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TRANSFORM ANALYSIS AND ASSET PRICING
FOR AFFINE JUMP-DIFFUSIONS

BY DARRELL DUFFIE, JUN PAN, AND KENNETH SINGLETON1

In the setting of ‘‘affine’’ jump-diffusion state processes, this paper provides an
analytical treatment of a class of transforms, including various Laplace and Fourier
transforms as special cases, that allow an analytical treatment of a range of valuation and
econometric problems. Example applications include fixed-income pricing models, with a
role for intensity-based models of default, as well as a wide range of option-pricing
applications. An illustrative example examines the implications of stochastic volatility and
jumps for option valuation. This example highlights the impact on option ‘smirks’ of the
joint distribution of jumps in volatility and jumps in the underlying asset price, through
both jump amplitude as well as jump timing.

KEYWORDS: Affine jump diffusions, option pricing, stochastic volatility, Fourier trans-
form.

1. INTRODUCTION

IN VALUING FINANCIAL SECURITIES in an arbitrage-free environment, one in-
evitably faces a trade-off between the analytical and computational tractability
of pricing and estimation, and the complexity of the probability model for the
state vector X. In light of this trade-off, academics and practitioners alike have
found it convenient to impose sufficient structure on the conditional distribution
of X to give closed- or nearly closed-form expressions for securities prices. An
assumption that has proved to be particularly fruitful in developing tractable,

Ž .dynamic asset pricing models is that X follows an affine jump-diffusion AJD ,
which is, roughly speaking, a jump-diffusion process for which the drift vector,
‘‘instantaneous’’ covariance matrix, and jump intensities all have affine depen-
dence on the state vector. Prominent among AJD models in the term-structure

Ž .literature are the Gaussian and square-root diffusion models of Vasicek 1977
Ž .and Cox, Ingersoll, and Ross 1985 . In the case of option pricing, there is a

substantial literature building on the particular affine stochastic-volatility model
Ž .for currency and equity prices proposed by Heston 1993 .

This paper synthesizes and significantly extends the literature on affine
asset-pricing models by deriving a closed-form expression for an ‘‘extended
transform’’ of an AJD process X, and then showing that this transform leads to
analytically tractable pricing relations for a wide variety of valuation problems.
More precisely, fixing the current date t and a future payoff date T , suppose

1We are grateful for extensive discussions with Jun Liu; conversations with Jean Jacod, Monika
Piazzesi, Philip Protter, and Ruth Williams; helpful suggestions by anonymous referees and the
editor; and support from the Financial Research Initiative, The Stanford Program in Finance, and
the Gifford Fong Associates Fund at the Graduate School of Business, Stanford University.
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Ž .that the stochastic ‘‘discount rate’’ R X , for computing present values of futuret
cash flows, is an affine function of X . Also, consider the generalized terminalt

Ž . u�XTpayoff function � �� �X e of X , where � is scalar and the n elements0 1 T T 0
of each of � and u are scalars. These scalars may be real, or more generally,1
complex. We derive a closed-form expression for the transform

T u�XTŽ . Ž . Ž .1.1 E exp � R X , s ds � �� �X e ,Ht s 0 1 Tž /ž /t

where E denotes expectation conditioned on the history of X up to t. Then,t
using this transform, we show that the tractability offered by extant, specialized
affine pricing models extends to the entire family of AJDs. Additionally, by

Ž . u�XTselectively choosing the payoff � �� �X e , we significantly extend the set0 1 T
Ž .of pricing problems security payoffs that can be tractably addressed with X

following an AJD. To motivate the usefulness of our extended transform in
theoretical and empirical analyses of affine models, we briefly outline three
applications.

1.1. Affine, Defaultable Term Structure Models

There is a large literature on the term structure of default-free bond yields
that presumes that the state vector underlying interest rate movements follows

Žan AJD under risk-neutral probabilities see, for example, Dai and Singleton
Ž . .1999 and the references therein . Assuming that the instantaneous riskless
short-term rate r is affine with respect to an n-dimensional AJD process Xt t
Ž . Ž . Ž .that is r �� �� �X Duffie and Kan 1996 show that the T� t -periodt 0 1 t
zero-coupon bond price,

TŽ .1.2 E exp � r ds X ,H s tž /ž /t

is known in closed form, where expectations are computed under the risk-
neutral measure.2

Recently, considerable attention has been focused on extending these models
to allow for the possibility of default in order to price corporate bonds and other
credit-sensitive instruments.3 To illustrate the new pricing issues that may arise
with the possibility of default, suppose that, with respect to given risk-neutral
probabilities, X is an AJD; the arrival of default is at a stochastic intensity � ,t
and upon default the holder recovers a constant fraction w of face value. Then,

Ž .from results in Lando 1998 , the initial price of a T-period zero-coupon bond is

2 Ž .The entire class of affine term structure models is obtained as the special case of 1.1 found by
Ž .setting R X � r , u�0, � �1, and � �0.t t 0 1

3 Ž . Ž .See, for example, Jarrow, Lando, and Turnbull 1997 and Duffie and Singleton 1999 .
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given under technical conditions by

T TŽ . Ž .1.3 E exp � r �� dt �w q dt ,H Ht t tž /ž /0 0

� Ž tŽ . .� Ž .where q �E � exp �H r �� du . The first term in 1.3 is the value of at t 0 u u
claim that pays 1 contingent on survival to maturity T. We may view q as thet

Ž .price density of a claim that pays 1 if default occurs in the ‘‘interval’’ t, t�dt .
Ž .Thus the second term in 1.3 is the price of any proceeds from default before T.

These expectations are to be taken with respect to the given risk-neutral
Ž .probabilities. Both the first term of 1.3 and, for each t, the price density q cant

be computed in closed form using our extended transform. Specifically, assuming
Ž .that both r and � are affine with respect to X , the first term in 1.3 is thet t t

Ž . Ž .special case of 1.1 obtained by letting R X � r �� , u�0, � �1, and � �0.t t t 0 1
Ž . Ž .Similarly, q is obtained as a special case of 1.1 by setting u�0, R X � r �� ,t t t t

and � �� �X �� . Thus, using our extended transform, the pricing of default-0 1 t t
able zero-coupon bonds with constant fractional recovery of par reduces to the
computation of a one-dimensional integral of a known function. Similar reason-
ing can be used to derive closed-form expressions for bond prices in environ-
ments for which the default arrival intensity is affine in X along with ‘‘gapping’’
risk associated with unpredictable transitions to different credit categories, as

Ž .shown by Lando 1998 .
A different application of the extended transform is pursued by Piazzesi

Ž .1998 , who extends the AJD model in order to treat term-structure models with
releases of macroeconomic information and with central-bank interest-rate
targeting. She considers jumps at both random and at deterministic times, and
allows for an intensity process and interest-rate process that have linear-
quadratic dependence on the underlying state vector, extending the basic results
of this paper.

1.2. Estimation of Affine Asset Pricing Models

Ž .Another useful implication of 1.1 is that, by setting R�0, � �1, and0
� �0, we obtain a closed-form expression for the conditional characteristic1

Ž . Ž iu�XT � .function � of X given X , defined by � u, X , t, T �E e X , for real u.T t t t
Because knowledge of � is equivalent to knowledge of the joint conditional
density function of X , this result is useful in estimation and all other applica-T
tions involving the transition densities of an AJD.

Ž .For instance, Singleton 2000 exploits knowledge of � to derive maximum
Ž � .likelihood estimators for AJDs based on the conditional density f � X of Xt t�1

given X , obtained by Fourier inversion of � ast

1
�i u�X t� 1Ž . Ž � . Ž .1.4 f X X � e � u , X , t , t�1 du.Ht�1 t tN NŽ . �2�
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Ž . Ž .Das 1998 exploits 1.4 for the specific case of a Poisson-Gaussian AJD to
compute method-of-moments estimators of a model of interest rates.

Method-of-moments estimators can also be constructed directly in terms of
the conditional characteristic function. From the definition of �,

iu�X t� 1Ž . Ž . �1.5 E e �� u , X , t , t�1 X �0,t t

Ž iu�X t� 1so any measurable function of X is orthogonal to the ‘‘error’’ e �t
Ž .. Ž .� u, X , t, t�1 . Singleton 1999 uses this fact, together with the knownt

functional form of �, to construct generalized method-of-moments estimators of
the parameters governing AJDs and, more generally, the parameters of asset
pricing models in which the state follows an AJD. These estimators are compu-
tationally tractable and, in some cases, achieve the same asymptotic efficiency as

Ž .the maximum likelihood estimator. Jiang and Knight 1999 and Chacko and
Ž .Viceira 1999 propose related, characteristic-function based estimators of the

stochastic volatility model of asset returns with volatility following a square-root
diffusion.4

1.3. Affine Option-Pricing Models

Ž .In an influential paper in the option-pricing literature, Heston 1993 showed
that the risk-neutral exercise probabilities appearing in the call option-pricing
formulas for bonds, currencies, and equities can be computed by Fourier
inversion of the conditional characteristic function, which he showed is known in
closed form for his particular affine, stochastic volatility model. Building on this
insight,5 a variety of option-pricing models have been developed for state vectors

Ž .having at most a single jump type in the asset return , and whose behavior
between jumps is that of a Gaussian or ‘‘square-root’’ diffusion.6

Ž .Knowing the extended transform 1.1 in closed-form, we can extend this
option pricing literature to the case of general multi-dimensional AJD processes
with much richer dynamic interrelations among the state variables and much
richer jump distributions. For example, we provide an analytically tractable
method for pricing derivatives with payoffs at a future time T of the form
Ž b�XT .� ne �c , where c is a constant strike price, b�� , X is an AJD, and

� Ž .y �max y, 0 . This leads directly to pricing formulas for plain-vanilla options
Žon currencies and equities, quanto options such as an option on a common

4 Ž . Ž .Liu, Pan, and Pedersen 2000 and Liu 1997 propose alternative estimation strategies that
exploit the special structure of affine diffusion models.

