In Duffie, Pan and Singleton (2000) on page 1368 you depict the ergodic correlation implied by the model (4.6) as

$$
\operatorname{Corr}\left(V_{t}, V_{t+\tau}\right)=e^{-\kappa \tau}+\left(e^{-\kappa_{0} \tau}-e^{-\kappa \tau}\right) \frac{\sigma_{0}^{2} \kappa /\left(\kappa-\kappa_{0}\right)}{\sigma^{2}\left(\kappa+\kappa_{0}\right) / \kappa+\sigma_{0}^{2} \kappa / \kappa_{0}}
$$

I think there is a typo. Indeed, pick $\sigma \rightarrow 0$, in which case the expression becomes

$$
f\left(\kappa, \kappa_{0}, \tau\right):=\operatorname{Corr}\left(V_{t}, V_{t+\tau}\right)=e^{-\kappa \tau}+\left(e^{-\kappa_{0} \tau}-e^{-\kappa \tau}\right) \frac{\kappa_{0}}{\kappa-\kappa_{0}}
$$

Now differentiate $\frac{\partial f}{\partial \tau}$ and evaluate at $\tau=0$ to get

$$
\left.\frac{\partial f}{\partial \tau}\right|_{\tau=0}=-\frac{\left(\kappa-\kappa_{0}\right)^{2}}{\kappa-\kappa_{0}}>0 \quad \text { for } \kappa<\kappa_{0}
$$

Since $f(\tau=0)=1$, the correlation is above 1 for small $\tau>0$.
When I do the computations, I get the last term in your expression multiplied by a factor $\frac{\kappa}{\kappa_{0}}$:

$$
\operatorname{Corr}\left(V_{t}, V_{t+\tau}\right)=e^{-\kappa \tau}+\left(e^{-\kappa_{0} \tau}-e^{-\kappa \tau}\right) \frac{\sigma_{0}^{2} \kappa /\left(\kappa-\kappa_{0}\right)}{\sigma^{2}\left(\kappa+\kappa_{0}\right) / \kappa+\sigma_{0}^{2} \kappa / \kappa_{0}} \frac{\kappa}{\kappa_{0}}
$$

That expression is bounded above by 1. To check, if I repeated the same differentiation as above, I get

$$
\left.\frac{\partial f}{\partial \tau}\right|_{\tau=0}=0
$$

