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This supplement of Duffie, Malamud, and Manso (2013) houses the following ap-

pendices of our paper, “Information Percolation in Segmented Markets.” Appendices A

through C are found in the main paper.

Supplementary Appendices

D. A proof of the existence and uniqueness of a strictly monotone equilibrium of the

double auction.

E. An application of results from Appendix D to obtain approximations for the double-

auction equilibrium for the case of large gains from trade.

F. An application of the results of Appendix E to derive approximations for the ex-

pected trading profits for the case of large gains from trade.

G. An application of the results of Appendix F to approximate the expected gains

from information acquisition for the case of large gains from trade. From this, a

derivation of general properties of equilibrium information acquisition. Appendices

G.1 and G.2 apply these results to special cases of one and two classes of sellers,

respectively.

H. The two-class model.

I. Results on endogenous investment in matching technology.

J. Proofs of results in Section I, on endogenous investment in matching technology.

K. Results for the case of dynamic information acquisition.

L. Proofs of results in Appendix K.
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D Existence of Equilibrium for the Double Auction

Existence of equilibrium follows from Proposition 4.6 and the following general result.

Proposition D.1 Fix a buyer class b and a seller class s such that

ψHb (x) ∼ Exp+∞(c, γ,−α) (1)

for some c, α > 0 and some γ ∈ R. If α < 1, then there is no equilibrium associated

with V0 = −∞. Suppose, however, that α > α∗ and that

−γ <
(α + 1) logα

log(α + 1)− logα
, if α ≥ 2

−γ <
log(α2 − α) 2α

log(α + 1)− logα
, if α < 2.

Then, if the gain from trade G is sufficiently large, there exists a unique strictly monotone

equilibrium with V0 = −∞. This equilibrium is in undominated strategies, and maximizes

total welfare among all continuous nondecreasing equilibrium bidding policies.

In order to prove Proposition D.1, we apply the following auxiliary result.

Lemma D.2 Suppose that B, S : R → (vb, v
H) are strictly increasing and that their

inverses Vs and Vb satisfy

vb + ∆b P (Vs(z) + Vb(z)) = z.

Suppose further that V ′b (z) solves (12) for all z ∈ (vb, v
H). Then (B , S) is an equilibrium.

Proof. Recall that the seller maximizes

fS(s) =

∫ +∞

Vb(s)

(s− vs −∆sP (θ + φ)) Ψb(P (θ), φ) dφ. (2)

To show that S(θ) is indeed optimal, it suffices to show that f ′S(s) ≥ 0 for s ≤ S(θ)

and that f ′S(s) ≤ 0 for s ≥ S(θ) . We prove only the first inequality. A proof of the

second is analogous. So, let s ≤ S(θ) ⇔ Vs(s) ≤ θ. Then,

f ′S(s) = V ′b (s) (−s + vs + ∆sP (θ + Vb(s))) Ψb(P (θ), Vb(s)) + Gb(P (θ), Vb(s))

= V ′b (s)Ψb(P (θ), Vb(s))

(
−s+ vs + ∆sP (θ + Vb(s)) +

1

V ′b (s)hb(P (θ), Vb(s))

)
.
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By Lemma 4.1, hb(p, Vb(s)) is monotone decreasing in p. Therefore, by (26),

1

V ′b (s)hb(P (θ), Vb(s))
≥ 1

V ′b (s)hb(P (Vs(S)), Vb(s))
= s − vs − ∆s P (Vs(s) + Vb(s)).

Hence,

f ′S(s) ≥ V ′b (s) Ψb(P (θ), Vb(s))

× (−s+ vs + ∆sP (θ + Vb(s)) + s − vs − ∆s P (Vs(s) + Vb(s))) ≥ 0,

because θ ≥ Vs(s) .

For the buyer, it suffices to show that

fB(b) = max
b

∫ Vs(b)

−∞

(
vb + ∆bP (θ + φ) − S(θ)

)
Ψs(P (φ), θ) dθ (3)

satisfies f ′B(b) ≥ 0 for b ≤ B(φ), and satisfies f ′B(b) ≤ 0 for b ≥ B(φ) . That is,

vb + ∆b P (φ + Vs(b)) − S(Vs(b)) = vb + ∆b P (φ + Vs(b)) − b ≥ 0

for b ≤ B(φ), and the reverse inequality for b ≥ B(φ). For b ≤ B(φ), we have φ ≥ Vb(b)

and therefore

vb + ∆b P (φ + Vs(b)) − b ≥ vb + ∆b P (Vb(b) + Vs(b)) − b = 0,

as claimed. The case of b ≥ B(φ) is analogous.

Proof of Proposition D.1. It follows from Proposition 4.3 and Lemma D.2 that a

strictly monotone equilibrium in undominated strategies exists if and only if there exists

a solution Vb(z) to (12) such that Vb(vb) = −∞ and

Vs(z) = log
z − vb
vH − z

− Vb(z) − logR

is monotone increasing in z and satisfies Vs(vb) = −∞ , Vs(v
H) = +∞. Furthermore,

such an equilibrium is unique if the solution to the ODE (12) with Vb(vb) = −∞ is

unique.

Fix a t ≤ T and denote for brevity γ = γit , c = cit. Let also

g(z) = e(α+1)Vb(z) .

Then, a direct calculation shows that Vb(z) solves (12) with Vb(vb) = −∞ if and only

if g(z) solves

g′(z)

= g(z)
α + 1

vb − vs

(
z − vb
vH − z

1

hHb ((α + 1)−1 log g(z))
+

1

hLb ((α + 1)−1 log g(z))

)
,

(4)
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with g(vb) = 0. By assumption and Lemma 4.1 ,

hHb (V ) ∼ ci |V |γ e(α+1)V and hLb (V ) ∼ ci |V |γ eαV (5)

as V → −∞ because both GH
b (V ) and GL

b (V ) converge to 1. Hence, the right-hand

side of (4) is continuous and the existence of a solution follows from the Euler theorem.

Furthermore, when studying the asymptotic behavior of g(z) as z ↓ vb, we can replace

hHb and hLb by their respective asymptotics (5).

Indeed, let us consider

g̃′(z) = (α + 1) g̃(z)
1

vb − vs

(
z − vb
vH − z

1

c ((α + 1)−1 log 1/g̃)γ g̃

+
1

c((α + 1)−1 log 1/g̃)γ g̃α/(α+1)

)
,

(6)

with the initial condition g̃(vb) = 0. We consider only values of z sufficiently close to

vb, so that log g̃(z) < 0.

It follows from standard ODE comparison arguments and the results below that

for any ε > 0 there exists a z̄ > vb such that∣∣∣∣g(z)

g̃(z)
− 1

∣∣∣∣ +

∣∣∣∣g′(z)

g̃′(z)
− 1

∣∣∣∣ ≤ ε (7)

for all z ∈ (vb, z̄) . The assumptions of the Proposition guarantee that the same asymp-

totics hold for the derivatives of the hazard rates, which implies that the estimates

obtained in this manner are uniform.

First, we will consider the case of general (not necessarily large) vb − vs and show

that, when α < 1, g(z) decays so fast as z ↓ vb that Vs(z) cannot remain monotone in-

creasing. A similar argument then implies that Vs(z) cannot remain monotone increasing

when Gα < 1.

At points in the proof, we will define suitable positive constants denoted C1, C2,

C3, . . . without further mention.

Denote

ζ =
(α + 1)γ+1

c (vb − vs)
. (8)

Then, we can rewrite (6) in the form

g̃′(z) =
ζ

(log 1/g̃)γ

(
z − vb
vH − z

+ g̃1/(α+1)

)
. (9)
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From this point, throughout the proof, without loss of generality, we assume that vb = 0.

Furthermore, after rescaling if necessary, we may assume that vH − vb = 1. Then, the

same asymptotic considerations as above imply that, when studying the behavior of g̃

as z ↓ vb, we may replace vH − z ∼ vH − vb in (6) by 1.

Let A(z) be the solution to

z =

∫ A(z)

0

ζ−1 (− log x)γ x−1/(α+1) dx .

A direct calculation shows that

B(z)
def
=

∫ z

0

ζ−1 (− log x)γ x−1/(α+1) dx ∼ ζ−1α + 1

α
(− log z)γ zα/(α+1) .

Conjecturing the asymptotics

A(z) ∼ K (− log z)γ(α+1)/α z(α+1)/α (10)

and substituting these into B(A(z)) = z, we get

K = ζ
α+1
α

(
α

α + 1

) (γ+1)(α+1)
α

.

Standard considerations imply that this is indeed the asymptotic behavior of A(z). It is

then easy to see that

A′(z) ∼ K
α + 1

α
(− log z)γ(α+1)/α z1/α. (11)

By (9),

g̃′(z) ≥ ζ

(log 1/g̃)γ
g̃1/(α+1).

Integrating this inequality, we get g̃(z) ≥ A(z). Now, the factor (log 1/g̃)γ is asymptot-

ically negligible as z ↓ vb. Namely, for any ε > 0 there exists a C1 > 0 such that

C1 g̃
1/(α+ε+1) ≥ ζ

(log 1/g̃)γ
g̃1/(α+1) ≥ C−1

1 g̃1/(α−ε+1).

Thus, (
(g̃)

α−ε
1+α−ε

)′
≥ C2 .

Integrating this inequality, we get that

g̃(z) ≥ C3 (z − vb)
α−ε+1
α−ε . (12)
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Let

l(z) = B(g̃(z)) − z .

Then, for small z, by (10),

l′(z) = g̃′(z) ζ−1 (− log g̃)γ g̃−1/(α+1) − 1

=
ζ

(log 1/g̃)γ

(
z

vH − z
+ g̃1/(α+1)

)
ζ−1 (− log g̃)γ g̃−1/(α+1) − 1

=
z

1− z
1

g̃1/(α+1)

=
z

1− z
1

(A(l(z) + z))1/(α+1)

≤ z

1− z
1

(A(l(z)))1/(α+1)
,

(13)

where we have used the fact that l(z) ≥ 0 because h(0) = 0 and l′(z) ≥ 0. Integrating

this inequality, we get that, for small z,

l(z) ≤ C4 z
2(α−ε)/(α−ε+1).

Hence, for small z,

g̃(z) = A(l(z) + z) ≤ A((C4 + 1)z2(α−ε)/(α−ε+1)) ≤ C5 z
2−ε. (14)

Let C(z) solve ∫ C(z)

0

(− log x)γ dx = ζ

∫ z

0

x

1− x
dx .

A calculation similar to that for the function A(z) implies that

C(z) ∼ C6 (− log z)γ z2 (15)

as z → 0. Integrating the inequality

g̃′(z) ≥ ζ

(− log g̃)γ
z

1− z
,

we get that

g̃(z) ≥ C(z).

Let now α < 1. Then, (14) immediately yields that the second term in the brackets in

(6) is asymptotically negligible and, consequently,

ζ

(log 1/g̃)γ
z

1− z
≤ g̃′(z) ≤ (1 + ε) ζ

(log 1/g̃)γ
z

1− z
(16)

7



holds for sufficiently small z. Integrating this inequality implies that

C(z) ≤ g̃(z) ≤ (1 + ε)C(z).

Now, (16) implies that

(1− ε) 2C(z)z−1 ≤ g̃′(z) ≤ 2 (1 + ε)C(z) z−1

for sufficiently small1 z.

Using the asymptotics (5) and repeating the same argument implies that g(z) also

satisfies these bounds. (The calculations for g are lengthier and omitted here.)

Now,

V ′b (z) =
g′(z)

(α + 1) g(z)
≥ (1− ε) 2

α + 1
z−1.

Therefore,

V ′s (z) =
1

z (1− z)
− V ′b (z) < 0

for sufficiently small z. Thus, Vs(z) cannot be monotone increasing and the equilibrium

does not exist.

Let now α > 1. We will now show that there exists a unique solution to (4) with

g(0) = 0. Since the right-hand side loses Lipschitz continuity only at z = 0, it suffices to

prove local uniqueness at z = 0. Hence, we need only consider the equation in a small

neighborhood of z = 0. (It is recalled that we assume vb = 0.)

As above, we prove the result directly for the ODE (6), and then explain how the

argument extends directly to (4).

Suppose, to the contrary, that there exist two solutions g̃1 and g̃2 to (6). Define

the corresponding functions l1 and l2 via li = B(g̃i) − z. Both functions solve (13).

Integrating over a small interval [0, l], we get

|l1(x) − l2(x)| ≤
∫ x

0

z

1− z

∣∣∣∣ 1

(A(l1(z) + z))1/(α+1)
− 1

(A(l2(z) + z))1/(α+1)

∣∣∣∣ dz . (17)

Now, we will use the following elementary inequality: There exists a constant C6 > 0

such that

a1/α − b1/α ≤ C6 (a− b)
a(α−1)/α + b(α−1)/α

(18)

for a > b > 0. Indeed, let x = b/a and β = 1/α. Then, we need to show that

(1 + x1−β) (1 − xβ) ≤ C6 (1− x)

1We are using the same ε in all of these formulae. This can be achieved by shrinking if necessary the
range of z under consideration.
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for x ∈ (0, 1) . That is, we must show that

x1−β − xβ ≤ (C6 − 1) (1− x).

By continuity and compactness, it suffices to show that the limit

lim
x→1

x1−β − xβ

1− x
is finite. This follows from L’Hôpital’s rule.

By (10) and (11), we can replace the function A(z) in (17) by its asymptotics (10)

at the cost of getting a finite constant in front of the integral. Thus, for small z,

|l1(x) − l2(x)|

≤ C7

∫ x

0

z

∣∣∣∣((− log(l1 + z))γ (l1 + z))1/α − ((− log(l2 + z))γ (l2 + z))1/α

((− log(l1 + z))γ (l1 + z))1/α((− log(l2 + z))γ (l2 + z))1/α

∣∣∣∣ dz . (19)

By (18),

|((− log(l1 + z))γ (l1 + z))1/α − ((− log(l2 + z))γ (l2 + z))1/α|

≤ C6
|(− log(l1 + z))γ (l1 + z) − (− log(l2 + z))γ (l2 + z)|

((− log(l1 + z))γ (l1 + z))(α−1)/α + ((− log(l2 + z))γ (l2 + z))(α−1)/α
.

(20)

Now, consider some γ > 0. Then, for any sufficiently small a > b > 0, a direct calculation

shows that

0 < (log(1/a))γ a − (log(1/b))γ b ≤ ((log(1/a))γ + (log(1/b))γ) (a− b).

If, instead, γ ≤ 0, then the function a 7→ (log(1/a))γ a is continuously differentiable at

a = 0, and hence

0 < (log(1/a))γ a − (log(1/b))γ b ≤ C8 (a− b) .

Since α > 1, the same calculation as that preceding (16) implies that, for sufficiently

small z,

A(z) ≤ g̃i(z) = A(z + li(z)) ≤ (1 + ε)A(z) , i = 1, 2.

Thus, for z ∈ [0, ε̄],∣∣∣∣((− log(l1 + z))γ (l1 + z))1/α − ((− log(l2 + z))γ (l2 + z))1/α

((− log(l1 + z))γ (l1 + z))1/α((− log(l2 + z))γ (l2 + z))1/α

∣∣∣∣
≤ C9 |l1(z) − l2(z)| 1

z((α+1)/α)−ε

≤ C9

(
sup

z ∈ [ 0, ε̄ ]

|l1(z) − l2(z)|

)
1

z((α+1)/α)−ε .

(21)
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Thus, (19) implies that

|l1(x) − l2(x)| ≤ C10

(
sup
z ∈ [0,ε̄]

|l1(z) − l2(z)|

)∫ x

0

z
1

z((α+1)/α)+ε
dz

= C11 (ε̄)
α−1
α
−ε sup

z ∈ [0,ε̄]

|l1(z) − l2(z)|
(22)

for all l ≤ ε̄. Taking the supremum over l ∈ [0, ε̄], we get

sup
z ∈ [0,ε̄]

|l1(z) − l2(z)| ≤ C11 (ε̄)
α−1
α
−ε sup

z∈[0,ε̄]

|l1(z) − l2(z)| .

