumption depends on today’s consumption alone. With recursive utility,

however, today’s felicity from consumption depends on today’s consumption, but also on

the expected utility of future consumption. For example, one can feel elated at the prospect

of high future consumption, without any present consumption, while the prospect of low

future consumption may decrease the enjoyment of present consumption. The curvature

of the intertemporal aggregator can then be thought of as representing the agent’s risk

attitude towards the impact of the expected utility of future consumption. For example, a

risk-averse attitude implies that the agent would rather form a less informed expectation of

the utility of future consumption, because of the “risk” of receiving bad news, thus reducing

the enjoyment of present consumption. Not surprisingly, this type of “risk-aversion” corre-

sponds to the concavity of the intertemporal aggregator in its utility argument. Conversely,

convexity of the aggregator in its utility argument leads to preferences for early resolution.

The question of the impact of the timing of resolution of uncertainty on prices has been

discussed in a variety of contexts. Steve Ross (1989) argued that the timing of resolution of

uncertainty should not affect prices. The essence of his argument can be explained in terms

of a complete-markets Arrow-Debreu equilibrium, with no production, where agents’ prefer-

ences are described by increasing and concave Von Neumann-Morgenstern utility functions.

For simplicity, assume that there is a terminal date T when all state-contingent payoffs

and consumption occur. Also assume there is no information today, and there is perfect

information at time T . The equilibrium price of a contingent claim making payment X

at time T is given by E(πX), up to a scaling factor, where π represents the state-price
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density. The random variable π is given as the marginal utility of the representative agent

(in the sense of Constantinides (1982) and Huang (1987)) at the aggregate endowment. It

is clear then that the quantity E(πX) does not depend on the manner in which information

is revealed between times zero and T . In this sense, prices are independent of the timing of

the resolution of uncertainty. The case in which consumption and dividend payouts occur

continuously over time is analogous, and the same conclusion can be drawn.

Ross also presents an anecdote involving the price reaction of a New York City bond

issue to the news of a rescheduling of an audit describing the state of revenue collection. The

issue rallied on the announcement that the news would be released earlier than originally

planned. Such a story is not compatible with Ross’ indifference result, or the argument

presented above. There can be many reasons why the information structure may have a

price impact. In the presence of some production technology, early resolution of uncertainty

may lead to planning benefits (see Robichek and Myers (1966) and Epstein and Turnbull

(1980)). The announcement of the rescheduling of the timing of the news release may be

perceived in itself as an informative signal (see, for example, Chambers and Penman (1984)

for a related discussion). In the presence of default, the payoff structure of a security may

depend on the timing of resolution (see Duffie, Schroder, and Skiadas (1995)). A new

information structure may have an effect because of market incompleteness, as in Berk and

Uhlig (1993).

In the model of this paper, state prices depend on the timing of resolution because

of the nature of the agents’ utility function. For example, we find that when there are

preferences for early resolution, interest rates are increasing with the quality and timeliness

of the information in the economy. The dependence of volatility of the short-rate process and

discount-bond prices on the rate of information is also discussed. Moreover, the resulting

pricing framework is shown to be of a type that is tractable for derivative asset pricing.

A number of authors have considered similar models, involving imperfect information, but

time and state additive preferences: Dothan and Feldman (1986), Detemple (1986, 1987),

Gennotte (1986), Feldman (1989), Apelfeld and Conze (1990), Karatzas and Xue (1991),

and Kuwana (1993). In these models the rate of information has of course no price impact.

The paper is organized in four sections. Section 1 describes the structure of the endow-

ment, state, and signal processes, as well as the information observed by the agent. The

dynamics of the three processes are recast in terms of the conditional mean (or “filter”)

and the conditional variance using standard filtering theory. In Section 2 we introduce the

agent’s utility function and discuss its properties. We compute the utility in closed form for

the endowment process and information structure of Section 1. The state-prices and term
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structure of interest rates are computed explicitly in Section 3. The dependence of these

quantities on the timing of the resolution of uncertainty is discussed in Section 4, where

we also show how the timing of resolution can be adjusted within the model. An appendix

contains the proofs not presented in the main paper.

1. Consumption and Information Structure

We begin with a filtered probability space (Ω,F ,F, P ) over a finite time-horizon, [0, T ],

that supports1 a three-dimensional Brownian motion B. There is also a sub-filtration of

F = {Ft : t ≥ 0 }, denoted I = { It : t ≥ 0 }, that is stochastically independent of the

Brownian motion B. The filtration I should be thought of as available information that is

irrelevant to consumption. On the other hand, B reveals information that is all relevant to

consumption, but is not directly observable.