5Among the many recent papers examining option prices for the case of state variables following
Ž . Ž . Ž .square-root diffusions are Bakshi, Cao, and Chen 2000 , Bakshi and Madan 2000 , Bates 1996 ,

Ž . Ž . Ž . Ž . Ž .Bates 1997 , Chen and Scott 1993 , Chernov and Ghysels 1998 , Pan 1998 , Scott 1996 , and Scott
Ž .1997 , among others.

6 More precisely, the short-term interest rate has been assumed to be an affine function of
independent square-root diffusions and, in the case of equity and currency option pricing, spot-market
returns have been assumed to follow stochastic-volatility models in which volatility processes are
independent ‘‘square-root’’ diffusions that may be correlated with the spot-market return shock.
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.stock or bond struck in a different currency , options on zero-coupon bonds,
caps, floors, chooser options, and other related derivatives. Furthermore, we can

Ž .� Ž a�XT .�price payoffs of the form b �X �c and e b �X �c , allowing us toT T
price ‘‘slope-of-the-yield-curve’’ options and certain Asian options.7

In order to visualize our approach to option pricing, consider the price p at
Ž d�XT .� ndate 0 of a call option with payoff e �c at date T , for given d�� and

strike c, where X is an n-dimensional AJD, with a short-term interest-rate
process that is itself affine in X. For any real number y and any a and b in � n,

Ž . a�XTlet G y denote the price of a security that pays e at time T in the eventa, b
that b �X �y. As the call option is in the money when �d�X ��ln c, and inT T
that case pays ed�XT �ce0�XT , we have the option priced at

Ž . Ž . Ž .1.6 p�G �ln c �cG �ln c .d ,�d 0,�d

Ž .Because it is an increasing function, G � can be treated as a measure. Thus, ita, b
Ž . Ž .is enough to be able to compute the Fourier transform GG � of G � , defineda, b a, b

by

��
i z yŽ . Ž .GG z � e dG y ,Ha , b a , b

��

for then well-known Fourier-inversion methods can be used to compute terms of
Ž . Ž .the form G y in 1.6 .a, b

Ž . Ž .There are many cases in which the Fourier transform GG � of G � can bea, b a, b
Ž .computed explicitly. We extend the range of solutions for the transform GG �a, b

from those already in the literature to include the entire class of AJDs by noting
Ž . Ž .that G z is given by 1.1 , for the complex coefficient vector u�a� izb, witha, b

� �1 and � �0. This, because of the affine structure, implies under regularity0 1
conditions that

Ž . Ž . � Ž0.�	 Ž0.�X 01.7 GG z �e ,a , b

where � and 	 solve known, complex-valued ordinary differential equations
Ž .ODEs with boundary conditions at T determined by z. In some cases, these
ODEs have explicit solutions. These include independent square-root diffusion

Ž .models for the short-rate process, as in Chen and Scott 1995 , and the
Ž .stochastic-volatility models of asset prices studied by Bates 1997 and Bakshi,

Ž .Cao, and Chen 1997 . Using our ODE-based approach, we derive other explicit
examples, for instance, stochastic-volatility models with correlated jumps in both
returns and volatility. In other cases, one can easily solve the ODEs for � and 	
numerically, even for high-dimensional applications.

7 Ž .In a complementary analysis of derivative security valuation, Bakshi and Madan 2000 show that
Ž .knowledge of the special case of 1.1 with � �� �X �1 is sufficient to recover the prices of0 1 T

standard call options, but they do not provide explicit guidance as to how to compute this transform.
Their applications to Asian and other options presumes that the state vector follows square-root or
Heston-like stochastic-volatility models for which the relevant transforms had already been known in
closed form.
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Similar transform analysis provides a price for an option with a payoff of the
Ž .�form d�X �c , again for the general AJD setting. For this case, we provideT

˜ Ž .an equally tractable method for computing the Fourier transform of G � ,a, b, d
˜ d�XTŽ .where G y is the price of a security that pays e a�X at T in the eventa, b, d T

Ž .that b �X �y. This transform is again of the form 1.1 , now with � �a. GivenT 1
˜ Ž .this transform, we can invert to obtain G y and the option price p
 asa, b, d

˜Ž . Ž . Ž .1.8 p
�G �ln c �cG �ln c .a ,�a , 0 0, �a

As shown in Section 3, these results can be used to price slope-of-the-yield-curve
options and certain Asian options.

Our motivation for studying the general AJD setting is largely empirical. The
AJD model takes the elements of the drift vector, ‘‘instantaneous’’ covariance
matrix, and jump measure of X to be affine functions of X. This allows for

Žconditional variances that depend on all of the state variables unlike the
.Gaussian model , and for a variety of patterns of cross-correlations among the

Želements of the state vector unlike the case of independent square-root
. Ž .diffusions . Dai and Singleton 1999 , for instance, found that both time-varying

conditional variances and negatively correlated state variables were essential
ingredients to explaining the historical behavior of term structures of U.S.
interest rates.

Ž .Furthermore, for the case of equity options, Bates 1997 and Bakshi, Cao,
Ž .and Chen 1997 found that their affine stochastic-volatility models did not fully

explain historical changes in the volatility smiles implied by S&P 500 index
options. Within the affine family of models, one potential explanation for their
findings is that they unnecessarily restricted the correlations between the state
variables driving returns and volatility. Using the classification scheme for affine

Ž .models found in Dai and Singleton 1999 , one may nest these previous stochas-
tic-volatility specifications within an AJD model with the same number of state
variables that allows for potentially much richer correlation among the return
and volatility factors.

Ž . Ž .The empirical studies of Bates 1997 and Bakshi, Cao, and Chen 1997 also
motivate, in part, our focus on multivariate jump processes. They concluded that

Ž .their stochastic-volatility models with jumps in spot-market returns only do not
allow for a degree of volatility of volatility sufficient to explain the substantial
‘‘smirk’’ in the implied volatilities of index option prices. Both papers conjec-
tured that jumps in volatility, as well as in returns, may be necessary to explain
option-volatility smirks. Our AJD setting allows for correlated jumps in both
volatility and price. Jumps may be correlated because their amplitudes are
drawn from correlated distributions, or because of correlation in the jump times.
ŽThe jump times may be simultaneous, or have correlated stochastic arrival

.intensities.
In order to illustrate our approach, we provide an example of the pricing of

plain-vanilla calls on the S&P 500 index. A cross-section of option prices for a
given day are used to calibrate AJDs with simultaneous jumps in both returns
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and volatility. Then we compare the implied-volatility smiles to those observed
in the market on the chosen day. In this manner we provide some preliminary
evidence on the potential role of jumps in volatility for resolving the volatility

Ž . Ž .puzzles identified by Bates 1997 and Bakshi, Cao, and Chen 1997 .
The remainder of this paper is organized as follows. Section 2 reviews the

class of affine jump-diffusions, and shows how to compute some relevant
transforms, and how to invert them. Section 3 presents our basic option-pricing
results. The example of the pricing of plain-vanilla calls on the S&P 500 index is
presented in Section 4. Additional appendices provide various technical results
and extensions.

2. TRANSFORM ANALYSIS FOR AJD STATE-VECTORS

This section presents the AJD state-process model and the basic-transform
calculations that will later be useful in option pricing.

2.1. The Affine Jump-Diffusion

Ž . 8 Ž .We fix a probability space � , FF, P and an information filtration FF , andt
suppose that X is a Markov process in some state space D	� n, solving the
stochastic differential equation

Ž . Ž . Ž .2.1 dX �� X dt� X dW �dZ ,t t t t t

Ž . n n n�nwhere W is an FF -standard Brownian motion in � ; �: D�� ,  : D�� ,t
and Z is a pure jump process whose jumps have a fixed probability distribution

n � Ž . 4 � .� on � and arrive with intensity � X :t
0 , for some �: D� 0,� . To bet
precise, we suppose that X is a Markov process whose transition semi-group has
an infinitesimal generator9 DD of the Levy type, defined at a bounded C 2´
function f : D��, with bounded first and second derivatives, by

1 �Ž . Ž . Ž . Ž . Ž . Ž . Ž .2.2 DDf x � f x � x � tr f x  x  xx x x2

Ž . � Ž . Ž .� Ž .�� x f x�z � f x d� z .H
n�

Intuitively, this means that, conditional on the path of X, the jump times of Z
� Ž .are the jump times of a Poisson process with time-varying intensity � X :0�ss

4� t , and that the size of the jump of Z at a jump time T is independent of
� 4X :0�s�T and has the probability distribution � .s

8 Ž . � 4The filtration FF � FF :t
0 is assumed to satisfy the usual conditions, and X is assumed to bet t
Ž . Ž .Markov relative to FF . For technical details, see for example, Ethier and Kurtz 1986 .t

9 � Ž . t Ž . 4The generator DD is defined by the property that f X �H DDf X ds:t
0 is a martingale fort 0 s
Ž .any f in its domain. See Ethier and Kurtz 1986 for details.
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ŽFor notational convenience, we assume that X is ‘‘known’’ has a trivial0
.distribution . Appendices provide additional technical details, as well as general-

izations to multiple jump types with different arrival intensities, and to time-
Ž .dependent �,  , �, � .

We impose an ‘‘affine’’ structure on �, � , and �, in that all of these
functions are assumed to be affine on D. In order for X to be well defined,

Ž .there are joint restrictions on D, �,  , �, � , as discussed in Duffie and Kan
Ž . Ž .1996 and Dai and Singleton 1999 . The case of one-dimensional nonnegative
affine processes, generalized as in Appendix B to the case of general Levy jump´
measures, corresponds to the case of continuous branching processes with

Ž . Ž .immigration CBI processes . For this case, Kawazu and Watanabe 1971
Ž .provide conditions in the converse part of their Theorem 1.1 on �,  , �, and �

Žfor existence, and show that the generator of the process is affine in the above
.sense if and only if the Laplace transform of the transition distribution of the

process is of the exponential-affine form.10

2.2. Transforms

First, we show that the Fourier transform of X and of certain related randomt
variables is known in closed form up to the solution of an ordinary differential

Ž .equation ODE . Then, we show how the distribution of X and the prices oft
options can be recovered by inverting this transform.

