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1 Introduction

The economics literature is replete with models that assume independent random matching

among a continuum of agents.1 The agents in these models are frequently motivated to conduct

“directed search,” that is, to focus their searches toward those types of counterparties that offer

greater gains from interaction, or toward those types that are less costly to find. For example,

Rogerson, Shimer, and Wright (2005) describe cases in which “search is directed – i.e., workers

do not encounter firms completely at random but try to locate those posting attractive terms

of trade.” Our central marginal contribution is to provide a mathematical foundation for the

existence and properties of directed search models.

Independent directed random matching, which includes the popular “matching-function”

approach, is the key to achieving tractability in many search-based models of financial markets,

monetary theory, and labor economics.

Previous work on mathematical foundations for random matching considers only search

that is “undirected,” in the sense that, conditional on a match by a given agent at a given

time, the probability that the match is with a particular “target” type of agents is merely the

fraction of agents of the target type. Directed search can arise, for example, when one side of

a market posts terms of trade that are especially attractive to specific types of agents.

Despite heavy reliance in the economics literature on models of independent directed

search,2 until now there has actually been no demonstration of the existence of such search

models, nor of the assumed aggregate behavior of these models that is supposedly based on the

law of large numbers. This paper demonstrates the existence and properties of general models

of static and dynamic independent directed search, thus placing a complete mathematical

foundation under the directed-search models assumed in the prior literature. Our results include

new features and properties that may be useful in future research.

Earlier foundational work on random matching in a dynamic setting, which we review

in Section 5, also presumes that partnerships break up immediately after matching. Here, we

allow for the potential of enduring partnerships, which may have randomly timed break-ups.

In order to meet the objectives of this paper, a completely new methodology is required, for

1Hellwig (1976) is the first, to our knowledge, to have relied on the effect of the exact law of large numbers
for random pairwise matching in a market. Other examples include Binmore and Samuelson (1999), Currarini,
Jackson and Pin (2009), Duffie, Gârleanu, and Pedersen (2005), Green and Zhou (2002), Kiyotaki and Wright
(1989), Lagos and Rocheteau (2009), Vayanos and Weill (2008), and Weill (2007).

2Among the many applications of directed search in the economics literature, in addition to those cited
elsewhere in this paper, are the models of Acemoglu and Shimer (1999), Albrecht, Gautier, and Vroman (2006),
Burdett, Shi, and Wright (2001), Camera and Selcuk (2009), Eeckhout and Kircher (2010), Faig and Jerez (2005),
Guerrieri, Shimer, and Wright (2010), Kiyotaki and Lagos (1993), Li, Rocheteau and Weill (2012) McAfee (1993),
Menzio (2007), Moen (1997), Peters (1991), Shi (2002), and Watanabe (2010).
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both static and dynamic settings.3

We first consider a static setting in which search is “directed,” in the sense that the

probability qkl that an agent of type k is matched to an agent of type l can vary with the

respective types k and l, from some type space S. We first show, in Theorem 1, the existence

of directed random matching in which counterparty types are independent across agents. It

follows from the exact law of large numbers that the proportion of type-k agents matched

with type-l agents is almost surely pkqkl, where pk is the proportion of type-k agents in the

population. By allowing the matching probabilities {qkl}k,l∈S to depend on the underlying

cross-sectional type distribution p, we also encompass the “matching-function” approach that

has frequently been applied in the labor literature, as surveyed by Petrongolo and Pissarides

(2001) and Rogerson, Shimer, and Wright (2005), as well as over-the-counter models of trade

in financial markets, as in Maurin (2015).

In typical dynamic settings for random matching, once two agents are matched, their

types change according to some deterministic or random rule. For example, when an unem-

ployed worker meets a firm with a vacant job, the worker’s type changes to “employed.” When

a prospective buyer and seller meet, their status as asset owners can change, and they can

learn information from each other. Random mutation of agent types is also a common model

feature, allowing for shocks to preferences, productivity, or endowments.4

In practice, and in an extensive part of the literature, once a pair of agents is matched,

they may stay matched for some time. Typical examples include the relationships between

employer and employee, or between two agents that take time to bargain over their terms

of trade.5 In this paper, we develop the first mathematical model for independent random

matching that allows for potentially enduring partnerships.

Our general model of independent dynamic directed random matching incorporates the

effects of random mutation, random matching with match-induced type changes, and enduring

partnerships. The agents’ types are shown to be independent discrete-time Markov chains.

By the exact law of large numbers in the dynamic setting, the multi-period cross-sectional

distribution of agents’ types is deterministic, and has a period-to-period update mapping that

coincides with the transition function of the law of the Markov chain for individual agent types.

For the special time-homogeneous case, we obtain a stationary joint cross-sectional distribution

of agent types, incorporating both unmatched agent types and pairs of currently matched

3See the discussions in the first two paragraphs of Subsection E.1 on the proof of the static results, and the
second paragraph of Subsection E.2 on the proof of the dynamic results, respectively.

4See, for example, Duffie, Gârleanu, and Pedersen (2005) and Lester, Postlewaite and Wright (2012).
5See, for example, Acemoglu and Wolitzky (2011), Andolfatto (1996), Diamond (1982), Mortensen and

Pissarides (1994), Tsoy (2014), and the references in the surveys of Petrongolo and Pissarides (2001), Rogerson,
Shimer, and Wright (2005) and Wright et al. (2017).
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types. This stationary cross-sectional distribution coincides with the stationary probability

distribution of the individual agent type processes. Many previously studied search-based

models of money, over-the-counter financial markets, and labor markets have relied on these

and other properties, which we demonstrate here for the first time.

We illustrate the applications of our model of directed random matching with four ex-

amples taken, respectively, from Duffie, Malamud and Manso (2014) in financial economics;

Kiyotaki and Wright (1989) and Matsuyama, Kiyotaki and Matsui (1993) in monetary eco-

nomics; and Andolfatto (1996) in labor economics. These examples show how our model can

be used to provide rigorous foundations for typical random-matching models used in these

respective literatures.

The remainder of the paper is organized as follows. Section 2 is a brief guide to our

main results in an easily accessible form. In Section 3, we describe a static model of inde-

pendent directed random matching, including an existence result as well as an application to

a typical over-the-counter financial market model. In order to capture the effect of enduring

partnerships, we must separately treat legacy and newly matched pairs of agents. In partic-

ular, we keep track of agents and their matched partners at each step (mutation, matching,

and type changing), in every time period. Because the treatment of enduring partnerships

is considerably more involved, its exposition is postponed to Appendix A. In Section 4, we

treat the relatively simpler case of a dynamical system with random mutation, directed ran-

dom matching, and match-induced type changing, but without enduring partnerships. This

section includes results covering the existence and exact law of large numbers for a dynamical

system with Markov conditional independence. Appendix B contains the remaining illustrative

examples of applications of our main results, to models of monetary and labor economics.

The proofs of the results on the exact law of large numbers and stationarity for a general

dynamic directed random matching are given in Appendix C.6 The proofs for the existence

results for static and dynamic directed random matching make extensive use of tools from

nonstandard analysis, of which a brief introduction is provided in Appendix D.7 Those proofs

are located in Appendix E. Section 5 offers a discussion of the prior foundational mathematical

research on random matching models, and some concluding remarks.

2 Guide to the Main Results

We first offer a brief guide to the main results at an informal level, unburdened by many

technical details that we postpone to later sections.

6Nonstandard analysis is not needed in the proofs of those results.
7The reader can also be referred to the first three chapters of Loeb and Wolff (2015) for basic nonstandard

analysis.
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We emphasize throughout the key effects of the exact law of large numbers. This law is

largely responsible for the popularity of random-matching models, because of the tractability

associated with deterministic, and explicitly computable, quantities of matches between given

types of agents. In multi-period settings, key additional tractability is obtained via the deter-

ministic and explicitly computable evolution of the cross-sectional distribution of agent types.

For example, consider the stochastic dynamic programming problem faced by a given agent in

an economy with interacting agents, whose respective types change randomly over time through

various shocks, including those induced by matching. Without the effect of the exact law of

large numbers, the state variable for a given agent’s problem would need to include not only

that agent’s current type, but also the randomly evolving cross-sectional distribution of types

of all other agents. In many settings, the high dimensionality of the resulting state variable

would rule out any reasonable progress toward a tractable solution. However, with indepen-

dent random matching and an application of the exact law of large numbers, a given agent

can safely assume that the cross-sectional distribution of types of the other agents evolves over

time deterministically (almost surely). This leaves a fixed-point problem, of finding agent-level

policy rules that are consistent in equilibrium with optimality by each agent. In this paper,

however, we take agent-level policy rules as given. We also provide supporting assumptions

for stationarity, under which the cross-sectional distribution of types is actually constant and

deterministic, further simplifying the analysis.

In the context of random-matching models, the independence of matching outcomes is

generally viewed as a behavioral assumption. That is, when agents conduct searches without

explicit coordination, independence has been viewed as a natural assumption.

2.1 The exact law of large numbers

We fix a probability space (Ω,F , P ). An element of Ω is a state of the world. A measurable

subset B of Ω (that is, an element of F) is an event, whose probability is P (B). The agent

space is an atomless probability space (I, I, λ). An element of I represents an agent. The mass

of some measurable subset A of agents is λ(A). Because the total mass of agents is 1, we can

also treat λ(A) as the fraction of the agents that are in A. In fact, we can take I to be the unit

interval [0, 1] and λ to be an extension of the Lebesgue measure.8

In order to obtain the exact law of large numbers (ELLN) for a collection {fi : i ∈ I}
of agent-level random variables, we model such a collection as a function f : I × Ω → R that

is measurable with respect to a sufficiently rich set of measurable subsets of I × Ω, denoted

8For measure-theoretic reasons, however, we need the set I of measurable sets of agents to be richer than the
usual Lebesgue measurable sets. We also follow the convention that all probability spaces are countably additive
and complete, unless otherwise noted.
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I � F , that extends the usual product σ-algebra I ⊗ F . The required properties of I � F
are given in the next section. The usual product σ-algebra I ⊗ F is not satisfactory for this

purpose. We will also use a weaker version of the notion of independence of the agent-level

random variables. An I � F-measurable function f from I × Ω to R is said to be essentially

pairwise independent if for λ-almost all i ∈ I, the agent-level random variables fi and fj

are independent for λ-almost all j ∈ I. As explicitly shown,9 this condition is weaker than

the usual conditions of mutual independence (any finite collection of random variables are

independent) and pairwise independence (any pair of random variables are independent). The

weaker condition allows one to state a more general version of the exact law of large numbers

for independent random matching.10 Unless otherwise noted, by “independence,” we mean

“essential pairwise independence,” throughout this paper.

From the exact law of large numbers of Sun (2006, Corollary 2.10) (or see Lemma 1

below), if f is I � F-measurable, integrable (in that
∫
I E(|fi|) dλ(i) is finite), and essentially

pairwise independent, then∫
I
fi dλ(i) =

∫
I
E(fi) dλ(i) almost surely. (1)

For example, if the agent-level random variables {fi : i ∈ I} are not only pairwise

independent, but also have the same probability distribution with a finite expectation, then

(1) implies that the cross-sectional average outcome
∫
I fi dλ(i) is almost surely equal to the

expected outcome for any agent, E(fi).

2.2 Static directed random matching

Each agent has some type in S = {1, 2, . . . ,K}. These types are assigned by some measurable

function, α : I → S. The initial fraction of type-k agents is thus pk = λ ({i : α(i) = k}). The

cross-sectional type distribution p = (pk) is thus an element of the space ∆ of probability

distributions on S.

A random matching is a function π : I × Ω→ I that assigns a unique randomly chosen

agent π(i) to agent i. In the event that π(i) = i, agent i is not matched. Otherwise, π(i) is the

agent to whom i is matched. We will consider matchings with the property that any agent of

type k is matched to an agent of type l with some given “directed-matching” probability qkl,

for any (k, l) ∈ S2. Of course, these parameters (qkl) must satisfy
∑

l∈S qkl ≤ 1. That is, for

any agent i of type k, we have qkl = P (gi = l), where g(i) = α(π(i)) denotes the type of the

agent to whom i is matched. In the event that i is not matched, we denote g(i) = J .

9See Footnote 13.
10On the other hand, Hammond and Sun (2006) shows that the essential versions of pairwise and mutual

independence are equivalent even in the conditional setting.
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A special case is uniform random matching, which means that qkl = pl. For reasons

given in the Introduction, a rich body of prior research requires more generality than uniform

matching.

For the specified matching probabilities (qkl) to be feasible, we must have

pk qkl = pl qlk, (2)

because the left and right hand sides are both equal to the expected total quantity of matches

of agents of type k with agents of type l.

A random matching π is said to be independent if the associated types {gi : i ∈ I} are

essentially pairwise independent. In this case, it follows immediately from the exact law of large

numbers that the quantity λ({i : α(i) = k, g(i) = l}) of agents of type k that are matched to

agents of type l is almost surely equal to the expected quantity pkqkl. One of our main results

in Section 4 states that for any given initial distribution p = (pk) of types and any feasible

matching probabilities (qkl), there exists an initial type function α, a random matching π, and

an associated I � F-measurable process g for partners’ types satisfying these key properties.

We will show additional useful properties of such a directed random matching model.

2.3 Matching functions

Proposition 1 and Theorem 1 of Section 4 also provide a rigorous probabilistic foundation for

the “matching-function” approach that is widely used in the literature of search-based labor

markets. Matching functions allow the probabilities of matching to be directed and to depend

on an endogenously determined cross-sectional distribution of types.

In models of search-based labor markets, it is typical to suppose that firms and workers

are characterized by their types. A commonly used modeling device in this setting is a matching

function mkl : [0, 1]× [0, 1]→ [0, 1] that specifies the quantity of type-k agents that are matched

with type-l agents, given any proportions of type-k agents and type-l agents. (See Petrongolo

and Pissarides (2001) for a survey of the matching-function approach.) Clearly one must require

that for any k and l in S and any p in ∆,

mkl(pk, pl) = mlk(pl, pk),
∑
r∈S

mkr(pk, pr) ≤ pk. (3)

Let qkl = mkl(pk, pl)/pk for pk 6= 0, and let qkl = 0 for pk = 0. Then the requirements for a

matching probability function are satisfied by (qkl). By our results in Section 4, there exists

an independent directed random matching π with parameters (p, q). Moreover, for any types

k and l, the mass λ({i : αi = k, gi = l}) of agents of type k that are matched to agents of type

l is almost surely

pkqkl = mkl(pk, pl),
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as specified by the given matching function. This means that any matching function satisfying

Equation (3) can be realized through independent directed random matching, almost surely.

For the special case of only two types of agents (say, types 1 and 2), any nonnegative matching

function m(p1, p2) with m(p1, p2) ≤ min(p1, p2) can be realized through independent directed

random matching. For this, one can simply take q12 = m(p1, p2)/p1 and q21 = m(p1, p2)/p2.

More general cases are considered in Footnote 31.

A common parametric specification is the Cobb-Douglas matching function, for which

mUV (pU , pV ) = ApαU p
β
V ,

for parameters α and β in (0, 1), and a non-negative scaling parameter A. We emphasize that

for some parameters α, β, and A, the inequality ApαU p
β
V ≤ min(pU , pU ) may fail for some

(pU , pV ) ∈ ∆. In that case, one can let m(pU , pV ) = min(ApαUp
β
V , pU , pV ).

2.4 Markovian mutation and match-induced type changes

We now extend to a multi-period setting with time periods 0, 1, . . . Typically, models used in

the literature allow for the following additional probabilistic specifications:

• Before random matching occurs in each period, a random mutation causes an agent of

type k to become an agent of type l with a given probability bkl.

• At any matching between agents of types k and l, the agent that was of type k becomes

an agent of type r with probability νkl(r). Likewise, the agent that was of type l becomes

an agent of type r with probability νlk(r).

The complete list of model parameters is thus (p0, q, b, ν), where the initial type distri-

bution p0 and the matching probabilities q = (qkl) are as described above for the static model.

In the more general model of Section 4, we allow the parameters (q, b, ν) to vary with the time

period.

In each period, the mutations, random matchings, and match-induced type changes are

assumed to be conditionally independent across agents, in the essential-pairwise sense. The

initial types {α0
i : i ∈ I} are assumed to be essentially pairwise independent, which includes

the special case of deterministic initial types.

In period n, after any mutation and match-induced types changes that have occurred in

that period, let αni denote the type of agent i and let pnk = λ({i : αni = k}) denote the fraction

of agents of type k. Let p̈n be the expected type distribution E(pn). The initial conditions

α0 and p̈0 ∈ ∆ are given. The objective is to calculate the probability distributions and other

properties of the agent-level type process αi = {α0
i , α

1
i , . . .}, as well the cross-sectional type

distribution process p = {p0, p1, . . .}.
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In Section 4, we show that the cross-sectional distribution pn of agent types in period n

is almost-surely deterministic. We also demonstrate that, almost surely:

1. pn = Γ(pn−1), where Γ : ∆→ ∆ is explicitly computed.11

2. For λ-almost every agent i, the agent’s type process αi = {α1
i , α

2
i , . . .} is a Markov chain

with the probability transition function Γ. That is, letting wni ∈ ∆ denote the probability

distribution of αni , we have wn+1
i = Γ(wni ).

3. The agent-level type processes {αi : i ∈ I} are essentially pairwise independent.

4. From the exact law of large numbers and the above three results, it follows that the cross-

sectional type distribution pn is the same as its expectation p̈n with probability one. In

addition, if almost every agent i has the same initial type probability distribution p̈0,

then wni = p̈n for almost every agent i. That is, we can always arrange for the probability

distribution of each agent’s type to coincide with the cross-sectional distribution of types.

(In Section 4, we state this equivalence at the level of distributions on sample paths in

S∞.)

5. There exists a stationary distribution p∗, defined by p∗ = Γ(p∗). Thus, if p∗ is the initial

probability distribution of α0
i for almost every agent i, then for almost every agent i, in

every time period n, the type αni of agent i has a probability distribution wni = p∗ equal

to the cross-sectional type distribution pn = p∗.

Theorem 2 provides additional characterization of the close relationship in this Markovian

setting between agent-level type probability distributions and cross-sectional type distributions.

We later generalize to allow for enduring matchings, by which a pair of agents, once matched,

may stay paired for some duration whose probability distribution can depend on their respective

types, in a sense that we make precise.

3 Static Directed Random Matching

This section begins the statement of our results at a more complete level. We start with some

mathematical preliminaries. Then a static model of directed random matching is formally

given in Subsection 3.2, where we present the exact law of large numbers, the existence of

independent directed random matching, and an illustrative application to a model of over-the-

counter financial markets.
11 Letting ηr(p) = 1−

∑
l∈S plqlr and p̄k(p) =

∑
l∈S plblk, we have

Γr(p) = prηr(p̄(p)) +
∑
k,l∈S

p̄k(p)qkl(p̄(p))νkl(r).
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3.1 Mathematical preliminaries

Let (Ω,F , P ) be a probability space. The agent space is an atomless probability space (I, I, λ).

While a continuum of independent random variables, one for each of a large population

such as I, can be formalized as a mapping on I × Ω, such a function can never be measurable

with respect to the completion of the usual product σ-algebra I ⊗ F , except in the trivial

case in which almost all of the random variables are constants.12 As in Sun (2006), we shall

therefore work with an extension of the usual product probability space that retains the crucial

Fubini property.

Definition 1 A probability space (I × Ω,W, Q) extending the usual product space (I × Ω, I ⊗
F , λ⊗P ) is said to be a Fubini extension of this product space if, for any real-valued Q-integrable

function f on (I × Ω,W),

(1) For λ-almost all i ∈ I, fi = f(i, · ) is integrable on (Ω,F , P ).

(2) For P -almost all ω ∈ Ω, fω = f( · , ω) is integrable on (I, I, λ).

(3)
∫
I×Ω f dQ =

∫
I(
∫

Ω fi dP ) dλ =
∫

Ω(
∫
I fω dλ) dP .

To reflect the fact that the probability space (I × Ω,W, Q) has (I, I, λ) and (Ω,F , P ) as its

marginal spaces, as required by the Fubini property, it will be denoted by (I ×Ω, I �F , λ�P ).

The Fubini extension could include a sufficiently rich collection of measurable sets to

allow applications of the exact law of large numbers that we shall need. An I �F-measurable

function f will be called a “process,” each fi will be called a random variable of this process,

and each fω will be called a sample function of the process. As shown in Section 2 of Sun

(2006), a sufficient condition for proving the exact law of large numbers is the condition of

essential pairwise independence. A formal definition is as follows.13

12See, for example, Proposition 2.1 in Sun (2006).
13Here we state the definition of essential pairwise independence using a complete separable metric space X

for the sake of generality; in particular, a finite space or an Euclidean space is a complete separable metric space.
Fix any i ∈ I. If the singleton set {i} is measurable in I, then it is clear that {i} has measure zero (since (I, I, λ)
is atomless). Note that a singleton set is not necessarily measurable in a general measurable space. However,
such measurability follows from the atomless property and the convention that a probability space is complete.
In particular, one can take, for each n ≥ 1, a I-measurable partition {Ank}2

n

k=1 of I with λ(Ank ) = 1/2n such
that Ank = An+1

2k−1

⋃
An+1

2k for 1 ≤ k ≤ 2n. For any n ≥ 1, there is a unique kn such that i ∈ Ankn , which implies
that i ∈

⋂∞
n=1A

n
kn . Since

⋂∞
n=1A

n
kn has measure zero and (I, I, λ) is complete, the singleton set {i} is in I

with measure zero. If the pairwise independence condition holds for f , namely, for any i 6= j ∈ I, fi and fj are
independent, then for each i ∈ I, fi and fj are independent except for j in the λ-null set {i}, which means that
f satisfies the condition of essential pairwise independence. The usual condition of mutual independence (any
finite collection of random variables are independent) is even stronger than pairwise independence.
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Definition 2 (Essential pairwise independence) An I �F-measurable process f from I ×Ω

to a complete separable metric space X is said to be essentially pairwise independent if for

λ-almost all i ∈ I, the random variables fi and fj are independent for λ-almost all j ∈ I.

3.2 Static directed random matching

We follow the notation in Subsection 3.1. Let S = {1, 2, . . . ,K} be a finite space of agent types

and α : I → S be an I-measurable type function, mapping individual agents to their types.

For any k in S, we let pk = λ({i : α(i) = k}) denote the fraction of agents of type k. We can

view p = (pk)k∈S as an element of the space ∆ of probability measures on S. Because (I, I, λ)

has no atoms, for any type distribution p ∈ ∆, one can find an I-measurable type function

with distribution p.

A function q : S × S → R+ is a matching probability function for the type distribution

p if, for any k and l in S,

pk qkl = pl qlk,
∑
r∈S

qkr ≤ 1. (4)

The matching probability qkl specifies the probability that an agent of type k is matched to an

agent of type l. Thus ηk = 1−
∑

l∈S qkl is the associated no-matching probability for an agent

of type k.

Definition 3 Let α, p, and q be given as above, and J a special type representing no-matching.

(i) A full matching φ is a one-to-one mapping from I onto I such that, for each i ∈ I,

φ(i) 6= i and φ(φ(i)) = i.

(ii) A (partial) matching ψ is a mapping from I to I such that for some subset B of I, the

restriction ψ|B of ψ to B is a full matching on B, and the restriction ψ|I\B of ψ to I \B
is the identity mapping. This means that agent i in B is matched to another agent ψ(i)

in B, whereas any agent i not in B is unmatched, in that ψ(i) = i.

(iii) A random matching π is a mapping from I × Ω to I such that

(a) πω is a matching for each ω ∈ Ω.

(b) g(i, ω) =

{
α(π(i, ω)) if π(i, ω) 6= i

J if π(i, ω) = i

is measurable from (I × Ω, I � F , λ� P ) to S ∪ {J}.