Picking ε̄ so small that C11 (ε̄)
α−1
α
−ε < 1 immediately yields that l1 = l2 on [0, ε̄] and

hence, since the right-hand side of (6) is Lipschitz continuous for z l 6= 0, we have l1 = l2

for all z by a standard uniqueness result for ODEs.

The fact that the same result holds for the original equation (4) follows by the

same arguments as above.

It remains to prove the last claim, namely the existence of equilibrium for suffi-

ciently large vb − vs. By Proposition 4.3, it suffices to show that

V ′s (z) =
1

z (1− z)
− V ′b (z) > 0 (23)

for all z ∈ (0, 1) provided that vb − vs is sufficiently large.

It follows from the proof of Lemma 4.1 that

G−1
L

(
(1− z)

1
(vb−vs)

)
≤ Vb(z) ≤ G−1

H

(
(1− z)

1
(vb−vs)

)
.

Thus, as vb − vs ↑ +∞, Vb(z) converges to −∞ uniformly on compact subsets of [0, 1).

By assumption,

lim
V→+∞

1

hHb (V )
=

1

α
, lim

V→+∞

1

hLb (V )
=

1

α + 1
.

Thus, as z ↑ 1,

V ′b (z) ∼ 1

α (vb − vs)
1

1− z
<

1

z(1− z)
.

Fixing a sufficiently small ε > 0, we will show below that there exists a threshold W

such that (23) holds for all vb − vs > W and all z such that Vb(z) ≤ −ε−1. Since,

by the assumptions made, 1/hHb (V ) and 1/hLb (V ) are uniformly bounded from above for

V ≥ −ε−1, it will immediately follow from (12) that (23) holds for all z with Vb(z) ≥ −ε−1

as soon as vb − vs is sufficiently large.
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Thus, it remains to prove (23) when Vb(z) ≤ −ε−1 . We pick an ε so small that we

can replace the ODE (4) by (6) when proving (23). That is, once we prove the claim for

the “approximate” solution g̃(z), the actual claim will follow from (7).

Let

g̃(z) =
ζ

(− log ζ)γ
f(z)

def
= ε f(z) , ε =

ζ

(− log ζ)γ
.

Then, (4) is equivalent to the ODE

f ′(z) =

(
log(1/ζ)

log(1/ζ) + log(1/f(z))

)γ (
z

1− z
+ ε

1
α+1 f(z)

1
α+1

)
. (24)

As vb − vs → +∞, we get that ζ, ε→ 0. Let

f0(z)
def
=

∫ z

0

x

1− x
dx = − log(1− z) − z .

Using bounds analogous to that preceding (16), it is easy to see that

lim
vb−vs→+∞

f(z) = f0(z) , lim
vb−vs→+∞

f ′(z) = f ′0(z),

and that the convergence is uniform on compact subsets of (0, 1). Fixing a small ε1 > 0,

we have, for z > ε1,

lim
vb−vs→∞

V ′b (z) = lim
vb−vs→∞

g̃′(z)

(α + 1)g̃(z)

= lim
vb−vs→∞

f ′(z)

(α + 1)f(z)

=
f ′0(z)

(α + 1)f0(z)

=
z

(α + 1) (1− z) (− log(1− z)− z)
.

We then have
d2

dz2
(− log(1− z)) =

1

(1− z)2
≥ 1.

Therefore, by Taylor’s formula,

− log(1− z)− z ≥ 1

2
z2 .

Hence,
z

(α + 1) (1− z) (− log(1− z)− z)
≤ 2

α + 1

1

z(1− z)
.

Therefore (23) holds for large vb − vs because α > 1. This argument does not work as

z → 0 because f(0) = f0(0) = 0. So, we need to find a way to get uniform upper bounds
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for f ′(z)/f(z) when z is small. By the comparison argument used above, and picking ε1

sufficiently small, since our goal is to prove inequality (23), we can replace 1− z by 1 in

(24).

In this part of the proof, it will be more convenient to deal with g̃ instead of f. By

the above, we may replace g̃ by the function g1 solving

g′1(z) =
ζ

(− log(g1))γ

(
z + g

1
α+1

1

)
.

Let

d(z) =

∫ z

0

(
log

(
1

x

))γ
dx ,

D(z) = d−1(z), and k(z) = D(g1(z)). Then, we can rewrite the ODE for g1 as

k′(z) = ζ
(
z + (D(k(z)))1/(α+1)

)
, k(0) = 0.

Define L(z) via ∫ L(z)

0

(D(x))−1/(α+1) dx = z,

and let

φ(z) = L(ζ z) +
1

2
ζ z2 ≥ L(ζz).

Then, by the monotonicity of D(z),

φ′(z) = ζ L′(ζz) + ζ z = ζ
(
z + (D(L(ζz)))1/(α+1)

)
≤ ζ (z + (D(φ(ζz)))1/(α+1)).

By a comparison theorem for ODEs (for example, Hartman (1982), Theorem 4.1, p.

26),2 we have

k(z) ≥ φ(z) ⇔ g1(z) = D(k(z)) ≥ D(φ(z)) . (25)

Therefore, since the functions x(− log x)γ and xα/(α+1) (− log x)γ are monotone increasing

for small x, we have

(1 + α)V ′b (z) =
g′(z)

g(z)

≤ (1 + ε)
g′1(z)

(α + 1) g1(z)

=
(1 + ε)ζ z

g1 (− log g1)γ
+

(1 + ε)ζ

g
α/(α+1)
1 (− log g1)γ

≤ (1 + ε)ζ z

D(φ(z)) (− logD(φ(z)))γ
+

(1 + ε)ζ

D(φ(z))α/(α+1) (− logD(φ(z)))γ
.

(26)

2Even though the right-hand side of the ODE in question is not Lipschitz continuous, the proof of
this comparison theorem easily extends to our case because of the uniqueness of the solution, due to
(22).
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Thus, it suffices to show that

ζ z2

D(φ(z)) (− logD(φ(z)))γ
+

ζ z

D(φ(z))α/(α+1) (− logD(φ(z)))γ
< (1− ε)(1 + α)

for some ε > 0, and for all sufficiently small z and ζ. Now, a direct calculation similar

to that for the functions A(z) and C(z) implies that

d(z) ∼ z (− log z)γ

and therefore that

D(z) ∼ z (− log z)−γ .

Thus, it suffices to show that

ζ z2

φ(z) (− log φ)−γ (− log(φ(z) (− log φ)−γ))γ

+
ζ z

(φ(z) (− log φ)−γ)α/(α+1) (− log(φ(z) (− log φ)−γ))γ

< (1− ε)(1 + α).

(27)

Leaving the leading asymptotic term, we need to show that

ζ z2

φ(z)
+

ζ z

(φ(z))α/(α+1) (− log(φ(z)))γ/(α+1)
< (1− ε)(1 + α) .

We have ∫ z

0

(D(x))−1/(α+1)dx ∼ α + 1

α
zα/(α+1) (− log z)γ/(α+1).

Therefore

L(z) ∼
(

α

α + 1
z

)(α+1)/α

(− log z)−γ/α .

Hence, we can replace φ(z) by

φ̃(z)
def
=

(
α

α + 1
ζz

)(α+1)/α

(− log(ζz))−γ/α +
1

2
ζ z2 .

Let

x =
ζ z2

(ζz)(α+1)/α (− log(ζz))−γ/α
.

Then,

ζ z2

φ̃(z)
+

ζ z

(φ̃(z))α/(α+1) (− log(φ̃(z)))γ/(α+1)

=
1((

α
α+1

)α+1
α + 0.5x

)α/(α+1)

(
− log(ζz)

− log φ̃

)γ/(α+1)

+
x(

α
α+1

)α+1
α + 0.5x

.
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We have

log(φ̃) = log(ζ z) + log

((
α

α + 1

)(α+1)/α

(ζz)1/α (− log(ζz))−γ/α + 0.5 z

)
≤ log(ζz)

for small ζ, z. Furthermore, for any ε > 0 there exists a ε > 0 such that(
α

α + 1

)(α+1)/α

(ζz)1/α (− log(ζz))−γ/α ≥ (ζz)1/(α−ε)

for all ζz ≤ ε. Hence,
α− ε

α− ε+ 1
≤ − log(ζz)

− log φ̃
≤ 1

for all sufficiently small ζ, z. Consequently, to prove (26) it suffices to show that

sup
x>0

χ(x) < 1 + α,

where

χ(x) =
1((

α
α+1

)α+1
α + 0.5x

)α/(α+1)
Aα +

x(
α
α+1

)α+1
α + 0.5x

,

with

Aα = max

{(
α

α + 1

)γ/(α+1)

, 1

}
.

Let

K =

(
α

α + 1

)α+1
α

.

Then,

χ′(x) = −0.5Aα α

α + 1

1

(K + 0.5x)(2α+1)/(α+1)
+

K

(K + 0.5x)2
.

Thus, χ′(x∗) = 0 if and only if

K + 0.5x∗ =

(
K

0.5Aα α
α+1

)α+1

,

which means that

x∗ = 2

((
2

Aα

)α+1

− 1

) (
α

α + 1

)α+1
α

.
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Then,

χ(x∗)

=
1((

α
α+1

)α+1
α + 0.5x∗

)α/(α+1)
Aα +

x∗(
α
α+1

)α+1
α + 0.5x∗

=
1

((2/Aα)α+1 (α/(α + 1))(α+1)/α)
α/(α+1)

Aα +
2
((

2
Aα

)α+1 − 1
) (

α
α+1

)α+1
α

(2/Aα)α+1 (α/(α + 1))(α+1)/α

=

(
Aα
2

)α
α + 1

α
Aα + 2− 2

(
Aα
2

)α+1

= 2 +
Aα+1
α

2α α
.

(28)

There are three candidates for x that achieve a maximum of χ, namely x = 0, x = +∞,
and x = x∗, which is positive if and only if Aα < 2.

If γ ≥ 0, then Aα = 1, so x = 0 and x = +∞ satisfy the required inequality as

soon as α > 1, whereas χ(x∗) < α + 1 if and only if α > α∗, where

α∗ = 1 +
1

α∗ 2α∗
.

A calculation shows that α∗ ∈ (1.30, 1.31).

If γ < 0, then

χ(0) =
(α + 1)Aα

α
, χ(+∞) = 2,

and this gives the condition Aα < α. If Aα > 2, that is, if

−γ > (α + 1)
log 2

log((α + 1)/α)
,

then we are done. Otherwise, we need the property

2 +
Aα+1
α

2α α
< α + 1 ⇔ −γ <

log ((α2 − α) 2α)

log((α + 1)/α)
.

E The Behavior of the Double Auction Equilibrium

Let

ζit =
(α + 1)

citG
(29)

and

εit =
ζit

(| log ζit|/(α + 1))γit
. (30)

Clearly, both ζit and εit are small when G is large.
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Proposition E.1 Let St = Si,j,t, Bt = Bi,j,t and εt = εit. We have, as G→∞,

St(θ) ∼ S
(
θ +

1

α + 1
log εt

)
,

where S(θ) is the inverse of the function in z defined by

log
z − vb
vH − z

− 1

α + 1
log

(
log

1

vH − z
− (z − vb)

)
.

Similarly,

Bt(θ) ∼ B
(
θ − 1

α + 1
log εt

)
where B(z) is the inverse of the function in z defined by

1

α + 1
log

(
log

1

vH − z
− (z − vb)

)
.

Corollary E.2 For any buyer-and-seller class pair (i, j), Si,j,t(θ) is monotone decreasing

in t and in any meeting probability λi, whereas Bi,j,t(θ) is monotone increasing in t and

any λi.

Proof. Without loss of generality, we assume for simplicity that R = 1. (This merely

adds a constant to the inverse of the ask function, by Proposition 4.3.) We fix a time

period t ≥ 0 and omit the time index everywhere and write Vb = Vbt , Vs = Vst for the

inverses of the bid and ask functions. We also let γ = γt , c = ct.

Let

ζ = ζt =
(α + 1)γ+1

cG
.

As in the proof of Proposition D.1, we define

g(z) = e(α+1)Vb(z) =
ζ

(− log ζ)γ
f(z)

def
= ε f(z) .

Then, as we have shown in the proof of Proposition D.1, we may assume that, for large

G,

f ′(z) =

(
log(1/ζ)

log(1/ζ) + log(1/f(z))

)γ (
z − vb
vH − z

+ ε
1

α+1 f(z)
1

α+1

)
, f(vb) = 0. (31)

See (24). Furthermore, as G→∞, we have ζ, ε→ 0 ,

lim
G→∞

f(z) = f0(z),
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where

f0(z) = (vH − vb) log
vH − vb
vH − z

− (z − vb),

and the convergence is uniform on compact subsets of [vb, v
H).

From this point, for simplicity we take the case γ = 0. The general case follows by

similar but lengthier arguments. Hence, we assume that f solves

f ′(z) =
z − vb
vH − z

+ ε1/α+1 f 1/(α+1). (32)

Since the solution f(z) to (32) is uniformly bounded on compact subsets of [vb, v
H), by

integrating (32) we find that

0 ≤ f(z) − f0(z) = O(ε
1

α+1 (z − vb)),

uniformly on compact subsets of [vb, v
H) . Furthermore, f0(z) ≤ C1 (z− vb)2, uniformly

on compact subsets of [vb, v
H) . Substituting these bounds into (32), we get

f(z) − f0(z) ≤ C2 ε
1

α+1

∫ z

vb

(ε1/α+1 (z − vb) + (z − vb)2)1/(α+1) dz

≤ C3 ε
1

α+1 (z − vb) (ε1/(α+1)2 (z − vb)1/(α+1) + (z − vb)2/(α+1)).

Let now

l(z) = f(z)α/(α+1) − ε1/α+1α

α + 1
(z − vb) .

Then,

l′(z) =
α

α + 1
f ′(z) f−1/(α+1) − ε1/α+1α

α + 1

=
α

α + 1

z − vb(
ε1/α+1α
α+1

(z − vb) + l(z)
)1/α

≤ α

α + 1

z − vb
(l(z))1/α

.

(33)

Integrating this inequality, we get

l(z) ≤ 1

2
(z − vb)2,

and therefore

f(z) ≤ C4 ((z − vb)2 + ε1/α (z − vb)(α+1)/α) . (34)

Consequently,

eVb(z) = ε
1

α+1

(
f0(z) + o(ε

1
α+1 (z − vb))

)1/(α+1)

(35)
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uniformly on compact subsets of [vb, v
H) . Therefore,

lim
ε→0

(
Vb(z) − 1

α + 1
log ε

)
=

1

α + 1
log f0(z),

uniformly on compact subsets of (vb, v
H).

Now, since Vb → −∞ uniformly on compact subsets of [vb, v
H),

Vs(z) = log
z − vb
vH − z

− Vb(z)

converges to +∞, uniformly on compact subsets of (vb, v
H) . Since S(−∞) = vb, standard

arguments imply that S(θ) converges to vb uniformly on compact subsets of [−∞,+∞)

(with −∞ included). Furthermore,

lim
ε→0

(
Vs(z) +

1

α + 1
log ε

)
= log

z − vb
vH − z

− 1

α + 1
log f0(z)

def
= M(z),

uniformly on compact subsets of (vb, v
H). Let S(z) = M−1(z). We claim that

lim
ε→0

S

(
θ − 1

α + 1
log ε

)
= S(θ) , (36)

uniformly on compact subsets of R. Indeed, S
(
θ − 1

α+1
log ε

)
is the unique solution to

the equation in y given by

θ = Vs(y) +
1

α + 1
log ε .

Since the right-hand side converges uniformly to the strictly monotone function M( · ),
this unique solution also converges uniformly to S(θ). Furthermore, the equality

vb + ∆b P (Vs(z) + Vb(z)) = z ⇔ vb + ∆b P (θ + Vb(S(θ))) = S(θ)

implies that

Vb

(
S

(
θ − 1

α + 1
log ε

))
= log

(
S − vb
vH − S

)
− θ +

1

α + 1
log ε

and therefore

Vb

(
S

(
θ − 1

α + 1
log ε

))
− 1

α + 1
log ε → log

(
S(θ)− vb
vH − S(θ)

)
− θ.