There is a single agent in the economy who consumes an endowment e (adapted to F)

that satisfies2

det
et

= (ae + bext) dt+ ν′edBt, 0 ≤ t ≤ T.

Here ae and be are (real) constants, νe is a given (column) vector3 in IR3, and x is a state

variable process not observed by the agent. The initial value e0 is assumed to be a given

constant. The unobservable state process x evolves according to

dxt = (ax + bxxt) dt+ ν′x dBt, 0 ≤ t ≤ T,

where ax, bx ∈ IR, νx ∈ IR3, and the initial value x0 is a constant. We assume that bx < 0,

so that the state process exhibits mean reversion. In addition to the endowment process e,

the agent observes a signal process s that is governed by the equation

dst = (as + bsxt) dt+ ν′s dBt, 0 ≤ t ≤ T,

where as, bs ∈ IR, νs ∈ IR3, and s0 = x0.

Let Fe,s = {Fe,s
t : 0 ≤ t ≤ T } be the filtration generated by the endowment process

e and the signal process s. The total information observed by the agent is given by the

1 In the sense that F contains the augmented filtration generated by B. The process of
filtration augmentation is described, for example, by Karatzas and Shreve (1988).

2 Standard theory guarantees the existence and uniqueness of strong solutions to all of
the stochastic differential equations of this section (see, for example, Karatzas and Shreve
(1988)).

3 For any matrix z, z′ denotes the transpose of z.
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filtration Fo = {Fo
t : 0 ≤ t ≤ T }, where Fo = Fe,s

t ∨ It. That is, the agent observes e, s,

as well as the “irrelevant” information stream I.

To analyze the agent’s state-estimation problem we need an additional assumption and

some notation. We define the matrix ν = [νx, νe, νs], and we assume throughout that ν′ν is

positive definite. We also define the matrix

Σ = [νe, νs]
′[νe, νs] =

(
ν′eνe ν′eνs

ν′sνe ν′sνs

)
,

that is necessarily also positive definite. Finally, we introduce the notation

mt = E[xt | Fo
t ] = E[xt | Fe,s

t ], 0 ≤ t ≤ T,

and

γt = E[ (xt −mt)
2 | Fo

t ] = E[ (xt −mt)
2 | Fe,s

t ], 0 ≤ t ≤ T,

to denote the conditional mean and variance of the state process x, respectively.

As is well known from filtering theory (see Lipster and Shiryayev (1978)), the condi-

tional distribution of the state process x up to any time t, given the agent’s information

Fo
t , is Gaussian, and therefore completely determined by the conditional mean and variance

of x. This fact is demonstrated in the following proposition, whose proof can be found in

Appendix I.

Proposition 1. (a) The conditional variance γ is a deterministic function of time that

is given explicitly in Appendix I. (b) There exists a process W such that (W,Fe,s) is a

standard Brownian motion in IR2, and the following dynamics hold for t ∈ [0, T ]:

dmt = (ax + bxmt) dt+ [beγt + ν′xνe, bsγt + ν′xνs]Σ
−1/2 dWt, m0 = x0,(

det/et

dst

)
=

(
ae + bemt

as + bsmt

)
dt+Σ1/2 dWt.

(c) The filtration generated by W is Fe,s.

This result essentially reduces the dynamics of the problem to one of complete information,

and has been utilized by Dothan and Feldman (1986) and related papers in order to apply

standard asset pricing methodology in settings of incomplete information. In our setting,

however, the signal process will continue to play an active role, since it will directly affect

the agent’s utility.

The setup of this section was deliberately kept simple for purposes of exposition. Sim-

ilar results are true in greater generality. The coefficients of the stochastic differential
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equations of e, x, and s, can, subject to restrictions in Section 12.3 of Lipster and Shiryayev

(1978), depend on time as well as the history of the observed processes e and s. In the

case in which the coefficients are deterministic functions of time only, the joint process

{ (xt, log(et), st) : t ∈ [0, T ] } is Gaussian, and the conditional variance, γ, is a deter-

ministic function of time. The initial conditions of the processes can be made stochastic.

Increasing the dimensionality of the processes, or introducing an infinite horizon presents

no complications.