(iv) A random matching π from I × Ω to I is directed, with parameters (p, q) satisfying con-

dition (4), if for λ-almost every agent i of type k, P (gi = J) = ηk and P (gi = l) = qkl.

11



(v) A random matching π is said to be independent if the associated type process g is essen-

tially pairwise independent.

For an agent i ∈ I who is matched, the random variable gi = g(i, · ) is the type of her

matched partner. Part (iv) of the definition thus means that for λ-almost every agent i of type

k, her probability of being matched with a type-l agent is qkl, while her no-matching probability

is ηk.

The following result is a direct application of the exact law of large numbers. In par-

ticular, letting Ik = {i ∈ I : α(i) = k}, the result follows from Theorem 2.8 of Sun (2006)

(see Lemma 1 below) by working with the process gIk = g|Ik×Ω on the rescaled agent space Ik,

where g|Ik×Ω is the restriction of g to Ik × Ω.

Proposition 1 Let π be an independent directed random matching with parameters (p, q).

Then, for P -almost every ω ∈ Ω, we have

(i) For k ∈ S, λ({i ∈ I : α(i) = k, gω(i) = J}) = pkηk.

(ii) For any (k, l) ∈ S × S, λ({i : α(i) = k, gω(i) = l}) = pkqkl.

Let κ be the probability measure on S × (S ∪ {J}) defined by letting κ(k, l) = pkqkl for

any (k, l) ∈ S × S and κ(k, J) = pkηk for k ∈ S. Proposition 1 says that the cross-sectional

joint type distribution of (α, gω) is κ with probability one.

Now we state our main existence result for the static setting.

Theorem 1 For any type distribution p on S and any matching probability function q for p,

there exists a Fubini extension (I×Ω, I�F , λ�P ) on which is defined a type function α and an

independent directed random matching14 π with parameters (p, q), which is measure preserving

in the sense that for each ω ∈ Ω, λ(π−1
ω (A)) = λ(A) for any A ∈ I.

The proof of Theorem 1 will be given in Subsection E.1 for the case of a Loeb measure

space of agents via the method of nonstandard analysis.15 Since the unit interval and the class

of Lebesgue measurable sets with the Lebesgue measure provide the archetype for models of

economies with a continuum of agents, the next proposition (proved in Subsection E.3) shows

that one can take an extension of the classical Lebesgue unit interval as the agent space for the

construction of an independent directed random matching.

14As shown in the last paragraph in the proof of Lemma 7, one can take a subset Ĩ of I such that λ(I \ Ĩ) = 0,
and the random types {gi}i∈Ĩ as constructed there satisfy a stronger independence condition in the sense that
any finitely many random variables from that collection are mutually independent.

15A simple treatment of nonstandard analysis is given in Appendix D. We note that the proof of Theorem 1 is
substantially different from the corresponding existence result for the case of “undirected” search in Duffie and
Sun (2007); see the first paragraph of Subsection E.1.
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Proposition 2 For any type distribution p on S and any matching probability function q for

p, there exists a Fubini extension (I × Ω, I � F , λ� P ) such that:

1. The agent space (I, I, λ) is an extension of the Lebesgue unit interval (L,L, χ).

2. There is defined on the Fubini extension a type function α and an independent directed

random matching16 π with parameters (p, q).

The following example provides an illustrative application of Theorem 1 and Proposition

1 to a model of over-the-counter financial markets.

Example 1 In Duffie, Malamud and Manso (2014), the economy is populated by a continuum

of risk-neutral agents. There are M different types of agents that differ according to the quality

of their initial information, their preferences for the asset to be traded, and the likelihoods with

which they meet each of other types of agents for trade. The proportion of type-l agents is

ml, where l = 1, . . . ,M . Any agent of type l is randomly matched with some other agent

with probability λl ∈ [0, 1). This counterparty is of type-r with probability κlr. In the present

context, we can take the matching probability qlr = λlκlr for any l and r in S. Theorem 1

guarantees the existence of independent directed random matching with the given parameters

ml, qlr. Proposition 1 implies that the total quantity of matches of agents of a given type l

with the agents of a given type r is almost surely mlλlκlr = mrλrκrl. (See page 7 of Duffie,

Malamud and Manso (2014).)

4 Dynamic Directed Random Matching

In this section we show how to construct a dynamical system that incorporates the effects

of random mutation, directed random matching, and match-induced type changes with time-

dependent parameters. We first define such a dynamical system in Subsection 4.1. The key

condition of Markov conditional independence is formulated in Subsection 4.2. Based on that

condition, we state in Subsection 4.3 an exact law of large numbers for such a dynamical

system. The section ends with the existence of Markov conditionally independent dynamic

directed random matching.

4.1 Definition of dynamic directed random matching

As in Section 3, we fix an atomless probability space (I, I, λ) representing the space of agents,

a sample probability space (Ω,F , P ), and a Fubini extension (I × Ω, I � F , λ � P ). Let

16In addition, there exists a sub-σ-algebra I′ of I and a Fubini extension (I × Ω, I′ � F , λ � P ) such that
I′�F ⊆ I�F and π is an independent directed random matching with parameters (p, q) on (I×Ω, I′�F , λ�P ),
which is measure preserving in the sense that for each ω ∈ Ω, λ(π−1

ω (A)) = λ(A) for any A ∈ I′. See the
penultimate paragraph of the proof of Proposition 5 in Subsection E.3.
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S = {1, 2, . . . ,K} be a finite set of types and let J be a special type representing no-matching.

We shall define a discrete-time dynamical system D0 with the property that at each integer

time period n ≥ 1, agents first experience a random mutation and then random matching with

directed probabilities. Finally, any pair of matched agents are randomly assigned new types

whose probabilities may depend on the pair of prior types of the two agents.

At period n ≥ 1, each agent of type k ∈ S first experiences a random mutation, becoming

an agent of type l with a given probability bnkl, with
∑

r∈S b
n
kr = 1. At the second step, every

agent conducts a directed search for counterparties. In particular, for each (k, l) ∈ S × S, the

directed matching probability is determined by a function qnkl on the space of type distributions

∆, with the property that, for all k and l in S, the function that maps the type distribution

p ∈ ∆ to pkq
n
kl(p) is continuous and satisfies, for all p ∈ ∆,

pk q
n
kl(p) = pl q

n
lk(p) and

∑
r∈S

qnkr(p) ≤ 1. (5)

The intention is that, if the population type distribution in the current period is p, then an

agent of type k is matched to some agent whose type is l with probability qnkl(p). Thus,

ηnk (p) = 1−
∑

l∈S q
n
kl(p) is the associated probability of no match. When an agent of type k is

matched at time n to an agent of type l, the agent of type k becomes an agent of type r with

probability νnkl(r), where
∑

r∈S ν
n
kl(r) = 1. The primitive model parameters are (b, q, ν).

Let α0 be the initial S-valued type process on the Fubini extension (I×Ω, I�F , λ�P ).

For each time period n ≥ 1, the agents’ types after the random mutation step are given by a

process hn from (I×Ω, I�F , λ�P ) to S. Then, a random matching is described by a function

πn from I×Ω to I. The end-of-period types are given by a process αn from (I×Ω, I�F , λ�P )

to S. Thus the post-mutation type function hn satisfies

P (hni = l |αn−1
i = k) = bnkl. (6)

For the directed random matching step, let gn be an I � F-measurable function defined by

gn(i, ω) = hn(πn(i, ω), ω), with the property that for any type k ∈ S, for λ-almost every i and

P -almost every ω ∈ Ω,

P (gni = l |hni = k, p̌n) = qnkl(p̌
n(ω)), (7)

where p̌n(ω) = λ(hnω)−1 is the post-mutation type distribution realized in state ω. The end-of-

period agent type function αn satisfies, for λ-almost every agent i,

P (αni = r |hni = k, gni = J) = δk(r) and P (αni = r |hni = k, gni = l) = νnkl(r), (8)

where δk(r) is 1 if k = r and is zero otherwise. Thus, we have inductively defined the properties

required of a dynamical system D0 that incorporates the specified effects of random mutation,

directed random matching, and match-induced type changes with given parameters (b, q, ν).
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4.2 Markov conditional independence (MCI)

We now add independence conditions on the dynamical system D0, along the lines of those

in Duffie and Sun (2007, 2012). The idea is that each of the just-described steps (mutation,

random matching, match-induced type changes) are conditionally independent across almost

all agents.

We say that the dynamical system D0 is Markov conditionally independent (MCI) if, for

λ-almost every i and λ-almost every j, for every period n ≥ 1, and for all types k and l in S,

the following four properties apply:

• Initial independence: α0
i and α0

j are independent.

• Markov and conditionally independent mutation:

P (hni = k, hnj = l |α0
i , . . . , α

n−1
i ;α0

j , . . . , α
n−1
j ) = P (hni = k |αn−1

i )P (hnj = l |αn−1
j ).

• Markov and conditionally independent random matching:

P (gni = k, gnj = l |α0
i , . . . , α

n−1
i , hni ;α0

j , . . . , α
n−1
j , hnj ) = P (gni = k |hni )P (gnj = l |hnj ).

• Markov and conditionally independent matched-agent type changes:

P (αni = k, αnj = l |α0
i , . . . , α

n−1
i , hni , g

n
i ;α0

j , . . . , α
n−1
j , hnj , g

n
j )

= P (αni = k |hni , gni )P (αnj = l |hnj , gnj ).

4.3 The exact law of large numbers for MCI dynamical systems

We define a sequence Γn of mappings from ∆ to ∆ such that, for each p ∈ ∆,

Γnr (p1, . . . , pK) = p̄nr (p)ηnr (p̄n(p)) +
∑
k,l∈S

p̄nk(p)qnkl(p̄
n(p))νnkl(r),

where p̄nk(p) =
∑

l∈S plb
n
lk for k ∈ S.

The following theorem presents an exact law of large numbers for the agent type processes

at the end of each period, and gives a recursive calculation for the cross-sectional joint agent

type distribution pn at the end of period n.

Theorem 2 A Markov conditionally independent dynamical system D0 with parameters (b, q, ν),

for random mutation, directed random matching and match-induced type changes, satisfies the

following properties.
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(1) For each time n ≥ 1, let pn(ω) = λ(αnω)−1 be the realized cross-sectional type distribution

at the end of the period n. The expectation E(pn) is given by

E(pnr ) = Γnr (E(pn−1)) = p̄nr η
n
r (p̄n) +

∑
k,l∈S

p̄nkq
n
kl(p̄

n)νnkl(r),

where p̄nk =
∑

l∈S E(pn−1
l )bnlk.

(2) For λ-almost every agent i, the type process {αni }∞n=0 of agent i is a Markov chain with

transition matrix zn at time n− 1 defined by

znkl = ηnl (p̄n)bnkl +
∑
r,j∈S

bnkrq
n
rj(p̄

n)νnrj(l).

(3) For λ-almost every i and λ-almost every j, the Markov chains {αni }∞n=0 and {αnj }∞n=0 are

independent.17

(4) For P -almost every state ω, the cross-sectional type process {αnω}∞n=0 is a Markov chain

with transition matrix zn at time n− 1.

(5) For P -almost every state ω, at each time period n ≥ 1, pn(ω) = λ(αnω)−1, and the realized

cross-sectional type distribution after random mutation λ(hnω)−1 is p̄n.

(6) If there is some fixed p̈0 ∈ ∆ that is the probability distribution of the initial type α0
i

of agent i for λ-almost every i, then the probability distribution ζ = p̈0 ⊗ (⊗∞n=1z
n) on

S∞ is equal to the sample-path distribution of the Markov chain αi = {αni }∞n=0 for λ-

almost every agent i. For P -almost every state ω ∈ Ω, ζ is also the cross-sectional joint

distribution λα−1
ω of the sample paths of agents’ realized type process.

(7) Suppose that the parameters (b, q, ν) are time independent. Then there exists a type

distribution p∗ ∈ ∆ such that p∗ is a stationary distribution for any Markov conditionally

independent dynamical system D0 with parameters (b, q, ν), in the sense that for every

period n ≥ 0, the realized cross-sectional type distribution pn at time n is p∗ P -almost

surely. all of the relevant Markov chains are time homogeneous with a constant transition

matrix z1 having p∗ as a fixed point. In addition, if the initial type process α0 is i.i.d.

across agents, then, for λ-almost every agent i, P (αni )−1 = p∗ for any period n ≥ 0.

4.4 Existence of MCI dynamic directed random matching

The following theorem provides for the existence of a Markov conditionally independent (MCI)

dynamical system with random mutation, random matching, and match-induced type changes.

17Two Markov chains with a state space S are said to be independent if they are independent as random
variables taking values in S∞.
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Theorem 3 For any primitive model parameters (b, q, ν) and for any type distribution p̈0 ∈ ∆,

there exists a Fubini extension (I × Ω, I � F , λ � P ) on which is defined a dynamical system

D0 with random mutation, random matching, match-induced type changes, that is Markov con-

ditionally independent with these parameters (b, q, ν), and with the initial cross-sectional type

distribution p0 that is p̈0 with probability one. In addition, for any n ≥ 1, πn is measure pre-

serving in the sense that for each ω ∈ Ω, λ((πnω)−1(A)) = λ(A) for any A ∈ I. These properties

can be achieved with an initial type process α0 that is deterministic, or i.i.d. across agents.18

With the next proposition, we show that the agent space (I, I, λ) can be an extension

of the classical Lebesgue unit interval (L,L, χ). That is, we can take I = L = [0, 1] with a

σ-algebra I that contains the Lebesgue σ-algebra L, and so that the restriction of λ to L is

the Lebesgue measure χ.

Proposition 3 Fixing any model parameters (b, q, ν) and any initial cross-sectional type dis-

tribution p̈0 ∈ ∆, there exists a Fubini extension (I × Ω, I � F , λ� P ) such that:

(1) The agent space (I, I, λ) is an extension of the Lebesgue unit interval (L,L, χ).

(2) There is defined on the Fubini extension a dynamical system D0 that is Markov condi-

tionally independent with the parameters (b, q, ν), where the initial cross-sectional type

distribution p0 is p̈0 with probability one.

(3) These properties can be achieved with an initial type process α0 that is deterministic, or

i.i.d. across agents.19

5 Discussion

We finish with a discussion of the prior literature on the mathematics of random matching,

and then offer some concluding comments about our main new results and some immediately

available extensions of our results to more general type spaces, changing population sizes, or

background “macro-economic” processes that cause random changes in the evolution of the

cross-sectional type distributions.

As mentioned in Section 2, when agents conduct searches without explicit coordination,

it is reasonable to impose the assumption of independence of their searches. However, Footnote

18This means that the process α0 is essentially pairwise independent, and α0
i has distribution p̈0 for λ-almost

all i ∈ I.
19In addition, there exists a sub-σ-algebra I′ of I and a Fubini extension (I × Ω, I′ � F , λ � P ) such that
I′ � F ⊆ I � F , the dynamical system D0 on (I × Ω, I′ � F , λ � P ) is Markov conditionally independent, and
for any n ≥ 1, πn is measure preserving in the sense that for each ω ∈ Ω, λ((πnω)−1(A)) = λ(A) for any A ∈ I′.
See the penultimate paragraph of the proof of Proposition 5 in Subsection E.3.
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4 of McLennan and Sonnenschein (1991) showed the non-existence of a type-free static random

full matching that satisfies a number of desired conditions, when the agent space is taken

to be the unit interval with the Borel σ-algebra and Lebesgue measure. That problem was

resolved through the construction of an independent type-free static random full matching

with a suitable agent space, as in Duffie and Sun (2007).20 Xiang Sun (2016) extended the

results on independent static random partial matching in Duffie and Sun (2007) from finite type

spaces to general type spaces. Duffie and Sun (2007) and Duffie and Sun (2012) go beyond the

static case to present the existence of, and the exact law of large numbers for, discrete-time

independent random matching.

When the independence assumption for random matching is not required, one can con-

struct many non-independent random full matchings with some desired matching properties,

even for finitely many agents.21

Based on the classical asymptotic law of large numbers, Boylan (1992) constructed a

random full matching for a countable population. Gilboa and Matsui (1992) presented a par-

ticular matching model of two countable populations with a countable number of encounters in

the time interval [0, 1), where both the agent space N and the sample space are endowed with

purely finitely additive measures. A non-independent random full matching was constructed in

Alós-Ferrer (1999) for a given type function on the population space [0, 1] by rearranging the

intervals in [0, 1] through measure-preserving mappings. Rather than relying on particular ex-

amples of a non-independent random matching that have certain desired matching properties,

Duffie and Sun (2012) instead proved the exact law of large numbers for general independent

random matchings.

An independent random matching automatically involves a process with a continuum of

independent random variables. The classical Kolmogrov consistency theorem (see, for example,

Bogachev (2007, p. 95)) implies the existence of a continuum of independent real-valued random

variables. Following Doob (1937), some measure extension leads to the fact that almost all

sample functions differ from an arbitrarily given function h (whether measurable or not) at

only countably many points.22 This implies that one can claim that the sample functions

(and thus the sample means and distributions) are essentially arbitrary.23 Though it is not

20See the main theorem of Podczeck and Puzzello (2012) for another construction. It is clear that an indepen-
dent type-free static random full matching also provides a model of independent static random full matching for
general types; see Duffie and Sun (2012) and Podczeck and Puzzello (2012).

21See Subsection 3.2 of Molzon and Puzzello (2010). However, the requirement that all the agents are matched
randomly then leads to correlation among the finitely many agents. It therefore does not make sense to consider
independent random matching in the finite-agent setting. For a detailed discussion of the literature on “non-
independent” random matching, see Section 6 of Duffie and Sun (2012).

22See Subsection 6.1 in Sun (2006) for the detailed discussion.
23That is, the sample means and distributions of an i.i.d. process can be essentially equal to the theoretical

means and distribution, respectively, or any other arbitrarily given means and distribution. See Judd (1985)
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possible to require an i.i.d. process to have essentially constant sample means and distributions

at the coalitional level for an agent space based on the Lebesgue unit interval,24 one can

simply use the transfer principle25 in nonstandard analysis to restate the classical law of large

numbers for a sequence of i.i.d. random variables in a nonstandard model, and thus claim the

existence of a process with the required properties.26 The essential difficulty associated with a

continuum of independent random variables is that independence and joint measurability with

respect to the usual measure-theoretic product are never compatible with each other except

for the trivial case in which almost all of the random variables are constants.27 In Sun (2006),

various versions of the exact law of large numbers, and their converses in both static and

dynamic settings, are proved by direct application of simple measure-theoretic methods in the

framework of a Fubini extension. Such a framework is adopted in this paper (1) to construct

static and dynamic models of independent directed random matching that incorporate the

effects of random mutation, random matching with match-induced type changes, and with the

potential for enduring partnerships that may have randomly timed break-ups, and (2) to study

various properties of a general independent directed random matching via the exact law of

large numbers.28

All of the papers on random matching mentioned above address the case of “undirected”

search, in the sense that the matching probabilities are proportional to the population sizes of

the matched agents with given types. The main purpose of this paper is to provide a suitable

search-based model of markets in which agents can direct their searches, causing relatively

higher per-capita matching probabilities with specific types of counterparties. Although mod-

els with directed search are common in the literatures covering money, labor markets, and

and Sun (2006, p. 53).
24See Feldman and Gilles (1985).
25See Proposition 7 in Subsection D.2.
26See, for example, Hersh and Greenwood (1975), Keisler (1977), Hurd and Loeb (1985), Anderson (1991),

and Footnote 46 below for the transfer of a sequence of i.i.d. random variables and relevant results. Green
(1994) also provided an alternative construction for the existence of such a process with the required property.
Note that the agent space as considered in those papers are not the Lebesgue type space while the relevant
sample probability space is countably additive. On the other hand, one can still claim the existence of an i.i.d.
process to have any kind of sample means/distributions at the coalitional level based on the usual Lebesgue
agent space and some purely finitely additive sample probability space; see Berti, Gori and Rigo (2012). Given
the various possibilities in claiming the stability of sample functions in specific examples, what one needs is to
find a suitable measure-theoretic condition to guarantee aggregate sample stability under independence.

27See Proposition 2.1 in Sun (2006).
28Dynamic independent random matching, as considered in this paper, needs a specific construction based on

the framework of a Fubini extension, which allows us to apply the static and dynamic versions of exact law of
large numbers shown in such a general framework in Sun (2006). However, this construction does not fit any
earlier examples on the existence of an i.i.d. process having essentially constant sample means/distributions.
In particular, the condition of ∗-independence (see Hurd and Loeb (1985) and Footnote 46 below) holds for the
transfer of an i.i.d. sequence of random variables to the nonstandard model. As noted in Footnote 19 of Duffie
and Sun (2007), ∗-independence, which is much stronger than the usual independence condition, is not satisfied
even in the simple setting of static random full matching.

19



over-the-counter financial markets, prior work has simply assumed that the exact law of large

numbers would lead to a deterministic cross-sectional distribution of agent types, and that this

distribution would obey certain properties. We provide a model that justifies this assumed

behavior, down to the basic level of random contacts between specific individual agents. We

provide the resulting transition distribution for the Markov processes for individual agents’

types, and for the aggregate cross-sectional distribution of types in the population, and show

the close relationship between these two objects.

By incorporating directed search, we are also able to provide the first rigorous proba-

bilistic foundation for the notion of a “matching function” that is heavily used in the search

literature of labor economics.

A secondary objective of our paper is to allow for random matching with enduring

partnerships. The durations of these partnerships can be random or deterministic, and can

be type dependent. Earlier work providing mathematical foundations for random matching

presumes that partnerships break up immediately after matching. Enduring partnerships are

crucial for search-based labor-market models, such as those cited in Footnote 5, in which there

are episodes of employment resulting from a match between a worker and a firm, eventually

followed by a randomly timed separation.29 In some of these models, separation is i.i.d. across

periods of employment. This is the case, for example, in Cho and Matsui (2013), Merz (1999),

Pissarides (1985), Shi and Wen (1999), Shimer (2005), and Yashiv (2000), among many other

papers. In other cases, the separation probability depends on the vintage of the match, and

can depend on the quality of the match between the worker and the firm. Since the separation

probabilities in our general model depend on the types of the matched agents, our results can

cover such cases by introducing new types.

We have verified that our results can be extended under mild revisions of the proofs

to settings in which agents have countably many types, and can enter and exit (for example,

through “birth” and “death”), allowing for a total population size that is changing over time

without a fixed bound, as in Yashiv (2000).30 It is also straightforward to allow for a background

Markov process that governs the parameters determining probabilities for mutation, matching,

and type change (as well as enduring match break-ups). In this case, the background Markov

state causes aggregate uncertainty, but conditional on the path of the background state, the

cross-sectional distribution of population types evolves deterministically, almost surely.

29Further such situations arise in the models of Cho and Matsui (2013), Flinn (2006), Haan, Ramey and
Watson (2000), Hall (2005), Hosios (1990), Merz (1995), Merz (1999), Mortensen (1982), Pissarides (1985),
Shimer (2005), Shi and Wen (1999), and Yashiv (2000).

30Our results cover cases in which there is a fixed bound for the total population size in all time periods. In
such cases, one can simply introduce a new type to represent the inactive agents and re-scale the total population
size.

20



References

Daron Acemoglu and Robert Shimer, Holdups and efficiency with search frictions, International

Economic Review 40 (1999), 827-849.

Daron Acemoglu and Alexander Wolitzky, The economics of labor coercion, Econometrica 79

(2011), 555–600.

James Albrecht, Peter Gautier and Susan Vroman, Directed search with multiple applications,

Review of Economic Studies 73 (2006), 869-91.

Carlos Alós-Ferrer, Dynamical systems with a continuum of randomly matched agents, Journal

of Economic Theory 86 (1999), 245–267.