We have

M(z) = log

 z − vb

(vH − z)
(

(vH − vb) log
(
vH−vb
vH−z

)
− (z − vb)

)1/(α+1)

 .
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Now, for z ∼ vb,

log

(
vH − vb
vH − z

)
= − log

(
1 − z − vb

vH − vb

)
∼ z − vb

vH − vb
+

1

2

(
z − vb
vH − vb

)2

, (37)

and therefore

M(z) ∼ (1 + α)−1 log(2(vH − vb)) +
α− 1

α + 1
log

(
z − vb
vH − vb

)
(38)

as z → vb. Consequently, as θ → −∞, we have

S(θ) ∼ vb + K e
α+1
α−1

θ

for some constant K = K(α).

F The Behavior of Some Important Integrals

For simplicity, many results in this section will be established under technical conditions

on α. The general case can be handled similarly, but is significantly more messy. As

above, we fix a pair (i, j) = (b, s) and use St and Bt to denote the corresponding double

auction equilibrium. Recall that ψHst is the cross-sectional density of the information type

of sellers at time t.

As previously, we consider the case of large G and use the notation A ∼ B to

denote that A/B → 1 when G→∞.

Lemma F.1 Let
α + 1

α− 1
> α .

Then ∫
R

(vb − Sτ (y))ψHsτ (y) dy ∼ csτ ε
α
α+1

∣∣∣∣ log ε

1 + α

∣∣∣∣γsτ ∫
R

(vb − S(y)) e−αy dy

and ∫
R

(vb − Sτ (y))ψLsτ (y) dy = o(ε
α
α+1 )

as G→∞.

Proof. In the following, we handle the cases of ψLsτ and ψHsτ simultaneously by using the

notation “ψH,Lsτ .” Changing variables, we get∫
R

(vb − Sτ (y))ψH,Lsτ (y) dy

=

∫
R
ψH,Lsτ

(
y − 1

α + 1
log ε

) (
vb − Sτ

(
y − 1

α + 1
log ε

))
dy .

(39)

19



Furthermore, by Lemma G.6,

lim
ε→0

c−1
sτ ε

−{α,α+1}/(α+1)

∣∣∣∣ log ε

1 + α

∣∣∣∣−γsτ ψH,Lsτ

(
y − 1

α + 1
log ε

)
= e−{α,α+1} y.

By (36),

vb − Sτ

(
y − 1

α + 1
log ε

)
→ vb − S(y) .

In order to conclude that

lim
ε→0

ε−α/(α+1)

∫
R
ψHsτ

(
y − 1

α + 1
log ε

) (
vb − Sτ

(
y − 1

α + 1
log ε

))
dy

= csτ

∫
R
e−αy (vb − S(y)) dy,

(40)

and that∫
R
ψLsτ

(
y − 1

α + 1
log ε

) (
vb − Sτ

(
y − 1

α + 1
log ε

))
dy = o(εα/(α+1)),

we will show that the integrands

I(y) = ε−α/(α+1) ψHsτ

(
y − 1

α + 1
log ε

) (
vb − Sτ

(
y − 1

α + 1
log ε

))
and

ε−εε−α/(α+1) ψLsτ

(
y − 1

α + 1
log ε

) (
vb − Sτ

(
y − 1

α + 1
log ε

))
have an integrable majorant for some ε > 0. Then, (40) will follow from the Lebesgue

dominated convergence theorem.

We decompose the integral in question into three parts, as∫ 1
1+α

log ε

−∞
I1(y) dy +

∫ A

1
1+α

log ε

I2(y) dy +

∫ +∞

A

I3(y) dy,

and prove the required limit behavior for each integral separately. To this end, we will

need to establish sharp bounds for S(θ) and Vb(θ).

Lemma F.2 Let Ω ⊂ R2
+ be a bounded open set and L(θ, ε) ∈ Cb(Ω) be a bounded,

continuous function. Then we have

S

(
θ − 1

α + 1
log ε

)
≤ vb + C1 L(θ, ε) (41)
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for all (ε, θ) ∈ Ω if and only if

1

α + 1
log f(vb + L(θ, ε)) − log(L(θ, ε)) ≤ C2 − θ . (42)

If (41) holds, we have

Vb

(
S

(
θ − 1

α + 1
log ε

))
≤ log ε

1 + α
+ C3 + logL(θ, ε) − θ. (43)

Proof. Applying Vs to both sides of (41) and using the fact that Vs is strictly increasing,

we see that the desired inequality is equivalent to

θ − 1

α + 1
log ε ≤ Vs(vb + C1 L) .

Now,

Vs(z) +
1

α + 1
log ε = log

z − vb
vH − z

− Vb(z) +
1

α + 1
log ε = log

z − vb
vH − z

− 1

α + 1
log f(z) .

The claim follows because we are in the regime when vH − z is uniformly bounded away

from zero.

Furthermore,

− log ε

1 + α
+ Vb(S) = log

(
S − vb
vH − S

)
− θ − logR . (44)

If θ is bounded from above, then S is uniformly bounded away from vH , and hence

log

(
S − vb
vH − S

)
− θ ≤ C4 + log(S − vb) − θ.

The claim follows.

Lemma F.3 Suppose that ε > 0 is sufficiently small. Fix an A > 0. Then, for

θ ∈
(

1

α + 1
log ε, A

)
(45)

we have

S

(
θ − 1

α + 1
log ε

)
≤ vb + C5 e

α+1
α−1

θ , (46)

and for

θ <
1

α + 1
log ε, (47)

we have that

S

(
θ − 1

α + 1
log ε

)
≤ vb + C6 ε

1
(α+1)(α−1) e

α
α−1

θ . (48)
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Proof. By Lemma F.2, inequality (48) is equivalent to

1

α + 1
log f(vb + C6 ε

1
(α+1)(α−1) e

α
α−1

θ) − log(C6 ε
1

(α+1)(α−1) e
α
α−1

θ) ≤ −θ + C7 . (49)

Under the condition (47),

max
{

(z − vb)2 , ε1/α (z − vb)(α+1)/α
}

= ε1/α (z − vb)(α+1)/α (50)

for

z = C8 ε
1

(α+1)(α−1) e
α
α−1

θ .

Hence, by (34),

f(z) ≤ C9 ε
1/α (z − vb)(α+1)/α .

Consequently,

1

α + 1
log f(vb + C6 ε

1
(α+1)(α−1) e

α
α−1

θ) − log
(
C6 ε

1
(α+1)(α−1) e

α
α−1

θ
)

≤ C10 +
1

(α + 1)α
log ε +

1

α

(
α

α− 1
θ +

1

(α + 1)(α− 1)
log ε

)
−
(

α

α− 1
θ +

1

(α + 1)(α− 1)
log ε

)
= −θ + C10 ,

(51)

and (48) follows.

Similarly, when θ satisfies (45), a direct calculation shows that

max
{

(z − vb)2 , ε1/α (z − vb)(α+1)/α
}

= (z − vb)2 (52)

for

z = vb + C5 e
α+1
α−1

θ .

Therefore, by (34),

1

α + 1
log f(vb + C5 e

α+1
α−1

θ) − log(C5 e
α+1
α−1

θ )

≤ C11 +
2

α− 1
θ − α + 1

α− 1
θ = −θ + C11,

(53)

and (46) follows.

As above, we recall that ψHsτ is the cross-sectional density of the information type

of sellers at time τ . As above, we handle the cases of ψLsτ and ψHsτ simultaneously by

using the notation “ψH,Lsτ .”
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Lemma F.4 If
α + 1

α− 1
> α,

then∫ 1
α+1

log ε

−∞
ψH,Lsτ

(
θ − 1

α + 1
log ε

) (
vb − S

(
θ − 1

α + 1
log ε

))
dθ = o(εα/(α+1)) .

Proof. By (47), since ψH,Lsτ is bounded, we get∫ 1
α+1

log ε

−∞
ψH,Lsτ

(
θ − 1

α + 1
log ε

) (
vb − S

(
θ − 1

α + 1
log ε

))
dθ

≤ C12

∫ 1
α+1

log ε

−∞
ε

1
(α+1)(α−1) e

α
α−1

θ dθ

= ε
1

(α+1)(α−1)
α− 1

α
ε

1
(α+1)(α−1)

+ α
(α+1)(α−1)

= o(εα/(α+1)) .

(54)

Lemma F.5 If
α + 1

α− 1
> α,

then

lim
ε→0

ε−
α
α+1

∫ A

1
α+1

log ε

ψHsτ

(
θ − 1

α + 1
log ε

) (
vb − S

(
θ − 1

α + 1
log ε

))
dθ

= csτ

∫ A

−∞
(vb − S(θ)) e−α θ dθ

(55)

and∫ A

1
α+1

log ε

ψLsτ

(
θ − 1

α + 1
log ε

) (
vb − S

(
θ − 1

α + 1
log ε

))
dθ = o(εα/(α+1)).

Proof. By assumption, as x→∞,

ψHsτ (x) ∼ csτ e
−αx.

The claim follows from (36) and (45), which provides an integrable majorant.

The same argument implies the following result.
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Lemma F.6 We have

lim
ε→0

ε−
α
α+1

∫ +∞

A

ψHsτ

(
θ − 1

α + 1
log ε

) (
vb − S

(
θ − 1

α + 1
log ε

))
dθ

= csτ

∫ +∞

A

(vb − S(θ)) e−α θ dθ

(56)

and ∫ +∞

A

ψLsτ

(
θ − 1

α + 1
log ε

) (
vb − S

(
θ − 1

α + 1
log ε

))
dθ = o(εα/(α+1)) .

We define, for K ∈ {H,L},

GK
η,q0,τ−1

(x) =

∫ +∞

x

(ηK ∗ qK0,τ−1)(y) dy

FK
η,q0,τ−1

(x) = 1 − GK
η,q0,τ−1

(x),

(57)

where q0,τ = qi,0,τ is the density of increment to information type that an agent of class

i will get during the time interval [0, τ ] from trading with counterparties of class j. That

is,

qi,0,0 = (1− λi) δ0 + λi ψj 0.

and

qi,0,τ+1 = (1− λi) qi,0,τ + λi
∑
j

κij qi,0,τ ∗ ψj τ+1.

Furthermore, everywhere in the sequel we assume that the density η of the type of an

acquired signal packet satisfies ηH ∼ Exp+∞(cη, γη,−α) for some cη, γη > 0. This is

without loss of generality by Condition 2 and Lemma 4.5 on p. 29, which together imply

that any number of acquired signal packets satisfies this condition. That is, a convolution

of densities satisfying the specified tail condition also satisfies the same condition. The

same argument also implies that

qHi,0,τ ∼ Exp+∞(ci,0,τ , γi,0,τ ,−α)

for some ci,0,τ , γi,0,τ > 0 and

ηH ∗ qHi,0,τ ∼ Exp+∞(Ci,η,0,τ , γi,0,τ + γη + 1,−α)

for some Ci,η,0,τ > 0.
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Lemma F.7 Suppose that
(α + 1)2

α− 1
> 2α + 1 .

Then,∫
R
ψHsτ (y) (vH − Sτ (y))FH

η,q0,τ−1
(Vbτ (Sτ (y))) dy ∼ R−(α+1) csτ

cs,0,τ−1

α + 1
Cs,η,0,τ−1

× ε
2α+1
α+1

∣∣∣∣ log ε

1 + α

∣∣∣∣γsτ+γs,0,τ−1+γη+1 ∫
R

(vH − S(y))

(
S(y)− vb
vH − S(y)

)α+1

e−y(2α+1) dy

(58)

and ∫
R
ψLsτ (y) (Sτ (y)− vb)FL

η,q0,τ−1
(Vbτ (Sτ (y))) dy ∼ R−α csτ

cs,0,τ−1

α
Cs,η,0,τ−1

× ε
2α+1
α+1

∣∣∣∣ log ε

1 + α

∣∣∣∣γsτ+γs,0,τ−1+γη+1 ∫
R

(S(y)− vb)
(
S(y)− vb
vH − S(y)

)α
e−y(2α+1) dy .

(59)

as G→∞.

Proof. As x→ −∞, we have

FH,L
η,q0,τ−1

(x) ∼ cs,0,τ−1Cs,η,0,τ
{α + 1, α}

ex {α+1,α} |x|γs,0,τ−1+γη+1 .

The claim follows by the arguments used in the proof of Lemma F.1. Special care is

needed only because (vH − S)−1 blows up as θ ↑ +∞.
By (44),

FH
η,q0,τ−1

(
Vb

(
S

(
θ − 1

α + 1
log ε

)))
≤ C13 ε

(
S − vb
vH − S

e−θ
)α+1 ∣∣∣∣log

(
S − vb
vH − S

e−θε
1

α+1

)∣∣∣∣γs,0,τ−1+γη+1

.

(60)

Thus, to get an integrable majorant in a neighborhood of +∞, it would suffice to have

a bound

vH − S ≥ C14 e
−βθ

with some β > 0 such that βα < 2α + 1, because this would guarantee that(
S − vb
vH − S

e−θ
)α ∣∣∣∣log

(
S − vb
vH − S

e−θε
1

α+1

)∣∣∣∣γs,0,τ−1+γη+1

e−αθ ≤ C̃14e
−ε̄θ

for some ε̄ > 0. By the argument used in the proof of Lemma F.2, it suffices to show

that for sufficiently large θ,

1

α + 1
log f(vH − C14 e

−βθ) ≤ C15 + (β − 1) θ .
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Now, it follows from (32) that

f ′(z) ≤ f(z)1/(α+1) +
vH − vb
vH − z

.

Since, for sufficiently small ε, f(z) is uniformly bounded away from zero on compact

subsets of (vb, v
H ], we get

d

dz
(f(z)α/(α+1)) ≤ C16 (1 + (vH − z)−1),

for some K > 0 when z is close to vH . Integrating this inequality, we get

f(z)α/(α+1) ≤ C17 (1 − log(vH − z)).

Consequently,
1

α + 1
log f(vH − C14 e

−βθ) ≤ C18 log θ

if θ is sufficiently large. Hence, the required inequality holds for any β > 1 with a

sufficiently large C14, and the claim follows.

Lemma F.8 Let
α + 1

α− 1
> α .

Then ∫
R

(Sτ (y)− vb) × (ηH ∗ qHt,τ−1)(y − θ) dy

∼ cb,t,τ−1

α + 1
Cb,η,0,τ−1

∣∣∣∣ log ε

1 + α

∣∣∣∣γb,t,τ−1+γη+1

ε
α
α+1

∫
R
(S(y)− vb) e−α(y−θ) dy

(61)

and ∫
R

(Sτ (y)− vb) × (ηL ∗ qLt,τ−1)(y − θ) dy = o

(∣∣∣∣ log ε

1 + α

∣∣∣∣γb,t,τ−1+γη+1

ε
α
α+1

)
(62)

as G→∞.

Lemma F.9 Let
(α + 1)α

α− 1
> α .
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Then we have, as G→∞,∫
R

(Sτ (y)− vs)FL
bτ (Vbτ (Sτ (y))) (ηL ∗ qLt,τ )(y − θ)dy ∼ cb,t,τ−1R

−αCb,η,0,τ−1e
(α+1)θ

×
∣∣∣∣ log ε

1 + α

∣∣∣∣γb,t,τ−1+γη+1

ε
α
α+1

α + 1

α

∫
R
e−(2α+1)y

(
S(y)− vb
vH − S(y)

)α
dy

(63)

and ∫
R

(vH − Sτ (y))FH
bτ (Vbτ (Sτ (y))) (ηH ∗ hHt,τ )(y − θ)dy

= o

(∣∣∣∣ log ε

1 + α

∣∣∣∣γb,t,τ−1+γη+1

ε
α
α+1

)
.

(64)

G Proofs for Case of Initial Information Acquisition

For any given agent i, the expected utility Ui,t,τ from trading during the time interval

[t, τ ] is

Ui,t,τ (θ) =
τ∑
r=t

ui,t,r(θ) ,

where ui,t,r is the expected utility from trading at time r conditional on the agent’s

information at time t, evaluated at the information type outcome θ.