2. The Agent’s Utility Process

The agent derives utility both from consumption and from the information filtration. That

is, the agent cares not only about the distribution of the sample path for consumption,

but also about the manner in which the conditional distribution of the consumption path

evolves over time. For example, conditions given below imply preferences for early resolution

of information, or for late resolution of information, just two of many possibilities. A

special case is additive utility, under which an agent has no preferences over the information

structure.

Given any sub-filtration G = { Gt : t ∈ [0, T ] } of F, and any measurable consumption

process c = { ct : t ∈ [0, T ] } adapted to G, the agent’s utility process, V (c,G), is defined

(under technical conditions) as the unique solution of the backward integral equation:

Vt(c,G) = E
[ ∫ T

t

f(cu, Vu(c,G)) du
∣∣ Gt

]
, 0 ≤ t ≤ T, (1)

where f : IR×IR→ IR is the primitive function determining preferences. The agent’s utility

at time zero is defined as U(c,G) = V0(c,G), while Vt(c,G) should be thought of as the

time-t utility of the remaining consumption and filtration, conditional on the information

available at time t. The existence of a unique integrable solution to equation (1), under

appropriate assumptions on f , is discussed by Duffie and Epstein (1992a), Duffie and Lions

(1992), and Antonelli (1993). Here we will assume a specific parametric form of f and

obtain an expression for the utility process V (e,Fo) in closed form. For simplicity, we write

V instead of V (e,Fo).

Duffie and Epstein (1992a) first defined the utility process of a consumption plan as

the unique solution to equation (1), for a given fixed filtration G, and called it stochastic

differential utility. They motivated this definition as a limiting case of the discrete-time

recursive utility of Epstein and Zin (1989), and they showed some basic properties of the

utility. Skiadas (1995) extended and axiomatized stochastic differential utility to spaces of
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consumption processes and filtrations, and defined preferences for the timing of resolution

of uncertainty in this context. The result most relevant here is the monotonicity of the

utility process in the filtration argument, that we now briefly review.

An information stream (filtration) is “smaller” than another information stream, if at

any given moment in time the former reveals no more information than the latter. This

definition does not rule out the possibility of identical final information in both information

streams, in which case the ranking of the two streams is simply in terms of the timing of

the resolution of uncertainty. Formally, given filtrations G = { Gt : t ∈ [0, T ] } and H =

{Ht : t ∈ [0, T ] }, we define G ≤ H to denote that Gt ⊆ Ht, for all t in [0, T ]. The utility

U is increasing in information if for any filtrations G and H, and any consumption plan

c (measurable with respect to G and H), G ≤ H implies U(c,G) ≤ U(c,H). The utility

U is decreasing in information if −U is increasing in information. Clearly, an agent whose

preferences are described by a utility increasing (decreasing) in information has preferences

for early (late) resolution of uncertainty. It is shown in Skiadas (1995) that if f(c, ·) is

convex (concave) for any value of c, then U is increasing (decreasing) in information. In

the special case where f(c, ·) is linear for every c, U reduces to the standard form of a time

and state additive utility, and U does not depend at all on the filtration argument. In the

context of this paper we will see in subsection 4 that the observed filtration can be made

smaller or larger essentially by varying the parameter νs. The explicit formula for V will

then make clear the dependence of the utility on information.

Another nice property of the agent’s utility is that, although in general it depends on

the underlying filtration, it does not depend on the “irrelevant” filtration I. The agent’s

utility depends only on information that reveals something about the distribution of future

consumption. To see the result formally, notice that if V is the unique solution to (1) with

c = e and G = Fe,s, then it is also a solution to (1) with c = e and G = Fo, since I is

jointly stochastically independent of (e, s) and the integral in the conditional expectation.

Assuming that (1) always has a unique solution, it follows that V = V (Fo) = V (Fe,s).

The particular parametric form of f we adopt in this model is a special case of that

considered by Duffie and Epstein (1992b):

f(c, v) = β(1 + αv)

(
log(c)− log(1 + αv)

α

)
,

for some constants α and β satisfying β > 0 and 0 ̸= α < 1. Notice that as α → 0,

f(c, v) → f0(c, v) = β(log(c)− v). For α = 0, we therefore define f = f0, and the resulting
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utility process takes the familiar additive form:

U(c,G) = βE

[∫ T

0

e−βu log(cu) du

]
, α = 0.