Robert M. Anderson, Non-standard analysis with applications to economics, in Handbook of

Mathematical Economics IV (W. Hildenbrand, H. Sonnenschein eds.), North-Holland, New

York, 1991.

David Andolfatto, Business cycles and labor-market search, American Economic Review 86

(1996), 112–132.

Patrizia Berti, Michele Gori and Pietro Rigo, A note on the absurd law of large numbers in

economics, Journal of Mathematical Analysis and Applications 388 (2012), 98–101.

Ken Binmore and Larry Samuelson, Evolutionary drift and equilibrium selection, Review of

Economic Studies 66 (1999), 363–393.

Vladimir I. Bogachev, Measure Theory, Volume 2, Springer-Verlag Berlin Heidelberg, 2007.

Richard T. Boylan, Laws of large numbers for dynamical systems with randomly matched

individuals, Journal of Economic Theory 57 (1992), 473–504.

Kenneth Burdett, Shoyoung Shi and Randy Wright, Pricing and matching with frictions, Jour-

nal of Political Economy 109 (2001), 1060-85.

Gabriele Camera and Cemil Selcuk, Price dispersion with directed search, Journal of the Eu-

ropean Economics Association 7 (2009), 1193-1224.

In-Koo Cho and Akihiko Matsui, Search theory, competitive equilibrium, and the Nash bar-

gaining solution, Journal of Economic Theory 148 (2013), 1659–1688.

Sergio Currarini, Matthew O. Jackson and Paolo Pin, An economic model of friendship: Ho-

mophily, minorities, and segregation, Econometrica 77 (2009), 1003–1045.

21



Peter Diamond, Aggregate demand management in search equilibrium, Journal of Political

Economy 90 (1982), 881–894.

Joseph L. Doob, Stochastic processes depending on a continuous parameter, Trans. Amer.

Math. Soc. 42 (1937), 107-140.
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Appendices

The following appendices allow matches that result in enduring partnerships, offer some

illustrative examples of applications of our main results to models from the literature on mon-

etary and labor economics, provide a brief introduction to nonstandard analysis, and present

proofs of the results.

A Dynamic Directed Random Matching with Enduring Partnerships

This appendix extends the model of dynamic directed random matching found in Section 4 so

as to allow for enduring partnerships and for correlated type changes of matched agents. Unlike

the more basic model of Section 4, in order to capture the effect of enduring partnerships we

now must consider separate treatments of existing matched pairs of agents and newly formed

matched pairs of agents.

We first define such a dynamical system in Subsection A.1. The key condition of Markov

conditional independence is formulated in Subsection A.2. Based on that condition, Subsection

A.3 presents an exact law of large numbers for such a dynamical system. Subsection A.4

provides results covering the existence of Markov conditionally independent dynamical system

with directed random matching and with partnerships that have randomly timed breakups.

We will show that all of our results can be obtained for an agent space that is a Loeb measure

space as constructed in nonstandard analysis, or is an extension of the classical Lebesgue unit

interval. This section has self-contained notation. In particular, some of the notation used in

this section may have a meaning that differs from its usage in Section 4.

The exact law of large numbers and stationarity for independent dynamic directed ran-

dom matching, as stated in Theorem 2 in Section 4, is a special case of Theorem 4 and Proposi-

tion 4 in Subsection A.3. The existence of independent dynamic directed random matching, as

stated in Theorem 5 and Proposition 5 in Subsection A.4, extend respectively Theorem 3 and

Proposition 3 in Section 4. Hence, the proofs of Theorems 2, 3, and Proposition 3 are omitted.

The proofs of Theorem 4 and Proposition 4 do not use nonstandard analysis, and are given in

Appendix C. The proofs of Theorem 5 and Proposition 5 need nonstandard analysis, and are

presented in Subsections E.2 and E.3 respectively, after a brief introduction to nonstandard

analysis in Appendix D.

A.1 Definition of dynamic directed random matching with enduring partnerships

As in Sections 3 and 4, we fix an atomless probability space (I, I, λ) representing the space of

agents, a sample probability space (Ω,F , P ), and a Fubini extension (I ×Ω, I�F , λ�P ). Let

S = {1, 2, . . . ,K} be a finite set of types and let J be a special type representing no-matching.

27



The “extended type” space is Ŝ = S × (S ∪ {J}). An agent with an extended type of the form

(k, l) has underlying type k ∈ S and is currently matched to another agent of type l ∈ S. If the

agent’s extended type is instead of the form (k, J), then the type-k agent is “unmatched.” The

space ∆̂ of extended type distributions is the set of probability distributions p̂ on Ŝ satisfying

p̂(k, l) = p̂(l, k) for all k and l in S.

Each time period is divided into three steps: mutation, random matching, match-induced

type changing with break-up. We now introduce the primitive parameters governing each of

these steps.

At the first (mutation) step of time period n ≥ 1, each agent of type k ∈ S experiences

a random mutation, becoming an agent of type l with a given probability bnkl, a parameter of

the model. By definition, for each type k we must have
∑

l∈S b
n
kl = 1.

At the second step, any currently unmatched agent conducts a directed search for coun-

terparties. For each (k, l) ∈ S × S, let qnkl be a function on ∆̂ into R+ with the property that

for all k and l in S, the function p̂kJq
n
kl( p̂ ) is continuous in p̂ ∈ ∆̂ and satisfies, for any p̂ in ∆̂,

p̂kJ q
n
kl(p̂) = p̂lJ q

n
lk(p̂) and

∑
r∈S

qnkr(p̂) ≤ 1. (9)

Whenever the underlying extended type distribution is p̂, the probability31 that an unmatched

agent of type k is matched to an unmatched agent of type l is qnkl(p̂). Thus, ηnk (p̂) = 1 −∑
l∈S q

n
kl(p̂) is the no-matching probability for an unmatched agent of type k.

At the third step, each currently matched pair of agents of respective types k and l

(including those who have just been paired at the matching step) breaks up with probability

θnkl, where

θnkl = θnlk. (10)

If a matched pair of agents of respective types k and l stays in their partnership, they become

a pair of agents of types r and s, respectively, with a specified probability σnkl(r, s), where∑
r,s∈S

σnkl(r, s) = 1 and σnkl(r, s) = σnlk(s, r) (11)

31Let ϕ be any continuous function from ∆̂ to itself. Assume that: (1) for any k, l ∈ S, ϕkl(p̂) ≥ p̂kl; (2)
for any p̂ ∈ ∆̂, ϕ(p̂) and p̂ have the same marginal measure on S, that is, for any k ∈ S,

∑
r∈S∪{J} ϕkr(p̂) =∑

r∈S∪{J} p̂kr. If p̂ in ∆̂ is the underlying extended type distribution for the agents, then ϕ(p̂) represents the

extended type distribution after matching. For any k, l ∈ S, let qkl(p̂) = (ϕkl(p̂)− p̂kl) /p̂kJ if p̂kJ > 0 and
qkl(p̂) = 0 if p̂kJ = 0. Then, the function q satisfies the continuity condition as well as Equation (9), as required
for a matching probability function. In fact, any matching probability function can be obtained in this way.
For the special case that all of the matched agents break up at the end of each period, we need only consider
continuous functions from ∆ to ∆̂. Let φ be any such continuous function with the property that for any p ∈ ∆,
ϕ(p) has the marginal measure p on S. That is, for any k ∈ S,

∑
l∈S∪{J} ϕkl(p) = pk. For any k, l ∈ S, let

qkl(p) = φkl(p)/pk if pk > 0 and qkl(p) = 0 if pk = 0. Then, the function q satisfies the continuity condition as
well as Equation (5), as required for a matching probability function. Again, any matching probability function
for this particular setting can be obtained in this way.
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for any k, l, r, s ∈ S. The second identity is merely a labeling symmetry condition. If a matched

pair of agents of respective types k and l breaks up, the agent of type k becomes an agent of

type r with probability ςnkl(r), where ∑
r∈S

ςnkl(r) = 1. (12)

We now give an inductive definition of the properties defining a dynamical system D for

the behavior of a continuum population of agents experiencing, at each time period: random

mutations, matchings, and match-induced type changes with break-up. We later state condi-

tions under which such a system exists. The state of the dynamical system D at the end of

each integer period n ≥ 0 is defined by a pair Πn = (αn, πn) consisting of:

• An agent type function αn : I × Ω → S that is I � F-measurable. The corresponding

end-of-period type of agent i is αn(i, ω) ∈ S.

• A random matching πn : I × Ω → I, describing the end-of-period agent πn(i) to whom

agent i is currently matched, if agent i is currently matched. If agent i is not matched,

then πn(i) = i. The associated partner-type function gn : I ×Ω→ S ∪ {J} provides the

type

gn(i) =

{
αn(πn(i)) if πn(i) 6= i

J if πn(i) = i

of the agent to whom agent i is matched, if agent i is matched, and otherwise specifies

gn(i) = J . As a matter of definition, we require that gn is I � F-measurable.

We take the initial condition Π0 = (α0, π0) of D as given. The initial condition may, if

desired, be deterministic (constant across Ω). The joint cross-sectional extended type distribu-

tion p̂n at the end of period n is λ(βn)−1, where βn = (αn, gn) is the extended type process.

That is, when ω ∈ Ω is a sample realization, p̂nω(k, l) is the fraction of the population at the

end of period n that has type k and is matched to an agent of type l. Likewise, p̂nω(k, J) is the

fraction of the population that is of type k and is not matched.

For the purpose of the inductive definition of the dynamical system D, we suppose that

Πn−1 = (αn−1, πn−1) has been defined for some n ≥ 1, and define Πn = (αn, πn) as follows.

Mutation. The post-mutation type function ᾱn is I �F-measurable, and satisfies, for any

k1, k2, l1, and l2 in S, for any r ∈ S ∪ {J}, and for λ-almost-every agent i,

P (ᾱni = k2, ḡ
n
i = l2 |αn−1

i = k1, g
n−1
i = l1) = bnk1k2b

n
l1l2 (13)
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P (ᾱni = k2, ḡ
n
i = r |αn−1

i = k1, g
n−1
i = J) = bnk1k2δJ(r), (14)

where δJ(r) is one if r = J , and zero otherwise. Equation (13) means that a paired agent

and her partner mutate independently. The post-mutation partner-type function ḡn is defined

by ḡn(i, ω) = ᾱn(πn−1(i, ω), ω), for any ω ∈ Ω. We assume that ḡn is I � F-measurable.

The post-mutation extended-type function is β̄n = (ᾱn, ḡn). The post-mutation extended type

distribution that is realized in state ω ∈ Ω is p̌n(ω) = λ
(
β̄nω
)−1

.

Matching. Let π̄n : I × Ω→ I be a random matching with the following properties.

(i) For each state ω ∈ Ω, let Aω = {i : πn−1(i, ω) 6= i} be the set of agents who are matched.

We have

π̄nω(i) = πn−1
ω (i) for i ∈ Aω, (15)

meaning that those agents who were already matched at the end of period n− 1 remain

matched (to the same partner) at this step, which implies that the post-matching partner-

type function ¯̄gn, defined by

¯̄gn(i, ω) =

{
ᾱn(π̄n(i, ω), ω) if π̄n(i, ω) 6= i

J if π̄n(i, ω) = i,

satisfies

P (¯̄gni = r | ᾱni = k, ḡni = l) = δl(r), (16)

for any k and l in S and any r ∈ S ∪ {J}, where δc(d) is zero if c 6= d and is one if c = d.

(ii) ¯̄gn is I � F-measurable.

(iii) Given the post-mutation extended type distribution p̌n, an unmatched agent of type k is

matched to a unmatched agent of type l with conditional probability qnkl(p̌
n), in that, for

λ-almost every agent i and P -almost every ω,

P (¯̄gni = l | ᾱni = k, ḡni = J, p̌n) = qnkl(p̌
n(ω)), (17)

which also implies that

P (¯̄gni = J | ᾱni = k, ḡni = J, p̌n) = ηnk (p̌n(ω)). (18)

The extended type of agent i after the random matching step is ¯̄βni = (ᾱni , ¯̄g
n
i ).

Type changes of matched agents with break-up. This step determines an end-of-period

random matching πn, an I �F-measurable agent type function αn, and an I �F-measurable
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partner-type function gn so that we have gn(i, ω) = αn(πn(i, ω), ω) for all (i, ω) ∈ I × Ω, and

so that, for λ-almost every agent i and for any k1, k2, l1, l2 ∈ S and r ∈ S ∪ {J},

πn(i) =

{
π̄n(i), if πn(i) 6= i

i, if πn(i) = i
(19)

P (αni = l1, g
n
i = r | ᾱni = k1, ¯̄g

n
i = J) = δk1(l1) δJ(r) (20)

P (αni = l1, g
n
i = l2 | ᾱni = k1, ¯̄g

n
i = k2) = (1− θnk1k2)σnk1k2(l1, l2) (21)

P (αni = l1, g
n
i = J | ᾱni = k1, ¯̄g

n
i = k2) = θnk1k2ς

n
k1k2(l1). (22)

Equation (19) says that agent i cannot change her partner if she remains matched. Equation

(20) mean that unmatched agents stay unmatched without changing types. Equations (21) and

(22) specify the type changing probabilities for a pair of matched agents who stay together or

break up. The extended-type function at the end of the period is βn = (αn, gn).

Thus, we have inductively defined the properties of a dynamical system D = (Πn)∞n=1

incorporating the effects of random mutation, directed random matching, and match-induced

type changes with break-up, consistent with given parameters (b, q, θ, σ, ς). The initial condition

Π0 of D is unrestricted. We next turn to the key Markovian independence properties for such a

system, and then to the exact law of large numbers and existence of a dynamical system with

these properties.

A.2 Markov conditional independence

We now add independence conditions on the dynamical system D = (Πn)∞n=0, along the lines

of those in Duffie and Sun (2007, 2012), and Section 4. The idea is that each of the just-

described steps (mutation, random matching, and match-induced type changes with break-up)

are conditionally independent across almost all agents. In the following definition, we will

refer to objects, such as the intermediate-step extended type functions β̄n and ¯̄βn, that were

constructed in the previous subsection.

We say that the dynamical system D is Markov conditionally independent (MCI) if, for

λ-almost every i and λ-almost every j, for every period n ≥ 1, and for all k1, k2 ∈ S, and

l1, l2 ∈ S ∪ {J}, the following five properties apply:

• Initial independence: β0
i and β0

j are independent.
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• Markov and independent mutation:

P
(
β̄ni = (k1, l1), β̄nj = (k2, l2)

∣∣ (βti)
n−1
t=0 , (β

t
j)
n−1
t=0

)
= P

(
β̄ni = (k1, l1)

∣∣ βn−1
i

)
P
(
β̄nj = (k2, l2)

∣∣ βn−1
j

)
. (23)

• Markov and independent random matching:

P
(

¯̄βni = (k1, l1), ¯̄βnj = (k2, l2)
∣∣ β̄ni , β̄nj , (βti)n−1

t=0 , (β
t
j)
n−1
t=0

)
= P

(
¯̄βni = (k1, l1)

∣∣ β̄ni )P ( ¯̄βnj = (k2, l2)
∣∣ β̄nj ) . (24)

• Markov and independent matched-agent type changes with break-up:

P
(
βni = (k1, l1), βnj = (k2, l2)

∣∣ ¯̄βni ,
¯̄βnj , (β

t
i)
n−1
t=0 , (β

t
j)
n−1
t=0

)
= P

(
βni = (k1, l1) | ¯̄βni

)
P
(
βnj = (k2, l2) | ¯̄βnj

)
. (25)

A.3 The exact law of large numbers for MCI dynamical systems with enduring
partnerships

For each period n ≥ 1, we define a mapping Γn from ∆̂ to ∆̂ by

Γnkl(p̂) =
∑

(k1,l1)∈S2

p̃nk1l1(1− θnk1l1)σnk1l1(k, l) +
∑

(k1,l1)∈S2

p̃k1J q
n
k1l1(p̃n)(1− θnk1l1)σnk1l1(k, l)

ΓnkJ(p̂) = p̃kJη
n
k (p̃) +

∑
(k1,l1)∈S2

p̃nk1l1θ
n
k1l1ς

n
k1l1(k) +

∑
(k1,l1)∈S2

p̃nk1J q
n
k1l1(p̃n)θnk1l1ς

n
k1l1(k),

where p̃nkl =
∑

(k1,l1)∈S2 p̂k1l1b
n
k1k
bnl1l and p̃nkJ =

∑
l∈S p̂lJb

n
lk.

The following theorem, which extends Theorem 4.3, presents an exact law of large num-

bers for the joint agent-partner type processes at the end of each period. The result also

provides a recursive calculation of the cross-sectional joint agent-partner type distribution p̂n

at the end of period n.

Theorem 4 Let D be a dynamical system with random mutation, random matching, and

match-induced type changes with break-up whose parameters are (b, q, θ, σ, ς). If D is Markov

conditionally independent, then:

(1) For each time period n ≥ 1, the expected cross-sectional extended type distributions

p̃n = E(p̌n) after the mutation step and E(p̂n) at the end of the period are given by,

respectively, E(p̌nkl) =
∑

k1,l1∈S E(p̂n−1
k1l1

)bnk1kb
n
l1l

and E(p̌nkJ) =
∑

l∈S E(p̂n−1
lJ )bnlk, and by

E(p̂n) = Γn(E(p̂n−1)).
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(2) For λ-almost every agent i, the extended-type process {βni }∞n=0 is a Markov chain in Ŝ

whose transition matrix zn at time n− 1 is given by

zn(kJ)(k′J) = bnkk′η
n
k′(p̃

n) +
∑

k1,l1,∈S
bnkk1q

n
k1l1(p̃n)θnk1l1ς

n
k1l1(k′),

zn(kl)(k′J) =
∑

k1,l1∈S
bnkk1b

n
ll1θ

n
k1l1ς

n
k1l1(k′),

zn(kJ)(k′l′) =
∑

k1,l1∈S
bnkk1q

n
k1l1(p̃n)(1− θnk1l1)σnk1l1(k′, l′),

zn(kl)(k′l′) =
∑

k1,l1∈S
bnkk1b

n
ll1(1− θnk1l1)σnk1l1(k′, l′). (26)

(3) For λ-almost every i and λ-almost every j, the Markov chains {βni }∞n=0 and {βnj }∞n=0 are

independent.

(4) For P -almost every ω ∈ Ω, the cross-sectional extended-type process {βnω}∞n=0 is a Markov

chain32 with transition matrix zn at time n− 1.

(5) For P -almost all ω ∈ Ω, at each time period n ≥ 1, the realized cross-sectional extended

type distribution after random mutation λ(β̄nω)−1 is equal to its expectation p̃n, and the

realized cross-sectional extended type distribution at the end of period n, p̂n(ω) = λ(βnω)−1,

is equal to its expectation E(p̂n).

(6) If there is some fixed p̈0 ∈ ∆̂ that is the probability distribution of the initial extended

type β0
i of agent i for λ-almost every i, then for λ-almost every i the Markov chain

βi = {βni }∞n=0 has the sample-path probability distribution ξ = p̈0 ⊗ (⊗∞n=1z
n) on the

space Ŝ∞. Moreover, in this case, ξ = λ(βω)−1 for P -almost every ω. That is, for any

measurable rectangle A =
∏∞
n=0An ⊆ Ŝ∞ of sample paths, the probability ξ(A) is equal,

for P -almost every ω ∈ Ω, to the fraction λ({i : βω(i) ∈ A}) of agents whose extended

type process has a sample path in A in sample realization ω.

For the time-independent case, in which the parameters (b, q, θ, σ, ς) do not depend on

the time period n ≥ 1, the following proposition shows the existence of a stationary extended

type distribution.

Proposition 4 Suppose that the parameters (b, q, θ, σ, ς) are time independent. Then there

exists an extended-type distribution p̂∗ ∈ ∆̂ that is a stationary distribution for any MCI dy-

namical system D with parameters (b, q, θ, σ, ς), in the sense that:

32For a given sample realization ω ∈ Ω, {βnω}∞n=0 is defined on the agent space (I, I, λ), which is a probability
space itself. Thus, {βnω}∞n=0 can be viewed as a discrete-time process.
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(1) For every n ≥ 0, the realized cross-sectional extended-type distribution p̂n at time n is p̂∗

P -almost surely;

(2) All of the relevant Markov chains in Theorem 4 are time homogeneous with a constant

transition matrix z1 having p̂∗ as a fixed point;

(3) If the initial extended type process β0 is i.i.d. across agents, then, for λ-almost every i,

the extended type distribution of agent i at any period n ≥ 0 is P (βni )−1 = p̂∗.

A.4 Existence of MCI dynamic directed random matching with enduring part-
nerships

The following theorem provides for the existence of a Markov conditionally independent (MCI)

dynamical system with random mutation, random matching, and match-induced type changes

with break-up. Theorem 3 is a special case.

Theorem 5 For any primitive model parameters (b, q, θ, σ, ς) and for any extended type dis-

tribution p̈0 ∈ ∆̂, there exists a Fubini extension (I × Ω, I � F , λ � P ) on which is defined a

dynamical system D = (Πn)∞n=0 with random mutation, random matching, and match-induced

type changes with break-up, that is Markov conditionally independent with these parameters

(b, q, θ, σ, ς), and with the initial cross-sectional extended type distribution p̂0 being p̈0 with

probability one. In addition, for any n ≥ 1, πn and π̄n are measure preserving in the sense that

for each ω ∈ Ω, λ((πnω)−1(A)) = λ((π̄nω)−1(A)) = λ(A) for any A ∈ I. These properties can

be achieved with an initial condition Π0 that is deterministic, or alternatively with an initial

extended type process β0 that is i.i.d. across agents.33

In the next proposition, we show that the agent space (I, I, λ) in Theorem 5 can be an

extension of the classical Lebesgue unit interval (L,L, χ). That is, we can take I = L = [0, 1]

with a σ-algebra I that contains the Lebesgue σ-algebra L, and so that the restriction of λ to

L is the Lebesgue measure χ.

Proposition 5 Fixing any model parameters (b, q, θ, σ, ς) and any initial cross-sectional ex-

tended type distribution p̈0 ∈ ∆̂, there exists a Fubini extension (I × Ω, I � F , λ � P ) such

that:

(1) The agent space (I, I, λ) is an extension of the Lebesgue unit interval (L,L, χ).

33This means that the process β0 is essentially pairwise independent, and that β0
i has distribution p̈0 for

λ-almost every agent i.
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(2) There is defined on the Fubini extension a dynamical system D = (Πn)∞n=0 that is Markov

conditionally independent with the parameters (b, q, θ, σ, ς), where the initial cross-sectional

extended type distribution p̂0 is p̈0 with probability one.

(3) These properties can be achieved with an initial condition Π0 that is deterministic, or

alternatively with an initial extended type process β0 that is i.i.d. across agents.34

B Illustrative applications in monetary and labor economics

This appendix provides three example applications, which are designed to illustrate how our

results provide a mathematical foundation for the dynamic matching models used in monetary

economics and labor economics. The first example is from Kiyotaki and Wright (1989) and

Kehoe, Kiyotaki and Wright (1993). The second example is from Matsuyama, Kiyotaki and

Matsui (1993). The last example treats the labor-market matching model of Andolfatto An-

dolfatto (1996), a setting that calls for enduring matches of the sort considered in Appendix

A.