We denote further by ui,t,r(θ; η) the expected utility from trading at time r con-

ditional on the agent’s information at time t after the agent has made the decision to

acquire a signal packet with type density ηH,L, before the type of the acquired signal

is observed. With this notation, ui,t,r(θ) = ui,t,r(θ; δ0). The following lemma provides

expressions for ui,t,r(θ; η). These expressions follows directly from the definition of the

double-auction trading mechanism.

Lemma G.1 For a given buyer with posterior information type θ at time 0,

ub,0,τ (θ; η) = P (θ)λ

∫
R

(vH − Sτ (y))GH
η,q0,τ−1

(Vbτ (Sτ (y))− θ)ψHsτ (y) dy

+ (1− P (θ))λ

∫
R

(vb − Sτ (y))GL
η,q0,τ−1

(Vbτ (Sτ (y))− θ)ψLsτ (y) dy,

(65)

whereas a seller’s utility is

us,0,τ (θ; η) = P (θ)λ

∫
R

(Sτ (y)− vH)GH
bτ (Vbτ (Sτ (y))) (ηH ∗ qH0,τ−1)(y − θ) dy

+ (1− P (θ))λ

∫
R

(Sτ (y)− vs)GL
bτ (Vbτ (Sτ (y))) (ηL ∗ qL0,τ−1)(y − θ) dy.

(66)

Here, by convention, we set qKt,t−1 = δ0.
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The next result provides approximate expressions for the gains from information

acquisition when G is sufficiently large. Recall that the asymptotic behaviour for large

G in the double auction between a class i of buyers and a class j of seller is determined

by

ζit =
(α + 1)

citG
.

Lemma G.2 Let b be a buyer of class i. Denote by s the set of seller classes with which

buyers of class i trade and let

γsτ ≡ max
j∈s

γjτ .

Further, let

sm = {j ∈ s : γjτ = γsτ} .

Let also γτ ≡ γbτ . Then

ub,0,τ (θ; η)− ub,0,τ (θ) ∼
e−αθR−α

1 +Reθ
Igain
b λ

∫
R

(vH − S(y))

(
S(y)− vb
vH − S(y)

)α+1

e−y(2α+1) dy,

(67)

as G→∞, where

Igain
b =

∑
j∈sm

cjτ
1

α(α + 1)

(
ζτ

(| log ζτ |/(α + 1))γτ

) 2α+1
α+1

∣∣∣∣ log ζτ
1 + α

∣∣∣∣γjτ cs,0,τ−1

∣∣∣∣ log ζτ
1 + α

∣∣∣∣γb,0,τ−1

×

(
Cb,η,0,τ (N̄b, N̄s)

∣∣∣∣ log ζτ
1 + α

∣∣∣∣γη+1

− 1

)

=
∑
j∈sm

cjτ
1

α(α + 1)
ζ

2α+1
α+1
τ cs,0,τ−1

∣∣∣∣ log ζτ
1 + α

∣∣∣∣γb,0,τ−1− α
α+1

γτ+(γjτ−γτ )

×

(
Cb,η,0,τ (N̄b, N̄s)

∣∣∣∣ log ζτ
1 + α

∣∣∣∣γη+1

− 1

)
.

(68)

Lemma G.3 Let s be a seller of class i. Denote by b the set buyer classes with which

seller of class i trade and let

γτ ≡ max
j∈b

γjτ .

Further, let

bm = {j ∈ b : γjτ = γτ} .
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Then

us,0,τ (θ; η)− us,0,τ (θ) ∼
e(α+1)θR−α

1 +Reθ
Igain
s ×Gs

as G→∞, where

Gs = λ

∫
R

(
(S(y)− vb) −

α + 1

α
e−(α+1)y

(
S(y)− vb
vH − S(y)

)α)
e−αy dy

and

Igain
s =

∑
j∈bm

ζ
α
α+1

jτ

(
Cb,η,0,τ (N̄b, N̄s)

∣∣∣∣ log ζjτ
1 + α

∣∣∣∣γη+1

− 1

)
cb,0,τ−1

∣∣∣∣ log ζjτ
1 + α

∣∣∣∣γs,0,τ−1− α
α+1

γτ

.

Lemmas G.2 and G.3 follow directly from Lemmas F.1-F.9 above. The following

result is then an immediate consequence.

Corollary G.4 For buyers and sellers, the utility gain from acquiring information is

convex in the number of signal packets acquired. Consequently, any optimal pure strategy

is either to acquire the maximum number n̄ of signal packets, or to acquire none.

The next lemma is a direct consequence of Lemma 4.5 .

Lemma G.5 Suppose that λij ≡ λiκij 6= 0 for all i, j.3 Let N̄s be the maximal number

of signal packets for sellers, and N̄b the maximal number of signals for buyers. Then,

for any class i,

γi1 = N̄i + 1i∈sN̄b + 1i∈bN̄s,

and thus, for all t ≥ 2,

γit = 2t−1(N̄b + N̄s) − 1 + N̄i − 1i∈sN̄s − 1i∈bN̄b,

where we write i ∈ b if class i is a buyer class, and similarly for the sellers’ classes.

Furthermore,

γi,0,τ−1 = γiτ − N̄i .

Proof of Theorem 5.2 . It follows from Lemmas G.2-G.3 that it suffices to show

that the exponents for | log ζ| are monotone increasing in N if T is sufficiently large. For

buyers, we have

γb,0,τ−1 −
2α + 1

α + 1
γτ + γjτ = −Nb −

α

α + 1
γbτ + γjτ

3The case when some of the matching probabilities are zero can be studied by a limiting procedure.
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whereas, for sellers, we need to show that

γs,0,τ−1 −
α

α + 1
γτ

is monotone increasing in the number of acquired signals. This follows directly from

Lemma G.5.

Proof of Lemma C.3 . By the Perron-Frobenius Theorem (see Meyer (2000),

chapter 8, page 668), we have

(ΛsΛb)
t−1 ∼ rt−1

s psq
T
s

where ps and qs are right and left Perron eigenvectors of ΛsΛb respectively, and rs is the

corresponding Perron eigenvalue. Similarly,

(ΛbΛs)
t−1 ∼ rt−1

b pbq
T
b

where pb and qb are the right and left Perron eigenvectors of ΛbΛs respectively, and rb is

the corresponding Perron eigenvalue. Now, applying Λb to the identity ΛsΛbps = rsps, we

get that Λbps is a positive right eigenvector of ΛbΛs corresponding to a positive eigenvalue

rs. Uniqueness part of the Perron-Frobenius Theorem (see Meyer (2000), chapter 8, page

667) implies that rs = rb. To prove the last statement, we note that, by the Collatz-

Wielandt formula (see Meyer (2000), chapter 8, page 667),

rs = max
x

min
i

(ΛsΛbx)i
xi

= min
i

(ΛsΛbps)i
psi

If we increase one of the elements of Λs or Λb, all coordinates of ΛsΛbps become strictly

larger since ps > 0, and hence the Collatz-Wielandt formula implies that rs also strictly

increases.

Proof of Proposition 5.5 . The claim of monotonicity in Nmin and n̄ follows

directly from Lemmas F.1-F.9 and the proof of Theorem 5.2 . Furthermore, for large t,

csi,t/c
α/(α+1)
bj ,t

is monotone increasing in λsk,bl if and only if so does the principal eigenvalue

rs, and hence the claim follows from Lemma C.3 .

This completes the proof of the claim for seller and buyer classes from s and b.

For a seller class i 6∈ s, we have ci,t =
∑

j λi,bjc
b
j,t−1 by Lemma C.2 , and the claim

follows. A similar argument applies for a buyer of class i 6∈ b, with the only exception

that λi,sj appear in the denominator leading to within-class strategic substitutability of

matching probabilities. The latter however is offset by the factor λi entering the expected

gains from trade.

We will now study examples illustrating our general model. We will first treat the

case of one class of sellers, and then consider the case of two classes of sellers.
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G.1 One Class of Sellers

In order to calculate the equilibria, we will first need to determine the dependence of the

cross-sectional type distributions on the model parameters. Suppose that buyers and

sellers acquire Nb and Ns signal packets respectively. Then, let N̄i = Nmin + Ni be the

total number of signals packets that class i possesses. The maximum feasible number of

signal packets is Nmax = Nmin + n̄. Using Lemma 4.5 , we immediately get the following

two technical lemmas.

Lemma G.6 Suppose that at time 0 buyers and sellers acquire N̄b and N̄s signals respec-

tively. Then, cbt = cst = ct and γbt = γst = γt so that ψst , ψbt ∼ Exp−∞(ct, γt, α + 1)

for all t ≥ 1, where γ1 = N̄b + N̄s − 1. It follows that γt = 2γt−1 + 1 for t ≥ 2,

c1 = λ cs0cb0
(N̄s − 1)! (N̄b − 1)!

(N̄s + N̄b − 1)!

and

ct+1 = λ c2
t

(γt!)
2

γt+1!
.

In particular,

γt = 2t−1(N̄b + N̄s) − 1

and

ct = DN̄b,N̄s(t) c
2t−1(N̄s+N̄b)
0 λ2t−1,

for a model-independent combinatorial function DN̄b,N̄s(t).

Lemma G.7 For i = b or i = s, we have qHi,0,τ ∼ Exp−∞(ci,0,τ , γi,0,τ , α + 1), where

γi,0,τ = (2τ − 1) (N̄b + N̄s) − 1 + N̄j

and

ci,0,τ = Di,N̄b,N̄s(0, τ) c0λ
2τ+1−1,

for model-independent combinatorial function Di,N̄b,N̄s(0, τ) .

We will also need the following auxiliary lemma, whose proof is straightforward.

Lemma G.8 For i ∈ {b, s}, let Gaini(N̄s, N̄b) denote the utility gain from acquiring the

maximum number n̄ = Nmax − Nmin of signal packets, for a market in which all other

buyers and sellers have N̄b and N̄s signal packets, respectively. Let

π1 ≡ Gains(Nmax, Nmin), π2 ≡ Gains(Nmin, Nmin),

π3 ≡ Gainb(Nmax, Nmax), π4 ≡ Gain(Nmax, Nmin).
(69)

Then:
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• (Nmax, Nmin) is an equilibrium if and only if π ∈ [π4, π1].

• (Nmax, Nmax) is an equilibrium if and only if π ≤ π3.

• (Nmin, Nmin) is an equilibrium if and only if π ≥ π2.

Lemma G.9 Let T̃ ≡ log2(α + 1) + 1. Then, the following are true:

• If T = 0 then π1 = π2 > π4 > π3. Thus, an equilibrium exists if and only if

π 6∈ (π3, π4).

• If 0 < T < T̃ then π1 > π2 > π4 > π3, and an equilibrium exists if and only if

π 6∈ (π3, π4).

• If t > T̃ then π1 > π2 > π3 > π4, and an equilibrium always exists.

• For all i, πi is increasing in Nmin and in n̄.

Proof. For small values of ε, the constants π1, π2, π3, and π4 satisfy

πk ∼ Ai(0, N̄s, N̄b)Zi(0, N̄s, N̄b),

for corresponding pairs of N̄b, N̄s. Here,

Ai(0, N̄s, N̄b) = (Nmax −Nmin)−1

(
Cj,ηNmax ,0,T

∣∣∣∣ log ζ

1 + α

∣∣∣∣Nmax

− Cj,ηNmin
,0,T

∣∣∣∣ log ζ

1 + α

∣∣∣∣Nmin

)
,

(70)

where j = s when i = b, and where j = b when i = s. Furthermore,

Zb(0, N̄s, N̄b) ∼ λ
R−α

1 +R
Db(0, c0, N̄b, N̄s, α)λ2T−1

(
1

λ2T−1G

) 2α+1
α+1

× λ2T−1
∣∣log(G)

∣∣(2T−1 − 1) (N̄b+N̄s) − 1 + N̄s− α
α+1

(2T−1(N̄b+N̄s)−1)

=
R−α

1 +R
Db(0, c0, N̄b, N̄s, α)λ

2T−(α+1)+2α+1
α+1 (G)−

2α+1
α+1

× | logG|
2T−1

α+1
(N̄b+N̄s)−N̄b− 1

α+1 ,

(71)

for some function Db(0, c0, N̄b, N̄s, α). Similarly,

Zs(0, N̄s, N̄b) ∼
R−α

1 +R
Ds(0, c0, N̄b, N̄s, α)λ

2T−(α+1)+2α+1
α+1 (G)−

α
α+1

× | logG|
2T−1

α+1
(N̄b+N̄s)−N̄b− 1

α+1 ,

(72)
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for some function Ds(c0, N̄b, N̄s, α). For T = 0, there is only one trading round and

therefore

Zs(0, N̄s, N̄b) =
R−α

1 +R
Db(c0, N̄b, N̄s, α)λ (G)−

α
α+1 | log(G)|−(N̄b−1)α/(α+1)

and

Zb(0, N̄s, N̄b) =
R−α

1 +R
Ds(c0, N̄b, N̄s, α)λ(G)−

2α+1
α+1 | logG|−(N̄b−1)α/(α+1)+(N̄s−N̄b).

When G is sufficiently large, Zs > Zb and the impact of Di and Ci,η,0,τ (N̄b, N̄s) is small

and does not affect the monotonicity results. The claim follows by direct calculation.

G.2 Two Classes of Sellers

As above, we denote by N̄i = Nmin +Ni the total number of signal packets held by agents

of class i. We have the following results.

Let N̄s = max{N̄1, N̄2} and let m ∈ {1, 2} be the corresponding seller class that

acquired more information and −m be the other seller class. Then,

λ =

{
0.5λm , N̄1 6= N̄2

0.5(λ1 + λ2) , N̄1 = N̄2 .

Lemma G.10 We have ψl,t ∼ Exp−∞(clt, γlt, α + 1) for l ∈ {s1, s2, b} for all t ≥ 1,

where γsk,1 = N̄k + N̄b − 1 and γb1 = N̄s + N̄b − 1, and where, for t ≥ 2,

γsk,t = γsk,t−1 + γb,t−1 + 1 (73)

γb,t = γb,t−1 + γsm,t−1 + 1 (74)

and where further

cb1 = λ cs0cb0
(N̄s − 1)! (N̄b − 1)!

(N̄s + N̄b − 1)!
, csk,1 = λk csk,0cb0

(N̄k − 1)! (N̄b − 1)!

(N̄k + N̄b − 1)!
,

cb,t+1 = cbt
γbt! γsm,t!

γb,t+1!

{
λ csm,t, N̄1 6= N̄2

0.5 (λ1 cs1,t + λ2 cs2,t) , N̄1 = N̄2,

and

csk,t+1 = cbt
γbt! γsm,t!

γb,t+1!
λk csk,t.

Consequently,

γbt = γsm,t = 2t−1(N̄b + N̄s) − 1
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and, for t ≥ 2,

γs−m,t = 2t−1(N̄b + N̄s) − 1 + N̄−m − N̄s.

Thus, for N̄1 6= N̄2,

cbt = DN̄b,N̄s(t) c
2t−1(N̄s+N̄b)
0 (0.5λm)2t−1 , csk,t = DN̄b,N̄1,N̄2

(t)λtk (0.5λm)2t−t−1,

for some combinatorial functions DN̄b,N̄s(t), Dk,N̄b,N̄1,N̄2
(t) .

However, when N̄1 = N̄2, we get

cb,t = db,N̄b,N̄s(t) (λt1 + λt2)
t−1∏
r=1

(λr1 + λr2)2t−r−1

and

csk,t = ds,N̄b,N̄s(t)λ
t
k

t−1∏
r=1

(λr1 + λr2)2t−r−1

,

for some combinatorial functions db,N̄b,N̄s(t) and ds,N̄b,N̄s(t).

Now, we need to calculate γt,τ .

Lemma G.11 We have hHl,t,τ ∼ Exp−∞(cl,t,τ , γt,τ , α + 1), where

csk,t,t = λk cbt, γt,t = γbt,

and

cb,t,t =

{
0.5λm csm,t , N̄1 6= N̄2

0.5(λ1cs1,t + λ2 cs2,t) , N̄1 = N̄2 .

Then we define inductively

csk,t,τ+1 = λk csk,t,τ cb,τ+1
γsk,t,τ ! γb,τ+1!