The utility process V can be computed in closed form, after characterizing it as a

solution to a partial differential equation:

Proposition 2. The process V is given by

Vt =
1

α
(exp [α(qt log et + htmt + kt)]− 1) ,

where q, h, and k are deterministic processes, given by

qt = 1− e−β(T−t)

ht =
βbe
−bx

(
1− e(bx−β)(T−t)

bx − β
− 1− e−β(T−t)

−β

)
kt =

∫ T

t

e−β(u−t)ψu du+
1

2
αh2tγt,

where

ψt = axht +

(
ae −

ν′eνe
2

)
qt +

α

2

(
βh2tγt + ν′eνeq

2
t + ν′xνxh

2
t + 2ν′xνeqtht

)
.

The proof in Appendix I also shows that V as a function of e is monotonically increasing,

and V as a function of m is increasing if be > 0, and decreasing if be < 0. In subsection 4

we show that, within the class of filtrations that can be observed by the agent of our model,

U is increasing in information for negative α, and decreasing in information for positive α.

For α = 0, the utility does not depend on the filtration argument. Finally, notice that the

expression for the utility confirms that V does not depend on the extraneous information

I.

3. Equilibrium Security Prices

Equilibrium prices in our setting can be described in terms of a state-price process π, a

strictly positive Ito process with the property that the price process of any security with

cumulative dividend process D (adapted and of integrable variation) is given by

St =
1

πt
E

(∫ T

t

πu dDu + πTST

∣∣∣∣ Fo
t

)
.
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A complete description of the equilibrium notion, and the relationship between π and the

utility gradient can be found in Duffie and Skiadas (1995). Alternatively, the Markovian

approach of Duffie and Epstein (1992a,b) can be employed. The fact that the agent in our

setting receives incomplete information does not present any problem, since we have already

shown how to reduce the agent’s problem to an equivalent one with complete information.

For our purposes, we only need the state-pricing formula:

πt = exp

(∫ t

0

fv(eu, Vu) du

)
fc(et, Vt),

where fc and fv denote the two partial derivatives of f .

An application of Ito’s lemma implies the following characterization of π:

Proposition 3. The state-price process π satisfies

dπt
πt

= −rt dt+ σπ(t) dWt, t ∈ [0, T ],

where

rt = ae + bemt − ν′eνe + α[ht(beγt + ν′xνe) + qtν
′
eνe] + β,

and

σπ(t) = (αqt − 1)[ 1, 0 ]Σ1/2 + αht[ beγt + ν′xνe, bsγt + ν′xνs ]Σ
−1/2.

The process r is the short rate process, defined as the dividend rate of a security whose

equilibrium price is always equal to one.

The formula for r shows that the short rate contains all the information relevant to estimat-

ing the state variable, that is, mt is determined uniquely given rt. Also, the instantaneous

variance of r is proportional to the instantaneous variance of mt. (Analogous results were

derived in related papers cited in the Introduction.)

Since r can be expressed as an Ornstein-Uhlenbeck (O-U) process, it is Gaussian, and

the same is true under the equivalent martingale measure.4 Asset pricing in this setting is

tractable because of the Gaussian property of r under the equivalent martingale measure,

and because r does not depend on the endowment process. Vasicek (1977), Jamshidian

4 The equivalent martingale measure, Q, is defined by its Radon-Nikodym derivative,

dQ/dP = exp
(
−(1/2)

∫ T

0
σπ(u)

2 du+
∫ T

0
σπ(u) dWt

)
. By Girsanov’s theorem, the process

W̃t =Wt−
∫ t

0
σπ(u)du is standard Brownian motion under Q. It is then clear that the SDE

for r is of the O-U type when expressed in terms of W̃ if and only if the same is true of the
SDE for r when expressed in terms of W .
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(1989), El Karoui and Rochet (1989), and Hull and White (1990) have examined bond and

option pricing when the short-rate process is O-U under the equivalent martingale measure.

In order to examine the role of the filtration on the term structure of interest rates,

we now give explicit expressions for discount bond prices. According to the state-pricing

formula, the price process of a discount bond that matures at time τ is given by Pt(τ) =

E[πτ | Fo
t ]/πt, t ≤ τ . A calculation provided in Appendix I, using only simple properties

of the normal distribution, shows the following result:

Proposition 4. Let K(t) = −(1− exp(bxt))/bx and

ξ(t) = beax − bxae − βbx + ν′eνe (bx − αbxq(t)− αβ(1− q(t)))

+ ν′xνxαbeh(t) + ν′xνe (αβh(t)− be) .