We fix an affine discount-rate function R: D��. The affine dependence of
� Ž .�,  , �, and R are determined by coefficients K, H, l, � defined by:

�
n n�nŽ . Ž .� x �K �K x, for K� K , K �� �� .0 1 0 1

�
� n�n n�n�nŽ Ž . Ž . . Ž . Ž . Ž . x  x � H � H �x, for H� H , H �� �� .i j 0 i j 1 i j 0 1

�
nŽ . Ž .� x � l � l �x, for l� l , l ���� .0 1 0 1

�
nŽ . Ž .R x �� �� �x, for �� � , � ���� .0 1 0 1

n Ž . ŽnFor c�� , the set of n-tuples of complex numbers, we let � c �H exp c ��

. Ž .z d� z whenever the integral is well defined. This ‘‘jump transform’’ � deter-
mines the jump-size distribution.

Ž .The ‘‘coefficients’’ K, H, l, � of X completely determine its distribution,
Ž . Ž .given an initial condition X 0 . A ‘‘characteristic’’ �� K, H, l, � , � captures

both the distribution of X as well as the effects of any discounting, and
determines a transform � �:� n �D�� �� �� of X conditional on FF ,� � T t
when well defined at t�T , by

T
� � u�XTŽ . Ž . Ž .2.3 � u , X , t , T �E exp � R X ds e FF ,Ht s tž /ž /t

10 Ž .Independently of our work, Filipovic 1999 applies these results regarding CBI processes to´
fully characterize all affine term structure models in which the short rate is, under an equivalent
martingale measure, a one-dimensional nonnegative Markov process. Extending the work of Brown

Ž .and Schaefer 1993 , Filipovic shows that it is necessary and sufficient for an affine term structure´
model in this setting that the underlying short rate process is, risk-neutrally, a CBI process.
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where E � denotes expectation under the distribution of X determined by � .
� Ž .Here, � differs from the familiar conditional characteristic function of the

Ž .distribution of X because of the discounting at rate R X .T t
The key to our applications is that, under technical regularity conditions given

in Proposition 1 below,

Ž . � Ž . � Ž t .�	 Ž t .� x2.4 � u , x , t , T �e ,

where 	 and � satisfy the complex-valued ODEs11

1 ��˙Ž . Ž . Ž . Ž . Ž . Ž Ž Ž .. .2.5 	 t �� �K 	 t � 	 t H 	 t � l � 	 t �1 ,1 1 1 12
1 �Ž . Ž . Ž . Ž . Ž . Ž Ž Ž .. .2.6 � t �� �K �	 t � 	 t H 	 t � l � 	 t �1 ,˙ 0 0 0 02

Ž . Ž . Ž . Ž .with boundary conditions 	 T �u and � T �0. The ODE 2.5 � 2.6 is easily
Ž .conjectured from an application of Ito’s Formula to the candidate form 2.4 of

� �. In order to apply our results, we would need to compute solutions � and 	
to these ODEs. In some applications, as for example in Section 4, explicit
solutions can be found. In other cases, solutions would be found numerically, for
example by Runge-Kutta. This suggests a practical advantage of choosing a jump
distribution � with an explicitly known or easily computed jump transform � .

The following technical conditions will justify this method of calculating the
transform.

Ž . Ž . nDEFINITION: A characteristic K, H, l, � , � is well-beha�ed at u, T �� �
� . Ž . Ž .0,� if 2.5 � 2.6 are solved uniquely by 	 and � ; and if

TŽ . � � Ž Ž Ž .. . Ž .i E � dt ��, where � �� � 	 t �1 � X ,H t t t tž /0

1�2
T �Ž . Ž . Ž .ii E � �� dt ��, where � �� 	 t  X , andH t t t t tž /0

Ž . Ž � �.iii E � ��,T

Ž t Ž . . � Ž t .�	 Ž t .�X Ž t .where� �exp �H R X ds e .t 0 s

Ž . Ž .PROPOSITION 1: Suppose K, H, l, � , � is well-beha�ed at u, T . Then the
� Ž . Ž .transform � of X defined by 2.3 is gi�en by 2.4 .

Ž � .PROOF: It is enough to show that � is a martingale, for then � �E � FF ,t T t
Ž t Ž . . 12and we can multiply� by exp H R X ds to get the result. By Ito’s Formula,t 0 s

t tŽ . Ž .2.7 � �� � � � s ds� � dW �J ,H Ht 0 s � s s t
0 0

11 T n Ž .Here, c H c denotes the vector in � with kth element Ý c H c .1 i, j i 1 i jk j
12 Ž .See Protter 1990 for a complex version of Ito’s Formula.
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Ž . Ž .where, using the fact that � and 	 satisfy the ODE 2.5 � 2.6 , we have � �0,�

and where

tŽ .J � � �� � � ds,Ý Ht � Ž i. � Ž i.� s
0Ž .0�� i �t

Ž . � 4with � i � inf t: N � i denoting the ith jump time of X. Under the integrabilityt
Ž .condition i , Lemma 1 of Appendix A implies that J is a martingale. Under

Ž .integrability condition ii , H�dW is a martingale. Thus� is a martingale and we
are done. Q.E.D.

Ž . nAnticipating the application to option pricing, for each given d, c, T �� �
Ž .��� , our next goal is to compute when well defined the ‘‘expected present�

value’’

�T
� d�XTŽ . Ž . Ž . Ž .2.8 C d , c, T , � �E exp � R X ds e �c .H sž /ž /0

We have

T
� d�XTŽ . Ž . Ž . Ž .2.9 C d , c, T , � �E exp � R X ds e �c 1H s d�X 
 lnŽc.Tž /ž /0

Ž Ž . . Ž Ž . .�G �ln c ; X , T , � �cG �ln c ; X , T , � ,d ,�d 0 0, �d 0

Ž . � . n n Ž .where, given some x, T , a, b �D� 0,� �� �� , G �; x, T , � :��� isa, b �
given by

T
� a�XTŽ . Ž . Ž .2.10 G y ; X , T , � �E exp � R X ds e 1 .Ha , b 0 s b�X � yTž /ž /0

Ž . Ž .The Fourier-Stieltjes transform GG �; X , T , � of G �; X , T , � , if wella, b 0 a, b 0
defined, is given by

Ž . i� y Ž .GG � ; X , T , � � e dG y ; X , T , �Ha , b 0 a , b 0
�

T
� Ž . �Ž . ��E exp � R X ds exp a� i�b �XH s Tž /ž /0

� Ž .�� a� i�b , X , 0, T .0

13 ŽWe may now extend the Levy inversion formula from the typical case of a´
.proper cumulative distribution function to obtain the following result.

Ž . � . nPROPOSITION 2 Transform Inversion : Suppose, for fixed T� 0,� , a�� ,
n Ž . Ž .and b�� , that �� K, H, l, � , � is well-beha�ed at a� i�b, T for any � ��,

13 Ž . Ž .See, for example, Gil-Pelaez 1951 and Williams 1991 for a treatment of the Levy inversion´
formula.
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and that

Ž . � � Ž . �2.11 � a� i�b , x , 0, T d� ��.H
�

Ž . Ž .Then G �; x, T , � is well defined by 2.10 and gi�en bya, b

� Ž .� a, X , 0, T0Ž . Ž .2.12 G y ; X , T , � �a , b 0 2
� �i� yŽ .�1 Im � a� i�b , X , 0, T e0� d� ,H

� �0

Ž .where Im c denotes the imaginary part of c��.

A proof is given in Appendix A. For R�0, this formula gives us the
probability distribution function of b �X . The associated transition density of XT
is obtained by differentiation of G . More generally, this provides the transi-a, b
tion function of X with ‘‘killing’’ at rate14 R.

2.3. Extended Transform

As noted in the introduction, certain pricing problems in our setting, for
example Asian option valuation or default-time distributions, call for the calcu-
lation of the expected present value of the product of affine and exponential-
affine functions of X . Accordingly, we define the ‘‘extended’’ transform � �:T
� n �� n �D�� �� �� of X conditional on FF , when well defined for� � T t
t�T by

T
� u�XTŽ . Ž . Ž . Ž .2.13 � � , u , X , t , T �E exp � R X ds � �X e FF .Ht s T tž /ž /t

The extended transform � � can be computed by differentiation of the
transform � �, just as moments can be computed from a moment-generating

Žfunction under technical conditions justifying differentiation through the expec-
.tation . In practice, computing the derivatives of the transform calls for solving a

new set of ODEs, as indicated below. Specifically, under technical conditions,
including the differentiability of the jump transform � , we show that

Ž . � Ž . � Ž .Ž Ž . Ž . .2.14 � � , u , x , t , T �� u , x , t , T A t �B t �x ,
� Ž .where � is given by 2.4 , and where B and A satisfy the linear ordinary

differential equations
��˙Ž . Ž . Ž . Ž . Ž . Ž Ž .. Ž .2.15 �B t �K B t �	 t H B t � l �� 	 t B t1 1 1

�˙Ž . Ž . Ž . Ž . Ž . Ž Ž .. Ž .2.16 �A t �K �B t �	 t H B t � l �� 	 t B t ,0 0 0

14A negative R is sometimes called a ‘‘creation’’ rate in Markov-process theory.
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Ž . Ž . Ž .with the boundary conditions B T �� and A T �0, and where �� c is
Ž . ngradient of � c with respect to c�� .

Ž .PROPOSITION 3: Suppose �� K, H, l, � , � is ‘‘extended’’ well-beha�ed at
Ž .� , u, T , a technical condition stated in Appendix A. Then the extended transform

� Ž . Ž .� defined by 2.13 is gi�en by 2.14 .

One could further extend this approach so as to calculate higher-order
Ž .moments, as in Pan 1998 .

