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We introduce a simple model of the “percola-
tion” of information of common interest through 
a large market, as agents encounter each other 
over time and reveal information to each other, 
some of which they may have received earlier 
from other agents. We are particularly inter-
ested in the evolution of the cross-sectional 
distribution in the population of the posterior 
probability assignments of the various agents. 
We provide a market example based on privately 
held auctions, and obtain a relatively explicit 
solution for the cross-sectional distribution of 
posterior beliefs at each time.

Our results contribute to the literature on 
information transmission in markets. Friedrich 
A. Hayek (1945) argues that markets allow 
information that is dispersed in a popula-
tion to be revealed through prices. Sanford J. 
Grossman’s (1981) notion of a rational-expecta-
tions equilibrium formalizes this idea in a set-
ting with price-taking agents. Paul R. Milgrom 
(1981), Wolfgang Pesendorfer and Jeroen M. 
Swinkels (1997), and Philip J. Reny and Motty 
Perry (2006) provide strategic foundations for 
the rational expectations equilibrium concept 
in centralized markets. A number of important 
markets, however, are decentralized. These 
include over-the-counter markets and private-
auction markets. Asher Wolinsky (1990) and 
Max R. Blouin and Roberto Serrano (2001) 
study information transmission in decentralized 
markets.� In contrast to these two papers, equi-
librium behavior in our market example leads to

� Ariel Rubinstein and Wolinsky (1985) and Douglas M. 
Gale (1986a, 1986b) study decentralized markets without 
asymmetric information. Mark Satterthwaite and Artyom 
Shneyerov (2003) study decentralized markets with private-
value asymmetric information. Manuel Amador and Pierre-
Olivier Weill (2006) study a more abstract setting regarding 
transmission of common and private information.
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full revelation of information through trading. 
We also explicitly characterize the percolation 
of this information through the market.

Our paper is also related to the literature on 
social learning. For example, our objectives are 
similar to those of Abhijit Banerjee and Drew 
Fudenberg (2004), who provide a brief survey of 
the literature. Like us, Banerjee and Fudenberg 
(2004) exploit the law of large numbers for ran-
dom matching among a large population, pro-
vide a dynamic rule for updating, and show 
conditions for convergence. Our model allows a 
relatively explicit solution for the cross-sectional 
distribution of posterior beliefs at each time.

I.  The Basic Model

A probability space (V, F, P) and a “continu-
um,” a nonatomic finite measure space (G, G, g),  
of agents are fixed. A random variable X of 
potential concern to all agents has two pos-
sible outcomes, H (“high”) and L (“low”), with 
respective probabilities n and 1 2 n.

Each agent is initially endowed with a 
sequence of signals that may be informative 
about X. The signals {s1,  …  , sn} observed by any 
particular agent are, conditional on X, indepen-
dent and identically distributed with outcomes 
0 and 1 (Bernoulli trials). The number n $ 0 
of signals may vary across agents. Without loss 
of generality, we suppose that P(si 5 1 Z H) $  
P(si 5 1 Z L). For any pair of agents, the sequences 
of signals that they observe are independent.

By Bayes’s rule, given a sequence S 5 
{s1, … , sn} of signals, the posterior probability 
that X has a high outcome is

(1) 	 P(X 5 H Z S) 5 c1 1
1 2 n

n
a1

2
b

u

d
21

,

where the “type” u of this set of signals is

(2) 	  u 5 a
n

i51
si log1/2 

P 1si 5 1 0  L 2
P 1si 5 1 0  H 2

	 1 (1 2 si) log1/2

1 2 P 1si 5 1 0  L 2
1 2 P 1si 5 1 0  H 2 .

* Duffie: Graduate School of Business, Stanford Univer
sity, 518 Memorial Way, Stanford, CA 94305-5015 (e-mail: 
duffie@stanford.edu); Manso: Sloan School of Manage
ment, Massachusetts Institute of Technology, 50 Memo
rial Drive, Cambridge, MA 02142 (e‑mail: manso@mit.
edu). We happily acknowledge conversations with Manuel 
Amador, Frank Kelly, Jeremy Stein, and Pierre-Olivier 
Weill, and research assistance from Sergey Lobanov.



MAY 2007204 AEA PAPERS AND PROCEEDINGS

The higher the type u of the set of signals, the 
higher is the posterior probability that X is high.

Proposition 1: Let S 5 {s1,  …  , sn} and R 5 
{r1,  …  , rm} be independent sets of signals, with 
associated types u and f. Then u 1 f is a suf-
ficient statistic for the posterior distribution of 
X given S, R, and u 1 f.