γs,0,τ+1!
, γs,0,τ+1 = γs,0,τ + γb,τ+1 + 1

and

cb,t,τ+1 = cb,t,τ
γb,t,τ ! γsm,τ+1!

γb,t,τ+1!

{
0.5λmcsm,τ+1 , N̄1 6= N̄2

0.5 (λ1cs1,τ+1 + λ2 cs2,τ+1) , N̄1 = N̄2 ,

and

γb,t,τ+1 = γb,t,τ + γsm,τ+1 + 1.

In particular, for t > 0,

γl,t,τ = (2τ − 2t−1) (N̄b + N̄s) − 1 , l ∈ {s1, s2, b},
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For t = 0,

γs,0,τ = (2τ − 1) (N̄b + N̄s) − 1 + N̄b , γb,0,τ = (2τ − 1) (N̄b + N̄s) − 1 + N̄s .

If N̄1 6= N̄2 then

cb,t,τ = Db,N̄b,N̄s(t, τ, c0)λ2τ+1−2t

m , csm,t,τ = Ds,N̄b,N̄s(t, τ, c0)λ2τ+1−2t

m ,

and

cs−m,t,τ =

(
λ−m
λm

)τ−t+1

csm,t,τ

for all t ≥ 0, for some combinatorial functions DN̄b,N̄s(t, τ) and Dl,N̄b,N̄s(0, τ) .

When N̄1 = N̄2,

csk,t,τ = ds,N̄b,N̄s(t, τ)λτ−t+1
k

(
t−1∏
r=1

(λr1 + λr2)2τ−r−2t−r−1

)
τ∏
r=t

(λr1 + λr2)2τ−r

and

cb,t,τ = db,N̄b,N̄s(t, τ)
λτ+1

1 + λτ+1
2

λt1 + λt2

(
t−1∏
r=1

(λr1 + λr2)2τ−r−2t−r−1

)
τ∏
r=t

(λr1 + λr2)2τ−r

for all t ≥ 0, for some combinatorial functions dk,N̄b,N̄s(t, τ) and db,N̄b,N̄s(t, τ).

Proposition G.12 Suppose that T > T̃ . Let λ1 ≤ λ2. In equilibrium, we always have

N̄b ≤ N̄1 ≤ N̄2. Furthermore, there exist constants π1 > π2 > π3 > π4 > π5 > π6 such

that the following are true:

1. If π > π1 then the unique equilibrium is (N̄b, N̄1, N̄2) = (Nmin, Nmin, Nmin).

2. If π1 > π > π2 then there are two equilibria:

• (N̄b, N̄1, N̄2) = (Nmin, Nmin, Nmin)

• (N̄b, N̄1, N̄2) = (Nmin, Nmax, Nmax).

3. If π2 > π > π3 then there are three equilibria:

• (N̄b, N̄1, N̄2) = (Nmin, Nmin, Nmin)

• (N̄b, N̄1, N̄2) = (Nmin, Nmax, Nmax)

• (N̄b, N̄1, N̄2) = (Nmin, Nmin, Nmax).
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4. If π3 > π > π4 then there are two equilibria:

• (N̄b, N̄1, N̄2) = (Nmin, Nmin, Nmin)

• (N̄b, N̄1, N̄2) = (Nmin, Nmax, Nmax).

5. If π4 > π > π5 then there is a unique equilibrium

(N̄b, N̄1, N̄2) = (Nmin, Nmax, Nmax).

6. If π5 > π > π6 there are two equilibria:

• (N̄b, N̄1, N̄2) = (Nmax, Nmax, Nmax)

• (N̄b, N̄1, N̄2) = (Nmin, Nmax, Nmax).

7. If π6 > π then there is a unique equilibrium

(N̄b, N̄1, N̄2) = (Nmax, Nmax, Nmax).

Proof. Denote by Gaini(N̄b, N̄1, N̄2) the gains from acquiring the maximal number of

signals for an agent of class i, conditional on the numbers of signals packets acquired by

all other agents. As in Lemma G.8, we define

π1 ≡ Gain1(Nmin, Nmax, Nmax), π2 ≡ Gain2(Nmin, Nmin, Nmax)

π3 ≡ Gain1(Nmin, Nmin, Nmax), π4 ≡ Gain2(Nmin, Nmin, Nmin)

π5 ≡ Gainb(Nmax, Nmax, Nmax), π6 ≡ Gainb(Nmin, Nmax, Nmax) .

(75)

Then, it suffices to prove that πi are monotone decreasing in i. As in the proof of Lemma

G.9, we have

πi ∼ Ai Zi,

and it remains to study the asymptotic behavior of Zi. We have

Zb(0, N̄b, N̄1, N̄2) = Zs1
b (0, N̄b, N̄1, N̄2) + Zs2

b (0, N̄b, N̄1, N̄2),

where

Zsk
b (0, N̄b, N̄1, N̄2) ∼ 0.5λk

R−α

1 +R
Db(0, c0, N̄b, N̄s, α) cbT

(
1

cbT G

) 2α+1
α+1

× cb,0,τ−1 | logG|γb,0,T−1− α
α+1

γT

(76)
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for some function Db(0, c0, N̄b, N̄s, α). Similarly,

Zsk(0, N̄b, N̄1, N̄2) ∼ R−α

1 +R
Ds(0, c0, N̄b, N̄s, α)λk csk,0,T−1 (cbT G)−

α
α+1

× | logG|γs,0,T−1− α
α+1

γT .

(77)

We first study equilibria with N̄1 = Nmin < N̄2 = Nmax. Since, for both seller

classes, the surpluses from acquiring information are of comparable magnitude and are

much larger than those of the buyers, we ought to have N̄b = Nmin . This will be an

equilibrium if

π > (Zs1
b (0, Nmin, Nmin, Nmax) + Zs2

b (0, Nmin, Nmin, Nmax))Ab,

but this automatically follows from

π3 ∼ AZs1(0, Nmin, Nmin, Nmax) < π < AZs2(0, Nmin, Nmin, Nmax) ∼ π2.

Since Zs1/Zs2 = (λ1/λ2)τ+1, this is only possible if λ1 < λ2. Furthermore,

Zsk(0, Nmin, Nmin, Nmax) ∼ R−α

1 +R
D̃s λk

(
λk
λ2

)T
λ

1
α+1

(2T−1)

2 G
− α
α+1

× | logG|(2T−1 − 1) (Nmin+Nmax) − 1 +Nmin− α
α+1

(2T−1(Nmin+Nmax)− 1).
(78)

Now, N̄1 = N̄2 = Nmax, N̄b = Nmin forms an equilibrium if and only if

π > π6 ∼ (Zs1
b (0, Nmin, Nmax, Nmax) + Zs2

b (0, Nmin, Nmax, Nmax))Ab

and

π < π1 ∼ Zs1(0, Nmin, Nmax, Nmax)

∼ R−α

1 +R
D̃s λ1

λT1
(λT1 + λT2 )α/(α+1)

T−1∏
r=1

(λr1 + λr2)
1

α+1
2T−r

×G−
α
α+1 | logG|(2T−1 − 1) (Nmin+Nmax) − 1 +Nmin− α

α+1
(2T−1(Nmin+Nmax)− 1).

(79)

Next, N̄b = N̄1 = N̄2 = Nmin is an equilibrium if and only if

π > π4 ∼ Zs2(0, Nmin, Nmin, Nmin)

∼ R−α

1 +R
D̃s λ2

λT2
(λT1 + λT2 )α/(α+1)

×
T−1∏
r=1

(λr1 + λr2)
1

α+1
2T−r

G
− α
α+1 | logG|(2T−1 − 1) (2Nmin) − 1 +Nmin− α

α+1
(2T−1(2Nmin)− 1) .

(80)
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Finally, N̄b = N̄1 = N̄2 = Nmax is an equilibrium if and only if

π < π5 ∼ (Zs1
b (0, Nmax, Nmax, Nmax) + Zs2

b (0, Nmax, Nmax, Nmax))Ab . (81)

The fact that πi decreases with i follows directly from their asymptotic expressions.

Lemma G.13 There exists a unique solution T̂ > max{2, T̃} to the equation (α+1)T̂ =

2T̂ − 1, and a unique solution T̄ to the equation (2α + 1)T̄ = 2T̄ − 1. Furthermore,∏T−1
r=0 (λr1 + λr2)2T−1−r

(λT1 + λT2 )α

• is monotone decreasing in λ2 for all λ2 ≥ λ1 if T ≤ T̂ .

• is monotone increasing in λ2 for all λ2 ≥ λ1 if T ≥ T̄ .

Proof. The fact that T̂ exists and is unique follows directly from the convexity of the

function 2T . To prove that T̃ < T̂ , we need to show that (α+ 1)T̃ > 2T̃ − 1. Substituting

T̃ = log2(α + 1) + 1, we get

2T̃ − 1− (α+ 1)T̃ = 2(α+ 1)− 1− (α+ 1)(log2(α+ 1) + 1) = α− (α+ 1) log2(α+ 1) < 0,

because α + 1 > 2 implies that log2(α + 1) > 1.

Let now x = λ2/λ1 ≥ 1. Then, by homogeneity, it suffices to show that∏T−1
r=0 (1 + xr)2T−1−r

(1 + xT )α

is monotone decreasing in x. Differentiating, we see that we need to show that

T−1∑
r=1

2T−1−rr
xr

1 + xr
≤ αT

xT

1 + xT
.

Since x ≥ 1, we have
xr

1 + xr
≤ xT

1 + xT
.

Therefore, using the simple identity

T−1∑
r=1

2T−1−rr = 2T − 1− T,

38



we get
T−1∑
r=1

2T−1−rr
xr

1 + xr
≤ (2T − 1− T )

xT

1 + xT
≤ αT

xT

1 + xT

for all T ≤ T̂ . Similarly, since

xr

1 + xr
≥ 1

2
≥ 1

2

xT

1 + xT
,

we get that

T−1∑
r=1

2T−1−rr
xr

1 + xr
≥ (2T − 1− T )

1

2

xT

1 + xT
≥ αT

xT

1 + xT

for all T ≥ T̄ .

The next proposition gives the partial-equilibrium impact on the information gath-

ering incentives of class-1 sellers of increasing the contact probability λ2 of the more active

sellers.

Proposition G.14 Suppose Condition 2 holds and λ1 ≤ λ2. Fixing the numbers N1,

N2, and Nb of signal packets gathered by all agents, consider the utility u1n − u1N1 of

a particular class-1 seller for gathering n signal packets. There exist integers T̄ and T̂ ,

larger than the time T̃ of Proposition 5.6 such that, for any n > N1, the utility gain

u1n − u1N1 of acquiring additional signal packets is decreasing in λ2 for 0 < T < T̂ and

is increasing in λ2 for T > T̄ .

Proofs of Propositions G.14 and 5.7 . Monotonicity of the gains Gain1 follows

from Lemma G.13 and the expressions for this gain, provided in the proof of Proposition

G.12. Proposition 5.7 follows from Lemma G.13 if we set K = π1.

H Two-Class Case

This appendix focuses more closely on information acquisition externalities by specializ-

ing to the case in which all investors have the same contact probability λ. In this case,

there are only two classes of investors, buyers b and sellers s. For a small time horizon T,

the lack of complementarity suggested by Proposition 5.7 implies that symmetric equi-

libria may fail to exist. For larger T, symmetric equilibria always exist and are generally

non-unique.
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Definition H.1 An asymmetric rational expectations equilibrium is: for each class i ∈
{b, s}, the masses pin, n = 0, . . . , n̄, where pin is the mass of the sub-group of group i that

acquires exactly n packets; for each time t and seller-buyer pair (i, j), a pair (Sijt, Bijt) of

bid and ask functions; and for each class i and time t, a cross-sectional type distribution

ψit such that:

(1) The cross-sectional type distribution ψit is initially ψi0 =
∑n̄

n=0 pin ψ
∗(Nmin+n)

and

satisfies the evolution equation (6).

(2) The bid and ask functions (Sijt, Bijt) form the equilibrium uniquely defined by The-

orem 4.7.

(3) Each n ∈ {0, . . . , n̄} with pin > 0 solves maxn∈{0,...,n} uin, for each class i.

It turns out that, in all asymmetric equilibria, agents in each sub-group either do

not acquire information at all or acquire the maximal number n̄ of signal packets. We

will denote the corresponding strategy (n̄, pi), meaning that a group of mass pi of agents

of class i acquires the maximal number n̄ of packets and the other sub-group (of mass

1− pi) does not acquire any information.

Proposition H.2 There exist thresholds π > π̂ > π such that the following are true.

1. If T < T̃ then:

• A symmetric equilibrium exists if and only if π 6∈ (π, π̂).

• An asymmetric equilibrium exists if and only if π ≥ π.

2. If T > T̃ , then:

• A symmetric equilibrium always exists.

• Asymmetric equilibria exist if and only if π ≤ π.

Furthermore, there is always at most one equilibrium in which different sub-groups of

sellers acquire different amounts of information, and at most one equilibrium in which

different sub-groups of buyers acquire different amounts of information.

In order to determine how the equilibrium mass of those agents who acquire in-

formation depends on the model parameters, we need to study the behavior of the gain

from acquiring information. The next proposition studies externalities from information

acquisition by other agents on the information acquisition incentives of any given agent

in an out-of-equilibrium setting.
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Proposition H.3 For all i, the gain

Gaini = max
n>0
{(uin − ui0)/n}

from information acquisition is increasing in Nmin, n̄, and λ. Fix an i and suppose that

only a subgroup of mass pi of class-i agents acquire information. Let us also fix the

information acquisition policy of the other class.

1. If T > T̃ , then Gaini/pi is monotone increasing in pi.

2. If T < T̃ , then Gaini/pi is monotone decreasing in pi.

Proof of Proposition H.3. Let π ≡ π1 > π2 ≡ π. Suppose that a mass p of buyers

acquire n̄ packets and the rest (mass 1 − p) do acquire no packets. For our asymptotic

formulae, this is equivalent to simply multiplying c0 by p1/Nmax for the initial density

of the buyers’ type distribution. Furthermore, the same recursive calculation as above

implies that ci,τ is proportional to p2τ−1
for τ > 0 whereas ci,0,τ is proportional to p2τ−1.

By the same argument as above, sellers always acquire more information and therefore

we ought to have that N̄s = Nmax. The equilibrium condition is just the indifference

condition for a buyer,

pπ = Gainb,

because then a seller will always acquire information since the gain from doing so is always

higher for him. Substituting the asymptotic expressions for the gains of information

acquisition, we get the asymptotic relation

pπ ∼ pmin{1,2T−1+1} pmax{2T−1−1,0} p−
2α+1
α+1

min{1,2T−1} π3.

For T < T̃ , this gives a unique equilibrium value of p for any π ≥ π3. For T > T̃ , this

gives a unique value of p for all π ≤ π3.

Similarly, for the case when different groups of sellers acquire different amounts of

information, the equilibrium condition is

pπ ∼ pmax{2T−1,1} p−
α
α+1

min{1,2T−1} π1

For T < T̃ , this gives a unique equilibrium value for p for any π ≥ π1. For T > T̃ , this

gives a unique value for p for all π ≤ π1.

The fact that there are no equilibria in which both buyers and sellers acquire

information asymmetrically follows from the expressions for the asymptotic size of the

gains of information acquisition.
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The intuition behind Proposition H.3 is similar to that behind Proposition G.14.

An increase in the mass p gives rise to both a learning effect and a pricing effect. The

learning effect dominates the pricing effect if and only if there are sufficiently many

trading rounds, that is, when T > T̃ .

Now, the equilibrium indifference condition, determining the mass pi is given by

π = p−1
i Gaini(pi, λ,Nmin, n̄). (82)

Proposition H.3 immediately yields the following result.

Proposition H.4 The following are true:4

• If T > T̃ then equilibrium masses pb and ps are decreasing in λ,Nmin, n̄;

• If T < T̃ then equilibrium masses pb and ps are increasing in λ,Nmin, n̄.