3. OPTION PRICING THEORY

This section applies our basic transform analysis to the pricing of options. In
all cases, we assume that the price process S of the asset underlying the option

aŽ t .�bŽ t .�X tŽ Ž . Ž . . Ž . Ž . Ž .is of the form S � a t �b t �X e , for deterministic a t , b t , a t ,t t
Ž .and b t . This is the case for many applications in affine settings, including

underlying assets that are equities, currencies, and zero-coupon bonds.
Two traditional formulations15 of the asset-pricing problem are:
1. Model the ‘‘risk-neutral’’ behavior of X under an equivalent martingale

measure Q. That is, take X to be an affine jump-diffusion under Q with given
Ž . Ž .characteristic � . Then apply 2.9 and 2.12 .Q

Ž2. Model the behavior of X as an affine jump-diffusion under the actual that
.is, the ‘‘data-generating’’ measure P. If one then supposes that the state-price

Ždensity also known as the ‘‘pricing kernel’’ or ‘‘marginal-rate-of-substitution’’
.process is an exponential-affine form in X, then X is also an affine jump-diffu-

sion under Q, and one can either:
Ž .a calculate, as in Appendix C, the implied equivalent martingale measure

Q and associated characteristic � of X under Q, and proceed as in the firstQ

alternative above, or
Ž .b simply apply the definition of the state-price density, which determines

the price of an option directly in terms of G , computed using our transforma, b

analysis. This alternative is sketched in Section 3.2 below.

15 Ž .A popular variant was developed in a Gaussian setting by Jamshidian 1989 . In a setting in
which X is an affine jump-diffusion under the equivalent martingale measure Q, one normalizes the
underlying exponential-affine asset price by the price of a zero-coupon bond maturing on the option
expiration date T. Then, in the new numeraire, the short-rate process is of course zero, and there is

Ž .a new equivalent martingale measure Q T , often called the ‘‘forward measure,’’ under which prices
are exponential affine. Application of Girsanov’s Theorem uncovers new affine behavior for the

Ž .underlying state process X under Q T , and one can proceed as before. The change-of-measure
calculations for this approach can be found in Appendix C.
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Of course, the two approaches are consistent, and indeed the second formula-
tion implies the first, as indicated. The second approach is more complete, and
would be indicated for empirical time-series applications, for which the ‘‘actual’’
distribution of the state process X as well as the parameters determining
risk-premia must be specified and estimated.

Applications of these approaches to call-option pricing are briefly sketched in
the next two subsections. Other derivative pricing applications are provided in
Section 3.3.

3.1. Risk-Neutral Pricing

Here, we take Q to be an equivalent martingale measure associated with a
Ž .short-term interest rate process defined by R X �� �� �X . This means thatt 0 1 t

the market value at time t of any contingent claim that pays an FF -measurableT

random variable V at time T is, by definition,

TQŽ . Ž .3.1 E exp � R X ds V FF ,H s tž /ž /t

where, under Q, the state vector X is assumed to be an AJD with coefficients
Ž Q Q Q Q.K , H , l , � . The relevant characteristic for risk-neutral pricing is then

Ž Q Q Q Q .� � K , H , l , � , � . It need not be the case that markets are complete.Q

The existence of some equivalent martingale measure and the absence of
arbitrage are in any case essentially equivalent properties, under technical

Ž .conditions, as pointed out by Harrison and Kreps 1979 . For recent technical
Ž .conditions, see for example Delbaen and Schachermayer 1994 .

We let S denote the price process for the security underlying the option, and
16 Ž . Ž i.suppose for simplicity that ln S �X , an element of the state vectort t

Ž Ž1. Žn..X� X , . . . , X . Other components of the state process X may jointly
specify the arrival intensity of jumps, the behavior of stochastic volatility, the
behavior of other asset returns, interest-rate behavior, and so on. The given

� Ž . 4asset is assumed to have a dividend-yield process � X :t
0 defined byt

Ž . Ž .3.2 � x �q �q �x ,0 1

for given q �� and q �� n. For example, if the asset is a foreign currency,0 1
Ž .then � X is the foreign short-term interest rate.t

16 Ž .The more general case of S �exp a �b �X can be similarly treated. Possibly after somet t t t
innocuous affine change of variables in the state vector, possibly involving time dependencies in the
characteristic � , we can always reduce to the assumed case.
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Because Q is an equivalent martingale measure, the coefficients K Q �i
ŽŽ Q. Ž Q. . 17 Ž i.K , K determining the ‘‘risk-neutral’’ drift of X � lnS are given by0 i 1 i

1
Q Q Q QŽ . Ž . Ž . Ž Ž Ž .. .3.3 K �� �q � H � l � � i �1 ,0 0 0 0 0i i i2

1
Q Q Q QŽ . Ž . Ž . Ž Ž Ž .. .3.4 K �� �q � H � l � � i �1 ,1 1 1 1 1i i i2

Ž . nwhere � i �� has 1 as its ith component, and every other component equal
to 0.

Unless other security price processes are specified, the risk-neutral character-
istic � is otherwise unrestricted by arbitrage considerations. There are analo-Q
gous no-arbitrage restrictions on � for each additional specified security priceQ
process of the form ea�b�X t.

By the definition of an equivalent martingale measure and the results of
Section 2.2, a plain-vanilla European call option with expiration time T and

Ž .strike c has a price p at time 0 that is given by 2.9 to be

Ž . Ž . Ž .3.5 p�G �ln c ; X , T , � �cG �ln c ; X , T , � .Ž . Ž .� Ž i. , �� Ž i. 0 Q 0, �� Ž i. 0 Q

To be precise, we can exploit Propositions 1 and 2 and summarize this
Ž . Ž .option-pricing tool as follows, extending Heston 1993 , Bates 1996 , Scott

Ž . Ž . Ž .1997 , Bates 1997 , Bakshi and Madan 2000 , and Bakshi, Cao, and Chen
Ž .1997 .

Ž .PROPOSITION 4: The option-pricing formula 2.9 applies, where G is computed
Ž .by 2.12 , pro�ided:
Ž . Ž . Ž .a � is well-beha�ed at d� i�d, T and at �i�d, T , for all � �� , and�
Ž . � � Ž . � � � Ž . �b H � d� i�d, x, 0, T d� ��, andH � �i�d, x, 0, T d� ��.� �

3.2. State-Price Density

Suppose the state vector X is an affine jump-diffusion with coefficients
Ž . Ž . Ž .K, H, l, � under the actual data-generating measure P. Let � be an FF -t
adapted ‘‘state-price density,’’ defined by the property that the market value at
time t of any security that pays an FF -measurable random variable V at time TT

17 Ž . Ž .Under 3.3 � 3.4 , we have

t t �Ž i. Q� Ž . Ž .� Ž .S �S � S R X �� X du� S  X dWH Ht 0 u u u u u u
0 0

tŽ i. Q Q QŽ Ž . . Ž Ž Ž .. .Ž .� S exp �X �1 � S � � i �1 l � l �X du,HÝ u� u u 0 1 u
00�u�t

Q Ž . n Žwhere W is an FF -standard Brownian motion in � under Q. Here, �X �X �X denotes thet t t t�
.jump of X at t. As the sum of the last 3 terms is a local Q-martingale, this indeed implies

consistency with the definition of an equivalent martingale measure.
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is given by

1
Ž Ž . � .E V� T FF .tŽ .� t

We assume for convenience that � �eaŽ t .�bŽ t .�X t, for some bounded measurablet
� . � . na: 0,� �� and b: 0,� �� . Without loss of generality, we take it that
Ž .� 0 �1.
Suppose the price of a given underlying security at time T is ed�X ŽT ., for some

d�� n. By the definition of a state-price density, a plain-vanilla European call
option struck at c with exercise date T has a price at time 0 of

�aŽT .�bŽT .�X ŽT . d�X ŽT .� Ž . �p�E e e �c .

This leaves the option price

aŽT . Ž 0 .p�e G �ln c ; X , T , �bŽT .�d , �d 0

aŽT . Ž 0 .�ce G �ln c ; X , T , � ,bŽT . , �d 0

0 Ž . Žwhere � � K, H, l, � , 0 . One notes that the short-rate process plays no role
.beyond that already captured by the state-price density.

As mentioned at the beginning of this section, and detailed in Appendix C, an
alternative is to translate the option-pricing problem to a ‘‘risk-neutral’’ setting.

3.3. Other Option-Pricing Applications

This section develops as illustrative examples several additional applications
to option pricing. For convenience, we adopt the risk-neutral pricing formula-

Ž .tion. That is, we suppose that the short rate is given by R X , where R is affine,
and X is an affine jump-diffusion under an equivalent martingale measure Q.
The associated characteristic � is fixed. While we treat the case of call options,Q
put options can be treated by the same method, or by put-call parity.

3.3.1. Bond Deri�ati�es

Consider a call option, struck at c with exercise date T , on a zero-coupon
Ž .bond maturing at time s�T. Let � T , s denote the time-T market price of the

Ž .underlying bond. From Duffie and Kan 1996 , under the regularity conditions
given in Section 2.2,

Ž . Ž Ž . Ž . .� T , s �exp � T , s, 0 �	 T , s, 0 �X ,T

Ž . Ž .where, from this point, for any u we write 	 t, T , u and � t, T , u for the
Ž . Ž . Ž .solution to 2.5 � 2.6 , adding the arguments T , u so as to indicate the

dependence on the terminal time T and boundary condition u for 	 , which will
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vary in what follows. At time T , the option pays

�� � ŽT , s , 0.�	 ŽT , s , 0.�X ŽT .Ž . Ž Ž . . Ž .3.6 � T , s �c � e �c
�

� ŽT , s , 0. 	 ŽT , s , 0.�X ŽT . �� ŽT , s , 0.Ž . Ž .3.7 �e e �e c .

Ž . Ž .The value of the bond option can therefore be obtained from 2.9 and 2.12 .
The same approach applies to caps and floors, which are simply portfolios of
zero-coupon bond options with payment in arrears, as reviewed in Appendix D.

Ž . Ž .This extends the results of Chen and Scott 1995 and Scott 1996 . Chacko and
Ž .Das 1998 work out the valuation of Asian interest-rate options for a large class

of affine models. They provide numerical examples based on a multi-factor
Cox-Ingersoll-Ross state vector.