This follows from Bayes’s rule, by which

P(X 5 H Z S,  R,  u 1 f) 5 c1 1
1 2 n

n
a1

2
b

u1f

d
21

	 5 P(X 5 H Z u 1 f).

We will provide examples of random interac-
tion models in which, by a particular point in 
time, each of the agents has met a finite number 
of other agents, once each, in some particular 
sequence. In such a setting, for a given agent 
a, let A1 denote the set of agents that a directly 
encountered, let A2 be the set of agents that those 
agents had directly encountered before encoun-
tering a, and so on, and let A 5 hk$1Ak. Let SA 
denote the union of the signals of agent a and 
those of the agents in A, and let uA denote the 
type of the signal set SA.

Suppose that when two agents meet, they 
communicate to each other their posterior prob-
ability, given all information to the point of that 
encounter, of the event that X is high. For exam-
ple, we later provide a setting in which revela-
tion occurs through the observation of the bids 
submitted in an auction.

Now, as a step of an inductive calculation of 
posterior beliefs of all agents, suppose that the 
posterior distribution of X, held by a particular 
agent with extended encounter set A, is that of 
type uA. This is certainly the case before any 
encounters. From (1), uA can be calculated from 
the posterior distribution of X, and is thus in the 
information set of the agent, and could be com-
municated to another agent. Suppose that two 
agents with disjoint extended encounter sets A 
and B meet, and communicate to each other uA 
and uB. By the previous proposition, for each of 
the two agents, uA 1 uB is a sufficient statistic for 
the posterior distribution of X held by that agent, 
given that agent’s previously held information 
and the information conveyed at that meeting by 

the other agent. This justifies, by induction, the 
following result.

Proposition 2: If an agent with extended 
encounter set A meets an agent with a disjoint 
extended encounter set B, and they communi-
cate to each other their posterior probabilities 
of the event that X is high, then both will hold 
the posterior probability of this event given the 
signals SA h SB.

Given this result, it makes sense to extend the 
definition of “type” by saying that an agent with 
extended encounter set A has type uA, which 
leads to the following equivalent form of the last 
proposition.

Proposition 3: If an agent of pre-posterior 
type u meets an agent with pre-posterior type f, 
and they communicate to each other their types, 
then both have posterior type u 1 f.

II.  Population Information Dynamics

Any particular agent is matched to other agents 
at each of a sequence of Poisson arrival times 
with a mean arrival rate (intensity) l, which is 
common across agents. At each meeting time, 
the matched agent is randomly selected from 
the population of agents (that is, the matched 
agent is chosen with the uniform distribution, 
which we can take to be the agent-space mea-
sure g). We assume that, for almost every pair 
of agents, this matching procedure is indepen-
dent.� At each point in time, for any particular 
agent, we will (almost surely) be in the setting 
of the previous proposition, in which all prior 
encounters by that agent are with agents whose 
extended encounter sets were disjoint with that 
of the given agent.

We let g(x, t) denote the cross-sectional den-
sity of posterior type x in the population at time 
t (supposing that the posterior type distribution 
indeed has a density). The initial density g 1 · , 02  
of types is that induced by some particular ini-
tial allocation of signals. Assuming that g(x, t) 

� A rigorous mathematical foundation for the discrete-
time analogue of this random matching model is provided 
by Duffie and Yeneng Sun (2005 forthcoming), and the 
associated exact law of large numbers for the matching 
results is provided by Duffie and Sun (2005).
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is differentiable with respect to t, and relying 
formally on the law of large numbers, letting 
subscripts denote partial derivatives as usual, 
we have (almost everywhere)

(3) 	  gt(x, t) 5 2lg(x, t)

	 1 3
1`

2`

lg(y, t)g(x 2 y, t) dy,

with the first term representing the rate of 
emigration from type x associated with meet-
ing and leaving that type, and the second term 
representing the rate of immigration into type 
x due to type y agents meeting, at mean rate 
l, agents of type x 2 y, converting the type y 
agent to one of type x. (One could easily make 
the mistake of multiplying the second term by 
two to reflect that both agents in the pairing 
become type x, but the sum is over all agents 
meeting someone, and integration of the right-
hand side of (3) with respect to x confirms the 
consistency of (3) with conservation of total 
population mass.)

In order to compute the cross-sectional den-
sity of types at each time, we let ĝ 1 · , t 2 denote 
the Fourier transform of g 1 · , t 2 . By linearity of 
the transform and integrability, for each z in R,

(4) 	  ĝt 1z, t 2 5 2lĝ 1z, t 2 1 lĝ2 1z, t 2 ,
using the fact that the transform of a convolution 
g*h is the product ĝĥ of the transforms.