Then

logPt(τ) = −r(t)K(τ − t)−
∫ τ

t

K(τ − u)

(
ξ(u)− 1

2
K(τ − u)b2eν

′
xνx

)
du

+
1

2
b2eK

2(τ − t)γt − αβbe

∫ τ

t

K(τ − u)γ(u)h(u) du.

4. The Effect of a Change in the Filtration

Inspection of the formula for the state-price process shows that a shift in Fo will, in general,

change state prices, since V is a function of the observed filtration. In this section we

show how a change in the filtration observed by the agent can be accomplished within our

parametric setup, essentially by varying the variance of the signal. The pricing formulas of

the last section can then be interpreted in terms of the timing and amount of the observed

information.

For the purposes of this section, we assume that the “irrelevant” information I is gen-

erated by a three-dimensional standard Brownian motion Z, that is necessarily independent

of B. Let λ ∈ IR3 be orthogonal to both νe and νx, and define the “contaminated” signal

s = s + λZ. (The reader may choose to consider only the special case in which the third

component of νe and νx, and the first two components of λ are all zero.) So far we have

assumed that the agent observes the filtration I, but finds it irrelevant to consumption, and

hence I does not affect prices in equilibrium. Consider now an economy that is identical to

the one described so far, except that the agent does not observe I and s. Instead, the agent

oberves the “contaminated” signal s. We refer to this economy as the high-noise economy.

The total information observed by the agent of the high-noise economy is represented by
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the filtration Fe,s = {Fe,s
t : t ≥ 0 }, generated by the endowment process e and the signal

s. Clearly,

Fe,s
t ⊂ Fo

t , t ∈ [0, T ].

That is, the agent of the high-noise economy receives coarser, or less timely, information.

The inclusion relationship is strict, except for the special case λ = 0. In fact, the set of

high-noise economies is ordered in this way by λ.

Solving for the prices in the high-noise economy amounts to simply adjusting the pa-

rameter νs in the original economy to νs + λ. This is because (e, x, s) and (e, x, s + λB)

are Gaussian with the same variance-covariance matrix, and therefore are identically dis-

tributed. Formally, we can treat σ = ν′sνs as a parameter representing the timing and

quality of the information available to the agent. The parameter σ can be varied indepen-

dently of all other parameters in the model, without changing the covariance terms ν′eνs

and ν′xνs, by varying νs along a direction orthogonal to νe and νx.

The reader can easily confirm that V is decreasing (increasing) in σ for α < 0 (α > 0).

For α = 0, V does not depend on σ. To relate this result to the more general discussion of

subsection 2, notice that the second derivative of f with respect to the utility argument is

given by fvv(c, v) = −αβ/(1 + αv). It follows from the proof of Proposition 2 that 1 + αVt

is always positive, and therefore f is convex in utility for α < 0, and concave for α > 0.

The dependence of discount-bond prices and instantaneous variances5 on σ is summa-

rized in the following result. In part (c) we refer to an infinite-horizon economy, where

T = ∞. Although we have not presented the details, the above framework extends readily

to the infinite-horizon case (see Duffie and Epstein (1992b) and the proof in Appendix I).

Proposition 5. (a) The time-zero discount bond prices, {P0(τ) : τ ∈ [0, T ] }, are: (i)

nondecreasing in σ, if α < 0; (ii) nonincreasing in σ, if α > 0; and (iii) not dependent on σ,

if α = 0.

(b) Let v stand for the instantaneous variance of any of m, r, or {Pt(τ) : t ≤ τ }, τ ≤ T .

Then (i) vt is non-increasing in σ if either t, or max{ |ν′xνe|, |ν′xνs|, |ν′eνs| } is sufficiently

small; and (ii) in the infinite horizon case, limt→∞ vt exists and is non-increasing in σ.

(c) In the infinite-horizon case, the asymptotic yield at t is well defined by

lim
τ→∞

− logPt(τ)

τ − t
,

5 If Y is an Ito process with dYt = µY (t) dt + σY (t) dWt, the instantaneous variance of
Y is the process σY (t).
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and is increasing in α if beν
′
xνe ≥ 0.

The proof in Appendix I also discusses weak conditions under which the terms “non-

increasing” and “non-decreasing” in Proposition 5 can be replace by “decreasing” and

“increasing,” respectively.