B.1 Kiyotaki-Wright: Model A

As in Model A of Kiyotaki and Wright (1989), three indivisible goods are labeled 1, 2, and

3. There is a continuum of agents of unit total mass. A given type of agent consumes good

k and can store one unit of good l, for some l 6= k. This type is denoted 〈k, l〉. The economy

is thus populated by agents of 6 distinct types 〈1, 2〉, 〈1, 3〉, 〈2, 1〉, 〈2, 3〉, 〈3, 1〉, and 〈3, 2〉, which

form our type space35 S. In order to avoid confusion over differences in terminology36 with

Kiyotaki and Wright (1989), we say that an agent who consumes good k has “trait” k. There

are equal proportions of agents with the three respective traits. In each period n, every agent

is randomly matched with some other agent. When matched, two agents decide whether or

not to trade. If there is no trade between the matched pair, they keep their goods. If there is

a trade, and if the agent who consumes good k gets good k from the other, then that agent

immediately consumes good k and produces one unit of good k+1 (modulo 3), so that his type

becomes 〈k, k+1〉 (modulo 3, as needed). If there is a trade and an agent with trait k gets good

l for l 6= k, then his type becomes 〈k, l〉. Kiyotaki and Wright (1989) and Kehoe, Kiyotaki and

34The statement in Footnote 19 is still valid in this more general case. For the convenience of the reader, we
repeat it here. There exists a sub-σ-algebra I′ of I and a Fubini extension (I × Ω, I′ � F , λ � P ) such that
I′�F ⊆ I�F , the dynamical system D on (I×Ω, I′�F , λ�P ) is Markov conditionally independent, and for any
n ≥ 1, πn and π̄n are measure preserving in the sense that for each ω ∈ Ω, λ((πnω)−1(A)) = λ((π̄nω)−1(A)) = λ(A)
for any A ∈ I′. See the penultimate paragraph of the proof of this proposition in Subsection E.3.

35It is clear that our results, which are stated earlier in terms of S = {1, 2, . . . ,K}, hold for any finite type
space with appropriate notational change.

36In Kiyotaki and Wright (1989), the meaning of “type” is different from that in our present paper.
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Wright (1993) consider this matching model with both stationary and non-stationary trading

strategies.

We can use our model of dynamic directed random matching in Section 4 to give a mathe-

matical foundation for the matching models in Kiyotaki and Wright (1989) and Kehoe, Kiyotaki

and Wright (1993) by choosing suitable parameters (b, q, ν) governing random mutation, ran-

dom matching and match-induced type changing. At period n, let bn〈k1,l1〉〈k2,l2〉 = δk1(k2)δl1(l2)

be the mutation probabilities, and let qn〈k1,l1〉〈k2,l2〉(p) = p〈k2,l2〉 be the matching probabilities

for p ∈ ∆. We will need to specify the match-induced type changing probabilities in both cases.

First, a stationary (pure) trading strategy in Kiyotaki and Wright (1989, p. 931) is

described by some τ : {1, 2, 3} × {1, 2, 3} → {0, 1} that implies a trade, τk(l, r) = 1, if a trait-k

agent actually wants to trade good l for good r, and results in no trade, τk(l, r) = 0, otherwise.

Thus τ determines the match-induced type changes. Because the consumption traits of agents

do not change, the type of a matched agent cannot change to a type with a different trait.

Thus, for the type-changing probability νn of an agent with trait k1, the probability for the

target types is concentrated on only two types, 〈k1, k1 + 1〉 and 〈k1, k1 + 2〉. This means that

it suffices to define the type-changing probability for only the target type 〈k1, k1 + 1〉. Suppose

that an agent i of type 〈k1, k1 + 1〉 is matched with an agent j of type 〈k2, l2〉. For l2 = k1 + 1,

there is no need to trade. When l2 = k1 and there is a trade, agent i will consume good k1,

produces a unit of good k1 + 1, and keeps the same type 〈k1, k1 + 1〉. (This applies trivially for

the no-trade case.) When l2 = k1 + 2, the probability ν〈k1,k1+1〉〈k2,l2〉({〈k1, k1 + 1〉}) that agent

i has a type change is the probability of no trade between agents i and j. The probability of

having a trade between agents i and j is τk1(k1 + 1, l2)τk2(l2, k1 + 1). We therefore have

νn〈k1,k1+1〉〈k2,l2〉({〈k1, k1 + 1〉}) =

{
1 if l2 6= k1 + 2

1− τk1(k1 + 1, l2)τk2(l2, k1 + 1) if l2 = k1 + 2.

By similar arguments,

νn〈k1,k1+2〉〈k2,l2〉({〈k1, k1 + 1〉}) =

{
0 if l2 = k1 + 2

τk1(k1 + 2, l2)τk2(l2, k1 + 2) if l2 6= k1 + 2.

Next, we consider the case of non-stationary trading strategies, as in Sections 3 and 6

of Kehoe, Kiyotaki and Wright (1993). Suppose that (s1(n), s2(n), s3(n)) is a time-dependent

mixed strategy at period n, where sk(n) is the probability that an agent with trait k trades

good k+1 for k+2. Based on (s1(n), s2(n), s3(n)), one can compute the probability Pn〈k1,k2〉(k3)

that an agent of type 〈k1, k2〉 trades for good k3.

We must define the match-induced type changing probabilities corresponding to the given

time-dependent mixed strategy (s1(n), s2(n), s3(n)). Suppose that an agent of type 〈k1, k1 + 1〉
is matched with an agent of type 〈k2, l2〉. For cases with l2 = k1 or l2 = k1 + 1, the type
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changing probability νn〈k1,k1+1〉〈k2,l2〉({〈k1, k1 + 1〉}) = 1. When l2 = k1 + 2, the probability that

the match leads to a trade is Pn〈k1,k1+1〉(l2)Pn〈k2,l2〉(k1 + 1). Thus

νn〈k1,k1+1〉〈k2,l2〉({〈k1, k1 + 1〉}) =

{
1 if l2 6= k1 + 2

1− Pn〈k1,k1+1〉(l2)Pn〈k2,l2〉(k1 + 1) if l2 = k1 + 2.

Similarly,

νn〈k1,k1+2〉〈k2,l2〉({〈k1, k1 + 1〉}) =

{
0 if l2 = k1 + 2

Pn〈k1,k1+2〉(l2)Pn〈k2,l2〉(k1 + 2) if l2 6= k1 + 2.

B.2 Matsuyama, Kiyotaki and Matsui

Our next example is from Matsuyama, Kiyotaki and Matsui (1993). Here, agents are divided

into two groups. Agents are more likely to be matched to a counterparty of their own group

than to a counterparty of a different group.

The economy is populated by a continuum of infinitely-lived agents of unit total mass.

Agents are from two regions, Home and Foreign. Let r ∈ (0, 1) be the size of the Home

population. There are K ≥ 3 kinds of indivisible commodities. Within each region, there are

equal proportions of agents with the K respective traits. An agent with trait k derives utility

only from consumption of commodity k. After he consumes commodity k, he is able to produce

one and only one unit of commodity k + 1 (mod K) costlessly, and can also store up to one

unit of his production good costlessly. He can neither produce nor store other types of goods.

In addition to the commodities described above, there are two distinguishable fiat monies

without intrinsic worth, which we call the Home currency and the Foreign currency. Each

currency is indivisible and can be stored costlessly in amounts of up to one unit by any agent,

provided that the agent does not carry his production good or the other currency. This implies

that, at any date, the inventory of each agent consists of one unit of the Home currency, one

unit of the Foreign currency, or one unit of his production good, but does not include more

than one of these objects in total at any one time.

For some β ∈ (0, 1), in each period n, a Home agent is matched to a Home agent with

probability r, and is matched to a Foreign agent with probability β(1 − r). The probability

with which he is not matched is thus (1− β)(1− r). Similarly, a Foreign agent is matched to

a Home agent with probability βr, is matched to a Foreign agent with probability (1− r), and

is unmatched with probability (1− β)r.

The type space S is the set of ordered tuples of the form (a, b, c), where a ∈ {H,F},
b ∈ {1, . . . ,K}, and c ∈ {g, h, f}. Here, H represents Home, F represents Foreign, g represents

good, h represents Home currency, and f represents Foreign currency.
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An agent chooses a trading strategy to maximize his expected discounted utility, taking

as given the strategies of other agents and the distribution of inventories. Matsuyama, Kiyotaki

and Matsui (1993) focused on pure strategies that depend only on an agent’s nationality and

the objects that he and his counterparty have as inventories. Thus, the Home agent’s (pure)

trading strategy can be described simply as

τHab =

{
1 if he agrees to trade object a for object b

0 otherwise,

where a and b are in {g, h, f}. The Foreign agent’s trading strategy can similarly be described

as

τFab =

{
1 if he agrees to trade object a for object b

0 otherwise.

For example, τHgf = 0 means that a Home agent does not agree to trade his production good

for the Foreign currency, while τFhg = 1 means that a Foreign agent agrees to trade the Home

currency for his consumption good.

We can apply our model of dynamic directed random matching with immediate break-up

in Section 4 to give a mathematical foundation for the matching model in Matsuyama, Kiyotaki

and Matsui (1993) by choosing suitable time-independent parameters (b, q, ν) governing random

mutation, random matching, and match-induced type changing. To this end, we take mutation

probabilities

b(a1,b1,c1)(a2,b2,c2) = δa1(a2)δb1(b2)δc1(c2).

For a given cross-sectional agent type distribution p ∈ ∆, the directed matching probabilities

are

q(a1,b1,c1)(a2,b2,c2)(p) =

{
p(a2,b2,c2) if a1 = a2

β · p(a2,b2,c2) if a1 6= a2.

Because the nationalities and consumption traits of agents do not change, a matched

agent cannot change to a type with a different nationality or trait. Thus, for the type changing

probability ν of an agent with nationality a1 and trait b1, search is directed to the three

counterparty types (a1, b1, g), (a1, b1, f) and (a1, b1, h).

Suppose that agent i is of type (a1, b1, g) and is matched with agent j, who has type

(a2, b2, c2). The probability that agent i changes type to (a1, b1, h) is ν(a1,b1,g)(a2,b2,c2) ({(a1, b1, h)}).
The good carried by an agent of type (a1, b1, g) must be b1 + 1. For b2 6= b1 + 1 (mod K), the

good that agent i carries is not the consumption good of agent j, which means that there is no

trade, so the probability ν(a1,b1,g)(a2,b2,c2) ({(a1, b1, h)}) is 0. When c2 6= h, agent i cannot get

the Home currency from j, so ν(a1,b1,g)(a2,b2,c2) ({(a1, b1, h)}) is also 0. When b2 = b1 + 1 and

c2 = h, ν(a1,b1,g)(a2,b2,c2) ({(a1, b1, h)}) is the probability that agent i trades with an agent with

38



the type of agent j, which is τa1gh · τ
a2
hg . We therefore have

ν(a1,b1,g)(a2,b2,c2) ({(a1, b1, h)}) =

{
τa1gh · τ

a2
hg if b2 ≡ b1 + 1 (mod K) and c2 = h

0 otherwise.

The following type-change probabilities can be obtained by similar arguments:

ν(a1,b1,g)(a2,b2,c2) ({(a1, b1, f)}) =

{
τa1gf · τ

a2
fg if b2 ≡ b1 + 1 (mod K) and c2 = f ,

0 otherwise

ν(a1,b1,g)(a2,b2,c2) ({(a1, b1, g)}) = 1−ν(a1,b1,g)(a2,b2,c2) ({(a1, b1, h)})−ν(a1,b1,g)(a2,b2,c2) ({(a1, b1, f)})

ν(a1,b1,h)(a2,b2,c2) ({(a1, b1, g)}) =

{
τa1hg · τ

a2
gh if b2 ≡ b1 − 1 (mod K) and c2 = g

0 otherwise

ν(a1,b1,h)(a2,b2,c2) ({(a1, b1, f)}) =

{
τa1hf · τ

a2
fh c2 = f

0 otherwise

ν(a1,b1,h)(a2,b2,c2) ({(a1, b1, h)}) = 1−ν(a1,b1,h)(a2,b2,c2) ({(a1, b1, g)})−ν(a1,b1,h)(a2,b2,c2) ({(a1, b1, f)})

ν(a1,b1,f)(a2,b2,c2) ({(a1, b1, g)}) =

{
τa1fg · τ

a2
gf if b2 ≡ b1 − 1 (mod K) and c2 = g

0 otherwise

ν(a1,b1,f)(a2,b2,c2) ({(a1, b1, h)}) =

{
τa1fh · τ

a2
hf if c2 = h

0 otherwise

ν(a1,b1,f)(a2,b2,c2) ({(a1, b1, f)}) = 1−ν(a1,b1,f)(a2,b2,c2) ({(a1, b1, h)})−ν(a1,b1,f)(a2,b2,c2) ({(a1, b1, g)}) .

B.3 Matching in labor markets with multi-period employment episodes

This example is taken from Andolfatto (1996), whose Section 1 considers a discrete-time labor-

market-search model. The agents are workers and firms. Each firm has a single job position.

Section 2 of Andolfatto (1996) works with stationary distributions. We can use the model

of dynamic directed random matching with enduring partnership developed in Appendix A

to capture the search process leading to Equation (1) of Andolfatto (1996) in the stationary

setting.

The agent type space is S = {E,U,A, V,D}. Here, E and U represent, respectively,

employed workers and unemployed workers while A, V and D represent active, vacant and

dormant jobs respectively. Dormant job positions are neither matched with a worker nor

immediately open. The proportion of agents that are workers is w > 0.

At the beginning of each period, each vacant firm may mutate to a dormant job and

each dormant job may mutate to a vacant job. Let p̌UJ and p̌V J be the respective proportions

of unemployed workers and vacant firms after the mutation step. In the stationary setting,
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the quantity M(p̌V J , e · p̌UJ ) of new job matches in a given period is governed by a continuous

aggregate matching function M : [0, 1] × R+ → [0, 1] that incorporates37 the search effort e

applied by each worker seeking employment with M(p̌V J , e · p̌UJ ) ≤ min{p̌V J , p̌UJ}. Job-worker

pairs that have existed for at least one period are assumed to break up with probability θ̄ in

each period. Newly formed pairs cannot break up in the current period. While a job-worker

pair maintain their partnership, their current types (A,E) do not change. On the other hand,

if they break up, the job becomes vacant and the worker becomes unemployed.

Equation (1) in Andolfatto (1996) in the stationary setting is

E∗ = (1− θ̄)E∗ +M(V ∗, e · (w − E∗)), (27)

where E∗ and V ∗ are the respective fractions of employed workers and vacant jobs in the

particular case.38

Viewed in terms of our model in Appendix A, the corresponding time-independent pa-

rameters are given as follows. Vacant firms could mutate to dormant, and vice versa. Workers

and active firms do not mutate. For any k and l in S, let

bkl =


1−w−E∗−V ∗

1−w−E∗ if k = V or D and l = D
V ∗

1−w−E∗ if k = V or D and l = V

δk(l) otherwise.

Matching occurs only between unemployed workers and vacant jobs. The matching probabilities

are defined as follows. For any k and l in S, define

qkl(p̌) =


M(p̌

V J
, e·p̌

UJ
)

p̌
UJ

if (k, l) = (U, V ) and p̌UJ > 0
M(p̌

V J
, e·p̌

UJ
)

p̌
V J

if (k, l) = (V,U) and p̌UJ > 0

0 otherwise.

Next, we consider the step of type changing with break-up. For any k, l, r, s ∈ S, we have

θkl =

{
θ̄ if (k, l) = (E,A) or (A,E)

0 otherwise
(28)

σkl(r, s) =


δE(r)δA(s) if k = U and l = V

δA(r)δE(s) if k = V and l = U

δk(r)δl(s) otherwise

(29)

37The mass of workers is assumed to be one in Andolfatto (1996). Since the matching function in Andolfatto
(1996) is assumed to have constant returns to scale, one can re-scale the total worker-firm population to be one,
with a proportion w of agents being workers.

38See (P6′) on page 120 of Andolfatto (1996) for the steady state equation with the Cobb-Douglas matching
function.
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ςkl(r) =


δU (r) if k = E and l = A

δV (r) if k = A and l = E

δk(r) otherwise.

(30)

Equation (28) means that an employed worker has probability θ̄ of losing her job. When two

agents are newly matched in the current period, the worker-firm types change from (U, V ) to

(E,A). For those paired agents who were matched in a previous period, their types do not

change while they stay together. Finally, the worker-firm pair of types from (E,A) to (U, V )

when they break up. Equations (29) and (30) express these ideas.

Taking the equilibrium search effort e as given, Theorem 4 and Proposition 4 imply that

any stationary type distribution satisfies

p̂∗
EA

= Γ(p̂∗)EA . (31)

We take a stationary type distribution p̂∗ corresponding to the given fractions of employed

workers and vacant jobs E∗ and V ∗ as in Equation (27), which means that p̂∗
EA

= E∗ and

p̂∗
V J

= V ∗. By the formulas above the statement of Theorem 4, we obtain that

ΓEA(p̂∗) = p̃EA(1− θ̄) + p̃UJ qUV (p̃)

p̃UJ = p̂∗
UJ

= w − p̂∗
EA

= w − E∗

p̃V J = p̂∗
V J
bV V + p̂∗

DJ
bDV = p̂∗

V J
bV V + (1− w − p̂∗

EA
− p̂∗

V J
)bDV = V ∗.

Substituting the above terms into Equation (31), we derive

E∗ = p̂∗
EA

= (1− θ̄)E∗ +M (V ∗, e · (w − E∗)) .

Thus the stationary distribution of employed workers and vacant jobs considered in Andolfatto

(1996) can be derived from our model of dynamic directed random matching with enduring

partnership with appropriate parameters.

C Proofs of Theorem 4 and Proposition 4

Before proving Theorem 4, we need a few lemmas.

First, we state the following general version of the exact law of large numbers in Sun

(2006) as a lemma here for the convenience of the reader.39

39Part (2) of the lemma is part of Theorem 2.8 in Sun (2006). That theorem actually shows that the statement
in Part (2) here is equivalent to the condition of essential pairwise independence. While Parts (1), (3) and (4) of
the lemma are special cases of Part (2), they are stated respectively in Corollary 2.9, Theorem 2.12 and Corollary
2.10 of Sun (2006).
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Lemma 1 Let f be a measurable process from a Fubini extension (I × Ω, I � F , λ � P ) to a

complete separable metric space X.

1. For P -almost all ω ∈ Ω, the sample distribution λf−1
ω of the sample function fω is the

same as the distribution (λ� P )f−1 of the process.40

2. For any A ∈ I with λ(A) > 0, let fA be the restriction of f to A × Ω, λA and λA � P

the probability measures rescaled from the restrictions λ and λ � P to {D ∈ I : D ⊆ A}
and {C ∈ I � F : C ⊆ A × Ω} respectively. Then for P -almost all ω ∈ Ω, the sample

distribution λA(fA)−1
ω of the sample function (fA)ω is the same as the distribution of

(λA � P )(fA)−1 of the process fA.

3. If there is a distribution µ on X such that for λ-almost all i ∈ I, the random variable

fi has distribution µ, then the sample function fω (or (fA)ω) also has distribution µ for

P -almost all ω ∈ Ω.

4. If X is the real line R and f is integrable on (I ×Ω, I �F , λ�P ), then for P -almost all

ω ∈ Ω,
∫
I fωdλ =

∫
I×Ω fdλ� P .

By viewing a discrete-time stochastic process taking values in X as a random variable

taking values in X∞, Lemma 1 implies the following exact law of large numbers for a continuum

of discrete-time stochastic processes, which is formally stated in Theorem 2.16 in Sun (2006).

Corollary 1 Let f be a mapping from I ×Ω×N to a complete separable metric space X such

that for each n ≥ 0, fn = f(·, ·, n) is an I�F-measurable process. Then, for λ-almost all i ∈ I,

{fni }∞n=0 is a discrete-time stochastic process. Assume that the stochastic processes {fni }∞n=0, i ∈
I are essentially pairwise independent, i.e., for λ-almost all i ∈ I, λ-almost all j ∈ I, the

random vectors (f0
i , . . . , f

n
i ) and (f0

j , . . . , f
n
j ) are independent for all n ≥ 0. Then, for P -almost

all ω ∈ Ω, the empirical process fω = {fnω}∞n=0 has the same finite-dimensional distributions

as that of f = {fn}∞n=0, i.e. (f0
ω, . . . , f

n
ω ) and (f0, . . . , fn) have the same distribution for any

n ≥ 0.

To prove that the agents’ extended type processes are essentially pairwise independent

in Lemma 3 below, we need the following elementary lemma, which is Lemma 5 in Duffie and

Sun (2012).

40Here, (λ � P )f−1 is the distribution ν on X such that ν(B) = (λ � P )(f−1(B)) for any Borel set B in X;
λf−1

ω is defined similarly.
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Lemma 2 Let φm be a random variable from (Ω,F , P ) to a finite space Am, for m = 1, 2, 3, 4.

If the random variables φ3 and φ4 are independent, and if, for all a1 ∈ A1 and a2 ∈ A2,

P (φ1 = a1, φ2 = a2 | φ3, φ4) = P (φ1 = a1 | φ3)P (φ2 = a2 | φ4), (32)

then the two pairs of random variables (φ1, φ3) and (φ2, φ4) are independent.

The following lemma is useful for applying the exact law of large numbers for discrete

time processes in Theorem 2.16 of Sun (2006) (see Corollary 1) to our setting.

Lemma 3 Assume that the dynamical system D is Markov conditionally independent. Then,

the discrete time processes {βni }∞n=0, i ∈ I, are essentially pairwise independent. In addition,

for each fixed n ≥ 1, the random variables β̄ni , i ∈ I ( ¯̄βni , i ∈ I) are also essentially pairwise

independent.

Proof. Let E be the set of all (i, j) ∈ I × I such that Equations (23), (24) and (25) hold for

all n ≥ 1. Then, by grouping countably many null sets together, we obtain that for λ-almost

all i ∈ I, λ-almost all j ∈ I, (i, j) ∈ E, i.e., for λ-almost all i ∈ I, λ(Ei) = λ({j ∈ I : (i, j) ∈
E}) = 1.

We can use induction to prove that for any fixed (i, j) ∈ E, if (β0
i , . . . , β

n
i ) and (β0

j , . . . , β
n
j )

are independent for n ≥ 0, then so are the pairs β̄ni and β̄nj , ¯̄βni and ¯̄βnj for n ≥ 1. The case

of n = 0 is simply the assumption of initial independence in Subsection A.2. Suppose that it

is true for the case n − 1. That is, if (β0
i , . . . , β

n−1
i ) and (β0

j , . . . , β
n−1
j ) are independent, then

so are the pairs β̄n−1
i and β̄n−1

j , ¯̄βn−1
i and ¯̄βn−1

j . Then, the Markov conditional independence

condition and Lemma 2 imply that (β0
i , . . . , β

n−1
i , β̄ni ) and (β0

j , . . . , β
n−1
j , β̄nj ) are independent,

so are the pairs (β0
i , . . . , β

n−1
i , β̄ni ,

¯̄βni ) and (β0
j , . . . , β

n−1
j , β̄nj ,

¯̄βnj ), and (β0
i , . . . , β

n−1
i , β̄ni ,

¯̄βni , β
n
i )

and (β0
j , . . . , β

n−1
j , β̄nj ,

¯̄βnj , β
n
j ). Hence, the random vectors (β0

i , . . . , β
n
i ) and (β0

j , . . . , β
n
j ) are

independent for all n ≥ 0, which means that {βni }∞n=0 and {βnj }∞n=0 are independent. It is also

clear that if, for each n ≥ 1, the random variables β̄ni and β̄nj are independent, then so are ¯̄βni

and ¯̄βnj . The desired result follows.

The following lemma shows how to compute the expected cross-sectional extended type

distributions E(p̂n) and E(p̌n).