Proceeding formally and ignoring the poten-
tial role of singularities, we can let G(z, t) 5 
ĝ 1z, t 221, and by the chain rule obtain

(5) 	  Gt(z, t) 5 lG(z, t) 2 l,

with the usual solution

(6) 	  G(z, t) 5 elt[G(z, 0) 2 1] 1 1,

and, again only formally,

(7) 	 ĝ 1z, t 2 5
ĝ 1z, 0 2

elt 31 2 ĝ 1z, 0 2 4 1 ĝ 1z, 0 2  .

While technical conditions on the initial type 
distribution might be needed to justify this cal-
culation, we have confirmed the result in special 

cases by explicit calculation and by Monte Carlo 
simulation.

A particular agent who is assigned an initial 
type that is randomly drawn with density p 1 · , 02  
at time zero has a posterior type at time t that 
is a Markov process with a probability density 
p 1 · , t 2 at time t that evolves according to

(8) 	  pt(x, t) 5 2lp(x, t)

	 1 3
1`

2`

lp(y, t)g(x 2 y, t) dy.

The probability density p 1 · , t 2 of the agent’s 
type at time t therefore has the explicit trans-
form p̂ 1 t 2  given by

	 p̂(z, t) 5 p̂(z, 0)e2le
t
0[12ĝ(z, s)] ds.

III.  A Market Example

In order to provide a specific example in 
which agents have an incentive to completely 
reveal their information to the agents that they 
encounter, we study a private-auction setting in 
which, at each meeting, agents learn the types 
of the other agents encountered at that meeting 
by observation of bids submitted in an auction 
conducted at that meeting. This information is 
not revealed to agents who do not participate in 
the auction.

At a given time T . 0, it is revealed whether 
X is high or low. Before that time, uninformed 
agents who wish to hedge the risk associated 
with X arrive at the market at a total rate of 2l 
per unit of time. (For example, there may be a 
continuum of uninformed hedgers who arrive 
independently, at total rate of 2l.) Whenever 
an uninformed agent arrives at the market, he 
contacts two informed agents who are randomly 
chosen from the continuum of agents. In light 
of our extension, in the next section, to encoun-
ters of more than two informed agents each, we 
could consider an auction in which the unin-
formed agent contacts multiple agents.

The uninformed agent conducts a second-
price auction with the two chosen informed 
agents. The lower bidder sells the uninformed 
agent a forward financial contract that pays 1 at 
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time T if X is high and 0 otherwise. In return, 
the contract specifies payment of the winning 
(low) bid to the informed agent at time T. The 
informed agents, who are assumed to be risk-
neutral, tender bids that are then revealed to the 
two bidders (only). After purchasing the con-
tract, the uninformed agent leaves the market. 
For concreteness, informed agents maximize 
the expected discounted sum of auction sales 
net of contract payoffs, with a constant discount 
factor.

These second-price common-value auctions 
are known as “wallet games,” and are discussed 
by Paul Klemperer (1998). In the unique sym-
metric Nash equilibrium of each auction, each 
agent’s bid is the posterior probability that X  
is high. From the one-to-one mapping between 
an agent’s type and the agent’s posterior prob-
ability distribution of X, informed agents learn 
each others’ types from their bids.� The dynam-
ics of information transmission are therefore as 
described in Section II.

� Because we have a continuum of agents, when two 
agents meet they know that in the future they will almost 
surely not meet someone who has directly or indirectly met 
the other agent. Therefore, agents are not strategic about

Informed agents earn positive expected pay-
offs by participating in this market, while unin-
formed agents earn negative expected profits. 
This is consistent with the hedging motive for 
trade of the uninformed agents.

For a numerical example, we let l 5 1, so that 
one unit of time is the mean time inter-contact 
time for agents, and we let n 5 1/2. We assume 
that each agent initially observes a signal s, such 
that P(s 5 1 Z H) 1 P(s 5 1 Z L) 5 1 and P(s 5 
1 Z H) is drawn from a uniform distribution over 
the interval [1/2, 1]. It is easy to show that, on the 
event {X 5 H} of a high outcome, this initial 
allocation of signals induces an initial cross-
sectional density f(p) 5 2p for the prior likeli-
hood p of a high state, for p [ [0, 1]. From a 
simple change of variables using (1), the initial 
cross-sectional density of types on the event {X 
5 H} of a high outcome is

	 g 1u, 0 2 5
2112ulog2
11 1 2u 2 3.

the information they reveal in a meeting. In a market 
with a small number of agents, this would obviously be a 
concern.

d

Figure 1. Evolution of Cross-sectional Population Density of Type,  
on the Event {X 5 H}
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We then use the explicit solution (7) for the 
transform ĝ 1  

#
 , t 2  of the density of posterior 

types to characterize the dynamics of informa-
tion transmission. The evolution of the cross-
sectional densities of type and the associated 
posterior probability are illustrated in Figures 1 
and 2, respectively. Figure 3 shows the evolution 
of the mean of the cross-sectional distribution 
of posterior probability of a high state, and the 
evolution of the cross-sectional standard devia-
tion of this posterior probability.