3.3.2. Quantos

Consider a quanto of exercise date T and strike c on an underlying asset with
Ž Ž i.. Ž Ž . .�price process S�exp X . The time-T payoff of the quanto is S M X �c ,T T

Ž . m� x n Ž .where M x �e , for some m�� . The quanto scaling M X could, forT
example, be the price at time T of a given asset, or the exchange rate between
two currencies. The initial market value of the quanto option is then

Ž . Ž .G �ln c ; x , T , � �cG �ln c ; x , T , � .Ž . Ž .m�� Ž i. , �� Ž i. Q 0, �� Ž i. Q

Ž .Ž .�An alternative form of the quanto option pays M X S �c at T , and hasT T
Ž Ž . . Ž Ž . .the price G �ln c ; x, T , � �cG �ln c ; x, T , � .m�� Ž i., �� Ž i. Q m , �� Ž i. Q

3.3.3. Foreign Bond Options

Ž Ž i.. Ž .Let exp X be a foreign-exchange rate, R X be the domestic short interest
Ž .rate, and � X be the foreign short rate, for affine � . Consider a foreign

zero-coupon bond maturing at time s, whose payoff at maturity, in domestic
Ž Ž i..currency, is therefore exp X . The risk-neutral characteristic � is restricteds Q

Ž . Ž .by 3.3 � 3.4 . From Proposition 1, the domestic price at time t of the foreign
f Ž . Ž Ž Ž .. Ž Ž .. .bond is � t, s �exp � t, s, � i �	 t, s, � i �X .t

We now consider an option on this bond with exercise date T�s and
Ž f Ž .domestic strike price c on the foreign s-year zero-coupon bond, paying � T , s

.��c at time T , in domestic currency. The initial market value of this option
can therefore be obtained as for a domestic bond option.

3.3.4. Chooser Options
Ž i. Ž Ž i.. Ž j. Ž Ž j..Let S �exp X and S �exp X be two security price processes. An

Ž Ž i. Ž j..exchange, or ‘‘chooser,’’ option with exercise date T , pays max S , S . De-T T
pending on their respective dividend payout rates, the risk-neutral characteristic

Ž . Ž .� is restricted by 3.3 � 3.4 , applied to both i and j. The initial market valueQ
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of this option is

Ž . Ž .G 0; x , T , � �G 0, x , T , �� Ž i. , � Ž i.�� Ž j. Q � Ž j. , 0 Q

Ž .�G 0; x , T , � .� Ž j. , � Ž j.�� Ž i. Q

3.3.5. Asian Options

Under the assumption of a deterministic short rate and dividend-yield pro-
cess, that is, � �q �0, we may also use the extended transform analysis of1 1
Section 2.3 to price Asian options. Let X Ž i. be the underlying price process of
an Asian option with strike price c and expiration date T. The option pays
Ž T Ž i. .�1�TH X dt�c at the expiration date T. If Q is an equivalent martingale0 t
measure, we must have

Ž i. Ž Ž . Ž .. Ž i.dX � R X �� X X dt�dM ,t t t t t

where M i is a Q-martingale. For any 0� t�T , let Y �H t X Ž i.ds. For short ratet 0 s
˜Ž . Ž . Ž .� , we can let � � � , 0 and � � 0, 0 �0, and see that, under Q, X� X, Y˜0 0 0 1

Ž .is an n � 1 -dimensional affine jump diffusion with characteristic ��˜
˜ ˜ ˜ ˜ Ž i.Ž .K, H, l, � , � that can be easily derived from using the fact that dY �X dt.˜ t t

We thus obtain the initial market value of the Asian option, under technical
regularity, as18

1 ˜ ˜ ˜G �cT ; X , T , � �cG �cT ; X , T , � ,˜ ˜ž / ž /� Žn�1. , �� Žn�1. , 0 0 0, �� Žn�1. 0T

Ž . Ž . nwhere G � is given by 2.12 and where, for a, b, and d in � ,

� Ž .� a, d, x , 0, T˜Ž . Ž .3.8 G y ; x , T , � �a , b , d 2

� � Ž . �i � y ��1 Im � a, d� i�b , x , 0, T e
� d� .H

� �0

˜This calculation of G and the Asian option price is in parallel with thea, b, d
Ž .calculation 2.12 of G , using Fourier-inversion of the extended transforma, b

� Ž .� , and is justified provided that � is extended well behaved at a, d� i�b, T˜
�̃� Ž . �for any � ��, and that H � a, d� i�b, x, 0, T d� ��.�

As zero-coupon bond yields in an AJD setting are affine, we can also apply
the extended-transform approach to the valuation of slope-of-the-yield-curve
options.

18 Ž . n� 1In this context, � i �� has 1 as its ith component, and every other component equal to 0.
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4. A ‘‘DOUBLE-JUMP’’ ILLUSTRATIVE MODEL

As an illustration of the methodology, this section provides explicit transforms
for a 2-dimensional affine jump-diffusion model. We suppose that S is the price
process, strictly positive, of a security that pays dividends at a constant propor-

�Ž . Ž .tional rate � , and we let Y� ln S . The state process is X� Y, V , where V is
the volatility process.

We suppose for simplicity that the short rate is a constant r, and that there
exists an equivalent martingale measure Q, under which19

1 1 0Y r������ Vt t2 QŽ .4.1 d � dt� V dW �dZ ,' 2t t t'ž /V � 1�� ž /ž /Ž .t � �� � �V� t

Q Ž . 2where W is an FF -standard Brownian motion under Q in � , and Z is a puret
2jump process in � with constant mean jump-arrival rate �, whose bivariate

jump-size distribution � has the transform � . A flexible range of distributions of
jumps can be explored through the specification of � . The risk-neutral coeffi-

Ž . Ž .cient restriction 3.3 is satisfied if and only if ��� 1, 0 �1.
Before we move on to special examples, we lay out the formulation for option

pricing as a straightforward application of our earlier results. At time t, the
transform20 � of the log-price state variable Y can be calculated using theT

Ž .ODE approach in 2.6 as

Ž . Ž Ž . . Ž Ž . Ž . .4.2 � u , y , � , t , T �exp � T� t , u �uy�	 T� t , u � ,

21 2 2Ž . 'where, letting b� �u�� , a�u 1�u , and �� b �a , we have� � �

Ž ��� .a 1�e
Ž . Ž .4.3 	 � , u �� ,���Ž .Ž .2�� ��b 1�e

�
Ž . Ž . Ž . Ž . Ž Ž ..4.4 � � , u �� � , u ��� 1��u �� � u , 	 s, u ds,H0

0

where22

Ž . Ž .� � , u ��r�� r�� u�0

��b 2 ��b
���Ž .�� � �� ln 1� 1�e ,� 2 2ž /2� � �

19 Ž .Unless otherwise stated, the distributional properties of Y, V described in this section are in a
‘‘risk-neutral’’ sense, that is, under Q.

20 Ž Ž . . �ŽŽ . Ž . .That is, � u, y, � 
, t, T �� u, 0 
, y, � 
, t, T , where � is the characteristic under Q of X
Ž . Ž .associated with the short rate defined by � , � � r, 0 .0 1

21 � 2 �1�2 Ž Ž 2 . . 2 2 2To be more precise, �� � exp i arg � �2 , where � �b �a . Note that for any�
Ž . � � Ž Ž .. Ž .z��, arg z is defined such that z� z exp iarg z , with ���arg z �� .

22 Ž . � � Ž .For any z��, ln z � ln z � iarg z , as defined on the ‘‘principal branch.’’
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� Ž Ž ..and where the term H � u, 	 s, u ds depends on the specific formulation of0
Ž .bivariate jump transform � �,� .

4.1. A Concrete Example

As a concrete example, consider the jump transform � defined by

�1 y y � � c cŽ . Ž . Ž Ž . Ž . Ž ..4.5 � c , c �� � � c �� � c �� � c , c ,1 2 1 2 1 2

y � cwhere ��� �� �� , and where

1
y 2 2Ž .� c �exp � c�  c ,y yž /2

1
� Ž .� c � ,

1�� c�

1
2 2exp � c �  cc , y 1 c , y 1ž /2c Ž .� c , c � .1 2 1�� c �� � cc , � 2 J c , � 1

What we incorporate in this example is in fact three types of jumps:
�

yjumps in Y, with arrival intensity � and normally distributed jump size with
mean � and variance  2,y y

�
�jumps in V, with arrival intensity � and exponentially distributed jump size

with mean � ,�
�

csimultaneous correlated jumps in Y and V, with arrival intensity � . The
marginal distribution of the jump size in V is exponential with mean � .c, �
Conditional on a realization, say z , of the jump size in V, the jump size in Y is�
normally distributed with mean � �� z , and variance  2 .c, y J � c, y

Ž . Ž .In Bakshi, Cao, and Chen 1997 and Bates 1997 , the SVJ-Y model, defined
by �� ��c �0, was studied using cross sections of options data to fit the
‘‘volatility smirk.’’ They find that allowing for negative jumps in Y is useful
insofar as it increases the skewness of the distribution of Y , but that this doesT
not generate the level of skewness implied by the volatility smirk observed in
market data. They call for a model with jumps in volatility. Using this concrete

Ž .‘‘double-jump’’ example 4.5 , we can address this issue, and provide some
insights into what a richer specification of jumps may imply.