Appendix: Proofs

Proof of Proposition 1

(a) The conditional variance expression derived below is more general than needed in the

paper. Allow x0, s0, and e0 to be random variables with x0, conditional on s0 and e0, to be

Gaussian with variance γ0. Then it is shown below that the conditional variance at time t

is given by

γt = γ+
1 + e−δt γ

−

γ+

(
γ+−γ0

γ0−γ−

)
1 + e−δt

(
γ+−γ0

γ0−γ−

) ,

where

γ± = − 1

2κ2
(κ1 ± δ),

and

κ0 = ν′xνx − [ν′xνe, ν
′
xνs]Σ

−1

(
ν′xνe

ν′xνs

)
,

κ1 = 2bx − 2[be, bs]Σ
−1

(
ν′xνe

ν′xνs

)
,

κ2 = −[be, bs]Σ
−1

(
be

bs

)
,

δ =
√
κ21 − 4κ0κ2.

By Theorem 12.7 in Lipster and Shiryayev (1978), the conditional variance γ satisfies the

ordinary differential equation

γ̇t = 2bxγt + ν′xνx − [beγt + ν′xνe, bsγt + ν′xνs]Σ
−1

(
beγt + ν′xνe

bsγt + ν′xνs

)
= κ0 + κ1γt + κ2γ

2
t .

The assumption that ν′ν is positive definite ensures that κ0 > 0 and κ2 < 0, which imply

that the roots are real and that γ− < 0 < γ+. The solution to the differential equa-

tion is well-known, but is derived below for completeness. Factoring the polynomial and

rearranging:

1 =
γ̇t

κ2(γt − γ+)(γt − γ−)
= −1

δ

d

dt
log

(
γt − γ+

γt − γ−

)
.

13



The second equality it obtained by using a partial fraction expansion. Integrating and

rearranging gives the expression for γ. Note that δ > 0 implies that γT → γ+ as T → ∞.

When γ0 = 0, the formula for γt simplifies to

γt = γ+
1− e−δt

1− e−δt(γ+/γ−)
.

(b) By Theorem 12.7 in Lipster and Shiryayev (1978), W is the innovation process given by

dWt = Σ−1/2

(
det/et − (ae + bemt)dt

dst − (as + bsmt)dt

)
.

(c) This result follows from Lemma 11.3 in Lipster and Shiryayev (1978).

Proof of Proposition 2

An application of Ito’s lemma to the expression for V gives the following partial differential

equation (PDE) for Vt = J(t,mt, et):

0 = Jt + Jm(ax + bxm) + Je(ae + bem)e

+
1

2

(
Jmmη

′
tΣ

−1ηt + Jeeν
′
eνee

2 + 2Jme(beγt + ν′xνe)e
)
+ f(e, J),

where,

ηt =

(
beγt + ν′xνe

bsγt + ν′xνs

)
.

A trial solution for J is
log(1 + αJ)

α
= qt log e+ htm+ kt.

Note that as α→ 0, the left hand side converges to J . The terminal condition J(T,m, e) = 0

implies that qT = hT = kT = 0. Substituting the trial solution into the PDE gives

0 = log(e)[q̇t + β(1− qt)] +m(htbx + qtbe + ḣt − βht) + k̇t − βkt + axht

+ (ae −
1

2
ν′eνe)qt +

1

2
α
[
η′tΣ

−1ηth
2
t + ν′eνeq

2
t + 2(beγt + ν′xνe)qtht

]
.

The candidate solution solves the PDE if and only if

0 = q̇t + β(1− qt),

0 = ḣt − (β − bx)ht + qtbe,

0 = k̇t − βkt + axht + (ae −
1

2
ν′eνe)qt

+
1

2
α
[
η′tΣ

−1ηth
2
t + ν′eνeq

2
t + 2(beγt + ν′xνe)qtht

]
,

0 = qT = hT = kT .
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In general, if g is a continuous function, there is a unique function f that satisfies the

differential equation ḟt − λft + gt = 0, with fT = 0. The solution is

ft =

∫ T

t

e−λ(u−t)gu du.

The formulas for q and h follow directly by applying this result. An application to k gives

kt =

∫ T

t

e−β(u−t)

(
axhu + (ae −

1

2
ν′eνe)qu

+
α

2
[η′uΣ

−1ηuh
2
u + ν′eνeq

2
u + 2(beγu + ν′xνe)quhu]

)
du.

Differentiating with respect to, say, ν′sνs gives a formula that is difficult to sign. To derive

a formula which makes the dependence of k on γ clearer, first rearrange the differential

equation for γ as η′tΣ
−1ηt = −γ̇t + 2bxγt + ν′xνx, and substitute into the formula for k:

kt =

∫ T

t

e−β(u−t)

(
axhu + (ae −

1

2
ν′eνe)qu

+
α

2
[(2bxγu + ν′xνx)h

2
u + ν′eνeq

2
u + 2(beγu + ν′xνe)quhu]

)
du

− α

2

∫ T

t

e−β(u−t)h2uγ̇u du.