We note that a stark difference between the monotonicity results of Propositions

G.14 and H.3. By Proposition H.3, in the two-class model, gains from information acqui-

sition are always increasing in the “market liquidity” parameter λ. By contrast, Propo-

sition G.14 shows that, with more than two classes, this is not true anymore. Gains

may decrease with liquidity. The effect of this monotonicity of gains differs, however,

between symmetric and asymmetric equilibria. In symmetric equilibiria, the effect goes

in the intuitive direction: Since gains increase with λ, so does the equilibrium amount

of information acquisition. By contrast, equation (82) shows that, for asymmetric equi-

libria, the effect goes in the opposite direction: Since the gains increase in both λ and

the mass p of agents that acquire information (when T > T̃ ), this mass must go down in

equilibrium in order to make the agents indifferent between acquiring and not acquiring

information.

From this result, we can also consider the effect of “education policies” such as the

following.

• Educating agents before they enter the market by increasing the number Nmin of

endowed signal packets.

• Increasing the number n of signal packets that can be acquired.

4Recall that, by Proposition H.2, equilibrium masses pb and ps are always unique (if they exist).
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Proposition H.4 implies that, in a dynamic model with sufficiently many trading

rounds, both policies improve market efficiency. By contrast, a static model that does

not account for the effects of information percolation would lead to the opposite policy

implications.

I Endogenous Investment in Matching Technology

In this section, we take initial information endowments as given and instead focus on

endogenous investment in matching technologies. In particular, the initial type densities

are characterized by a fixed vector N = (N1, . . . , NM) of initially acquired signal packets.

Before the initial signals are revealed to each agent, agents in class i individually choose

an amount χij ∈ K ≡ {χ, χ} to invest in a technology for meeting investors of class j,

for some minimum investment χ > 0 and maximum investment χ > χ. We examine the

case of symmetric choices within classes, so that agents of class i commonly choose the

investment χij. Given these choices, in each period the probability with which an agent of

class i meets some agent in class j is fij(χij, χji), for a given function fij : K×K → (0, 1).

By the exact law of large numbers, this technology satisfies

mifij(χij, χji) = mjfji(χji, χij).

We always make the non-satiation assumption that∑
j 6=i

fij(χ, χ) < 1.

Given the M × (M − 1) matching-technology investments χ = (χij), the cross-

sectional type density ψit of the class-i agents satisfies the evolution equation

ψi,t+1 =

(
1−

∑
j 6=i

fij(χij, χji)

)
ψi,t +

∑
j 6=i

fij(χij, χji)ψi,t ∗ ψj,t. (83)

Similarly, given χ, a particular agent of class i who makes the technology choice c ∈
KM−1 has a Markov type process whose probability density ψc,χt at time t satisfies the

Kolmogorov forward equation

ψc,χt+1 =

(
1−

∑
j 6=i

fij(cj, χji)

)
ψc,χt +

∑
j 6=i

fij(cj, χji)ψ
c,χ
t ∗ ψj,t. (84)

We will be applying the following technical assumption.
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Condition 3 . For any integer T > 1 and any pair (i, j) of agent classes, the function

c 7→ (fij(χ, c))
T − (fij(χ, c))

T is nonnegative and monotone increasing in c.

This assumption guarantees that the increase in matching probabilities associated

with investing in a more effective matching technology is increasing in the investments in

matching technology by other agents. The complementarity property holds, for example,

for the constant-returns-to-scale technology of Duffie, Malamud and Manso (2009), by

which fij(χij, χji) = kijχijχji for some constant kij. The idea is natural: the greater the

efforts of other agents at being matched, the more easily are they found by improving

one’s own search technology.

Definition I.1 A (symmetric) rational expectations equilibrium consists of matching

technology investments χ = (χij); for each time t and each seller-buyer pair (i, j), a pair

(Sijt, Bijt) of bid and ask functions; and for each class i and time t, a cross-sectional

type density ψit such that:

1. The cross-sectional type density ψit satisfies the evolution equation (83).

2. The bid and ask functions (Sijt, Bijt) are the equilibrium bidding strategies uniquely

defined by Theorem 4.7.

3. The matching-technology investments χi = (χi1, . . . , χiM) of class i maximize, for

any agent of class i, the expected total trading gains net of matching-technology

costs. That is, χi solves

sup
c∈KM−1

Ui(c, χ),

where

Ui(c, χ) = E

(
T∑
t=1

∑
j

fij(cj, χji) vijt(Θ
c,χ
t ;Bijt, Sijt)

)
− (χi1 + · · ·+ χiM), (85)

where the agent’s type process Θc,χ
t has probability density ψc,χt satisfying (84) and

the expected gain vijt associated with a given sort of trading encounter is as de-

fined by (9) or (11), depending on whether class-i agents are sellers or buyers,

respectively.

We say that search is a strategic complement if, for any agent class i and any

matching technology investments χ = (χij), the utility gain Ui(c
′, χ)−Ui(c, χ) associated
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with increasing the matching technology investments from c to c′ ≥ c is increasing in χ−i,

the matching-technology investments of classes j 6= i. The main result of this section is

the following theorem.

Theorem I.2 Suppose Conditions 2 and 3 hold. Let T̄ and ḡ be as in Proposition 5.5.

Then, for any proportional gain from trade G > g and market duration T > T̄ , search is

a strategic complement.

The intuition for this result is analogous to that of Proposition 5.5. If other agents

are assumed to have increased their ability to find counterparties, and thereby collect

more information from trading encounters, then under the stated conditions a given

agent is encouraged to do the same in order to mitigate adverse selection in trade with

better informed counterparties.

This complementarity can be responsible for the existence or non-existence of equi-

libria, depending on the duration T of markets, just as in the previous section. The Tarski

(1955) fixed point theorem implies the following analogue of Corollary 5.3.

Corollary I.3 Suppose Conditions 2 and 3 hold. For any proportional gain from trade

G > g and market duration T > T̄ , there exists a symmetric equilibrium. Furthermore,

the set of equilibria investments in matching technology is a lattice with respect to the

natural partial order on KM×(M−1).

Just as with the discussion following Corollary 5.3, a maximal and a minimal

element of the set of equilibria can be selected by the same standard iteration procedure.

We also have the following comparative-statics variant of Proposition 5.5 .

Proposition I.4 Under Conditions 2 and 3, there exist some g and T̄ such that for any

proportional gain from trade G > g and market duration T > T̄ , equilibrium investment

in matching technology is increasing in the initial vector N of acquired signal packets.

The intuition behind this result is analogous to that behind Theorem 5.2. If traders

are initially better informed and T is large, then the learning effect dominates, giving

agents an incentive to invest more in search technologies.

This result also illustrates the role of cross-class externalities. Even if agents in

class j do not trade with those in class i, an increase in the initial information endowment

of class i increases the search incentives of class j. This is a “pure” learning externality in
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that, if class i is better informed, this information will eventually percolate to the trading

counterparties of class j. This encourages class j to have a better search technology.5

We also consider the incentive effects for the formation of “trading networks.”

(Because our model is based on a continuum agents, the network effect is with respect to

agent classes, not individual agents.) With respect to information gathering incentives,

agents prefer to trade with better informed agents. This incentive can even overcome

the associated direct impact of adverse selection.

Condition 4 (Symmetry). Classes are symmetric in the sense that they have equal

masses mi = mj and fij does not depend on (i, j).

Theorem I.5 Suppose that class-i agents are initially better informed than those of class

j, that is, Ni > Nj. Under Conditions 2, 3, and 4, there exists some g and some T̄ such

that for any proportional gain from trade G > g and market duration T > T̄ , in any

equilibrium:

1. There is more investment in matching with class i than with class j. That is,

χki ≥ χkj for all k.

2. Class-i agents invest more in matching technology than do class-j agents. That is,

χi ≥ χj.

The incentive effects associated with this result naturally support the existence

of “hub-spoke trading networks,” with better informed agents situated in the “center,”

and with other agents trading more with central agents by virtue of establishing trading

relationships, meaning investment in the associated matching technologies. As a result,

one expects a positive correlation between the frequency of trade of a class of agents

and its information quality. While this effect accounts for learning opportunities, pricing

effects, and adverse selection, we do not capture some other important effects, such as

those associated with size variation in trades and risk aversion.

Finally, we note that if the market duration is moderate, meaning that T ∈ (T̃ , T̄ ),

the learning effect may not be strong enough to create the complementarity effects that

we have described. Indeed, there are counterexamples for the 3-class model of the pre-

vious section.

5As before, this is based on the assumption that there is an ordered path of classes connecting class
i with class j.
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J Proofs: Endogenous Matching Technology

Proof of Theorem I.2. To prove the theorem, we need to show that, for any k 6= i, the

utility gain for an agent of class i from searching more for agents of class k is monotone

increasing in the search efforts of all other agents. This utility gain is given by

T∑
t=0

∑
j 6=i,k

fij(χij, χji)

∫
R

0.5(πHi,j,t(θ)h
H
i,t+1(χk,+i , θ) + πLi,j,t(θ)h

L
i,t+1(χ+,k

i , θ)) dθ

+
T∑
t=0

fik(χ, χki)

∫
R

0.5(πHi,k,t(θ)h
H
i,t+1(χk,+i , θ) + πLi,j,t(θ)h

L
i,t+1(χk,+i , θ)) dθ

−
T∑
t=0

∑
j 6=i,k

fij(χij, χji)

∫
R

0.5(πHi,j,t(θ)h
H
i,t+1(χk,−i , θ) + πLi,j,t(θ)h

L
i,t+1(χk,−i , θ)) dθ

−
T∑
t=0

fik(χ, χki)

∫
R

0.5(πHi,k,t(θ)h
H
i,t+1(χk,−i , θ) + πLi,j,t(θ)h

L
i,t+1(χk,−i θ)) dθ,

(86)

where χk,±i coincides with χi, but with χik replaced by χ and χ, respectively. Lemmas

G.2-G.3 imply that the leading asymptotic term of this gains from search can be written

as
T∑
t=0

(fik(χ, χ))t − (fik(χ, χ))t)Kijt,

for some nonnegative coefficients Kijt that do not depend on χik. Furthermore, a slight

modification of the proof of Proposition 5.5 implies that these coefficients Kijt are mono-

tone increasing in the matching-technology investments of other classes whenever T is

sufficiently large. The claim follows.

Proof of Proposition I.4. The proof follows directly from the arguments in the

proof of Theorem I.2 because the coefficients Kijt are monotone in the initial amount of

information.

Proof of Theorem I.5. It follows from Lemmas G.2-G.3 that the expected profit

from trading with better informed classes is always larger when T is sufficiently large,

and that these profits are larger for initially better informed agents. The claim follows.
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K Dynamic Information Acquisition

For settings in which side investment in information gathering can be done dynamically,

based on learning over time, we are able to get analytical results only with a sufficiently

low cost of information acquisition, corresponding to a per-packet cost of signals of

π4 > π, the case considered in the previous appendix.

In this case, we can show that there is a “threshold equilibrium,” characterized

by thresholds X it < X it, such that agents of type i acquire additional information only

when their log-likelihood is in the interval (X it, X it).

The timing of the game is as follows. At the beginning of each period t, an agent

may acquire information. Trading then takes place after an agent meets a counterparty

with probability λ. Without loss of generality, when they acquire information, they

choose between Nmin and Nmax packets. Otherwise, there will be multiple thresholds

for each intermediate level number of signals. This is feasible to model, but much more

complicated.

We let ψi,t denote the cross-sectional density of types after information acquisition,

and before trading takes place, and let χi,t denote the cross-sectional density of types

after the auctions take place. Thus,

ψi,t+1 = (χi,t I(Xi,t+1,Xi,t+1)) ∗ ηNmax + (χi,t IR\(Xi,t+1,Xi,t+1)) ∗ ηNmin

is the density that determines the bid and ask functions, and

χi,t+1 = (1− λ)ψi,t+1 + λψb,t+1 ∗ ψs,t+1, i = b, s,

is the cross-sectional density of types after the auctions took place.

We now denote by Qi,t,τ (θ, x) the cross-sectional type density at time τ right before

the auctions take place of an agent of class i conditional on his type being θ at time

t after the information has been acquired. Then, conditional on his type being θ at

time t before information has been acquired, depending on whether the agent acquires

Ni ∈ {Nmax, Nmin} signals, his type density at time τ is

RNi
i,t,τ (θ, x) =

∫
R
ηNi(z − θ)Qi,t,τ (z, x) dz .

Furthermore, Qi,t,τ (z, x) satisfies the recursion

Qi,t,τ+1(θ, x) =
(
qi,t,τ (θ, ·)I[Xi,τ+1 , Xi,τ+1]

)
∗ ηNmax +

(
qi,t,τ (θ, ·)I[Xi,τ+1 , Xi,τ+1]

)
∗ ηNmin
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where

qi,t,τ (θ, ·) = λQi,t,τ (θ, ·) ∗ ψj,τ + (1− λ)Qi,t,τ .

We will also need the following additional technical condition.

Condition 3. Suppose there exist K, ε > 0 such that

|ψH(−x)e(α+1)x − c0|+ |ψ
H

(x)eαx − c0| ≤ K e−ε x (87)

for all x > 0.

Theorem K.1 There exist A, g > 0 such that, for all G > g and all π < e−AG, there

exists a threshold equilibrium.

We let MH,L
it note the mass of agents of class i who acquire information at time t,

indicating with a superscript the corresponding outcome of Y , H or L.

Theorem K.2 There exists a critical time t∗ such that the following hold in any thresh-

old equilibrium under the conditions of Theorem K.1.

• Sellers:

– For both H and L, the mass MH,L
st is monotone decreasing with t, and increas-

ing in G
−1
, T,Nmax.

– MH,L
st is monotone increasing in λ for t < t∗ and is monotone decreasing in

λ for t ≥ t∗.

• Buyers:

– The mass MH,L
bt is monotone decreasing in t and is increasing in T,Nmax.

– MH
bt is monotone increasing in G

−1
.

– MH
bt is monotone increasing in λ for t < t∗ and is monotone decreasing in λ

for t ≥ t∗.

– ML
bt is monotone decreasing in G

−1
.
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L Proofs: Dynamic Information Acquisition

In this section we study asymptotic equilibrium behavior when G and π−1 become large.

Furthermore, we will assume that π−1 is significantly larger than G, so that π−1/G
A

is

large for a sufficiently large A > 0. Throughout the proof, we will constantly use the

notation X >> Y if, asymptotically, X − Y → +∞.

L.1 Exponential Tails

Note that, by Lemma 4.5 ,

χHi0(x) = (1− λ)ψHi,0 + λψHb,0 ∗ ψHs,0 ∼ c0 e
−αx |x|2Nmax−1 = c0 e

−αx |x|γ0 .

Furthermore, as we show below, in any equilibrium we always have

Xbt << Xb,t+1 << Xst << Xs,t+1 (88)

and

Xb,t+1 << Xbt << Xs,t+1 << Xst. (89)

Lemma L.1 Suppose that x→ +∞ and X it → +∞ in such a way that

Xb,t+1 << Xbt << Xs,t+1 << Xst

for all t and such that, for any fixed i, t, the difference x −X i,t either stays bounded or

converges to +∞ or converges to −∞. Let 1L be the indicator of the L state. Then,

ψit(x) ∼ Cψ
it e
−(α+1L)x xγ

ψ
t

and

χit(x) ∼ Cχ
it e
−(α+1L)x xγ

χ
t ,

where

γψt = Nmax + γχt−1

and

γχt = 2γψt + 1 .

The powers mψ
t , m

χ
t with which λ enters Cψ,χ

it satisfy

mχ
t = 2mψ

t + 1 , mψ
t = mχ

t−1 .
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Furthermore, there exists a constant K1 such that

|ψit(x)| ≤ K1 e
−(α+1L)x xγ

ψ
t

and

|χit(x)| ≤ K1 e
−(α+1L)x xγ

χ
t .

In addition, there exists a δit > 0 such that

|ψit(x)eαx x−γ
ψ
t − Cψ

it | < K1e
−δitx

for all x > A.