Before leaving this section to explore the implications of jumps for ‘‘volatility
Ž .smiles,’’ we provide explicit option pricing through the transform formula 4.2 ,

Ž .by exploiting the bivariate jump transform � specified in 4.5 . We have

�
�1 y y � � c cŽ Ž .. Ž Ž . Ž . Ž ..� u , 	 s, u ds�� � f u , � �� f u , � �� f u , � ,H

0
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where

1
y 2 2Ž .f u , � �� exp � u�  u ,y yž /2

��b
� Ž .f u , � � �

��b�� a�

Ž .2� a ��b �� a� � ���Ž .� ln 1� 1�e ,22 ž /2�Ž .� � b�� a�

u2
c 2Ž .f u , � �exp � u� d ,c , y c , yž /2

Ž .where a�u 1�u , b� �u�� , c�1�� � u, and� � J c, �

��b
d� �Ž .��b c�� ac , �

Ž .2� a ��b c�� ac , � c , � ���Ž .� ln 1� 1�e .2 2 2� cŽ . Ž .� c � bc�� ac , �

4.2. Jump Impact on ‘‘Volatility Smiles’’

As an illustration of the implications of jumps for the volatility smirk, we first
select three special cases of the ‘‘double-jump’’ example just specified:

SV: Stochastic volatility model with no jumps, obtained by letting ��0.
SVJ-Y: Stochastic volatility model with jumps in price only, obtained by letting

� y �0, and �� ��c �0.
SVJJ: Stochastic volatility with simultaneous and correlated jumps in price

and volatility, obtained by letting �c �0 and � y ��� �0.
In order to choose plausible values for the parameters governing these three

special cases, we calibrated these three benchmark models to the actual
‘‘market-implied’’ smiles on November 2, 1993, plotted in Figure 1.23 For each

Žmodel, calibration was done by minimizing by choice of the unrestricted
. Ž .parameters the mean-squared pricing error MSE , defined as the simple

average of the squared differences between the observed and the modeled
option prices across all strikes and maturities. The risk-free rate r is assumed to
be 3.19%, and the dividend yield � is assumed to be zero.

Table I displays the calibrated parameters of the models. Interestingly, for
this particular day, we see that adding a jump in volatility to the SVJ-Y model,
leading to the model SVJJ model, causes a substantial decline in the level of the

23 The options data are downloaded from the home page of Yacine Ait-Sahalia. There is a total of
Ž .87 options with maturities times to exercise date ranging from 17 days to 318 days, and strike prices

ranging from 0.74 to 1.17 times the underlying futures price.
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FIGURE 1.�‘‘Smile curves’’ implied by S&P 500 Index options of 6 different maturities. Option
prices are obtained from market data of November 2, 1993.

TABLE I
aFITTED PARAMETER VALUES FOR SV, SVJ-Y, AND SVJJ MODELS

SV SVJ-Y SVJJ

� �0.70 �0.79 �0.82
� 0.019 0.014 0.008
� 6.21 3.99 3.46�
 0.61 0.27 0.14�

c� 0 0.11 0.47
� n�a �0.12 �0.10
 n�a 0.15 0.0001y
� n�a 0 0.05�
� n�a n�a �0.38J

V 10.1% 9.4% 8.7%' 0

MSE 0.0124 0.0071 0.0041

a Ž .The parameters are estimated by minimizing mean squared errors MSE . A
total of 87 options, observed on November 2, 1993, are used. V is the estimated' 0
value of stochastic volatility on the sample day. The risk-free rate is assumed to be
fixed at r � 3.19%, and the dividend yield at �� 0. From ‘‘risk neutrality,’’

Ž .�� � 1, 0 � 1.
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parameter  determining the volatility of the diffusion component of volatility.�
Thus, the volatility puzzle identified by Bates and Bakshi, Cao, and Chen,
namely that the volatility of volatility in the diffusion component of V seems too
high, is potentially explained by allowing for jumps in volatility. At the same
time, the return jump variance  2 declines to approximately zero as we replacey
the SVJ-Y model with the SVJJ model. The instantaneous correlation among

Ž 2 2 2 .�1�2the jumps in return and volatility in the SVJJ model is � �  �� � .� J y � J
Thus, one consequence of the small  2 is that the jump sizes of Y and of V arey
nearly perfectly anticorrelated. This correlation reinforces the negative skew
typically found in estimation of the SV model for these data,24 as jumps down in
return are associated with simultaneous jumps up in volatility.

In order to gain additional insight into the relative fit of the models to the
option data used in our calibration, Figures 2 and 3 show the volatility smiles for

Ž . Ž .the shortest 17-day and longest 318-day expiration options. For both maturi-
ties, there is a notable improvement of fit with the inclusion of jumps. Further-
more, the addition of a jump in volatility leads to a more pronounced smirk at
both maturities and one that, based on the relative values of the MSE in Table
I, produces a better overall fit on this day.

Next, we go beyond this fitting exercise, and study how the introduction of a
volatility jump component to the SV and SVJ-Y models might affect the
‘‘volatility smile,’’ and how correlation between jumps in Y and V affects the
‘‘volatility smirk.’’ We investigate the following three additional special cases:

1. The SVJ-V model: We extend the fitted SV model by letting �� �0.1 and
y c� �� �0. We measure the degree of contribution of the jump component of

� 2 Ž 2 � 2 .volatility by the fraction �� �  V ��� of the initial instantaneous vari-� � 0 �
ance of the volatility process V that is due to the jump component. By varying
� , the mean of the volatility jumps, three levels of this volatility ‘‘jumpiness’’�
fraction are considered: 0, 15%, and 30%. For each case, the time-0 instanta-
neous drift, variance, and correlation are fixed at those implied by the fitted SV
model by varying  , � , and �.�

2. The SVJ-Y-V model: We extend the fitted SVJ-Y model by letting �� �
� y, �c �0, and � y be fixed as given in Table I. Again, the volatility ‘‘jumpiness’’
is measured by the fraction of the instantaneous variance of V that is due to the
jump component. Three jumpiness levels, 0, 15%, and 30% are again consid-
ered. For each case, the instantaneous drift, variance, and correlation are
matched to the fitted SVJ-Y model.

3. Finally, we modify the fitted SVJJ model by varying the correlation be-
tween simultaneous jumps in Y and V. Five levels of correlation are considered:
�1.0, �0.5, 0, 0.5, and 1.0. For each case, the means and variances of jumps in
V and Y are calibrated to the fitted SVJJ model.

The implied 30-day ‘‘volatility smiles’’ for the above three variations are
plotted in Figures 4, 5, and 6.

24 In addition to the ‘‘calibration’’ results in the literature, see the time-series results of Chernov
Ž . Ž . Ž . Ž .and Ghysels 1998 and Pan 1998 . For related work, see Poteshman 1998 and Benzoni 1998 .
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FIGURE 2.�‘‘Smile curves’’ implied by S&P 500 Index options with 17 days to expiration.
Diamonds show observed Black-Scholes implied volatilities on November 2, 1993. SV is the
Stochastic Volatility Model, SVJ-Y is the Stochastic Volatility Model with Jumps in Returns, and
SVJJ is the Stochastic Volatility Model with Simultaneous and Correlated Jumps in Returns and
Volatility. Model parameters were calibrated with options data of November 2, 1993.

Ž .The results for the SVJ-V model show that, for out-of-the-money OTM
calls, the introduction of a jump in volatility lowers Black-Scholes implied

Ž . Žvolatilities. Bakshi, Cao, and Chen 1997 found that their SVJ model jumps in
.returns, but not in volatility systematically overpriced OTM calls. So our

analysis suggests that adding jumps in volatility may attenuate the overpricing in
the SVJ model, at least for options that are not too far out of the money. The
addition of a jump in volatility actually exacerbates the over pricing for far-out-
of-the-money calls.

Model SVJ-Y-V is one illustrative formulation of a model with jumps in both
Y and V. Figure 5 shows that the addition of a jump in V to the SVJ model also
attenuates the over-pricing of OTM calls. Whether our parameterization of the
jump distributions is enough to resolve the empirical puzzles relative to the SVJ
model is an empirical issue that warrants further investigation.

Finally, Figure 6 shows that, in the presence of simultaneous jumps, the levels
of implied volatilities for OTM calls depend on the sign and magnitudes of the
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FIGURE 3.�‘‘Smile curves’’ implied by S&P 500 Index options with 318 days to expiration.
‘‘Stars’’ show observed implied volatility of November 2, 1993. SV is the Stochastic Volatility Model,
SVJ-Y is the Stochastic Volatility Model with Jumps in Returns, and SVJJ is the Stochastic
Volatility Model with Simultaneous and Correlated Jumps in Returns and Volatility. Model
parameters were calibrated with options data of November 2, 1993.

correlation between the jump amplitudes. From our calibration of the SVJJ
Ž .model, the data suggest that � is negative see Table I . Thus, for this day,J

simultaneous jumps tend to reduce the Black-Scholes implied volatilities of
OTM calls compared to the model with simultaneous jumps with uncorrelated
amplitudes.

4.3. Multi-factor Volatility Specifications

Though our focus in this section has been on jump distributions, we are also
interested in multi-factor models of the diffusion component of stochastic

Ž .volatility. Bates 1997 has emphasized the potential importance of more than
one volatility factor for explaining the ‘‘term structure’’ of return volatilities, and
included two, independent volatility factors in his model. Similarly, the empirical

Ž .analysis in Gallant, Hsu, and Tauchen 1999 of a non-affine, 3-factor model of
asset returns, with two of the three state coordinates dedicated to volatility
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FIGURE 4.�30-day smile curve, varying volatility jumpiness, and no jumps in returns.

behavior, suggests that more than one volatility factor improves the goodness of
fit for S&P 500 returns.

Our transform analysis applies directly to any affine formulation of multi-
factor stochastic volatility models, including Bates’ model. Here, we also propose
an examination of multi-factor volatility models in which there is a ‘‘long-term’’
stochastic trend component V in volatility. For example, we propose considera-t

�Ž .tion of a three-factor model for X� Y, V, V , given in its risk-neutral form by

1
r��� VY tt 2

VŽ .4.6 d � dtt � V �VŽ .t t� 0V � 0t
� � �VŽ .0 t

V 0 0' t

2 Q'� V  1�� V 0' '� dW ,t t t� 0'0 0  V0 t

Q Ž . 3where W is an FF -standard Brownian motion in � under Q.t
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FIGURE 5.�30-day smile curve, varying volatility jumpiness. Independent arrivals of jumps in
returns and volatility, with independent jump sizes.