The second integral can be written as∫ T

t

e−β(u−t)h2uγ̇u du = −h2tγt −
∫ T

t

e−β(u−t)(2huḣu − βh2u)γu du

= −h2tγt +
∫ T

t

e−β(u−t)
(
2(bx − β)h2u + 2behuqu + βh2u

)
γu du,

where the first equality is obtained using integration by parts and the second by substituting

the differential equation for h. Substituting into the formula for k and simplifying gives the

result.

The uniqueness of the above solution to the partial differential equation satisfied by J

can be addressed using the techniques of Duffie and Lions (1992).

Proof of Proposition 3

Applying Ito’s lemma to the formula for πt, we obtain

dπt
πt

=
dfc
fc

+ fvdt

=
1

fc

(
fccDedt+ fcvDV dt+

1

2
fccc(de)

2 +
1

2
fcvv(dV )2 + fccvde dV

)
+ fvdt

+
fcc
fc

(de−Dedt) +
fcv
fc

(dV −DV dt),
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where D denotes the infinitesimal drift operator. Substituting DV = −f ,

de dV = de dJ = Jmdc dm+ Jc(de)
2

=
fce

2

β
(ht(beγt + ν′xνe) + qtν

′
eνe) ,

and simplifying gives the formula for the state-price process. The short rate is defined

as the dividend rate on a security whose price is identically equal to one. It follows that

πt +
∫ t

0
rsπs ds must be a martingale, and therefore, rt = −Dπt/πt.

Proof of Proposition 4

The stochastic differential equation for the short rate can be written as

drt = bxrt + ξt + γtbe(αβht − be) + beη
′
tΣ

−1/2dW̃t,

where η is defined in the proof of Proposition 2, and the process W̃t is standard Brownian

motion under the equivalent martingale measure Q (see footnote 4). The equation has the

explicit solution

rτ =rte
bx(τ−t) +

∫ τ

t

ebx(τ−u) (ξu + γube(αβhu − be)) du

+ be

∫ τ

t

ebx(τ−u)η′uΣ
−1/2dW̃u.

The integral of the interest rate is given by∫ τ

t

rudu =K(τ − t)rt +

∫ τ

t

K(τ − u) (ξu + γube(αβhu − be)) du

+ be

∫ τ

t

K(τ − u)η′uΣ
−1/2dW̃u.

Using standard results on normal random variables, the price of a discount bond can

be expressed as

Pt(τ) = EQ
t exp

(
−
∫ τ

t

rudu

)
= exp

[
−EQ

t

(∫ τ

t

rudu

)
+

1

2
V arQt

(∫ τ

t

rudu

)]
.

The variance term can be written

V arQt

(∫ τ

t

rudu

)
= b2e

∫ τ

t

K2(τ − u)η′uΣ
−1ηudu

= b2e

∫ τ

t

K2(τ − u)(2bxγu + ν′xνx − γ̇u)du,
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where the second equality is obtained by substituting for the differential equation satisfied

by γ. The term involving γ̇ can be simplified using integration by parts:∫ τ

t

K2(τ − u)γ̇udu = −γtK2(τ − t) + 2

∫ τ

t

K(τ − u)[1 + bxK(τ − u)]γudu.

Substituting into the variance expression yields

V arQt

(∫ τ

t

rudu

)
= b2eK

2(τ − t)γt + b2e

∫ τ

t

K(τ − u) (K(τ − u)ν′xνx − 2γu) du.

Substituting into the discount bond price expression gives the result.

Proof of Proposition 5

(a) The comparative statics for discount bond prices follow directly from the explicit for-

mulas, the fact that beht > 0 for any t < T , and the property that γt is nondecreasing in σ

for any t > 0. The latter can be shown by an application of Jensen’s inequality, or by the

proof in part (b) below.

Remark: If (ν′xνe)(ν
′
eνs) ̸= (ν′eνe)(ν

′
xνs), or beν

′
eνs ̸= bsν

′
eνe, then time zero discount prices

are increasing (decreasing) in σ for α < 0 (α > 0). This follows from the proof in part (b),

which shows that under either condition, γt is increasing in σ for all t > 0, except possibly

at one point in time.