Proof. The proof is by induction. Recall that

ηN = ψ
∗N

Fix a sufficiently large A > 0. Then,

χi,t+1 =

∫
R
ψbt(x− y)ψst(y) dy =

∫ x

−∞
ψbt(x− y)ψst(y) dy

+

∫ +∞

x

ψbt(x− y)ψst(y) dy

=

∫ +∞

0

ψbt(y)ψst(x− y)dy +

∫ 0

−∞
ψbt(y)ψst(x− y) dy

=

∫ A

0

ψbt(y)ψst(x− y)dy +

∫ +∞

A

ψbt(y)ψst(x− y) dy

+

∫ 0

−∞
ψbt(y)ψst(x− y) dy

≡ I1 + I2 + I3 .

Pick an A so large that ψbt can be replaced by its asymptotic from the induction hy-

pothesis. Note that we can only take the “relevant” asymptotic coming from the values

of y satisfying y < Xb,T because the tail behavior coming from “further away” regimes

are asymptotically negligible. Then,

I2 =

∫ +∞

A

ψbt(y)ψst(x− y) dy

∼
∫ +∞

A

C e−(α+1L)y yγ
ψ
t ψst(x− y) dy

= C e−(α+1L)x xγ
ψ
t

∫ x−A

−∞
e(α+1L)y |1− y/x|γ

ψ
t ψst(y) dy . (90)
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Now, applying l’Hôpital’s rule and using the induction hypothesis, we get that∫ x−A
−∞ e(α+1L)y ψst(y)dy

(γψt + 1)−1xγ
ψ
t +1

∼ Cst.

Thus, we have proved the required asymptotic for the term I2.

To bound the term I1, we again use the induction hypothesis and get∫ A

0

ψbt(y)ψst(x− y) dy ≤ K1

∫ A

0

ψbt(y)e−(α+1L)(x−y) |x− y|γ
ψ
t dy ∼ e−(α+1L)x|x|γ

ψ
t C̃2,

for some constant C̃2, so the term I1 is asymptotically negligible relative to I2.

Finally, for the term I3, we have∫ +∞

x

ψbt(x− y)ψst(y) dy =

∫ 0

−∞
ψbt(y)ψst(x− y) dy . (91)

Now, picking a sufficiently large A > 0 and using the same argument as above, we can

replace the integral by
∫ 0

−A and then use the induction hypothesis to replace ψst(x− y)

by Cste
−(α+1L)(x−y)|x− y|γ

ψ
t . Therefore,∫ 0

−∞
ψbt(y)ψst(x− y) dy ∼

∫ 0

−∞
ψbt(y)Cste

−(α+1L)(x−y) |x− y|γ
ψ
t dy

∼ Cste
−(α+1L)x xγ

ψ
t

∫ 0

−∞
ψbt(y)e(α+1L)y dy ,

(92)

which is negligible relative to I2. Thus, we have completed the proof of the induction

step for χit. It remains to prove it for ψit. We have

ψit(x) =

∫ Xit

Xit

χi,t−1(y)ηNmax(x− y) dy +

∫ Xit

−∞
χi,t−1(y)ηNmin

(x− y) dy

+

∫ +∞

Xit

χHi,t−1(y)ηHNmin
(x− y) dy

=

∫ Xit

−∞
χi,t−1(y)ηNmax(x− y) dy −

∫ Xit

−∞
χi,t−1(y)ηHNmax

(x− y) dy

+

∫ Xit

−∞
χHi,t−1(y)ηNmin

(x− y) dy +

∫ +∞

Xit

χi,t−1(y)ηNmin
(x− y) dy .

(93)

Since X i1 → −∞, the induction hypothesis implies that∫ Xit

−∞
χi,t−1(y)ηN(x− y) dy ∼

∫ Xit

−∞
Ci,t−1e

(α+1H)y|y|γ
χ
i,t−1 cN0 e

−(α+1L)(x−y) |x− y|N−1 dy

= Ci,t−1 c
N
0 e
−(α+1L)x xN−1

∫ 0

−∞
e(2α+1)(y+Xit)|y +X it|γ

χ
i,t−1 |1− (y +X it)/x|N−1 dy

= o
(
e−(α+1L)x xN−1 e(2α+1)Xit|X it|γ

χ
i,t−1

)
.

(94)
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The same argument as above (the induction step for χit) implies that∫
R
χi,t−1(y)ηN(x− y) dy ∼ C e−(α+1L)x xγ

χ
i,t−1+N .

Now, we will have to consider two different cases. If x − X it → +∞, we can replace

ηHN (x− y) in the integral below by cN0 |x− y|N−1 e−α(x−y) and get∫ Xi1

−∞
χi,t−1(y)ηN(x− y)dy

∼ cN0 e
−(α+1L)x |x|N−1

∫ Xi1

−∞
χi,t−1(y) e(α+1L)y |1− y/x|N−1 dy

(95)

Using l’Hopital’s rule and the induction hypothesis, we get∫ Xit

−∞
χi,t−1(y) e(α+1L)y dy ∼ C (X it)

γχi,t−1+1.

It remains to consider the case when x−X it stays bounded from above. In this case,∫ Xit

−∞
χi,t−1(y)ηN(x− y) dy =

∫ +∞

x−Xit

χi,t−1(x− z)ηN(z) dy . (96)

Now, the same argument as in (94) implies that
∫ x−Xi1

−∞ χi,t−1(x − z)ηN(z) dy is asymp-

totically negligible relative to
∫ +∞
x−Xi1

χi,t−1(x − z)ηN(z) dy because x − X i1 is bounded

from above. Therefore,∫ +∞

x−Xit

χHi,t−1(x− z)ηHN (z) dy ∼
∫ +∞

−∞
χHi,t−1(x− z)ηHN (z) dy ∼ C e−αx xγ

χ
i,t−1+N

for the H state, and similarly for the state L. The induction step follows now from (93).

The proof of the upper bounds for the densities is analogous.

The arguments in the proof of Lemma L.1 also imply the following result.

Lemma L.2 Under the hypothesis of Lemma L.1, we have that, when θ → +∞ so that

θ − x→ +∞,
qi,t,τ (θ, x) ∼ Cq

i,t,τ e
(α+1H)(x−θ) |x− θ|γ

q
t,τ

Qi,t,τ (θ, x) ∼ CQ
i,t,τ e

(α+1H)(x−θ) |x− θ|γ
Q
t,τ

RNi
i,t,τ (θ, x) ∼ CR,Ni

i,t,τ e(α+1H)(x−θ) |x− θ|γ
Q
t,τ+Ni ,

(97)

where
γqt,τ = γQt,τ + γψτ + 1

γQt,τ = γqt,τ−1 +Nmax .
(98)
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Lemmas L.1 and L.2 immediately yield the next result.

Lemma L.3 We have:

γψt = (2t+1 − 1)Nmax − 1

γχt = (2t+2 − 2)Nmax − 1

γqt,τ = (2τ+2 − 2t+1 − 1)Nmax − 1

γQt,τ = (2τ+1 − 2t+1)Nmax − 1 .

(99)

Furthermore, the powers mt,τ of λ with which λ enters the corresponding coefficients ct

and Ct,τ are given by:

mψ
t = 2t−1 − 1

mχ
t = 2t − 1

mq
t,τ = 2τ+1 − 2t

mQ
t,τ = 2τ − 2t .

(100)

L.2 Gains from Information Acquisition

For any given agent i, the expected utility Ui,t,τ from trading during the time interval

from t to τ immediately before information is acquired can be represented as

Ui,t,τ (θ) =
τ∑

r= t

ui,t,τ (θ) .

Suppose that, at time t, an agent of type i with posterior θ makes a decision to acquire

information with type density η. Then, the agent knows that his type at time τ, at

the moment when the next auction takes place, his posterior will be distributed as

δθ ∗ η ∗ gKi,t,τ−1.

We will use the following notation:

GK,R,N
t,τ (θ, x) =

∫ +∞

x

RK,N
t,τ (θ, y) dy , FK,R,N

t,τ (θ, x) = 1 − GK,R,N
t,τ (θ, x),

for K ∈ {H,L}.
The following analog of Lemma G.1 holds.

Proposition L.4 For a given buyer with posterior θ at time t, before the time-t auction

takes place,

ub,t,τ (N, θ) = P (θ)λ

∫
R

(vH − Sτ (y))GH,R,N
t,τ (θ, Vbτ (Sτ (y)))ψHsτ (y) dy

+ (1− P (θ))λ

∫
R

(vb − Sτ (y))GL,R,N
t,τ (θ, Vbτ (Sτ (y)))ψLsτ (y) dy,

(101)
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whereas for a seller,

us,t,τ (N, θ) = P (θ)λ

∫
R

(Sτ (y)− vH)GH
bτ (Vbτ (Sτ (y)))RH,N

t,τ (θ, y) dy

+ (1− P (θ))λ

∫
R

(Sτ (y)− vs)GL
bτ (Vbτ (Sτ (y)))RL,N

t,τ (θ, y) dy.

(102)

Thus, the gain from acquiring additional information is given by∑
τ>t

(ui,t,τ (Nmax, θ) − ui,t,τ (Nmin, θ)) .

The following lemma provides asymptotic behavior of these gains for extreme type values.

Lemma L.5 We have

• For a buyer:

– As θ → +∞,

ub,t,τ (Nmax, θ)− ub,t,τ (Nmin, θ) ∼ CR,Nmax

b,t,τ e−(α+1)θ|θ|γ
Q
t,τ+Nmax

×
∫
R

(vH − Sτ (y))

(
Sτ (y)− vb
vH − Sτ (y)

)α+1

e−(α+1)y ψHsτ (y) dy.
(103)

– As θ → −∞,

ub,t,τ (Nmax, θ)− ub,t,τ (Nmin, θ) ∼ CR,Nmax

b,t,τ Re(α+1)θ|θ|γ
Q
t,τ+Nmax

×
∫
R

(vH − Sτ (y))

(
Sτ (y)− vb
vH − Sτ (y)

)−α
eαy ψHsτ (y) dy.

(104)

• For a seller, as θ → −∞,6

us,0,τ (Nmax, θ)− us,0,τ (Nmin, θ) ∼ CR,Nmax

s,0,τ Re(α+1)θ|θ|γ
Q
t,τ+Nmax

×
∫
R

((
(Sτ (y)− vb) + (vH − Sτ (y))FH

bτ (Vbτ (Sτ (y)))
)
ey

+
(

(Sτ (y)− vb) + (vs − Sτ (y))FL
bτ (Vbτ (Sτ (y)))

))
e−(α+1)y dy.

(105)

Furthermore, the derivatives of ui,t,τ (Nmax, θ) − ui,t,τ (Nmin, θ) with respect to θ have the

same asymptotic behavior, but with all constants on the right-hand sides multiplied by

α + 1 when θ → −∞ and by −(α + 1) when θ → +∞.
6The case θ → +∞ will be considered separately below.
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Proof. Throughout the proof, we will often interchange limit and integration without

showing the formal justification, which is based the same arguments as in the case of

initial information acquisition considered above. However, the calculations are lengthy

and omitted for the reader’s convenience.

We have∫
R

(vH − Sτ (y))GH,R,N
t,τ (θ, Vbτ (Sτ (y)))ψHsτ (y) dy = (vH − vb)

+

∫
R

(vb − Sτ (y))ψHsτ (y) dy −
∫
R

(vH − Sτ (y))FH,R,N
t,τ (θ, Vbτ (Sτ (y)))ψHsτ (y) dy

(106)

and∫
R

(vb − Sτ (y))GL,R,N
t,τ (θ, Vbτ (Sτ (y)))ψLsτ (y) dy

=

∫
R

(vb − Sτ (y))ψLsτ (y) dy −
∫
R

(vb − Sτ (y))FL,R,N
t,τ (θ, Vbτ (Sτ (y)))ψLsτ (y) dy.

(107)

By Lemma L.2, for a fixed x, we have

FR,N
t,τ (θ, Vbτ (Sτ (y))) ∼ CF,R,N

b,t,τ e(α+1H)(Vbτ (Sτ (y))−θ) |θ|γ
Q
t,τ+N ,

and the first claim follows from the identity

Vbτ (Sτ (y)) = log
Sτ (y)− vb
vH − Sτ (y)

− y.

The case of the limit θ → −∞ is completely analogous.

It remains to consider the case of a seller. The term corresponding to state H gives∫
R

(Sτ (y)− vH)GH
bτ (Vbτ (Sτ (y)))RL,N

t,τ (θ, y) dy

= (vb − vH) +

∫
R

(
(Sτ (y)− vb) + (vH − Sτ (y))FH

bτ (Vbτ (Sτ (y)))
)
RL,N
t,τ (θ, y) dy.

(108)

In the limit as θ → −∞,∫
R

(
(Sτ (y)− vb) + (vH − Sτ (y))FH

bτ (Vbτ (Sτ (y)))
)
RL,N
t,τ (θ, y) dy

∼ CR,N
s,0,τe

αθ |θ|γ
Q
t,τ+N

∫
R

(
(Sτ (y)− vb) + (vH − Sτ (y))FH

bτ (Vbτ (Sτ (y)))
)
e−αy dy.

(109)
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The term corresponding to state L gives∫
R

(Sτ (y)− vs)GL
bτ (Vbτ (Sτ (y)))RL,N

t,τ (θ, y) dy

= (vb − vs) +

∫
R

(
(Sτ (y)− vb) + (vs − Sτ (y))FL

bτ (Vbτ (Sτ (y)))
)
RL,N
t,τ (θ, y) dy.

(110)

In the limit as θ → −∞,∫
R

(
(Sτ (y)− vb) + (vs − Sτ (y))FL

bτ (Vbτ (Sτ (y)))
)
RL,N
t,τ (θ, y) dy

∼ CR,N
s,0,τe

(α+1)θ |θ|γ
Q
t,τ+N

∫
R

(
(Sτ (y)− vb) + (vs − Sτ (y))FL

bτ (Vbτ (Sτ (y)))
)
e−(α+1)y dy.

(111)

This completes the proof.

The claim concerning the derivatives with respect to θ is proved analogously.

The arguments of the proof of Lemmas F.1-F.9 imply the following result.

Lemma L.6 Let
(α + 1)2

α− 1
> α .

Then ∫
R

(vH − Sτ (y))

(
Sτ (y)− vb
vH − Sτ (y)

)α+1

e−(α+1)y ψHsτ (y) dy

∼ csτ ε
2α+1
α+1

∣∣∣∣ log ε

α + 1

∣∣∣∣γτ ∫
R

(vH − S(y))

(
S(y)− vb
vH − S(y)

)α+1

e−(2α+1)y dy.

(112)

Similarly, we have the following result.

Lemma L.7 Let
α + 1

α− 1
> α .

Then ∫
R

((
(Sτ (y)− vb) + (vH − Sτ (y))FH

bτ (Vbτ (Sτ (y)))
)
ey

+
(

(Sτ (y)− vb) + (vs − Sτ (y))FL
bτ (Vbτ (Sτ (y)))

))
e−(α+1)y dy

∼ ε
α
α+1

∫
R

(
(S(y)− vb)e−αy −

α + 1

α
e−(2α+1)y

(
S(y)− vb
vH − S(y)

)α)
dy.

(113)
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In order to prove the next asymptotic result, we will need the following auxiliary

lemma.

Lemma L.8 Let f(z) solve

f ′(z) =

(
log(1/ζ)

log(1/ζ) + log(1/f(z))

)γ (
z + ε

1
α+1 f(z)

1
α+1

)
, (114)

with f(0) = 0. Then, rε(y) = f(ε
1

α−1y)ε−2/(α−1) converges to the function r(y) that is

the unique solution to

r′(y) = y + (r(y))1/(α+1) , r(0) = 0

as ε→ 0.

Proof. We have

r′ε(y) = ε−
1

α−1 f ′(ε
1

α−1y)

= ε−
1

α−1

(
log(1/ζ)

log(1/ζ) + log(1/f(ε
1

α−1y))

)γ (
ε

1
α−1y + ε

1
α+1 f(ε

1
α−1y)

1
α+1

)
=

(
log(1/ζ)

log(1/ζ) + log(ε−2/(α−1)/rε(y))

)γ (
y + (rε(y))

1
α+1

)
.

(115)

The right-hand side of this equation converges to y + (rε(y))1/(α+1). The fact that rε(y)

converges to r(y) follows from the uniqueness part of the proof of Proposition D.1 and

standard continuity arguments.