A one-factor volatility model, such as the SV model, may well over-simplify
the term structure of volatility. In particular, the SV model has an autocorrela-

Ž . Ž .tion of returns over successive periods of length � of exp �� � , which�
decreases exponentially with �. For the estimated values of � typically found in
practice, the autocorrelations of discretely sampled V decay too quickly relative

Ž .to what is found in the data. Bollerslev and Mikkelsen 1996 argue, based on
their analysis of LEAPs, for a ‘‘long memory’’ model of volatility to capture this

Ž . Žslow decay. The correlation of V , V with respect to the ergodic distributiont t��

Ž .. Ž .of V, V implied by model 4.6 is

2 Ž .� � ���0 0��� �� � ���0Ž . Ž .corr V , V �e � e �e .t t�� 2 2Ž .���  ���� ��0 0 0

By suitable choice of the parameter values, this correlation decays more slowly
with � than the exponential rate in the one-factor model. In a different context,

Ž .Gallant, Hsu, and Tauchen 1999 found that the correlogram for V was well
approximated, at least over moderate horizons, by their two-factor volatility

Ž .model, and we conjecture that the same is true of models like 4.6 . In
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FIGURE 6.�30-day smile curve, varying the correlation between the sizes of simultaneous jumps
in return and in volatility.

subsequent work, we plan to further investigate multi-factor volatility specifica-
tions.

Grad. School of Business, Stanford Uni�ersity, Stanford, CA 94305, U.S.A.;
duffie@stanford.edu; http:��www.stanford.edu�people�duffie,

Sloan School of Management, Massachusetts Institute of Technology, Cambridge,
MA 02142, U.S.A.; junpan@mit.edu; http:��www.mit.edu��junpan,

and
Grad. School of Business, Stanford Uni�ersity, Stanford, CA 94305, U.S.A.;

kenneths@future.stanford.edu; http:��www.stanford.edu�people�kenneths

Manuscript recei�ed March, 1999; final re�ision recei�ed No�ember, 1999.

APPENDICES

A. TECHNICAL CONDITIONS AND ARGUMENTS

This Appendix contains technical results and conditions used in the body of the paper.

LEMMA 1: Under the assumptions of Proposition 1, J is a martingale.
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PROOF: Letting E denote FF -conditional expectation under P, for 0� t�s�T , we havet t

Ž . Ž � Ž ..E � �� �E E � �� X , � iÝ Ýt � Ž i. � Ž i.� t � Ž i. � Ž i.� � Ž i.�ž / ž /
Ž . Ž .t�� i �s t�� i �s

Ž Ž Ž Ž ... .�E � � b � i �1Ýt � Ž i.�ž /
Ž .t�� i �s

Ž .� i Ž Ž Ž .. .�E � � b u �1 dNHÝt u� už /Ž .� i�1 �Ž .t�� i �s

T Ž Ž Ž .. .�E � � b u �1 dN .Ht u� už /t

� Ž Ž Ž .. . 4 Ž .Because � � b t �1 : t
0 is an FF -predictable process, and the jump-counting process Nt� t
� Ž . 4 Ž . 25has intensity � X , t : t�T , integrability condition i implies thatt

s s
Ž Ž Ž .. . Ž Ž Ž .. . Ž .E � � b u �1 dN �E � � b u �1 � X , u du .H Ht u� u t u už / ž /t t

Hence J is martingale. Q.E.D.

Proposition 2 is proved as follows.
For 0����, and a fixed y��,

i� y � Ž . �i � y � Ž .1 e � a� i�b , x , 0, T �e � a� i�b , x , 0, T�
d�H2� i���

1 e�i � Ž z�y .�ei� Ž z�y .
�

Ž .� dG z ; x , T , � d�H H a , b2� i��� �

1 e�i � Ž z�y .�ei� Ž z�y .
�

Ž .�� d�dG z ; x , T , � ,HH a , b2� i�� ��

where Fubini is applicable26 because

Ž . � Ž .lim G y ; x , T , � �� a, x , 0, T ��,a , b
y���

Ž .given that � is well-behaved at a, T .
Next we note that, for ��0,

�i � Ž z�y . i� Ž z�y . Ž . Ž � �.e �e sgn z�y sin � z�y� �
d� �� d�H Hi� � ��� ��

is bounded simultaneously in z and � , for each fixed y.27 By the bounded convergence theorem,

i� y � Ž . �i � y � Ž .1 e � a� i�b , x , 0, T �e � a� i�b , x , 0, T�
lim d�H2� i���� ��

Ž . Ž .�� sgn z�y dG z ; x , T , �H a , b
�

� Ž . Ž Ž . Ž ..��� a, x , 0, T � G y ; x , T , � �G y� ; x , T , � ,a , b a , b

25 Ž .See, for example, page 27 of Bremaud 1981 . We are applying the result for the real and´
imaginary components of the integrand, separately.

26 � i� iu � � �Here, we also use the fact that, for any u, � ��, e �e � � �u .
27 Ž .We define sgn x to be 1 if x�0, 0 if x�0, and �1 if x�0.
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Ž . Ž . Ž .where G y� ; x, T , � � lim G z; x, T , � . Using the integrability condition 2.11 , bya, b z � y, z � y a, b
the dominated convergence theorem we have

� Ž .� a, x , 0, T
Ž .G y ; x , T , � �a , b 2

i� y � Ž . i� y � Ž .1 e � a� i�b , x , 0, T �e � a� i�b , x , 0, T�
� d� .H4� i���

�Ž . �Ž . Ž .Because � a� i�b, x, 0, T is the complex conjugate of� a� i�b, x, 0, T , we have 2.12 . Q.E.D.

Proposition 3, regarding the extended transform, relies on the following technical condition. For
differentiability of � at u, it is enough that � is well defined and finite in a neighborhood of u.

Ž . Ž . Ž . Ž .DEFINITION: K, H, l, � , � is ‘‘extended’’ well-beha�ed at � , u, T , if 2.5 � 2.6 are solved uniquely
Ž . Ž .by 	 and � , if the jump transform � is differentiable at 	 t for all t�T , if 2.15 is solved uniquely
Ž . Ž . Ž Ž .by B and A, and if the following integrability conditions i � iii are satisfied, where � �� A t �t t

Ž . .B t �X :t
Ž . Ž T � � . Ž .Ž Ž Ž Ž .. . Ž Ž .. Ž ..i E H � dt ��, where � �� X � � 	 t �1 ���� 	 t B t .˜ ˜0 t t t t t
Ž . �Ž T .1�2 � Ž Ž .� Ž .�. Ž .ii E H � �� dt ��, where � �� 	 t �B t  X .˜ ˜ ˜0 t t t t t
Ž . Ž � �.iii E � ��.T

B. MULTIPLE JUMP TYPES AND TIME DEPENDENCE

We can relax the jump behavior of X to accommodate time dependencies in the coefficients and
different types of jumps, each arriving with a different stochastic intensity.

n � . Ž .We redefine D to be a subset of � � 0,� , and treat the state process X defined so that X , tt
� Ž . 4 nis in D for all t. It is assumed that, for each t, x: x, t �D contains an open subset of � . The

time-dependent generator is now defined by

1 �Ž . Ž . Ž . Ž . Ž . � Ž . Ž . Ž . �B.1 DDf x , t � f x , t � f x , t � x , t � tr f x , t  x , t  x , tt x x x2

Ž . � Ž . Ž .� iŽ .� � x , t f x�z , t � f x , t d� z ,HÝ i tn�i

for sufficiently regular f : D��. That is, jump type i has jump-conditional distribution � i at time t,t
� Ž . 4 � 4depending only on t, and stochastic intensity � X , t : t
0 , for i� 1, . . . , m , where � : D��i t i �

Ž . i Ž . iŽ . Ž 1 1. Ž m m. � . nis defined by � x, t � l t � l t �x, for functions l , l , . . . , l , l on 0,� into ��� . Thei 0 t 0 1 0 1
Ž 1 m. iŽ . Ž . iŽ . n

njump transforms �� � , . . . , � are defined by � c, t �H exp c �z d� z , c�� . We take� t

Ž . Ž . Ž .� x , t �K t �K t x ,0 1

n
� Žk .Ž . Ž . Ž . Ž . x , t  x , t �H t � H t x ,Ý0 1 k

k�1

Ž . Ž . Ž . Ž .where for each t
0, K t is n�1, K t is n�n, H t is n�n and symmetric, and H t is a0 1 0 1
28 Žk .Ž . Ž .tensor of dimension n�n�n, with symmetric H t for k�1, . . . , n . The time-dependent

Ž . Ž . Ž .coefficients K� K , K , H� H , H , and l� l , l are assumed to be bounded continuous0 1 0 1 0 1
� .functions on 0,� .

In this more general setting, Propositions 1, 2, and 3 apply after introducing these time-depen-
Ž . Ž .dent coefficients into 2.5 and 2.6 , and replacing the last terms in the right-hand sides of these

m iŽ .Ž iŽ . . m i Ž .Ž iŽ . .ODEs with Ý l t � c, t �1 and Ý l t � c, t �1 , respectively.i�1 1 i�1 0

28 Let H be an n�n�n tensor, fix its third index to k� ; the tensor is reduced to an n�n matrix
Žk . Žk . Ž .H with elements, H �H i, j, k .i j
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We can further extend to the case of an infinite number of jump types by allowing for a general
Levy jump measure that is affine in the state vector, as in the one-dimensional case treated by´

Ž . Ž Ž . .Kawazu and Watanabe 1971 . See Theorem 42, page 32, of Protter 1990 .

C. CHANGE OF MEASURE

This appendix provides the impact of a change of measure defined by a density process or a
state-price-density process that is of the exponential-affine form in an affine jump-diffusion state
process X.

Ž .Fixing T�0, suppose, under the measure P, that a given characteristic �� K, H, l, � , � is
Ž . nwell-behaved at b, T for some b�� . Let

tŽ . Ž . Ž Ž . Ž . .C.1 � �exp R X , s ds exp � t , T , b �	 t , T , b �X .Ht s tž /0

Under the conditions of Proposition 1, � is a positive martingale. We may then define an equivalent
probability measure Q by dQ�dP�� �� . In this section, we show how to compute the transformT 0
of X after a change of measure with density process � . Many other densities could be considered, as

Ž .in Buhlmann, Delbaen, Embrechts, and Shiryaev 1996 . We have chosen this density as it preserves¨
the affine behavior of X under the change of measure, and because it arises naturally when

Žrenormalizing prices by the price of a zero-coupon bond maturing on a particular date. This is
.sometimes called ‘‘forward measure.’’ A more general way to choose an equivalent measure Q* that

would suffice for our purposes would have

mdQ* 1 TŽ . Ž . Ž Ž ..C.2 � exp R X , s ds exp b �X t ,HÝ i s i iž /dP k 0i�1

� 4 Ž . nwhere, for each i� 1, . . . , m , R x, t is affine in x, t is a fixed time, and b �� ; and wherei i i
Ž . Ž .k� 0,� is a normalizing scalar chosen so that E dQ*�dP �1.