Lemma 4 The following hold:

1. For each n ≥ 1, E(p̂n) = Γn(E(p̂n−1)).

2. For each n ≥ 1, the expected cross-sectional extended type distribution p̃n = E(p̌n) imme-

diately after random mutation at time n, satisfies E(p̌nkl) =
∑

k1,l1∈S E(p̂n−1
k1l1

)bnk1kb
n
l1l

and

E(p̌nkJ) =
∑

l∈S E(p̂n−1
lJ )bnlk.
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Proof. Fix any k, l ∈ S. Equations (13) and (14) imply respectively that for any k1, l1 ∈ S,

P
(
β̄ni = (k, J) |βn−1

i = (k1, l1)
)

= 0, and P
(
β̄ni = (k, l) |βn−1

i = (k1, J)
)

= 0. (33)

The Fubini property will be used extensively in the computations below. We shall illustrate its

usage in Equation (34). It then follows from the Fubini property and Equations (13) and (33)

that

p̃nkl =

∫
Ω
λ
(
i ∈ I : β̄nω(i) = (k, l)

)
dP (ω) =

∫
I
P
(
β̄ni = (k, l)

)
dλ(i)

=

∫
I

∑
k1,l1∈S

P
(
β̄ni = (k, l), βn−1

i = (k1, l1)
)
dλ(i)

=

∫
I

∑
k1,l1∈S

P
(
β̄ni = (k, l) |βn−1

i = (k1, l1)
)
P
(
βn−1
i = (k1, l1)

)
dλ(i)

=
∑

k1,l1∈S
E(p̂n−1

k1l1
)bnk1kb

n
l1l. (34)

By Equations (14) and (33), we obtain that

p̃nkJ =

∫
I
P
(
β̄ni = (k, J)

)
dλ(i) =

∫
I

∑
k1∈S

P
(
β̄ni = (k, J), βn−1

i = (k1, J)
)
dλ(i)

=

∫
I

∑
k1∈S

P
(
β̄ni = (k, J) |βn−1

i = (k1, J)
)
P
(
βn−1
i = (k1, J)

)
dλ(i)

=
∑
k1∈S

∫
I
bnk1kP

(
βn−1
i = (k1, J)

)
dλ(i)

=
∑
k1∈S

E(p̂n−1
k1J

)bnk1k. (35)

By Lemma 3, β̄n is essentially pairwise independent process. The exact law of large

numbers in Lemma 1 implies that p̌n(ω) = E(p̌n) = p̃n for P -almost all ω ∈ Ω. Combining

with Equations (17) and (18), we can obtain that for any l ∈ S,

P (¯̄gni = l | ᾱni = k, ḡni = J) = qnkl (p̃
n) , and P (¯̄gni = J | ᾱni = k, ḡni = J) = ηnk (p̃n) . (36)

It follows from Equations (20) and (21) that

E(p̂nkl) =

∫
I
P (βni = (k, l)) dλ(i) =

∫
I

∑
k1,l1∈S

P
(
βni = (k, l), ¯̄βni = (k1, l1)

)
dλ(i)

=

∫
I

∑
k1,l1∈S

P
(
βni = (k, l) | ¯̄βni = (k1, l1)

)
P
(

¯̄βni = (k1, l1)
)
dλ(i)

=

∫
I

∑
k1,l1∈S

(1− θnk1l1)σnk1l1(k, l)P
(

¯̄βni = (k1, l1)
)
dλ(i)

=
∑

k1,l1∈S
(1− θnk1l1)σnk1l1(k, l)

∫
I
P
(

¯̄βni = (k1, l1)
)
dλ(i). (37)
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Equations (16) and (36) imply that∫
I
P
(

¯̄βni = (k, l)
)
dλ(i) =

∫
I

∑
k1,l1∈S

P
(

¯̄βni = (k, l) | β̄ni = (k1, l1)
)
P
(
β̄ni = (k1, l1)

)
dλ(i)

+

∫
I

∑
k1∈S

P
(

¯̄βni = (k, l) | β̄ni = (k1, J)
)
P
(
β̄ni = (k1, J)

)
dλ(i)

=

∫
I
P
(

¯̄βni = (k, l) | β̄ni = (k, l)
)
P
(
β̄ni = (k, l)

)
dλ(i)

+

∫
I
P
(

¯̄βni = (k, l) | β̄ni = (k, J)
)
P
(
β̄ni = (k, J)

)
dλ(i)

= p̃nkl + qnkl (p̃
n) p̃nkJ . (38)

By substituting Equation (38) into Equation (37), we can express E(p̂nkl) in terms of E(p̌n) as

E(p̂nkl) =
∑

k1,l1∈S
p̃nk1l1(1− θnk1l1)σnk1l1(k, l) +

∑
k1,l1∈S

p̃nk1Jq
n
k1l1 (p̃n) (1− θnk1l1)σnk1l1(k, l). (39)

Similarly, Equations (20) and (22) imply the second and third identities while Equations (36)

and (38) imply the last identity in the following equation:

E(p̂nkJ) =

∫
I
P (βni = (k, J)) dλ(i)

=

∫
I
P
(
βni = (k, J), ¯̄βni = (k, J)

)
dλ(i) +

∫
I

∑
k1,l1∈S

P
(
βni = (k, J), ¯̄βni = (k1, l1)

)
dλ(i)

=

∫
I
P
(

¯̄βni = (k, J)
)
dλ(i) +

∫
I

∑
k1,l1∈S

θnk1l1ς
n
k1l1(k)P

(
¯̄βni = (k1, l1)

)
dλ(i)

=

∫
I
P
(

¯̄βni = (k, J) | β̄ni = (k, J)
)
P
(
β̄ni = (k, J)

)
dλ(i)

+
∑

k1,l1∈S
θnk1l1ς

n
k1l1(k)

∫
I
P
(

¯̄βni = (k1, l1)
)
dλ(i)

= p̃nkJη
n
k (p̃n) +

∑
k1,l1∈S

p̃nk1l1θ
n
k1l1ς

n
k1l1(k) +

∑
k1,l1∈S

p̃nk1Jq
n
k1l1(p̃n)θnk1l1ς

n
k1l1(k) (40)

By combining Equations (34), (35),(39) and (40), we obtain that E(p̂n) = Γn(E(p̂n−1)).

The following lemma shows the Markov property of the agents’ extended type processes.

Lemma 5 Suppose the dynamical system D is Markov conditional independent. Then, for

λ-almost all i ∈ I, the extended type process for agent i, {βni }∞n=0, is a Markov chain with

transition matrix zn at time n− 1.

Proof. Fix n ≥ 1; by summing over all the (k2, l2) ∈ Ŝ in Equation (23), we obtain that for

λ-almost all i ∈ I,

P
(
β̄ni = (k1, l1) | (βti)n−1

t=0

)
= P

(
β̄ni = (k1, l1) | βn−1

i

)
. (41)
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By grouping countably many null sets together, we know that for λ-almost all i ∈ I, Equation

(41) holds for all n ≥ 1.

Similarly, Equations (24) and (25) imply that for λ-almost all i ∈ I,

P
(

¯̄βni = (k1, l1) | β̄ni , (βti)n−1
t=0

)
= P

(
¯̄βni = (k1, l1) | β̄ni

)
P
(
βni = (k1, l1) | ¯̄βni , (βti)n−1

t=0

)
= P

(
βni = (k1, l1) | ¯̄βni

)
hold for all n ≥ 1. A simple computation shows that for λ-almost all i ∈ I,

P (βni = (k1, l1) | β0
i , . . . , β

n−1
i ) = P (βni = (k1, l1) | βn−1

i )

for all a1 ∈ S, r1 ∈ S ∪ {J} and n ≥ 1. Hence, for λ-almost all i ∈ I, agent i’s extended type

process {βni }∞n=0 is a Markov chain.

By combining Equations (34), (35) and (39), we can obtain that

E(p̂nkl) =
∑

k1,l1,k′∈S
bnk′k1q

n
k1l1(p̃n)(1− θnk1l1)σnk1l1(k, l)E(p̂n−1

k′J )

+
∑

k1,l1,k′,l′∈S
bnk′k1b

n
l′l1(1− θnk1l1)σnk1l1(k, l)E(p̂n−1

k′l′ ).

Since the transition probabilities zn(k′l′)(kl) and zn(k′J)(kl) from time n − 1 to time n are the

respective coefficients of E(p̂n−1
k′l′ ) and E(p̂n−1

k′J ) for any k, l, k′, l′ ∈ S, we can obtain that

zn(k′l′)(kl) =
∑

k1,l1∈S
bnk′k1b

n
l′l1(1− θnk1l1)σnk1l1(k, l)

zn(k′J)(kl) =
∑

k1,l1∈S
bnk′k1q

n
k1l1(p̃n)(1− θnk1l1)σnk1l1(k, l),

which follow the corresponding formulas in Equation (26). Similarly, by combining Equations

(34), (35) and (40), we can obtain that

E(p̂nkJ) =
∑
k′∈S

bnk′kη
n
k (p̃n)E(p̂n−1

k′J ) +
∑

k1,l1,k′,l′∈S
bnk′k1b

n
l′l1θ

n
k1l1ς

n
k1l1(k)E(p̂n−1

k′l′ )

+
∑

k1,l1,k′∈S
bnk′k1q

n
k1l1(p̃n)θnk1l1ς

n
k1l1(k)E(p̂n−1

k′J ).

Since the transition probabilities zn(k′l′)(kJ) and zn(k′J)(kJ) from time n − 1 to time n are the

respective coefficients of E(p̂n−1
k′l′ ) and E(p̂n−1

k′J ) for any k, k′, l′ ∈ S, we can obtain that

zn(k′l′)(kJ) =
∑

k1,l1∈S
bnk′k1b

n
l′l1θ

n
k1l1ς

n
k1l1(k)

zn(k′J)(kJ) = bnk′kη
n
k (p̃n) +

∑
k1,l1∈S

bnk′k1q
n
k1l1(p̃n)θnk1l1ς

n
k1l1(k),
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which follow the corresponding formulas in Equation (26).

Now, for each n ≥ 1, we view each βn as a random variable on I × Ω. Thus {βn}∞n=0 is

a discrete-time stochastic process.

Lemma 6 Assume that the dynamical system D is Markov conditionally independent. Then,

{βn}∞n=0 is also a Markov chain with transition matrix zn at time n− 1.

Proof. We can compute the transition matrix of {βn}∞n=0 at time n − 1 by using Lemma 5

and the Fubini property. Fix any k1, k2 ∈ S and any l1, l2 ∈ S ∪ {J}. We have

(λ� P )(βn = (k2, l2), βn−1 = (k1, l1))

=

∫
I
P (βni = (k2, l2) | βn−1 = (k1, l1))P (βn−1

i = (k1, l1)) dλ(i)

=

∫
I
zn(k1l1)(k2l2)P (βn−1 = (k1, l1)) dλ(i)

= zn(k1l1)(k2l2) · (λ� P )(βn−1 = (k1, l1)), (42)

which implies that (λ� P )(βn = (k2, l2) | βn−1 = (k1, l1)) = zn(k1l1)(k2l2).

Next, for any n ≥ 1, and for any (a0, . . . , an−2) ∈ (S × (S ∪ {J}))n−1, we have

(λ� P )
(
(β0, . . . , βn−2) = (a0, . . . , an−2), βn−1 = (k1, l1), βn = (k2, l2)

)
=

∫
I
P
(
(β0
i , . . . , β

n−2
i ) = (a0, . . . , an−2), βn−1

i = (k1, l1), βni = (k2, l2)
)
dλ(i)

=

∫
I
P
(
βni = (k2, l2) | βn−1

i = (k1, l1)
)
P
(
(β0
i , . . . , β

n−2
i ) = (a0, . . . , an−2), βn−1

i = (k1, l1)
)
dλ(i)

= zn(k1l1)(k2l2) · (λ� P )((β0, . . . , βn−2) = (a0, . . . , an−2), βn−1 = (k1, l1)), (43)

which implies that

(λ� P )(βn = (k2, l2) | (β0, . . . , βn−2) = (a0, . . . , an−2), βn−1 = (k1, l1)) = zn(k1l1)(k2l2).

Hence the discrete-time process {βn}∞n=0 is indeed a Markov chain with transition matrix zn

at time n− 1.

Proof of Theorem 4: Properties (1), (2), and (3) of the theorem are shown in Lemmas 4, 5,

and 3 respectively.

By the exact law of large numbers for discrete time processes in Corollary 1, we know

that for P -almost all ω ∈ Ω, (β0
ω, . . . , β

n
ω) and (β0, . . . , βn) (viewed as random vectors) have

the same distribution for all n ≥ 1. Since, as noted in Lemma 6, {βn}∞n=0 is a Markov chain

with transition matrix zn at time n− 1, so is {βnω}∞n=0 for P -almost all ω ∈ Ω. Thus property

(4) is shown.
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Since the processes β̄n and βn are essentially pairwise independent as shown in Lemma

3, the exact law of large numbers in Lemma 1 implies that at time period n, for P -almost

all ω ∈ Ω, the realized cross-sectional extended type distribution after the random mutation,

p̌n(ω) = λ(β̄nω)−1 is the expected cross-sectional extended type distribution E(p̌n), and the

realized cross-sectional extended type distribution at the end of period n, p̂n(ω) = λ(βnω)−1 is

the expected cross-sectional extended type distribution E(p̂n). Thus, property (5) is shown.

Assume that there exists p̈0 ∈ ∆̂ such that P
(
β0
i

)−1
= p̈0 holds for λ-almost every i ∈ I.

The exact law of large numbers in Lemma 1 implies that p̈0 = E(p̂0). For λ-almost all i ∈ I,

since the transition matrix of {βni }∞n=1 is {zn}∞n=1, the Markov chains {βni }∞n=0 induce the same

distribution on Ŝ∞ as ξ. For P -almost all ω ∈ Ω, the Markov chains {βnω}∞n=0 induce the same

distribution on Ŝ∞ as ξ. Thus, property (6) is shown.

Proof of Proposition 4: Given that the parameters (b, q, θ, σ, ς) are time independent, the

mapping Γn from ∆̂ to ∆̂ in Subsection A.3 is time independent, and will simply be denoted by

Γ. By the continuity assumption in the sentence above Equation (9), p̂kJq
n
kl( p̂ ) is continuous

in p̂ ∈ ∆̂ for any k, l ∈ S. For any k1, l1 ∈ S, since p̃k1J =
∑

r∈S p̂rJb
n
rk1

is continuous in p̂ ∈ ∆̂,

we can also obtain that p̃k1J q
n
k1l1

(p̃) is continuous in p̂ ∈ ∆̂. Therefore, Γ is a continuous

function from ∆̂ to itself. By Brower’s Fixed Point Theorem, Γ has a fixed point p̂∗. In this

case, E(p̂n) = p̂∗, zn = z1 for all n ≥ 1. Hence the Markov chains {βni }∞n=0 for λ-almost all

i ∈ I, {βn}∞n=0, {βnω}∞n=0 for P -almost all ω ∈ Ω are time-homogeneous.

If the initial extended type process β0 is i.i.d., then the extended type distribution of

agent i at time n = 0 is P
(
β0
i

)−1
= p̂∗ for λ-almost every i ∈ I. By (6) of Theorem 4, for any

n ≥ 1, βni induce the same distribution on Ŝ for λ-almost all i ∈ I. Therefore, for any n ≥ 1,

P (βni )−1 = p̂∗ for λ-almost all i ∈ I.

D A Brief Introduction to Nonstandard Analysis

In order to summarize background knowledge for the proofs of Theorems 1 and 5, this section

presents basic nonstandard analysis by adopting some material from Loeb and Wolff (2015) and

several other related results. First, a simple construction of the nonstandard number system

that extends the usual ordered field of real numbers is given in Subsection D.1. A more general

framework of nonstandard analysis is then presented in Subsection D.2. The key constructions

of Loeb measure spaces and Loeb transition probabilities are introduced in Subsections D.3 and

D.4 respectively. The crucial relevant result is the so-called Fubini property for Loeb product

and transition probabilities. In the final part of this section, we discuss some motivation for
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using hyperfinite agent spaces in settings like those for random matching.41

D.1 Non-standard number system

First, we extend the ordered field of real numbers R to an ordered field ∗R that contains

infinitesimals. To this end, we introduce the concept of a free ultrafilter.

Definition 4 A free ultrafilter on the set N of positive integers is a collection U ⊆ P(N) =

{A : A ⊆ N} such that

1. ∅ /∈ U .

2. A ∈ U and B ∈ U =⇒ A ∩B ∈ U .

3. A ⊆ N and A /∈ U =⇒ N\A ∈ U .

4. A is a finite subset of N =⇒ N\A ∈ U .

Fix a free ultrafilter U . One can define a set function ι on the power set P(N) of N such

that ι(A) = 1 if A ∈ U , and ι(A) = 0 if A /∈ U . It is easy check that ι is a finitely additive

probability measure on P(N). If a property holds on some set A ∈ U , then the property holds

with ι-probability one; we can simply say that the property holds almost everywhere, expressed

for brevity as “a.e.”.

Two sequences 〈ri〉 and 〈si〉 of real numbers are said to be equivalent if ri = si a.e.,

which means {i ∈ N : ri = si} ∈ U . We write [〈ri〉] for the equivalence class containing the

sequence 〈ri〉, and we use ∗R to denote the collection of such equivalence classes. The set ∗R is

called the set of nonstandard real numbers, or the “hyperreal” numbers. Such a construction

using an ultrafilter is called an ultrapower construction.42 We note that the set R of real

numbers is embedded in the set of nonstandard real numbers ∗R via the map c→ [〈c〉], where

〈c〉 is the constant sequence with term c ∈ R. We write ∗c for [〈c〉], but later drop the star for

convenience. In contrast to hyperreal numbers in ∗R, the numbers in R are also called standard

real numbers.

The summation and multiplication operations +, � and the absolute value function | · |
together with the “less than” order relation < for ∗R are defined as follows.

Definition 5 Given real sequences 〈ri〉 and 〈si〉, we set

41For a comprehensive treatment of nonstandard analysis, see Chapters 1, 2, 3 and 6 in Loeb and Wolff (2015).
For the details on Loeb transition probabilities and the associated Fubini property, see Section 5 of Duffie and
Sun (2007).

42Though the set ∗R of nonstandard real numbers depends on the underlying ultrafilter, the particular choice
of such an ultrafilter is not an issue. When we consider applications of nonstandard analysis, what we use
are some general properties of nonstandard models, such as the Transfer Principle in Proposition 7 and the
Countable Saturation Principle in Proposition 8 below.
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1. [〈ri〉] + [〈si〉] = [〈ri + si〉].

2. [〈ri〉] � [〈si〉] = [〈ri � si〉].

3. |[〈ri〉]| = [〈|ri|〉].

4. [〈ri〉] < [〈si〉] if ri < si a.e.

It is easy to check that the operations + and � , as well as | · | and the ordering <, are

independent of the choices of the representing sequences. The structure (∗R,+, · , <) forms an

ordered field that extends the ordered field (R,+, · , <).

For any r ∈ ∗R, r is infinite (or unlimited) if |r| > n for every standard positive integer

n ∈ N; r is finite (or limited) if |r| < n for some n ∈ N; and r is infinitesimal if |r| < 1
n for

every n ∈ N. Recall that for r = [〈ri〉] ∈ ∗R and c ∈ R, |r| < c (|r| > c) means that |ri| < c

(|ri| > c) holds a.e.

For x, y ∈ ∗R, we say that x and y are infinitesimally close or infinitely close if x − y is

infinitesimal and in that case we write x ' y. The equivalence class for ' containing x is called

the monad of x, written as monad(x). That is, monad(x) = {y ∈ ∗R : y ' x}.
If ρ ∈ ∗R is finite, then the unique real number c with ρ ' c is called the standard part

of ρ. We write c = st(ρ) or c = ◦ρ.

Let ∗N = {[〈ri〉] : ri ∈ N a.e.} ⊆ ∗R be the set of hyperfinite integers, and ∗N∞ the set

of unlimited hyperfinite integers. We have the following proposition.

Proposition 6 For any unlimited hyperfinite integer r = [〈ri〉] ∈ ∗N∞, the set {r′ ∈ ∗N : r′ ≤
r}, which is also denoted by {1, 2, . . . , r}, has the cardinality of the continuum.

Proof: Let R∞ be the set of sequences of standard real numbers. Since R∞ has the cardinality

of the continuum, the cardinality of ∗N is therefore at most the cardinality of the continuum,

which implies that the cardinality of A = {1, 2, . . . , r} is also at most the cardinality of the

continuum.

Let B = {1
r ,

2
r , . . . ,

r
r}. It is clear that A and B have the same cardinality. For any

standard real number c ∈ [0, 1], let r′ = bc � rc = [〈hi〉] ∈ ∗R, where hi is the integer part of the

standard real number c � ri. From now on, we may drop the multiplication symbol � when there

is no confusion. It is clear that r′ ∈ ∗N and cr − 1 < r′ ≤ cr, which implies that r′

r ∈ B and

c− 1
r <

r′

r ≤ c. Note that 1
r is infinitesimal, and st( r

′

r ) = c. Therefore, st( · ) is a surjection from

B to [0, 1], which implies that the cardinality of B is at least the cardinality of the continuum.

Hence, the cardinality of A is also at least the cardinality of the continuum. Combining with

the conclusion of the above paragraph, we know that A has the cardinality of the continuum.

50



D.2 General framework of nonstandard analysis

To develop the general framework of nonstandard analysis, we need to work with the concept

of superstructure. Fix a set X containing R. Let V0(X) = X, and for each positive integer

n ∈ N, let Vn(X) = Vn−1(X) ∪ P(Vn−1(X)), where P (Vn−1(X)) is the power set of Vn−1(X).

The superstructure over X is the set V (X) = ∪∞n=0Vn(X). Entities in X are said to be of rank

0, and for n ≥ 1, entities in Vn(X)\Vn−1(X) are said to be of rank n.

For a, b ∈ Vn(X), one can define an ordered pair (a, b) as the set {{a}, {a, b}}, which is

an element in Vn+2(X). With the definition of ordered pairs, one can then define the Cartesian

product of two sets in V (X), as well as relations and functions in V (X). For k ≥ 3, one can

define ordered k-tuples (a1, a2, . . . , ak) as {(1, a1), (2, a2), . . . , (k, ak)}. The k-tuple versions of

Cartesian products, relations and functions in V (X) can be similarly defined. In fact, the

superstructure can be used to cover basically all of the relevant mathematical structures that

are useful for applications.

We now describe the construction of formal statements, or “formulas,” in a formal lan-

guage LX about the superstructure V (X). Given X, the language LX for the superstructure

V (X) over X has the following symbols:

1. Connectives: q, ∨, ∧, →, ↔.

2. Quantifiers: ∀, ∃.

3. Parentheses: [ ], ( ), 〈 〉.

4. Constant Symbols: At least one name for each entity in V (X).

5. Variable Symbols: A fixed collection of symbols representing variables.

6. Equality Symbol: Denotes equality for elements of X, and set equality otherwise.

7. Set membership: ∈.

The above symbols serve as the “alphabet” of the language LX . A fixed set of variable

symbols together with other symbols in LX will lead to a well-defined collection of formal

syntactical statements.

Definition 6 A formula of LX is built up inductively with the following rules:

(a) If x1, · · · , xn, x, and y are either constants or variables, then the following are called

atomic formulas: x ∈ y, x = y; (x1, · · · , xn) ∈ y; (x1, · · · , xn) = y; ((x1, · · · , xn) , x) ∈ y;

((x1, · · · , xn) , x) = y.
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(b) If Φ and Θ are formulas, so are (¬Φ), (Φ ∧Θ), (Φ→ Θ), (Φ ∨Θ), and (Φ↔ Θ).

(c) If x is a variable symbol and y is either a variable symbol or a constant symbol and Φ is

a formula, then (∀x ∈ y)Φ and (∃x ∈ y)Φ are formulas.

The logical connectives q, ∨, ∧, →, ↔ have the usual meanings in terms of the satisfia-

bility of formulas connected by them. For example, (¬Φ) means that Φ is not satisfied while

∨, ∧ mean “or”, “and” respectively. For the formulas (∀x ∈ y)Φ and (∃x ∈ y)Φ, the scope of

the quantifies ∀,∃ is Φ. One can define the scope of a quantifier within a formula inductively.