(b) Since (drt)
2 = b2e(dmt)

2, and (dPt(τ))
2 = Pt(τ)

2(drt)
2, it suffices to consider the case

in which vt = (dmt)
2 = η′tΣ

−1ηt, where η is defined in the proof of Proposition 2.

(i) From the proof of Proposition 1, the conditional variance γ satisfies the ordinary differ-

ential equation γ̇t = 2bxγt + ν′xνx − η′tΣ
−1ηt, with γ0 = 0. Differentiating both sides with

respect to σ implies ḟt = λtft + µt, with f0 = 0, where

ft =
∂γt
∂σ

,

λt = 2
(
bx − [be, bs]Σ

−1ηt
)
,

µt =
1

det(Σ)
η′t

[
Σ−1 −

(
1/ν′eνe 0

0 0

)]
ηt

=
1

ν′eνe det(Σ)
2
(ν′xνeν

′
eνs − ν′eνeν

′
xνs + γt(beν

′
eνs − bsν

′
eνe))

2
,

Since µt ≥ 0, for all t ≥ 0, it follows that ft ≥ 0, for all t ≥ 0, and ḟt ≥ 0 at least for small

t.
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Rearranging the differential equation for γ and differentiating, we have

∂

∂σ

(
η′tΣ

−1ηt
)
= 2bxft − ḟt.

Since bx < 0, the above derivative must be nonpositive for small t ≥ 0.

If ν′xνe = ν′xνs = ν′eνs = 0, the instantaneous variance of mt is given by:

(dmt)
2 =

1
2 (4b

2
x − δ2)(1− e−δt)

2bx − δ − e−δt(2bx + δ)
dt

where,

δ = 2
√
ν′xνx(b

2
x/ν

′
xνx + b2e/ν

′
eνe + b2s/σ

Some tedious computations show that the partial derivative of (dmt)
2 with respect to δ is

strictly positive for t > 0. By continuity, the same holds for sufficiently small |ν′xνe|, |ν′xνs|,
and |ν′eνs|. Since δ is decreasing in σ, the result is shown.

Remark: If (ν′xνe)(ν
′
eνs) ̸= (ν′eνe)(ν

′
xνs), or beν

′
eνs ̸= bsν

′
eνe, the variance of mt is decreas-

ing in σ for small t > 0. This follows because under either condition, ft > 0 and ḟt > 0, at

least for small t > 0. If both conditions are violated, it is easy to construct an example in

which γt does not depend on σ, for any t, even though ν′ν is positive definite.

(ii) The stationary variance, γ+ satisfies 2bxγ
+ + ν′xνx − (η+)′Σ−1η+ = 0, where

η+ =

(
beγ

+ + ν′xνe

bsγ
+ + ν′xνs

)
.

Rearranging and differentiating the limiting instantaneous variance of mt with respect to

σ, we obtain
∂

∂σ

(
(η+)′Σ−1η+

)
= 2bx

∂γ+

∂σ
.

The assumption that bx < 0 ensures that the right hand side is nonpositive.

Remark: Under the assumption that

γ+(beν
′
eνs − bsν

′
eνe) ̸= −(ν′xνe)(ν

′
eνs) + (ν′eνe)(ν

′
xνs),

the limiting variance of mt is decreasing in σ. Under this assumption, µt converges to some

positive constant as t → ∞. Furthermore, the convergence of γt to γ+ implies that λt

converges to some finite (negative) constant. If follows that ∂γ+/∂σ > 0. Note that above

condition is both necessary and sufficient for ∂γ+/∂σ > 0.
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(c) As in Duffie and Epstein (1992), the infinite horizon utility is defined as the limit as

T → ∞ of the finite horizon utility. It is easy to show that q(t) → 1, h(t) → be/(β − bx),

and ξ(t) → ξ∗, for all t, where

ξ∗ = beax − bxae − βbx + ν′eνebx(1− α) + ν′xνxα
b2e

β − bx
+ ν′xνebe

β(α− 1) + bx
β − bx

.

The asymptotic yield is given by

lim
τ↑∞

− logPt(τ)

τ − t
= −be

ax
bx

+ ax + β − beν
′
xνe −

1

2
ν′xνx

b2e
b2x

− ν′eνe

+ αν′eνe − α
b2e

bx(β − bx)

(
ν′xνx + βγ+ − ν′xνeβ

bx
be

)
.

Noting again that bx < 0, a sufficient (but not necessary) condition for the yield to be

increasing in α is beν
′
xνe ≥ 0.
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