Ž . Ž . Ž Q Q Q Q.PROPOSITION 5 Transform under Change of Measure : Let � Q � K , H , l , � be defined
by

Ž . Q Ž . Ž . Ž . Ž . Q Ž . Ž . Ž . Ž .C.3 K t �K t �H t 	 t , T , b , K t �K t �H t 	 t , T , b ,0 0 0 1 1 1

Ž . Q Ž . Ž . Ž Ž . . Q Ž . Ž . Ž Ž . .C.4 l t � l t � 	 t , T , b , t , l t � l t � 	 t , T , b , t ,0 0 1 1

Ž . Q Ž . Ž Ž . . Ž Ž . . Q Ž . Ž .C.5 � c, t �� c�	 t , T , b , t �� 	 t , T , b , t , H t �H t ,

Ž . Ž . Žk .Ž . Ž . QŽ . QŽ . QŽ .where H t b t denotes the n�n matrix with kth column H t b t . Let R x, t �� t �� t �x,1 1 0 1
Q � . Q � . n Q Ž Q Q.for some bounded measurable � : 0,� �� and � : 0,� �� . Let � � � , � be such that0 1 0 1

Ž . Ž .� Q is well-beha�ed at some u, T . Then, for t�T ,

TQ Q � ŽQ .Ž . Ž . Ž . � Ž .C.6 E exp � R X , s ds exp u �X FF �� u , X , t , T ,H s T t tž /ž /0

� ŽQ . Ž .where � is defined by 2.4 .

PROOF: Let

t �QŽ . Ž . Ž .C.7 W �W �  X , s 	 s, T , b ds, t
0.Ht t s
0

Lemma 2, below, shows that � W Q is a P-local martingale. It follows that W Q is a Q-martingale.
t � Ž . Ž . � Q Q � � P P �Because H  X , s 	 s, T , b ds is a continuous finite-variation process, W , W � W , W �0 s i j t i j t
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Ž . Ž . Q� i, j t, where � � is the Kronecker delta. By Levy’s Theorem, W is a standard Brownian motion´
in � n under Q.

Next, we let

tQŽ . Ž Ž .. Ž .C.8 M �N � � 	 s, T , b � X , s ds, t
0.Ht t s
0

Lemma 3, below, shows that �M Q is a P-local martingale. It follows that M Q is a Q-local
martingale. By the martingale characterization of intensity,29 we conclude that, under Q, N is a

� QŽ . 4 QŽ . QŽ . QŽ .counting process with the intensity � X , t : t
0 defined by � x, t � l t � l t �x.t 0 1
Using the fact that, under Q, W Q is a standard Brownian and the jump counting process N has

� QŽ . 4 Ž .intensity � X , t : t
0 , we may mimic the proof of Proposition 1, and obtain C.6 , replacing int
Ž Ž ..the proof of Lemma 1 E Ý � �� witht t �� Ž i.� T � Ž i. � Ž i.�

1
Q Ž . Ž .E � �� � E � � �� .Ý Ýt � Ž i. � Ž i.� t � Ž i. � Ž i. � Ž i.�ž / ž /� tŽ . Ž .t�� i �T t�� i �T

This completes the proof. Q.E.D.

LEMMA 2: Under the assumptions of Proposition 1, � W Q is a P-local martingale.

PROOF: By Ito’s Formula, with 0�s� t�T ,

t tQ Q Q Q� W �� W � � dW � W d�H Ht t s s u� u u� u
s s

ctQ Q QŽ .Ž . � �� � �� W �W � d � , WH uÝ u u� t t�
ss�u�t

tQ �Ž Ž . Ž . .�� W � � dW � X , u b u duHs s u� u u
s

t tQ � Ž . Ž .� W d� � �  X , u b u duH Hu u u u
s s

t tQ Q�� W � � dW � W d� ,H Hs s u� u u u
s s

� Q �c � Q �where � , W denotes the continuous part of the ‘‘square-brackets’’ process � , W . As W and �
� t 4 � t Q 4are P-martingales, both H � dW : t
0 and H W d� : t
0 are P-local martingales. Hence,0 u� u 0 u u

� W Q is a P-local martingale. Q.E.D.

LEMMA 3: Under the assumptions of Proposition 1, �M Q is a P-local martingale.

PROOF: By Ito’s Formula, with 0�s� t�T ,

t tQ Q Q Q Ž .Ž .� M �� M � � dM � M d� � � �� N �NH H Ýt t s s u� u u� u u u� u u�
s s s�u�t

t tQ Q ��� M � � dM � M d� �J ,H Hs s u� u u� u
s s

t Ž .where M �N �H � X , s ds, and wheret t 0 s

t� Ž . Ž Ž Ž . . . Ž .J � � �� � � � 	 u , T , b , u �1 � X , u du.HÝ u u� u u
ss�u�t

29 Ž .See, for example, page 28 of Bremaud 1981 .´
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� t 4 � t Q 4As M and � are P-martingales, H � dM : t
0 and H M d� : t
0 are P-local martingales. By0 u� u 0 u� u
Ž . Ž .a proof similar to that of Lemma 1, and using the Integration Theorem � in Bremaud 1981 , we´

can show that J � is a P-local martingale. Q.E.D.

Ž .For the remainder of this appendix, we denote Q by Q b , emphasizing the role of b in defining
Ž . Ž . Ž QŽb. QŽb. QŽb. QŽb. .the change of probability measure given by C.1 . We let � b � K , H , l , � , �

Ž .denote the associated characteristic. The previous result shows in effect that, under Q b , the state
vector X is still an affine jump-diffusion whose characteristics can be computed in terms of the
characteristics of X under the measure P. This result provides us with an alternative approach to

Ž . Ž .option pricing. We suppose that Q 0 is an equivalent martingale measure. The price  X , a, d, c, T0
Ž a�d�XT .�of an option paying e �c at T is given by

�TQŽ0. a�d�XTŽ . Ž . Ž . X , a, d , c, T �E exp � R X , s ds e �cH0 sž /ž /0

Ta QŽ0. d�XTŽ .�e E exp � R X , s ds e 1H s d�X 
 lnŽc.�aTž /ž /0

TQŽ0. Ž .�cE exp � R X , s ds 1 .H s d�X 
 lnŽc.�aTž /ž /0

Ž . Ž . Ž .Provided the characteristic K, H, l, � , � is well-behaved at d, T and 0, T , we may introduce the
Ž .equivalent probability measure Q d , and write

Ž . a Ž Ž . Ž . . QŽd . Ž . X , a, d , c, T �e exp � 0, T , d �	 0, T , d �X E 10 0 d�X 
 lnŽc.�aT

Ž Ž . Ž . . QŽ0. Ž .�c exp � 0, T , 0 �	 0, T , 0 �X E 1 .0 d�X 
 lnŽc.�aT

Ž . Ž QŽd . QŽd . QŽd . QŽd . . Ž . Ž QŽ0. QŽ0. QŽ0. QŽ0. .Let � 1 � K , H , l , � , 0 and � 0 � K , H , l , � , 0 be defined by
Ž . Ž . Ž . Ž . Ž .C.3 � C.5 for b�d and b�0. We suppose that � 1 and � 0 are well behaved at i�d, T for any
� ��. Then

� � Ž1. Ž . �i � ŽlnŽc.�a. �1 1 Im � i�d , x , 0, T e�
QŽd . Ž .E 1 � � d� ,Hd�X 
 lnŽc.�aT 2 � �0

� � Ž0. Ž . �i � ŽlnŽc.�a. �1 1 Im � i�d , x , 0, T e�
QŽ0. Ž .E 1 � � d� ,Hd�X 
 lnŽc.�aT 2 � �0

� � Ž1.Ž . � � � Ž0.Ž . �provided H � i�d, X , 0, T d� �� and H � i�d, X , 0, T d� ��. These quantities may� 0 � 0
now be substituted into the previous relation in order to obtain the option price.

D. CAP PRICING

A cap is a loan with face value, say 1, at a variable interest rate that is capped at some level r. At
time t, let � , 2� , . . . , n� be the fixed dates for future interest payments. At each fixed date k� , the

�Ž ŽŽ . . . ŽŽ . .r-capped interest payment, or ‘‘caplet,’’ is given by � RR k�1 � , k� � r , where RR k�1 � , k� is
Ž .the �-year floating interest rate at time k�1 � , defined by

1
ŽŽ . .�� k�1 � , k� .

ŽŽ . .1�� RR k�1 � , ��

The market value at time 0 of the caplet paying at date k� can be expressed as

k� �QŽ . Ž . Ž ŽŽ . . .Caplet k �E exp � R X , u du � RR k�1 � , k� � rH už /0

�1Ž .k�1 �QŽ . Ž . ŽŽ . .� 1�� r E exp � R X , u du �� k�1 � , k� .H u ž /ž / 1�� r0
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Ž .Hence, the pricing of the kth caplet is equivalent to the pricing of an in- k�1 �-for-� put struck at
Ž . Ž .1� 1�� r , which can be readily obtained by using Proposition 3 and put-call parity as Caplet k �

Ž . Ž .1�� r C k , where

Ž Ž . .1 � 0, k�1 �
Ž . Ž . Ž .C k � X , � , 	 , , k�1 � �� 0, k� � ,0ž /1�� r 1�� r

a�d�X ŽT . �Ž . Ž . ŽŽwhere  X , a, d, c, T is the price of a claim to e �c paid at T , and where ��� k�0
. . ŽŽ . .1 � , k� , 0 and 	�	 k�1 � , k� , 0 .
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