Definition 7 A variable x is free in a formula Φ if it is not within the scope of any quantifier

for x. A closed formula in LX is a formula without free variables.

Fix a free ultrafilter U . Given 〈ai〉 and 〈bi〉, both in the space X∞ of sequences in X, are

said to be equivalent if ai = bi a.e. For any c ∈ X, let ∗c = [〈c, c, . . .〉] be the equivalence class

of sequences in X∞ that contains the constant sequence 〈c, c, . . .〉. For any sequence {Ai}∞i=1 of

sets in Vn(X)\X for some n ≥ 1, define the set [〈Ai〉] = {[〈xi〉] : xi ∈ Ai a.e.}. For A ∈ V (X),

let ∗A = [〈A,A,A, . . .〉]. In particular, ∗X is the set of equivalent classes of sequences in X∞.

Definition 8 If Φ is a formula in LX , the ∗-transform of Φ, denoted ∗Φ, is the formula in

L∗X that is obtained by replacing each constant c in Φ with ∗c.

The following result is a basic tool in nonstandard analysis.43

Proposition 7 (Transfer Principle) If Φ is a closed formula in LX that is true for V (X),

then ∗Φ is true for V (∗X).

All entities in V (X) and entities in V (∗X) of the form ∗b, for some b ∈ V (X), are called

standard. An entity a in V (∗X) is called internal if for some set b ∈ V (X), a ∈ ∗b. All other

entities in V (∗X) are called external. For any internal set A in V (∗X), one can always find

a sequence {Ai}∞i=1 of sets in Vn(X)\X for some n ≥ 1 such that A is the set of equivalence

classes {[〈ai〉] : ai ∈ Ai a.e.}. If any kind of internal operations are applied to internal sets,

one still obtains internal sets; see, for example, Theorem 2.8.4 in Loeb and Wolff (2015). In

particular, if A and B are internal, then so are A ∪ B, A ∩ B, A\B, and A × B. An internal

function is a function whose graph is internal.

For B ∈ V (X)\X, let PF (B) denote the finite subsets of B. An element A ∈ ∗PF (B)

will be called a hyperfinite set. In particular, A is the set of equivalence classes {[〈bi〉] : bi ∈
43For a detailed proof, readers are referred to Sections 2.2-2.5 of Loeb and Wolff (2015).
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Bi a.e.} for some sequence 〈Bi〉 of finite subsets of B. The internal cardinality of A is simply

the hyperinteger [〈|Bi|〉], where |Bi| is the cardinality of the finite set Bi.

The following is an important uniformity principle that transforms a local property

expressed by finite intersections to a global property described by the intersection of all the

sets in the sequence. The proof is taken from page 199 of Khan and Sun (1997).

Proposition 8 (Countable Saturation Principle) For a sequence of nonempty internal

sets, A1 ⊇ A2 ⊇ · · · ⊇ An ⊇ . . . , we have ∩∞n∈NAn 6= ∅.

Proof. For any n ∈ N, since An is internal, there exists Bn ∈ V (X) \X such that An ∈ ∗Bn =

[〈Bn, Bn, . . .〉]. Then there exists a sequence {Ani} of sets such that Ani ∈ Bn for any i ∈ N
and An = [〈An1, An2, . . .〉]. Let In = {i ≥ n : A1i ⊇ · · · ⊇ Ani 6= ∅}. Then for all n ∈ N, In ∈ U ,

In ⊇ In+1, and ∩n∈NIn = ∅. This implies that for any i ∈ I1, n(i) = max{n ∈ N : i ∈ In} is well

defined. For i ∈ I1, since i ∈ In(i), we know that An(i)i 6= ∅. Pick bi from An(i)i, and note that

i ∈ In implies that n(i) ≥ n, and hence bi ∈ An(i)i ⊆ Ani. Thus {i ∈ I1 : bi ∈ Ani} ⊇ In ∈ U .

By defining bi to be some point in A1 if i is not in I1, we obtain that [〈bi〉] ∈ An. Since n is

arbitrary, the proof is finished.

D.3 Construction of hyperfinite Loeb spaces

Fix any unlimited hyperfinite integer M . Let Λ = {1, 2, . . . ,M}, and C be the internal power

set of all the internal subsets of Λ. Let w : Λ → ∗R+ be an internal function such that∑
i∈Λw(i) = 1.

Define an internal finitely-additive measure from C to ∗[0, 1] such that µ(A) =
∑

i∈Aw(i)

for any A ∈ C. Then (Λ, C, µ) is called a hyperfinite internal probability space. If w(i) ≡ 1
M

for all i ∈ Λ, then (Λ, C, µ) is called a hyperfinite counting probability space.

We let st(µ) be the function from C into R+ defined by st(µ)(A) = st(µ(A)) for any A ∈ C.
It is clear that st(µ) is a finitely-additive measure on the algebra C. The important point is

that st(µ) is a countably-additive measure on the algebra C. To see this, consider a sequence

A1 ⊇ A2 ⊇ . . . of internal sets in C such that ∩n∈NAn = ∅. The countable saturation principle

implies the existence of m ∈ N such that Am = ∅. It is thus clear that limn→∞ st(µ)(An) = 0.

By the well-known Caratheodory’s extension theorem (see, for example, Loeb (2016, p. 181)),

st(µ) can be extended to a measure µL on the σ-algebra σ(C) that is generated by C. By

including all µL-null subsets, we obtain a standard complete probability space (Λ, Lµ(C), µL),

which is called a Loeb measure space.
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D.4 Transition probabilities

Let (I, I0, λ0) be a hyperfinite internal probability space for which I0 is the internal power set

on some hyperfinite set I. Let Ω be a hyperfinite internal set with F0 its internal power set.

Let P0 be an internal function from I to the space of hyperfinite internal probability measures

on (Ω,F0), which is called an internal transition probability. For i ∈ I, denote the hyperfinite

internal probability measure P0(i) on (Ω,F0) by P0i.

It is clear that the Cartesian product I×Ω is a hyperfinite set. Let I0⊗F0 be the internal

power set on I × Ω. Define a hyperfinite internal probability measure τ0 on (I × Ω, I0 ⊗ F0)

by letting τ0({(i, ω)}) = λ0({i})P0i({ω}) for (i, ω) ∈ I × Ω. The measure τ0 will be called

the product transition probability of the measure λ0 and the transition probability P0. Let

(I, I, λ), (Ω,Fi, Pi), and (I × Ω, I � F , τ) be the Loeb spaces corresponding respectively to

(I, I0, λ0), (Ω,F0, P0i), and (I × Ω, I0 ⊗ F0, τ0). The collection {Pi : i ∈ I} of Loeb measures

will be called a Loeb transition probability, and denoted by P . The measure τ will be called

the Loeb product transition probability of the measure λ and the Loeb transition probability

P . We shall also denote τ0 by λ0 ⊗ P0 and τ by λ� P .

The following result presents a generalized Fubini theorem for a Loeb transition proba-

bility, which is proved in Section 5 of Duffie and Sun (2007).44

Proposition 9 Let f be a real-valued integrable function on (I × Ω, σ(I0 ⊗ F0), τ). Then,

(1) fi = f(i, ·) is σ(F0)-measurable for each i ∈ I and integrable on (Ω, σ(F0), Pi) for λ-

almost all i ∈ I; (2)
∫

Ω fi(ω) dPi(ω) is integrable on (I, σ(I0), λ); (3)
∫
I

∫
Ω fi(ω) dPi(ω) dλ(i) =∫

I×Ω f(i, ω) dτ(i, ω).

If P0i does not depend on i, then τ = λ � P is called the Loeb product measure. The

corresponding measure space (I×Ω, I�F , λ�P ) is called the Loeb product space. In this case,

the symmetric position of the two probability spaces respectively on I and Ω implies that the

properties as stated in Proposition 9 also hold when the iterated integral is taken in different

order. It is clear that I � F contains the usual product σ-algebra σ(I0) ⊗ σ(F0). Thus, the

Loeb product space (I × Ω, I � F , λ� P ) is a Fubini extension.45 Such a result in the special

case was shown by Keisler (1977); see also Loeb and Wolff (2015, p. 214).

44For simplicity, we only state the result in terms of the σ-algebra σ(I0⊗F0). One can also re-state the result
to the case when the underlying measure space is the completion of (I × Ω, σ(I0 ⊗F0), τ).

45Assume that both λ and P are atomless. Proposition 8.4.5 in Loeb and Wolff (2015, Chapter 8) (by the
third author of this paper) indicates that I � F is a strict extension of σ(I0)⊗ σ(F0). As noted in Proposition
8.4.1 of the same chapter, one can also construct I � F-measurable processes which are essentially pairwise
independent with any given variety of distributions.
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D.5 Why hyperfinite agent spaces work

As noted in Subsection D.2, a hyperfinite set can be viewed as an equivalence class of a sequence

of finite sets. The transfer principle also indicates that hyperfinite sets preserve properties of

finite sets. Thus, an idealized model based on a hyperfinite agent space captures the asymptotic

nature of the large finite phenomenon being modeled.46 Khan and Sun (1997) call this property

“asymptotic implementability.”

A typical hyperfinite set is of the form {1, 2, . . . , r} for some unlimited hyperinteger r.

It is equivalent to work with T = {1
r ,

2
r , . . . ,

r
r}. Since the standard parts of elements in T are

the real numbers in [0, 1], a limit model based on T may be reduced to a model based on [0, 1],

provided that the relevant mappings on T have the essential continuity property in the sense

that for almost all t ∈ T , those points infinitely close to t will have infinitely close values in

the relevant target spaces.47 In the case of independent random matching, as considered in

this paper, the random types across the agent space are always discontinuous because of the

cross-agent independence assumption. Hence, it is not possible to study independent random

matching via the classical Lebesgue unit interval.

E Proofs of the Existence Results

The main existence results in this paper are Theorems 1 and 5, which are proved in Subsections

E.1 and E.2 respectively. Subsection E.3 presents the proofs of Propositions 2 and 5.

E.1 Proof of Theorem 1

In the proof of Theorem 2.6 in Duffie and Sun (2007) for the existence of independent static

random partial matching, after one chooses the unmatched agents randomly, the measure on the

space of all the matchings on the set of matched agents is the hyperfinite counting probability,

which treats the matched agents symmetrically regardless of their types. In this paper, since

the matching probabilities depend on the types of both the agents and their partners, such a

symmetric treatment of agents is not possible. The idea underlying the proof of Theorem 1

46Consider a simple example that transfers the classical law of large numbers to the hyperfinite setting. A
hyperfinite sequence {Xi}ni=1 (n ∈ N∞) of internal random variables from an internal probability space (Ω,F0, P0)
to ∗[−c, c] with a positive standard real number c is said to be ∗-independent if P0(X1 ≤ a1, . . . , Xn ≤ an) =∏n
i=1 P0(Xi ≤ ai) holds for any internal sequence {ai}ni=1 of hyperreal numbers. Let (I, I0, λ0) be the hyperfinite

counting probability space on {1, . . . , n}. Suppose that Xi, 1 ≤ i ≤ n are ∗-independent with a common mean

m and variance σ2. The Chebyshev Inequality says that P0

(
|X1+···+Xn

n
−m| ≥ 1

n1/3

)
≤ σ2

n1/3 . Note that

1

n1/3 and σ2

n1/3 are infinitesimals. Thus, for P -almost all ω ∈ Ω,
∫
I
Xω(i)dλ0 = X1(ω)+···+Xn(ω)

n
' m, that is,∫

I
◦Xω(i)dλ = ◦m, where λ and P are the corresponding Loeb measures. A similar equality holds for any set in

I0 in place of I.
47See Loeb and Wolff (2015, p. 190) on the characterization of Lebesgue measurability on a hyperfinite Loeb

counting probability space.
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is as follows. The set of type-k agents to be matched with type-l agents (denoted by Akl) is

chosen randomly according to the matching probabilities. One needs to make sure that (1) for

k < l, Akl and Alk must have exactly the same internal cardinality so that the agents between

them can be matched, and (2) the internal cardinality of Akk must be an even hyperinteger

so that agents in Akk can be matched to each other. The key point is to guarantee that the

construction leads an independent directed random matching with given parameters.

In dynamic directed random matching with enduring partnership as considered in this

paper, only the unmatched agents will conduct directed random searches for counterparties

while those existing paired agents will not participate in the search process. Thus, in order to

handle the matching step for the inductive definition of dynamic directed random matching,

Lemma 7 below allows the existence of both pre-matched agents and unmatched agents so that

pre-matched agents remain matched to the same partners and unmatched agents may search

for counterparties. In contrast, Theorem 2.6 in Duffie and Sun (2007) considers only the case

in which all the agents are unmatched.

Let I = {1, . . . , M̂} be a hyperfinite set with M̂ an unlimited hyperfinite integer in ∗N∞,

I0 the internal power set on I, and λ0 the hyperfinite counting probability measure on I0 with

λ0(A) = |A|/|I| for any A ∈ I0, where |A| is the internal cardinality of |A|. The corresponding

Loeb counting probability space (I, I, λ) is our space of agents. Following Definition 3, an

internal partial matching ψ from I to I is an internal mapping from I to I such that ψ(ψ(i)) = i

for any i ∈ I. When ψ(i) 6= i (ψ(i) = i), agent i is matched with agent ψ(i) (agent i is not

matched). When ψ(i) 6= i for each i ∈ I, ψ is said to be an internal full matching on I. For a

given hyperfinite internal probability space (Ω,F0, P0), an internal random (partial) matching

π is an internal mapping from I ×Ω to I such that πω is an internal partial matching for each

ω ∈ Ω.

The following lemma will be used to prove both Theorems 1 and 5.

Lemma 7 As above, let (I, I0, λ0) be the hyperfinite counting probability space with its Loeb

space (I, I, λ). Then, there exists a hyperfinite internal set Ω with its internal power set F0 such

that for any initial internal type function α0 from I to S and initial internal partial matching

π0 from I to I with

g0(i) =

{
α0(π0(i)) if π0(i) 6= i

J if π0(i) = i,

and internal extended type distribution ρ̂ = λ0

(
α0, g0

)−1
, and for any internal matching proba-

bility function q from S×S to ∗R+ with
∑

r∈S qkr ≤ 1 and ρ̂kJqkl ' ρ̂lJqlk (i.e., ρ̂kJqkl− ρ̂lJqlk
is an infinitesimal) for any k, l ∈ S, there exists an internal random matching π from I ×Ω to

I and an internal probability measure P0 on (Ω,F0) with the following properties.
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(i) Let H = {i : π0(i) 6= i}. Then P0

(
{ω ∈ Ω : πω(i) = π0(i) for any i ∈ H}

)
= 1.

(ii) Let g be the internal mapping from I × Ω to S ∪ {J}, defined by

g(i, ω) =

{
α0(π(i, ω)) if π(i, ω) 6= i

J if π(i, ω) = i,

for any (i, ω) ∈ I × Ω. Then, for any k, l ∈ S, P0(gi = l) ' qkl for λ-almost every agent

i ∈ I satisfying α0(i) = k and π0(i) = i.

(iii) Denote the corresponding Loeb probability spaces of the internal probability spaces (Ω,F0, P0)

and (I × Ω, I0 ⊗ F0, λ0 ⊗ P0) respectively by (Ω,F , P ) and (I × Ω, I � F , λ � P ). The

mapping g is an essentially pairwise independent process from (I × Ω, I � F , λ � P ) to

S ∪ {J}.

To reflect their dependence on (α0, π0, q), π and P0 are also denoted π(α0,π0,q) and P(α0,π0,q).

Proof. The proof consists of four steps. The first step is to allow the initially unmatched type-k

agents to randomly choose the types of their partners according to the matching probabilities.

However, for a sample realization, the set of type-k agents to be matched with type-l agents

may not have the same internal cardinality as the set of type-l agents to be matched with type-k

agents. Such sets are modified in the second step so that a matching for those agents becomes

possible. The third step is to randomly match the agents in the divided groups accordingly.

The random matching as constructed is shown to be an independent directed random matching

with the given parameters in the final step.

Step 1: For each k ∈ S, let ηk = 1−
∑

r∈S qkr (the no-matching probability for a type-k agent),

and Ik = {i ∈ I : α0(i) = k, π0(i) = i} (the set of type-k agents who are initially unmatched).

For each agent i ∈ Ik, define a probability ζi on S ∪ {J} such that ζi(l) = qkl for l ∈ S and

ζi(J) = ηk. For each agent i ∈ I such that π0(i) 6= i, define a probability ζi on S∪{J} such that

ζi(l) = δJ(l) for l ∈ S ∪ {J}, where δJ(l) is 1 if l = J and zero otherwise. Let Ω0 = (S ∪ {J})I

be the internal set of all the internal functions from I to S ∪ {J}, and µ0 the internal product

probability measure Πi∈Iζi on (Ω0,A0), where A0 is the internal power set of Ω0. For each

fixed sample realization ω0 ∈ Ω0, k, l ∈ S, the agents in the set Āω0
kl = {i ∈ Ik : ω0(i) = l} are

intended to be matched with agents in the set Āω0
lk .

Step 2: The point is that one may not be able to produce an internal partial matching so that

agents in Āω0
kl are matched with agents in Āω0

lk , since Āω0
kl and Āω0

lk may not have the same
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internal cardinality when k 6= l, and Āω0
kk may not have even internal cardinality to allow an

internal full matching on Āω0
kk. Thus, we need to modify those sets. For k, l ∈ S with k 6= l, let

Cω0
kl = {Akl : Akl ⊆ Āω0

kl , Akl is internal and |Akl| = min{|Āω0
kl |, |Ā

ω0
lk |}}.

It is clear that Cω0
kl 6= ∅. For any k ∈ S, let Cω0

kk be the set of all those sets in the form Āω0
kk\{i}

for i ∈ Āω0
kk if |Āω0

kk| is odd, and Cω0
kk the set with one element Āω0

kk if |Āω0
kk| is even. Denote

the product space
∏
k,l∈S C

ω0
kl by Cω0 . Define an internal probability measure µω0 on Cω0 with

its internal power set by letting48 µω0(A) = 1
|Cω0 | for A ∈ Cω0 . The purpose of introducing

the space Cω0 and the internal probability measure µω0 is to randomly remove some agents

from the sets Āω0
kl to obtain the modified sets Aω0

kl with the desired properties for an internal

matching. Let

Ω1 = {(Akl)k,l∈S : Akl ⊆ I and Akl is internal, where k, l ∈ S}.

The probability measure µω0 can be trivially extended to the common sample space Ω1 with

its internal power set by letting µω0(A) = 0 for A ∈ Ω1 \ Cω0 .

Given the hyperfinite internal probability space (Ω0,A0, µ0) and internal transition prob-

ability µω0 , ω0 ∈ Ω0, we can define internal probability measure µ1 on Ω0×Ω1 with its internal

power set by letting µ1(ω0,A) = µ0(ω0)× µω0(A) for any ω0 ∈ Ω0 and A ∈ Ω1.

Step 3: For any fixed ω0 ∈ Ω0 and Aω0 = (Akl)k,l∈S ∈ Cω0 , we consider internal partial

matchings on I that match agents from Akl to Alk. We only need to consider those sets Akl

which are nonempty. Let Bω0
k = Ik\(

⋃
l∈S A

ω0
kl ), which is the set of initially unmatched agents

who remain unmatched. Let B̄ω0
k denote the set {i ∈ Ik : ω0(i) = J}; then it is clear that

Bω0
k = B̄ω0

k ∪
⋃
l∈S
(
Āω0
kl \A

ω0
kl

)
. Let Bω0 = ∪Kk=1B

ω0
k . For each k ∈ S, let Ωω0,Aω0

kk be the

internal set of all the internal full matchings on Aω0
kk. Let µω0,Aω0

kk be the internal counting

probability measure on Ωω0,Aω0

kk . For k, l ∈ S with k < l, let Ωω0,Aω0
kl be the internal set of all

the internal bijections from Aω0
kl to Aω0

lk . Let µω0,Aω0

kl be the internal counting probability on

Aω0
kl . Let Ω2 be the internal set of all the internal partial matchings from I to I. Define Ωω0,Aω0

2

to be the set of φ ∈ Ω2, with

(i) the restriction φ|H = π0|H , where H is the set {i : π0(i) 6= i} of initially matched agents.

(ii) {i ∈ Ik : φ(i) = i} = Bω0
k for each k ∈ S.

(iii) the restriction φ|Aω0kk ∈ Ωω0,Aω0

kk for k ∈ S.

48We shall also use an element d of a set D to represent the singleton set {d}. Here µω0(A) actually means
µω0({A}).
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(iv) for k, l ∈ S with k < l, φ|Aω0kl ∈ Ωω0,Aω0

kl .

Property (i) means that initially matched agents remain matched with the same partners. The

rest is clear.

Define an internal probability measure µω0,Aω0

2 on Ω2 such that

(i) for φ ∈ Ωω0,Aω0

2 ,

µω0,Aω0

2 (φ) =
∏

1≤k≤l≤K,Aω0kl 6=∅

µω0,Aω0

kl (φ|Aω0kl ).

(ii) φ /∈ Ωω0,Aω0

2 , µω0,Aω0

2 (φ) = 0.

The purpose of introducing the space Ωω0,Aω0

2 and the internal probability measure µω0,Aω0

2 is

to match the agents in Akl to the agents Alk randomly. The probability measure µω0,Aω0

2 is

trivially extended to the common sample space Ω2.

Define an internal probability measure P0 on Ω = Ω0 ×Ω1 ×Ω2 with the internal power

set F0 by letting

P0 ((ω0,A, ω2)) =

{
µ1(ω0,A)× µω0,A

2 (ω2) if A ∈ Cω0

0 otherwise.

For (i, ω) ∈ I × Ω, let π(i, (ω0,A, ω2)) = ω2(i) and

g(i, ω) =

{
α0(π(i, ω)) if π(i, ω) 6= i

J if π(i, ω) = i.

Denote the corresponding Loeb probability spaces of the internal probability spaces (Ω,F0, P0)

and (I ×Ω, I0⊗F0, λ0⊗P0) respectively by (Ω,F , P ) and (I ×Ω, I �F , λ�P ). Since π is an

internal function from I × Ω to I, it is I � F-measurable.

Denote the internal set
{

(ω0,A, ω2) ∈ Ω : ω0 ∈ Ω0,A ∈ Cω0 , ω2 ∈ Ωω0,A
2

}
by Ω̂. By the

construction of P0, it is clear that P0

(
Ω̂
)

= 1. By its construction, it is clear that π is an

internal random matching and satisfies part (i) of the lemma.

Step 4: It remains to prove parts (ii) and (iii) of the lemma. Define an internal process f from

I × Ω to S ∪ {J} such that for any (i, ω) ∈ I × Ω,

f(i, ω) =

{
ω0(i) if π0(i) = i

α0(π0(i)) if π0(i) 6= i.

It is clear that if α0(i) = k and π0(i) = i, then

P (fi = l) ' P0(fi = l) = µ0(ω0(i) = l) = ζi(l) = qkl,
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which means49 that P (fi = l) = ◦qkl. Similarly, we have P (fi = J) = ◦ηk. It is also obvious

that for i 6= j in I, fi and fj are independent random variables on the sample space (Ω,F , P ).

The exact law of large number as in Lemma 1 implies that for P -almost all ω = (ω0,A, ω2) ∈ Ω,

λ({α0(i) = k, π0(i) = i, ω0(i) = l}) = ◦ρ̂kJ ·◦qkl holds for any k, l ∈ S, and λ({α0(i) = k, π0(i) =

i, ω0(i) = J}) = ◦ρ̂kJ · ◦ηk, which means that

|Āω0
kl |
M̂

' ρ̂kJqkl ' ρ̂lJqlk '
|Āω0

lk |
M̂

and
|B̄ω0

k |
M̂

' ρ̂kJηk. (44)

Let Ω̃ be the set of ω = (ω0,A, ω2) ∈ Ω such that Equation (44) holds. Then, P
(

Ω̃
)

= 1, and

hence P
(

Ω̂ ∩ Ω̃
)

= 1.