IV.  New Private Information

Suppose that, independently across agents 
as above, each agent receives, at Poisson mean 
arrival rate r, a new private set of signals for 
which the type outcome y has a probability den-
sity h(y). Then (3) is extended to

(9) 	  gt(x, t) 5 2(l 1 r)g(x, t)

	 1 3
1`

2`

lg(y, t)g(x 2 y, t) dy

	 1 r3
1`

2`

h(y)g(x 2 y, t) dy.

In this case, (4) is extended to ĝ t (z, t) 5 2(l 1 r) 
ĝ (z, t) 1 lĝ2(z, t) 1 rĝ(z, t) h (z). As for the dynam-
ics of the transform, we can further collect terms 
in ĝ 1z, t 2  to obtain

(10) 	 ĝt 1z, t 2 5 2g 1z 2 ĝ 1z, t 2 1 lĝ2 1z, t 2 ,
where g 1z 2 5 l 1 r 11 2 ĥ 1z 2 2 , and extend (7) 
to obtain

(11) 	 ĝ 1z, t 2 5
ĝ 1z, 0 2

eg1z2t 31 2 ĝ 1z, 0 2 4 1 ĝ 1z, 0 2 .

V.  Multiagent Information Exchanges

Suppose that, at Poisson arrival intensity l, 
three agents are drawn at random and share 
their information. Then (3) is extended to

(12) 	  gt(x, t) 5 2lg(x, t)

	 1 l3
1`

2`
3

1`

2`

g(x 2 y 2 u, t)

	 3 g(u, t)g(y, t) dy du.

p h o

d

Figure 2. On the Event {X 5 H}, the Evolution of the Cross-sectional 
Population Density of Posterior Probability of the Event {X 5 H}
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Letting w 5 y 1 u, this can be expressed as

(13) 	 gt(x, t) 5 2lg(x, t)

	     1 l3
1`

2`

g(x 2 w, t) 3
1`

2`

g(w 2 y, t)

	     3 g(y, t) dy du.

Letting r(w, t) 5 e
1`

2`
g(w 2 y, t)g(y, t) dy, we 

have

(14) 	  gt(x, t) 5 2lg(x, t)

	 1 l3
1`

2`

g(x 2 w, t)r(w, t) dw.

Now, because r̂ 1z, t 2 5 ĝ2 1z, t 2 , we see that (4) 
is extended to

(15) 	  ĝt 1z, t 2 5 2lĝ 1z, t 2 1 lĝ3 1z, t 2 .

Similarly, if n agents are drawn at random to 
exchange information at each encounter, then 
(4) is extended to

(16) 	  ĝt 1z, t 2 5 2lĝ 1z, t 2 1 lĝn 1z, t 2 .

In order to solve for ĝ 1z, t 2  given ĝ 1z, 0 2 , we let 
H(z, t) 5 ĝ 1z, t 2 12n. Formally at least, we have

(17) 	 Ht 1z, t 2 5 1n 2 1 2lH 1z, t 2 2 1n 2 1 2l,

with the usual solution H(z, t) 5 e1n212lt[H(z, 0) 
2 1] 1 1, and

(18) 	  ĝ 1z, t 2 5 H 1z, t 2 1
1 2 n.

If private information is also learned over time, as 
in the previous section, then (16) is extended to

(19) 	 ĝt 1z, t 2 5 2 1l 1 r 2 ĝ 1z, t 2  1 lĝn 1z, t 2

	 1 rĝ 1z, t 2 ĥ 1z 2 .
In this case, we have (18), where H(z, t) 5 
e1n212g1z2t(H(z, 0) 2 1) 1 1.

Figure 3. On the Event {X 5 H}, the Evolution of the Cross-sectional Mean and 
Standard Deviation of the Posterior Probability of the Event {X 5 H}
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VI.  Conclusion

We introduce a simple model of the “percola-
tion” of information through a large market. Our 
model allows a relatively explicit solution for the 
cross-sectional distribution of posterior beliefs at 
each time t. We applied our model to study infor-
mation transmission in a decentralized market 
and, in contrast to previous models, obtained full 
revelation of information through trading.
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