Fix any ω = (ω0,A, ω2) ∈ Ω̂ ∩ Ω̃; then A = Aω0 for some Aω0 ∈ Cω0 and ω2 ∈ Ωω0,Aω0

2 .

For any k 6= l ∈ S, we have

|Aω0
kl |
M̂

= min

(
|Āω0

kl |
M̂

,
|Āω0

lk |
M̂

)
' ρ̂kJqkl '

|Āω0
kl |
M̂

and
|Aω0

kk|
M̂

'
|Āω0

kk|
M̂

' ρ̂kJqkk, (45)

which also implies that
|Bω0

k |
M̂

' ρ̂kJηk '
|B̄ω0

k |
M̂

.

For any i ∈ Ik, i ∈ Aω0
kl if and only if π(ω0,A

ω0 , ω2) = ω2(i) ∈ Aω0
lk ; and i ∈ Bω0

k if and

only if π(ω0,A
ω0 , ω2) = ω2(i) = J . Hence, for the fixed ω = (ω0,A

ω0 , ω2), and for any

k, l ∈ S, we can obtain that if i ∈ Aω0
kl ⊆ Āω0

kl , f(i, ω) = ω0(i) = l = α0(ω2(i)) = g(i, ω); if

i ∈ B̄ω0
k ⊆ Bω0

k , f(i, ω) = ω0(i) = J = α0(ω2(i)) = g(i, ω). For any i ∈ I\(∪k∈SIk) which

means π0(i) 6= i, we can obtain that f(i, ω) = α0(π0(i)) = α0(π(i, ω)) = g(i, ω). It is clear that

the set {i ∈ I : f(i, ω) 6= g(i, ω)} is a subset of
⋃
l∈S
(
Āω0
kl \A

ω0
kl

)
, which has λ-measure zero by

(45).

By the fact that P
(

Ω̂ ∩ Ω̃
)

= 1, we know that for P -almost all ω ∈ Ω,

λ (i ∈ I : f(i, ω) = g(i, ω)) = 1.

Since the Loeb product space (I × Ω, I � F , λ � P ) is a Fubini extension as discussed in

Subsection D.4, the Fubini property implies that for λ-almost all i ∈ I, g(i, ω) is equal to

f(i, ω) for P -almost all ω ∈ Ω. Hence g satisfies part (ii) of the lemma. Let Ĩ be an I-

measurable set with λ(Ĩ) = 1 such that for any i ∈ Ĩ, gi(ω) = fi(ω) for P -almost all ω ∈ Ω.

Therefore, by the construction of f , we know that the collection of random variables {gi}i∈Ĩ is

mutually independent in the sense that any finitely many random variables from that collection

are mutually independent. This also implies part (iii) of the lemma.

Proof of Theorem 1: We follow Lemma 7. Let α0 be an internal type function from I to

S such that50 λ0

(
{α0(i) = k}

)
' pk for any k ∈ S. Let π0(i) = i for any i ∈ I. Given that

49Recall that for a bounded hyperreal number x ∈ ∗R, ◦x is its standard part.
50For any given p ∈ ∆, the atomless property of λ0 implies the existence of such an α0.
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matching probability function q from S × S to R+ with
∑

r∈S qkr ≤ 1 and pkqkl = plqlk for

all k, l ∈ S, the condition ρ̂kJqkl ' ρ̂lJqlk in the statement of Lemma 7 is obviously satisfied.

It is clear that the random matching π and the probability measure P constructed in Lemma

7 satisfies all the conditions in Theorem 1. Let α be α0. Then α and π, which are defined

on a Fubini extension (I × Ω, I � F , λ� P ), are a type function and an independent directed

random matching with respective parameters p and q. For each ω ∈ Ω, since πω is an internal

bijection on I and λ0 is the hyperfinite counting probability measure on I0, it is obvious that

πω is measure-preserving from the Loeb space (I, I, λ) to itself.

E.2 Proof of Theorem 5

What we need to do is to construct sequences of internal transition probabilities, internal

type functions, and internal random matchings. Since we need to consider random mutation,

random matching and random type changing with break-up at each time period, three internal

measurable spaces with internal transition probabilities will be constructed at each time period.

After the construction, we need to check the satisfiability of Markov conditional independence

for each step.

In contrast to the settings in Duffie and Sun (2007), the matched agents considered in

this paper may form an enduring partnership after the matching step. Matched agents will

not participate in the search process until they break up. During their partnership, a matched

agent and her partner may change their types with correlation. Therefore, one needs to keep

track of those matched agents and their partners at each step, which means to work with

extended-type processes that incorporate the types of the agents and their partners in this

paper rather than simply the type processes of the agents in Duffie and Sun (2007). This

brings substantial difficulties in the construction of the dynamical system and the proof of the

property of Markov conditional independence for the extended-type processes.

Let T0 be the hyperfinite discrete time line {n}Mn=0 and (I, I0, λ0) be the agent space,

where I = {1, . . . , M̂}, I0 is the internal power set on I, λ0 is the internal counting probability

measure on I0, M and M̂ are unlimited hyperfinite numbers in ∗N∞. We transfer the sequences

of numbers bn, θn, σn, ςn, n ∈ N to the nonstandard universe to obtain bn, θn, σn, ςn, n ∈ ∗N.

The transfer of the sequence of functions qn, n ∈ N to the nonstandard universe is denoted

by ∗qn, n ∈ ∗N. Then, for any k, l ∈ S, ∗qnkl is an internal function from ∗∆̂ to ∗[0, 1]. Let

q̂nkl(ρ̂) = (∗qnkl)(ρ̂) and η̂nk = 1−
∑

l∈S q̂
n
kl(ρ̂) for any k, l ∈ S and ρ̂ ∈ ∗∆̂. Note that an object

with an upper left star means the transfer of a standard object to the nonstandard universe.

We shall first consider the case of an initial condition Π0 that is deterministic. Let

{Akl}(k,l)∈Ŝ be an internal partition of I such that |Akl|
M̂
' p̈kl for any k ∈ S and l ∈ S ∪ {J},
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and |Akl| = |Alk| and |Akk| are even for any k, l ∈ S. Let α0 be an internal function from

(I, I0, λ0) to S such that α0(i) = k if i ∈
⋃
l∈S∪{J}Akl. Let π0 be an internal partial matching

from I to I such that π0(i) = i on
⋃
k∈S AkJ , and the restriction π0|Akl is an internal bijection

from Akl to Alk for any k, l ∈ S. Let

g0(i) =

{
α0(π0(i)) if π0(i) 6= i

J if π0(i) = i.

It is clear that λ0({i : α0(i) = k, g0(i) = l}) ' p̈0
kl for any k ∈ S and l ∈ S ∪ {J}.

Suppose that the dynamical system D has been constructed up to time period n − 1 ∈
∗N. That is, {(Ωm,Fm, Qm)}3n−3

m=1 and {αl, πl}n−1
l=0 have been constructed, where each Ωm is a

hyperfinite internal set with its internal power set Fm, Qm an internal transition probability

from Ωm−1 to (Ωm,Fm), αl an internal type function from I ×Ω3l−1 to the type space S, and

πl an internal random matching51 from I × Ω3l to I. Here, Ωm =
∏m
j=1 Ωj , and {ωj}mj=1 will

also be denoted by ωm when there is no confusion. Denote the internal product transition

probability Q1⊗Q2⊗· · ·⊗Qm by Qm, and ⊗mj=1Fj by Fm (which is simply the internal power

set on Ωm). Then, Qm is the internal product of the internal transition probability Qm with

the internal probability measure Qm−1.

We shall now consider the constructions for time n. We first work with the random

mutation step. Let Ω3n−2 = SI (the space of all internal functions from I to S) with its

internal power set F3n−2. For each i ∈ I, ω3n−3 ∈ Ω3n−3, if αn−1(i, ω3n−3) = k, define a

probability measure γω
3n−3

i on S by letting γω
3n−3

i (l) = bnkl for each l ∈ S. Define an internal

probability measure Qω
3n−3

3n−2 on (SI ,F3n−2) to be the internal product measure
∏
i∈I γ

ω3n−3

i . Let

ᾱn :
(
I ×

∏3n−2
m=1 Ωm

)
→ S be such that ᾱn

(
i, ω3n−2

)
= ω3n−2(i). Let ḡn :

(
I ×

∏3n−2
m=1 Ωm

)
→

S ∪ {J} be such that

ḡn
(
i, ω3n−2

)
=

{
ᾱn(πn−1(i, ω3n−3), ω3n−2) if πn−1(i, ω3n−3) 6= i

J if πn−1(i, ω3n−3) = i.

Let ρ̌nω3n−2 = λ0

(
ᾱnω3n−2 , ḡ

n
ω3n−2

)−1
be the internal cross-sectional extended type distribution

after random mutation.

Next, we consider the step of directed random matching. Let (Ω3n−1,F3n−1) = (Ω̄, F̄),

where (Ω̄, F̄) is the measurable space constructed in the proof of Lemma 7. For any given

ω3n−2 ∈ Ω3n−2, the type function is ᾱnω3n−2( · ) while the partial matching function is πn−1
ω3n−3( · ).

We can construct an internal probability measure Qω
3n−2

3n−1 = Pᾱn
ω3n−2 ,π

n−1

ω3n−3 ,q̂
n(ρ̌n

ω3n−2 ) and a

directed random matching πᾱn
ω3n−2 ,π

n−1

ω3n−3 ,q̂
n(ρ̌n

ω3n−2 ) by Lemma 7. Let π̄n :
(
I ×

∏3n−1
m=1 Ωm

)
→ I

51To handle the deterministic case at the initial step with l = 0 (3l−1 = −1 and 3l = 0), one can let Ω0 = Ω−1

be a singleton set.
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be such that

π̄n
(
i, ω3n−1

)
= πᾱn

ω3n−2 ,π
n−1

ω3n−3 ,q̂
n(ρ̌n

ω3n−2 )(i, ω3n−1),

¯̄gn(i, ω3n−1) =

{
ᾱn(π̄n(i, ω3n−1), ω3n−2) if π̄n(i, ω3n−1) 6= i

J if π̄n(i, ω3n−1) = i.

Now, we consider the final step of random type changing with break-up for matched

agents. Let Ω3n = (S×{0, 1})I with its internal power set F3n, where 0 represents “unmatched”

and 1 represents “paired”; each point ω3n = (ω1
3n, ω

2
3n) ∈ Ω3n is an internal function from I to

S × {0, 1}. Define a new type function αn : (I × Ω3n)→ S by letting αn(i, ω3n) = ω1
3n(i). Fix

ω3n−1 ∈ Ω3n−1. For each i ∈ I, (1) if π̄n(i, ω3n−1) = i (i is not paired after the matching step at

time n), let τω
3n−1

i be the probability measure on the type space S×{0, 1} that gives probability

one to the type
(
ᾱn(i, ω3n−2), 0

)
and zero for the rest; (2) if π̄n(i, ω3n−1) 6= i (i is paired after

the matching step at time n), ᾱn(i, ω3n−2) = k, π̄n(i, ω3n−1) = j and ᾱn(j, ω3n−2) = l, define

a probability measure τω
3n−1

ij on (S × {0, 1}) × (S × {0, 1}) such that τω
3n−1

ij ((k′, 1), (l′, 1)) =

(1−θnkl)σnkl(k′, l′) and τω
3n−1

ij ((k′, 0), (l′, 0)) = θnklς
n
kl(k

′)ςnlk(l
′) for k′, l′ ∈ S, and zero for the rest.

Let Anω3n−1 = {(i, j) ∈ I × I : i < j, π̄n(i, ω3n−1) = j} and Bn
ω3n−1 = {i ∈ I : π̄n(i, ω3n−1) = i}.

Define an internal probability measure Qω
3n−1

3n on (S × {0, 1})I to be the internal product

measure ∏
i∈Bn

ω3n−1

τω
3n−1

i ⊗
∏

(i,j)∈An
ω3n−1

τω
3n−1

ij .

Let

πn(i, ω3n) =

{
J if π̄n(i, ω3n−1) = J or ω2

3n(i) = 0 or ω2
3n(π̄n(i, ω3n−1)) = 0

π̄n(i, ω3n−1) otherwise.

and

gn(i, ω3n) =

{
αn(πn(i, ω3n), ω3n) if πn(i, ω3n) 6= i

J if πn(i, ω3n) = i.

It is clear that πn is a random matching and Equation (19) holds.

Keep repeating the construction. We can then construct a hyperfinite sequence of in-

ternal transition probabilities {(Ωm,Fm, Qm)}3Mm=1 and a hyperfinite sequence of internal type

functions and internal random matchings {(αn, πn)}Mn=0.

Let (I×Ω3M , I0⊗F3M , λ0⊗Q3M ) be the internal product probability space of (I, I0, λ0)

and (Ω3M ,F3M , Q3M ). Denote the Loeb spaces of (Ω3M ,F3M , Q3M ) and the internal product

(I ×Ω3M , I0 ⊗F3M , λ0 ⊗Q3M ) by (Ω3M ,F , P ) and (I ×Ω3M , I �F , λ� P ) respectively. For

simplicity, let Ω3M be denoted by Ω, Q3M be denoted by P0. As discussed in Subsection D.4,

the Loeb product space (I × Ω, I � F , λ� P ) is a Fubini extension.
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In the following, we will often work with functions or sets that are measurable in

(Ωm,Fm, Qm) or its Loeb space for some m ≤ 3M , which may be viewed as functions or

sets based on (Ω3M ,F3M , Q3M ) or its Loeb space by allowing for dummy components for the

tail part. We can thus continue to use P to denote the Loeb measure generated by Qm for

convenience. Since all the type functions, random matchings and the partners’ type functions

are internal in the relevant hyperfinite settings, they are all I �F-measurable when viewed as

functions on I × Ω.

For n = 0, the initial independence condition in the definition of Markov conditional

independence in Subsection A.2 is trivially satisfied. Suppose that the Markov conditional

independence are satisfied up to period n− 1 ∈ N. It remains to check the Markov conditional

independence for each step of random mutation, random matching, and match-induced type

changes with break-up in period n.

For the mutation step in period n, fix any (a1, r1), (a2, r2) and (kt1, l
t
1), (kt2, l

t
2), t =

1, . . . , n− 1 in Ŝ. For any agents i and j with i 6= j, we can obtain that

P
(
β̄ni = (a1, r1), β̄nj = (a2, r2), βti = (kt1, l

t
1), βtj = (kt2, l

t
2), t = 1, . . . , n− 1

)
'
∫
D3n−3
ij

Qω
3n−3

3n−2

(
β̄n(i, ω3n−2) = (a1, r1), β̄n(j, ω3n−2) = (a2, r2)

)
dQ3n−3(ω3n−3)

=

∫
D3n−3
ij

Qω
3n−3

3n−2

(
β̄n(i, ω3n−2) = (a1, r1), β̄n(j, ω3n−2) = (a2, r2)

)
dQ3n−3(ω3n−3)

+

∫
D

3n−3
ij

Qω
3n−3

3n−2

(
β̄n(i, ω3n−2) = (a1, r1), β̄n(j, ω3n−2) = (a2, r2)

)
dQ3n−3(ω3n−3),

where

D3n−3
ij = {ω3n−3 : βt(i, ω3t) = (kt1, l

t
1), βt(j, ω3t) = (kt2, l

t
2), t = 1, . . . , n− 1}

D3n−3
ij = {ω3n−3 : πn−1(i, ω3n−3) 6= j, βt(i, ω3t) = (kt1, l

t
1), βt(j, ω3t) = (kt2, l

t
2), t = 1, . . . , n− 1}

D
3n−3
ij = {ω3n−3 : πn−1(i, ω3n−3) = j, βt(i, ω3t) = (kt1, l

t
1), βt(j, ω3t) = (kt2, l

t
2), t = 1, . . . , n− 1}.

Fix any agent i ∈ I. It is clear that D
3n−3
ij ∩D3n−3

ij′ = ∅ for different j and j′. Then there are at

most countably many j ∈ I such that P (D
3n−3
ij ) > 0. Let F 3n−3

i = {j ∈ I : j 6= i, P (D
3n−3
ij ) =

0}; then λ(F 3n−3
i ) = 1. Fix any j ∈ F 3n−3

i . The probability for agents i and j to be partners is

zero at the end of period n− 1. When agents i and j are not partners, their random extended
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types will be independent by the construction of Qω
3n−3

3n−2 . Hence, we can obtain that

P
(
β̄ni = (a1, r1), β̄nj = (a2, r2), βti = (kt1, l

t
1), βtj = (kt2, l

t
2), t = 1, . . . , n− 1

)
'
∫
D3n−3
ij

Qω
3n−3

3n−2

(
β̄n(i, ω3n−2) = (a1, r1), β̄n(j, ω3n−2) = (a2, r2)

)
dQ3n−3(ω3n−3)

=

∫
D3n−3
ij

Qω
3n−3

3n−2

(
β̄n(i, ω3n−2) = (a1, r1)

)
Qω

3n−3

3n−2

(
β̄n(j, ω3n−2) = (a2, r2)

)
dQ3n−3(ω3n−3)

=

∫
D3n−3
ij

B3n−2

kn−1
1 ln−1

1

(a1, r1)B3n−2

kn−1
2 ln−1

2

(a2, r2)dQ3n−3(ω3n−3)

' P (D3n−3
ij )B3n−2

kn−1
1 ln−1

1

(a1, r1)B3n−2

kn−1
2 ln−1

2

(a2, r2),

where

B3n−2
kl (r, s) =


bnkrb

n
ls if l, s ∈ S

bnkr if l = s = J

0 otherwise.

Thus, for λ-almost all agent j ∈ I,

P
(
β̄ni = (a1, r1), β̄nj = (a2, r2) |βti = (kt1, l

t
1), βtj = (kt2, l

t
2), t = 1, . . . , n− 1

)
= B3n−2

kn−1
1 ln−1

1

(a1, r1)B3n−2

kn−1
2 ln−1

2

(a2, r2). (46)

Note that for any i ∈ I,

P (β̄ni = (a1, r1), βn−1
i = (kn−1

1 , ln−1
1 )) '

∫
E3n−3
i

Qω
3n−3

3n−2

(
β̄n(i, ω3n−2) = (a1, r1)

)
dQ3n−3(ω3n−3)

=

∫
E3n−3
i

B3n−2

kn−1
1 ln−1

1

(a1, r1)dQ3n−3(ω3n−3) ' P (E3n−3
i )B3n−2

kn−1
1 ln−1

1

(a1, r1),

where E3n−3
i = {ω3n−3 : βn−1(i, ω3n−3) = (kn−1

1 , ln−1
1 )}. Then, we have

P (β̄ni = (a1, r1) |βn−1
i = (kn−1

1 , ln−1
1 )) = B3n−2

kn−1
1 ln−1

1

(a1, r1). (47)

Hence, Equations (13) and (14) in the definition of dynamical system are satisfied. By Equation

(46), we can obtain for each i ∈ I, and for λ-almost all j ∈ I,

P
(
β̄ni = (a1, r1), β̄nj = (a2, r2) |βti = (kt1, l

t
1), βtj = (kt2, l

t
2), t = 1, . . . , n− 1

)
= P

(
β̄ni = (a1, r1) |βn−1

i = (kn−1
1 , ln−1

1 )
)
P
(
β̄nj = (a2, r2) |βn−1

j = (kn−1
2 , ln−1

2 )
)
. (48)

Hence, Equation (23) in the definition of Markov conditional independence is satisfied.

For the random matching step in period n, fix any (a1, r1), (a2, r2) in S × S and any

(kt1, l
t
1), (kt2, l

t
2) in Ŝ for t = 1, . . . , n − 1. Fix any ω3n−2 ∈ Ω3n−2. Let Aω

3n−3
= {i ∈ I :

πn−1
ω3n−3(i) 6= i}. By Lemma 1 (i), we know that

Qω
3n−2

3n−1

(
ω3n−1 ∈ Ω3n−1 : π̄n

(
i, (ω3n−2, ω3n−1)

)
= πn−1

(
i, ω3n−3

)
for any i ∈ Aω3n−3

)
= 1,
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which implies that Equation (15) holds.

Lemma 2 and Equation (48) imply that the extended type process β̄n is essentially

pairwise independent. It follows from the exact law of large numbers in Lemma 1 that for

P -almost all ω3n−2 ∈ Ω3n−2,

ρ̌n(ω3n−2) ' p̌n(ω3n−2) = λ
(
β̄nω3n−2

)−1
= E

(
p̌n
(
ω3n−2

))
= p̃n ' E (ρ̌n) . (49)

Then Equation (17) is equivalent to

P (¯̄gni = l | ᾱni = k, ḡni = J) = qnkl (p̃
n) .

Since paired agents do not match in this step, their extended types will not change. Thus, to

verify Equation (24), we only need to prove, for the event

An = {β̄ni = (a1, J), β̄nj = (a2, J), βti = (kt1, l
t
1), βtj = (kt2, l

t
2), t = 1, . . . , n− 1},

that

P
(

¯̄βni = (a1, r1), ¯̄βnj = (a2, r2) |An
)

= P
(

¯̄βni = (a1, r1) | β̄ni = (a1, J)
)
P
(

¯̄βnj = (a2, r2) | β̄nj = (a2, J)
)
.

Fix any k ∈ S. If p̃nkJ =
∫
I P (β̄ni = (k, J))dλ(i) = 0, then P (β̄ni = (k, J)) = 0 for λ-almost all

agent i ∈ I, which means that Equation (24) automatically holds. It follows from the continuity

requirement above Equation (49) that

ρ̌na1J q̂
n
a1r1(ρ̌n) ' p̃na1Jq

n
a1r1 (p̃n)

for P -almost all ω3n−2 ∈ Ω3n−2. Suppose p̃na1J > 0 and p̃na2J > 0. Hence, we can obtain that

for P -almost all ω3n−2 ∈ Ω3n−2, q̂na1r1(ρ̌n) ' qna1r1 (p̃n) and q̂na2r2(ρ̌n) ' qna2r2 (p̃n).
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We can now derive∫
I

∫
I

∣∣∣P( ¯̄βni = (a1, r1), ¯̄βnj = (a2, r2), β̄ni = (a1, J), β̄nj = (a2, J),

βti = (kt1, l
t
1), βtj = (kt2, l

t
2), t = 1, . . . , n− 1

)
−qna1r1 (p̃n) qna2r2 (p̃n)P (D3n−2

ij )
∣∣∣ dλ(j)dλ(i)

'
∫
I

∫
I

∣∣∣ ∫
D3n−2
ij

(
Qω

3n−2

3n−1

(
¯̄gn(i, ω3n−1) = r1, ¯̄g

n(j, ω3n−1) = r2

)
−q̂na1r1

(
ρ̌n(ω3n−2)

)
q̂na2r2

(
ρ̌n(ω3n−2)

) )
dQ3n−2(ω3n−2)

∣∣∣ dλ0(j)dλ0(i)

≤
∫
I

∫
I

∫
Ω3n−2

1D3n−2
ij

(ω3n−2)
∣∣∣Qω3n−2

3n−1

(
¯̄gn(i, ω3n−1) = r1, ¯̄g

n(j, ω3n−1) = r2

)
−q̂na1r1

(
ρ̌n(ω3n−2)

)
q̂na2r2

(
ρ̌n(ω3n−2)

) ∣∣∣ dQ3n−2(ω3n−2) dλ0(j) dλ0(i)

=

∫
Ω3n−2

∫
I

∫
I
1D3n−2

ij
(ω3n−2)

∣∣∣Qω3n−2

3n−1

(
¯̄gn(i, ω3n−1) = r1, ¯̄g

n(j, ω3n−1) = r2

)
−q̂na1r1

(
ρ̌n(ω3n−2)

)
q̂na2r2

(
ρ̌n(ω3n−2)

) ∣∣∣ dλ0(j) dλ0(i) dQ3n−2(ω3n−2), (50)

where

D3n−2 = {(ω3n−2, i, j) : β̄n(i, ω3n−2) = (a1, J), β̄n(j, ω3n−2) = (a2, J),

βt(i, ω3t) = (kt1, l
t
1), βt(j, ω3t) = (kt2, l

t
2), t = 1, . . . , n− 1},

D3n−2
ij is the (i, j)-section of D3n−2, and 1D3n−2

ij
is the indicator function of the set 1D3n−2

ij
in

Ω3n−2. By Lemma 7 (iii), it is clear that for λ-almost all i ∈ I, for λ-almost all j ∈ I, and for

any ω3n−2 ∈ D3n−2
ij , we have

Qω
3n−2

3n−1

(
¯̄gn(i, ω3n−1) = r1, ¯̄g

n(j, ω3n−1) = r2

)
' q̂na1r1

(
ρ̌n(ω3n−2)

)
q̂na2r2

(
ρ̌n(ω3n−2)

)
.

Hence, the last term of Equation (50) is equal to an infinitesimal. Therefore, the first term of

Equation (50) is equal to zero, which implies that for λ-almost all i ∈ I

P
(

¯̄βni = (a1, r1), ¯̄βnj = (a2, r2) |An
)

= qna1r1 (p̃n) qna2r2 (p̃n) , (51)

for λ-almost all j ∈ I.

For i ∈ I, let E3n−2
i = {ω3n−2 : β̄n(i, ω3n−2) = (a1, J)}. We can obtain that for λ-almost

all i ∈ I, and for any ω3n−2 ∈ E3n−2
i ,

P
(

¯̄βni = (a1, r1), β̄ni = (a1, J)
)
'
∫
E3n−2
i

Qω
3n−2

3n−1

(
¯̄gn(i, ω3n−1) = r1

)
dQ3n−2(ω3n−2),

and Qω
3n−2

3n−1

(
¯̄gn(i, ω3n−1) = r1

)
' q̂na1r1

(
ρ̌n(ω3n−2)

)
. Hence, we can obtain that for λ-almost all
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i ∈ I,

P
(

¯̄βni = (a1, r1), β̄ni = (a1, J)
)

'
∫
E3n−2
i

Qω
3n−2

3n−1

(
¯̄gn(i, ω3n−1) = r1

)
dQ3n−2(ω3n−2)

'
∫
E3n−2
i

q̂na1r1
(
ρ̌n(ω3n−2)

)
dQ3n−2(ω3n−2) ' P (E3n−2

i )qna1r1 (p̃n) .

Therefore, we have for λ-almost all i ∈ I,

P
(

¯̄βni = (a1, r1) | β̄ni = (a1, J)
)

= qna1r1 (p̃n) . (52)

Since p̌n(ω3n−2) ' p̃n for P -almost all ω3n−2 ∈ Ω3n−2, Equation (52) implies Equation (17).

Combining Equations (51) and (52) together, we have

P
(

¯̄βni = (a1, r1), ¯̄βnj = (a2, r2) |An
)

= qna1r1 (p̃n) qna2r2 (p̃n)

= P
(

¯̄βni = (a1, r1) | β̄ni = (a1, J)
)
P
(

¯̄βnj = (a2, r2) | β̄nj = (a2, J)
)
.

Hence, Equation (24) in the definition of Markov conditional independence is satisfied.

For the step of type changing with break-up in period n, fix any (a1, r1), (a2, r2), (x1, y1), (x2, y2),

and (kt1, l
t
1), (kt2, l

t
2), t = 1, . . . , n − 1 in Ŝ. For any agents i and j with i 6= j, we can obtain

that

P
(
βni = (a1, r1), βnj = (a2, r2), ¯̄βni = (x1, y1), ¯̄βnj = (x2, y2),

βti = (kt1, l
t
1), βtj = (kt2, l

t
2), t = 1, . . . , n− 1

)
'
∫
D3n−1
ij

Qω
3n−1

3n

(
βn(i, ω3n) = (a1, r1), βn(j, ω3n) = (a2, r2)

)
dQ3n−1(ω3n−1)

=

∫
D3n−1
ij

Qω
3n−1

3n

(
βn(i, ω3n) = (a1, r1), βn(j, ω3n) = (a2, r2)

)
dQ3n−1(ω3n−1)

+

∫
D

3n−1
ij

Qω
3n−1

3n

(
βn(i, ω3n) = (a1, r1), βn(j, ω3n) = (a2, r2)

)
dQ3n−1(ω3n−1),

where

D3n−1
ij = {ω3n−1 : ¯̄βni = (x1, y1), ¯̄βnj = (x2, y2),

βt(i, ω3t) = (kt1, l
t
1), βt(j, ω3t) = (kt2, l

t
2), t = 1, . . . , n− 1},

D3n−1
ij = {ω3n−1 : π̄n(i, ω3n−1) 6= j, ¯̄βni = (x1, y1), ¯̄βnj = (x2, y2),

βt(i, ω3t) = (kt1, l
t
1), βt(j, ω3t) = (kt2, l

t
2), t = 1, . . . , n− 1},
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D
3n−1
ij = {ω3n−1 : π̄n(i, ω3n−1) = j, ¯̄βni = (x1, y1), ¯̄βnj = (x2, y2),

βt(i, ω3t) = (kt1, l
t
1), βt(j, ω3t) = (kt2, l

t
2), t = 1, . . . , n− 1}.

Fix any agent i ∈ I. It is clear that D
3n−1
ij ∩ D3n−1

ij′ = ∅ for different j and j′. Then

there are at most countably many j ∈ I such that P (D
3n−1
ij ) > 0. Let F 3n−1

i = {j ∈ I : j 6=
i, P (D

3n−1
ij ) = 0}; then λ(F 3n−1

i ) = 1. Next, fix any j ∈ F 3n−1
i . The probability for agents

i and j to be partners is zero at the matching step in period n. When agents i and j are

not partners, their random extended types will be independent by the construction of Qω
3n−1

3n .

Hence, we can obtain that

P
(
βni = (a1, r1), βnj = (a2, r2), ¯̄βni = (x1, y1), ¯̄βnj = (x2, y2),

βti = (kt1, l
t
1), βtj = (kt2, l

t
2), t = 1, . . . , n− 1

)
'
∫
D3n−1
ij

Qω
3n−1

3n

(
βn(i, ω3n) = (a1, r1), βn(j, ω3n) = (a2, r2)

)
dQ3n−1(ω3n−1)

=

∫
D3n−1
ij

Qω
3n−1

3n

(
βn(i, ω3n) = (a1, r1)

)
Qω

3n−1

3n

(
βn(j, ω3n) = (a2, r2)

)
dQ3n−1(ω3n−1)

=

∫
D3n−1
ij

B3n
x1y1(a1, r1)B3n

x2y2(a2, r2) dQ3n−1(ω3n−1)

' P (D3n−1
ij )B3n

x1y1(a1, r1)B3n
x2y2(a2, r2),

where

B3n
kl (r, s) =


(1− θnkl)σnkl(r, s) if l, s ∈ S
θnklς

n
kl(r) if l ∈ S and s = J

δk(r)δJ(s) if l = J.

Therefore, for any i ∈ I, and for λ-almost all j ∈ I,

P
(
βni = (a1, r1), βnj = (a2, r2) | ¯̄βni = (x1, y1), ¯̄βnj = (x2, y2), (53)

βti = (kt1, l
t
1), βtj = (kt2, l

t
2), t = 1, . . . , n− 1

)
= B3n

x1y1(a1, r1)B3n
x2y2(a2, r2). (54)

Note that for any agent i ∈ I,

P (βni = (a1, r1), ¯̄βni = (x1, y1)) '
∫
E3n−1
i

Qω
3n−1

3n

(
βn(i, ω3n) = (a1, r1)

)
dQ3n−1(ω3n−1)

=

∫
E3n−1
i

B3n
x1y1(a1, r1) dQ3n−3(ω3n−3) ' P (E3n−1

j )B3n
x1y1(a1, r1),

where E3n−1
i = {ω3n−1 : ¯̄βn(i, ω3n−1) = (x1, y1)}. This implies that

P (βni = (a1, r1) | ¯̄βni = (x1, y1)) = B3n
x1y1(a1, r1).
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Hence, Equations (20), (21) and (22) in the definition of the dynamical system D are satisfied.

By Equation (53), we can obtain for each i ∈ I, and for λ-almost all j ∈ I,

P
(
βni = (a1, r1), βnj = (a2, r2) | ¯̄βni = (x1, y1), ¯̄βnj = (x2, y2),

βti = (kt1, l
t
1), βtj = (kt2, l

t
2), t = 1, . . . , n− 1

)
= P

(
βni = (a1, r1) | ¯̄βni = (x1, y1)

)
P
(
βnj = (a2, r2) | ¯̄βnj = (x2, y2)

)
.

Hence, Equation (25) in the definition of Markov conditional independence is satisfied.

In summary, we have shown the validity of Equations (13) to (22), and (23) to (25).

Hence D is a dynamical system with the Markov conditional independence property, where the

initial condition Π0 is deterministic. Note that, for each n ∈ N and ω ∈ Ω, since πnω and π̄nω

are internal bijections on I, it is obvious that πnω and π̄nω are measure-preserving from the Loeb

space (I, I, λ) to itself.

Finally, we consider the case that the initial extended type process β0 is i.i.d. across

agents. We shall use the construction for the case of deterministic initial condition. We choose

n = −1 to be the initial period so that we can have some flexibility in choosing the parameters

in period 0. Assume that at n = −1, all agents have type 1, and no agents are matched.

Namely, the initial type function is α−1 ≡ 1 while the initial matching is π−1 ≡ i.
Denote

∑
r∈S∪{J} p̈

0
kr by p̈0

k. For the parameters in period 0, let

b0kr =

{
p̈0
r if k = 1

δk(r) if k 6= 1,

q0
kl(p̂) =

 1
p̂kJ

min
(
p̈0klp̂kJ
p̈0k

,
p̈0klp̂lJ
p̈0l

)
if p̂kJ 6= 0, p̈0

k 6= 0 and p̈0
l 6= 0

0 otherwise,

σ0
kl(k

′, l′) = δk(k
′)δl(l

′), ς0
kl(k

′) = δk(k
′), and θ0

kl = 0 for any k, k′, l, l′ ∈ S. Following the

construction for the case of deterministic initial condition, there exists a Fubini extension

(I × Ω, I � F , λ � P ) on which is defined a dynamical system D = (Πn)∞n=−1 that is Markov

conditionally independent with the parameters (bn, qn, σn, θn)∞n=0.

By Lemma 4, p̃0
kl = δJ(l)p̈0

k. It follows from part (2) of Theorem 4 that,

z0
(1J)(kl) = p̈0

k

p̈0
kl

p̈0
k

= p̈0
kl,

z0
(1J)(kJ) = 1−

∑
l∈S

z0
(1J)(kl) = 1−

∑
l∈S

p̈0
kl = p̈0

kJ .

Therefore, for λ-almost all i ∈ I,

P (β0
i = (k, l)) = P (β0

i = (k, l) |β−1
i = (1, J))P (β−1

i = (1, J)) = z0
(1J)(kl) = p̈0

kl
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for any k ∈ S, l ∈ S ∪ {J}. Part (3) of Theorem 4 implies the essential pairwise independence

of β0. Thus, we can simply start the dynamical system D from time zero instead of time −1

so that we can have an i.i.d. initial extended type process β0.

E.3 Proofs of Propositions 2 and 5

In this subsection, the unit interval [0, 1] will have a different notation in a different context.

Recall that (L,L, χ) is the Lebesgue unit interval, where χ is the Lebesgue measure defined on

the Lebesgue σ-algebra L. We shall prove Proposition 5 first. The proof of Proposition 2 then

follows easily.

Note that the agent space used in the proof of Theorem 5 is a hyperfinite Loeb counting

probability space. As shown in Proposition 6, a hyperfinite index set of agents has the external

cardinality of the continuum. The purpose of Proposition 5 is to show that one can find some

extension of the Lebesgue unit interval as the agent space so that the associated version of

Theorem 5 still holds.

Fix a Fubini extension (Î × Ω, Î � F , λ̂� P ) as constructed in the proof of Theorem 5.

Following Appendix A of Sun and Zhang (2009) and Appendix B in Duffie and Sun (2012), we

can state the following lemma.52

Lemma 8 There exists a Fubini extension (I × Ω, I � F , λ� P ) such that:

(1) The agent space (I, I, λ) is an extension of the Lebesgue unit interval (L,L, χ).

(2) There exists a surjective mapping ϕ from I to Î such that ϕ−1(̂i) has the cardinality of

the continuum for any î ∈ Î and ϕ is measure preserving, in the sense that for any A ∈ Î,

ϕ−1(A) is measurable in I with λ[ϕ−1(A)] = λ̂(A).

(3) Let Φ be the mapping (ϕ, IdΩ) from I × Ω to Î × Ω, that is, Φ(i, ω) = (ϕ, IdΩ)(i, ω) =

(ϕ(i), ω) for any (i, ω) ∈ I ×Ω. Then Φ is measure preserving from (I ×Ω, I �F , λ�P )

to (Î × Ω, Î � F , λ̂ � P ) in the sense that for any V ∈ Î � F , Φ−1(V ) is measurable in

I � F with (λ� P )[Φ−1(V )] = (λ̂� P )(V ).

Denote the MCI dynamical system with parameters (b, q, σ, ς, θ) and a deterministic

initial condition, as constructed in proof of Theorem 5 by D̂. For that dynamical system, we

add a hat to the relevant type processes, matching functions, and partners’ type processes. We

shall follow the proof of Theorem 4 in Duffie and Sun (2012).

Proof of Proposition 5: Based on the dynamical system D̂ on the Fubini extension (Î ×
52Parts (2) and (3) of Lemma 8 are taken from Lemma 11 in Duffie and Sun (2012).
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Ω, Î � F , λ̂ � P ), we shall now define, inductively, a new dynamical system D on the Fubini

extension (I × Ω, I � F , λ� P ).

For any î, î′ ∈ Î with î 6= î′, let Θî,̂i′ be a bijection from ϕ−1(̂i) to ϕ−1(̂i′), and Θî′ ,̂i be

the inverse mapping of Θî,̂i′ . This is possible since both ϕ−1(̂i) and ϕ−1(̂i′) have cardinality of

the continuum.

Let α0 be the mapping α̂0(ϕ) from I to S,

π0(i) =

{
i if π̂0(ϕ(i)) = ϕ(i)

Θϕ(i), π̂0(ϕ(i))(i) if π̂0(ϕ(i)) 6= ϕ(i),

and g0(i) = α0
(
π0(i)

)
= ĝ0(ϕ(i)). By the measure preserving property of ϕ in Lemma 8, we

know that β0 = (α0, g0) is I-measurable type function with distribution p̂0 on S × (S ∪ {J}).
For each time period n ≥ 1, let ᾱn and αn be the respective mappings ˆ̄αn(Φ) and α̂n(Φ)

from I×Ω to S. Define mappings π̄n, and πn from I×Ω to I such that for each (i, ω) ∈ I×Ω,

π̄n(i, ω) =

{
i if ˆ̄πnω(ϕ(i)) = ϕ(i)

Θϕ(i), ˆ̄πnω(ϕ(i))(i) if ˆ̄πnω(ϕ(i)) 6= ϕ(i)

πn(i, ω) =

{
i if π̂nω(ϕ(i)) = ϕ(i)

Θϕ(i), π̂nω(ϕ(i))(i) if π̂nω(ϕ(i)) 6= ϕ(i).

When πnω(ϕ(i)) 6= ϕ(i), πnω defines a full matching on ϕ−1(Ĥn
ω), where Ĥn

ω = Î−{i : π̂ω(i)n = i},
which implies that πnω(i) 6= i. Hence, πn is a well-defined mapping from I × Ω to I. For the

same reason, π̄n is well defined.

Since Φ is measure-preserving and ˆ̄αn and α̂n are measurable mappings from (Î ×Ω, Î�
F , λ̂� P ) to S. By the definitions of ᾱn and αn, it is obvious that for each i ∈ I,

ᾱni = ˆ̄αnϕ(i) and αni = α̂nϕ(i). (55)

Next, we consider the property of π̄n and πn. Fix any ω ∈ Ω. Let Hn
ω = I −{i : πni = i};

then Hn
ω = ϕ−1(Ĥn

ω). Pick any i ∈ Hn
ω and denote πnω(i) by j. Then, ϕ(i) ∈ Ĥn

ω . The

definition of πn implies that j = Θϕ(i), π̂nω(ϕ(i))(i). Since Θϕ(i), π̂nω(ϕ(i)) is a bijection between

Cϕ(i) and Cπ̂nω(ϕ(i)), it follows that ϕ(j) = ϕ(πnω(i)) = π̂nω(ϕ(i)) by the definition of ϕ. Thus,

j = Θϕ(i), ϕ(j)(i). Since the inverse of Θϕ(i), ϕ(j) is Θϕ(j), ϕ(i), we know that Θϕ(j), ϕ(i)(j) = i.

By the full matching property of π̂nω, ϕ(j) 6= ϕ(i), ϕ(j) ∈ Ĥn
ω and π̂nω(ϕ(j)) = ϕ(i). Hence, we

have j 6= i, and

πnω(j) = Θϕ(j), π̂nω(ϕ(j))(j) = Θϕ(j), ϕ(i)(j) = i.

This means that the composition of πnω with itself on Hn
ω is the identity mapping on Hn

ω , which

also implies that πnω is a bijection on Hn
ω . Therefore πnω is a full matching on Hn

ω = I − {i :

πni = i}.
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We define gn : I × Ω→ S ∪ {J} by

gn(i, ω) =

{
αn(πn(i, ω)) if πn(i, ω) 6= i

J if πn(i, ω) = i.

As noted in the above paragraph, for any fixed ω ∈ Ω, ϕ(πnω(i)) = π̂nω(ϕ(i)) for i ∈ Hn
ω . When

i /∈ Hn
ω , we have ϕ(i) /∈ Ĥn

ω , and πnω(i) = i, π̂nω(ϕ(i)) = ϕ(i). Therefore, ϕ(πnω(i)) = π̂nω(ϕ(i))

for any i ∈ I. Then, for any (i, ω) such that πni 6= i,

gn(i, ω) = α̂n(ϕ(πn(i, ω)), ω) = α̂n(π̂n(ϕ(i), ω), ω) = ĝn(ϕ(i), ω) = ĝn(Φ)(i, ω).

For any (i, ω) such that πni = i,

gn(i, ω) = J = ĝn(ϕ(i), ω) = ĝn(Φ)(i, ω).

We can prove that ḡn(i, ω) = ˆ̄gn(Φ)(i, ω) and ¯̄gn(i, ω) = ˆ̄̄gn(Φ)(i, ω) in the same way. Hence,

the measure-preserving property of Φ implies that gn is I �F-measurable. The previous three

identities on the partners’ processes also mean that for any i ∈ I,

gni ( · ) = ĝnϕ(i)( · ), ḡ
n
i ( · ) = ˆ̄gnϕ(i)( · ), ¯̄gni ( · ) = ˆ̄̄gnϕ(i)( · ).

Since ᾱn = ˆ̄αn(Φ) and ḡn = ˆ̄gn(Φ), Equation (13) implies that for λ-almost all i ∈ I,

P (ᾱni = k2, ḡ
n
i = l2 |αn−1

i = k1, g
n−1
i = l1) = P ( ˆ̄αnϕ(i) = k2, ˆ̄g

n
ϕ(i) = l2| α̂n−1

ϕ(i) = k1, ĝ
n−1
ϕ(i) = l1)

= bnk1k2b
n
l1l2 .

Similarly, we can obtain that for λ-almost all i ∈ I,

P (ᾱni = k2, ḡ
n
i = r |αn−1

i = k1, g
n−1
i = J) = bnk1k2δJ(r),

P (¯̄gni = l | ᾱni = k, ḡni = J, p̌n) = qnkl(p̌
n(ω)),

P (αni = l1, g
n
i = r | ᾱni = k1, ¯̄g

n
i = J) = δk1(l1) δJ(r),

P (αni = l1, g
n
i = J | ᾱni = k1, ¯̄g

n
i = k2) = θnk1k2ς

n
k1k2(l1),

P (αni = l1, g
n
i = l2 | ᾱni = k1, ¯̄g

n
i = k2) = (1− θnk1k2)σnk1k2(l1, l2).

Therefore, D is a dynamical system with random mutation, directed random matching and

type changing with break-up and with the parameters (p0, b, q, σ, ς, θ).
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It remains to check the Markov conditional independence for D. Since the dynamical

system D̂ is Markov conditionally independent, for each n ≥ 1, there is a set Î ′ ∈ Î with

λ̂(Î ′) = 1, and for each î ∈ Î ′, there exists a set Êî ∈ Î with λ̂(Êî) = 1, with Equations (23)

to (25) being satisfied for any î ∈ Î ′ and any ĵ ∈ Êî. Let I ′ = ϕ−1(Î ′). For any i ∈ I ′, let

Ei = ϕ−1(Ê ϕ(i)). Since ϕ is measure-preserving, λ(I ′) = λ(Ei) = 1. Fix any i ∈ I ′, and any

j ∈ Ei. Denote ϕ(i) by î and ϕ(j) by ĵ. Then, it is obvious that î ∈ Î ′ and ĵ ∈ Êî. Therefore

Equations (23) to (25) are satisfied for any i′ ∈ I ′ and any j′ ∈ Ei′ . Therefore the dynamical

system D is Markov conditionally independent.

Now, we check the measure-preserving property as stated in Footnote 34.53 Let I ′�F =

{B′ ⊆ I × Ω : B′ = Φ−1(B) for some B ∈ Î � F}. By Lemma 8, I ′ and I ′ � F are sub

σ-algebras of I and I�F respectively. Note that αn, ᾱn, gn, ḡn and ḡn are still measurable on

(I×Ω, I ′�F , λ�P ), then the dynamical system D is also Markov conditionally independent on

(I×Ω, I ′�F , λ�P ). Note that, for each n ∈ N and ω ∈ Ω, π̂nω and ˆ̄πnω are measure-preserving

from the Loeb space (Î , Î, λ̂) to itself. Therefore, for any A ∈ I ′,

λ((πnω)−1(A)) = λ̂(φ((πnω)−1(A))) = λ̂((π̂nω)−1(φ(A))) = λ̂(φ(A)) = λ(A),

which implies that πn is measure preserving. We can prove that π̄n is measure preserving on

(I × Ω, I ′ � F , λ� P ) in the same way.

By using exactly the same proof as that given at the end of the proof of Theorem 5, we

can have an i.i.d. (instead of deterministic) initial extended type process β0 in the statement

of this proposition.

Proof of Proposition 2: In the proof of Proposition 5, take the initial extended type distri-

bution p̂0
kl = pkδJ(l). Assume that there is no genuine random mutation. Then, it is clear that

p̃0
kl = pkδJ(l) for any k ∈ S. Consider the random matching π1 in period one.

Fix an agent i with α0(i) = k. We have P (ᾱ1
i = k) = 1, P

(
¯̄g1
i = l

)
= qkl and

P
(
¯̄g1
i = J

)
= ηk. Similarly, Equation (24) implies that the process ¯̄g1 is essentially pair-

wise independent. By taking the type function α to be α0, the matching function π to be π̄1,

and the associated process g to be ¯̄g1, the proposition holds.

53The measure-preserving property as stated in Footnotes 16 and 19 can be checked by using the same idea.
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