Lemma L.9 We have∫
R

(vH − Sτ (y))

(
Sτ (y)− vb
vH − Sτ (y)

)−α
eαy ψHsτ (y) dy

∼ ε−α/(α−1)

∫ ∞
0

y−α−1 φsτ
(
y−1 r(y)1/(α+1)

)
dy,

(116)

where

φsτ (y) = y−αψHsτ (− log y) .

Proof. For simplicity, we make the normalization vH = 1, vb = 0.

We make the change of variable Sτ (y) = z, y = Vsτ (z) , dy = V ′sτ (z) dz . Using

the identity Vsτ (z) = log z
1−z − Vbτ (z), we get

V ′sτ (z) =
1

z(1− z)
− Vbτ (z) .
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We will also use the notation g(z) = e(α+1)Vbτ (z) from the proof of Proposition D.1.

Then, we have∫
R

(vH − Sτ (y))

(
Sτ (y)− vb
vH − Sτ (y)

)−α
eαy ψHsτ (y) dy

=

∫ 1

0

(1− z)

(
1− z
z

)α
eαVsτ (z) ψHsτ (Vsτ (z))V ′sτ (z) dz

=

∫ 1

0

(1− z) e−αVbτ (z) ψHsτ

(
log

z

1− z
− Vbτ (z)

) (
1

z(1− z)
− V ′bτ (z)

)
dz

=

∫ 1

0

(1− z) g(z)−
α
α+1 ψHsτ

(
log

z

1− z
− log g(z)

α + 1

)(
1

z(1− z)
− g′(z)

(α + 1)g(z)

)
dz.

(117)

As we have shown in the proof of Proposition D.1, g(z)/ε converges to a limit f0(z) when

ε → 0. A direct calculation based on dominated convergence theorem and the bounds

for f(z) established in the proof of Proposition D.1 implies that the limit

lim
ε→0

ε
α
α+1

∫ 1

r

(1− z) g(z)−
α
α+1 ψHsτ

(
log

z

1− z
− log g(z)

α + 1

)(
1

z(1− z)
− g′(z)

(α + 1)g(z)

)
dz

exists and is finite for any r > 0. By contrast, as we will show below,

ε
α
α+1

∫ r

0

(1− z) g(z)−
α
α+1 ψHsτ

(
log

z

1− z
− log g(z)

α + 1

)(
1

z(1− z)
− g′(z)

(α + 1)g(z)

)
dz

blows up to +∞ as ε → 0. Therefore, the part
∫ 1

r
of the integral is asymptotically

negligible and we will in the sequel only consider the integral
∫ r

0
with a sufficiently small

r > 0. Then, it follows from the proof of Proposition D.1 that we may assume that

g(z) = εf(z) where f(z) solves the ODE (114). For the same reason, we may replace

1− z by 1. It also follows from the proof of Proposition D.1 that

K2D(q(z)) ≤ g(z) ≤ K1D(q(z)) (118)

for some K1 > K2 > 0, where

D(x) = x (− log x)−γ,

with γ = γτ , and

q(z) = ζ1+1/αC z(α+1)/α (− log(ζz))−γ/α +
1

2
ζ z2

for some constant C > 0.
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Denote

φ(e−x) = eαx ψHsτ (x) .

We have ψHsτ (x) ∼ csτe
−αx|x|γτ when x → +∞ and ψHsτ (x) ∼ csτe

(α+1)x|x|γτ when

x→ −∞. Therefore,

φ(y) = y−α ψHsτ (− log y) ∼ csτy
−α e−α(− log y)| log y|γτ = csτ | log y|γτ

when y → 0 and, similarly,

φ(y) ∼ csτy
−2α−1| log y|γτ

as y → +∞.
With this notation, we have∫ r

0

(1− z) g(z)−
α
α+1 ψHsτ

(
log z − log g(z)

α + 1

)(
1

z(1− z)
− g′(z)

(α + 1)g(z)

)
dz

=

∫ r

0

z−α φ
(
z−1 g1/(α+1)

) ( 1

z(1− z)
− g′(z)

(α + 1)g(z)

)
dz .

(119)

By (118), for some K3 > 0,

g′(z)

g(z)
≤ K3

ζ1/αCz1/α (− log(ζz))−γ/α
(
α+1
α

+ γ
α

(− log(ζz))−1
)

+ z

ζ1/αC z(α+1)/α (− log(ζz))−γ/α + 1
2
z2

× (− log q(z))−γ (1 + γ (− log q(z))−1).

(120)

Since we are in the regime when both z and ζ are small, 1 + γ (− log q(z))−1 ∼ 1, so

we can ignore this factor when we determine the asymptotic behavior. Furthermore, for

the same reason,

α + 1

α
≤ z

ζ1/αCz1/α (− log(ζz))−γ/α
(
α+1
α

+ γ
α

(− log(ζz))−1
)

+ z

ζ1/αC z(α+1)/α (− log(ζz))−γ/α + 1
2
z2

≤ 2

for small ζ, z. Therefore, since for small ζ, z (− log q(z))−γ is sufficiently small, we have

1

z
− g′(z)

g(z)
∼ 1

z
(121)

for small z, ζ.

Making the transformation z = ζ1/(α−1) (− log ζ)−γ/(α−1)y, standard dominated

convergence arguments together with Lemma L.8 imply that∫ r

0

z−α−1 φ
(
z−1 g1/(α+1)

)
dz

=

(
ζ

(− log ζ)γ

)−α/(α−1) ∫ r( ζ
(− log ζ)γ )

−1/(α−1)

0

y−α−1 φ
(
y−1 (rε(y))1/(α+1)

)
dy

∼
(

ζ

(− log ζ)γ

)−α/(α−1) ∫ ∞
0

y−α−1 φ
(
y−1 r(y)1/(α+1)

)
dy,

(122)
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completing the proof.

Lemma L.10 We have

Vbτ (z) ≈ 1

Gα
log

1

1− z
+ K(ε)

as z ↑ 1, for some constant K(ε).

Proof. As above, we will everywhere use the normalization vH = 1, vb = 0. For brevity,

let hH,L = hH,Lbτ . We have

V ′bτ (z) = (G)−1

(
z

1− z
1

hH(Vbτ (z))
+

1

hL(Vbτ (z))

)
,

and therefore

Vbτ (z) = Vbτ (z0) + (G)−1

∫ z

z0

(
y

1− y
1

hH(Vbτ (y))
+

1

hL(Vbτ (y))

)
dy

for any z0 ∈ (0, 1) . A direct application of l’Hopital’s rule implies that

1

hH(x)
=

GH(x)

ψH(x)
→ α−1

as x→ +∞. Using the identity

GH(x)

ψH(x)
− α−1 = eαx

∫ +∞
x

e−αy((y/x)γeαyy−γψH(y)− eαxx−γψH(x)) dy

eαxx−γ ψH(x)
,

it is possible to show that this will converge to zero at least as fast as x−γ. Indeed,

condition (87) implies that we can replace eαyy−γψH(y) by its limit value cτ as the

difference will be asymptotically negligible. Thus, it remains to consider

eαx
∫ +∞

x

e−αy((y/x)γ − 1) dy =

∫ ∞
0

e−αy((1 + y/x)γ − 1) dy ≤ x−γ
∫ ∞

0

e−αyyγ dy.

Therefore, we can write

Vbτ (z) = Vbτ (z0) + (G)−1

∫ z

z0

(
y

1− y
1

hH(Vbτ (y))
+

1

hL(Vbτ (y))

)
dy

= Vbτ (z0) +
1

Gα
(−z − log(1− z)− (−z0 − log(1− z0)))

+
1

G

∫ z

z0

(
y

1− y

(
1

hH(Vbτ (y))
− 1

α

)
+

1

hL(Vbτ (y))

)
dy.

(123)
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Consequently, when z ↑ 1,

Vbτ (z) ∼ 1

Gα
log

1

1− z
+ K(ε),

where

K(ε) = Vbτ (z0) +
1

Gα
(−1 + z0 + log(1− z0))

+
1

G

∫ 1

z0

(
y

1− y

(
1

hH(Vbτ (y))
− 1

α

)
+

1

hL(Vbτ (y))

)
dy,

(124)

and the claim follows.

Lemma L.11 When G becomes large, K(ε) converges to

K = A−
∫ A

−∞
α−1 hH(x)dx +

∫ +∞

A

(1− hH(x)/α) dx .

Proof. Based on the change of variables

Vbτ (y) = x , dy = B′τ (x) dx = G

(
Bτ (x)

1−Bτ (x)

1

hH(x)
+

1

hL(x)

)−1

,

we have
1

G

∫ 1

z0

(
y

1− y

(
1

hH(Vbτ (y))
− 1

α

)
+

1

hL(Vbτ (y))

)
dy

=

∫ +∞

Vbτ (z0)

Bτ (x)
1−Bτ (x)

(
1

hH(x)
− 1

α

)
+ 1

hL(x)

Bτ (x)
1−Bτ (x)

1
hH(x)

+ 1
hL(x)

dx.

(125)

When G→∞, Bτ (x)→ vH = 1. Hence the leading asymptotic of the integrand is given

by 1− hH(x)/α. Therefore, for any A > 0,

∫ +∞

Vbτ (z0)

Bτ (x)
1−Bτ (x)

(
1

hH(x)
− 1

α

)
+ 1

hL(x)

Bτ (x)
1−Bτ (x)

1
hH(x)

+ 1
hL(x)

dx

≈
∫ +∞

Vbτ (z0)

(1− hH(x)/α) dx

= A− Vbτ (z0) −
∫ A

Vbτ (z0)

α−1 hH(x)dx +

∫ +∞

A

(1− hH(x)/α) dx

≈ A− Vbτ (z0) −
∫ A

−∞
α−1 hH(x)dx +

∫ +∞

A

(1− hH(x)/α) dx,

(126)

and the claim follows.

62



Lemma L.12 When θ → +∞ and G→∞ in such a way that θ− log ε/(α+ 1)→ +∞,
we have

us,0,τ (Nmax, θ)− us,0,τ (Nmin, θ) ∼ e
−(α+1) θ

Gα−1 |θ|γτ Z

and
∂

∂θ
(us,0,τ (Nmax, θ)− us,0,τ (Nmin, θ)) ∼ −

α + 1

Gα− 1
e
−(α+1) θ

Gα−1 |θ|γτ Z

for some constant Z > 0.

Proof. When y →∞ we have Sτ (y)→ 1. Thus,

y = Vsτ (Sτ (y)) = log
Sτ (y)

1− Sτ (y)
− Vbτ (Sτ (y))

∼
(

1− 1

Gα

)
log

1

1− Sτ (y)
− K(ε) .

(127)

Therefore,

1 − Sτ (y + θ) ∼ e−(y+θ+K(ε))/(1− 1
Gα

)

when θ →∞ and

Vbτ (Sτ (y + θ)) ∼ y + θ +K(ε)

1− (Gα)−1
− (y + θ).

Hence

GH
bτ (Vbτ (Sτ (y + θ))) ∼ cτ

α
|θ|γτ e−α

y+θ+GαK

Gα−1 .

Therefore, in the high state, we get∫
R

(Sτ (y + θ)− 1)GH
bτ (Vbτ (Sτ (y + θ)))RH,N

t,τ (θ, y + θ) dy

∼ −cτ
α
|θ|γτ

∫
R
e−(y+θ+K(ε))/(1− 1

Gα
) e
−α y+θ+GαK

Gα−1 RH,N
t,τ (θ, y + θ) dy

= −|θ|γτ e−(α+1) Gα
Gα−1

K(ε)
e
−θ
(
α(G+1)

αG−1

)
cτ
α

∫
R
e
−(α+1) y

Gα−1 e−y RH,N
t,τ (θ, y + θ) dy.

(128)

In the low state, using Sτ (y + θ)− vs ∼ G, we get∫
R

(Sτ (y + θ)− vs)GL
bτ (Vbτ (Sτ (y + θ)))RL,N

t,τ (θ, y + θ) dy

∼ G |θ|γτ cτ
α + 1

∫
R
e
−(α+1) y+θ+GαK

Gα−1 RL,N
t,τ (θ, y + θ) dy

∼ Ge
−(α+1) θ+GαK

Gα−1 |θ|γτ cτ
α + 1

∫
R
e
−(α+1) y

Gα−1RL,N
t,τ (θ, y + θ) dy.

(129)
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Thus, in the limit as G→ 0, the gain in the low state from acquiring information satisfies

e
−(α+1) θ+GαK

Gα−1 |θ|γτ Gcτ
α + 1

∫
R
e
−(α+1) y

Gα−1 (RL,Nmax
t,τ (θ, y + θ)−RL,Nmin

t,τ (θ, y + θ)) dy

∼ 1

α
e−(α+1)K e

−(α+1) θ
Gα−1 |θ|γτ cτ

∫
R

(−y)(ηLNmax
− ηLNmin

) ∗ hLt,τ (y) dy,

(130)

whereas the loss in the H state is asymptotically negligible because the additional factor

G is missing.

The following lemma completes the proof of Theorem K.1.

Lemma L.13 There exist g, A > 0 such that a threshold equilibrium exists whenever

G > g and π < e−AG. In any such equilibrium, conditions (88) and (89) hold as π−1, G→
∞.

Proof. Fix a threshold acquisition policy {X it, X it}i=b,s,t≥1 of all the agents in the

market. It follows from the above (Lemmas L.1, L.3, L.5 and L.12) that there exist

constants a, g, B > 0 such that the gains from information acquisition are monotone

decreasing in |θ| when |θ| > B, G > g and

min{min
i,t
|X it|,min

i,t
|X it|} > aG .

Therefore, the optimal acquisition policy for any agent is also of threshold type, given

by {X̃ it, X̃ it}, whenever π is sufficiently small. It follows from the proofs of Lemmas L.5

and L.12 that, in fact, there exists an A > 0 such that π < e−AG is sufficient for this.

Clearly, choosing A > 0 sufficiently big, we can achieve that

min{min
i,t
|X̃ it|,min

i,t
|X̃ it|} > aG .

Making the change of variables θ → Reθ/(1 + Reθ) , we immediately get that the

mapping from {X it, X it}i=b,s,t≥1 to {X̃ it, X̃ it}i=b,s,t≥1 maps bounded convex set into it-

self. Therefore, existence of a threshold equilibrium follows by the Brower fixed point

Theorem. The fact that any equilibrium satisfies (88) and (89) follows by a careful

examination of alternative cases, is very lengthy and is therefore omitted.

We can now calculate approximations for the optimal acquisition thresholds. Though

we cannot prove that an equilibrium is unique, the next result implies that the equilib-

rium is asymptotically unique, in the sense that the asymptotic behavior of the equilib-

rium thresholds is the same for any equilibrium.
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Lemma L.14 For any equilibrium, in the limit when G→∞ and π → 0 in such a way

that π < e−AG, the optimal information acquisition thresholds satisfy

1.

(α + 1)Xbt ≈ Kb,t,τ +

(
mQ
t,T −

α

α + 1
mψ
T

)
log λ+ log(π−1)− 2α + 1

α + 1
logG

+ (γQt,T +Nmax) log(log(π−1G
− 2α+1
α+1 ))− α

α + 1
γψT log logG.

(131)

2.

− (α + 1)Xbt ≈ Kb,t,τ + logR + (log(π−1) + (γQt,T +Nmax) log(log(π−1)))

+
α

α− 1
logG +

(
γQt,T +Nmax +

α

α− 1
γψT

)
log logG.

(132)

3.
(α + 1)Xst ≈ (Gα− 1)(

log(π−1) +Ks,0,T + γT log

(
Gα− 1

α + 1
(log(π−1) +Ks,0,T )

))
.

(133)

4.

− (α + 1)Xst ≈ Ks,0,τ +

(
mQ
t,T −

α

α + 1
mψ
T

)
log λ + log(π−1)

− α

α + 1
logG + (γQt,T +Nmax) log(log(π−1G

− α
α+1 ))

− α

α + 1
γψT log logG,

(134)

where γψT = (2T+1 − 1)Nmax − 1 and γQt,T = (2T+1 − 2t+1)Nmax − 1 .

Proof. The proof follows directly from Lemma L.5 and Lemmas L.6-L.12.

Proof of Theorem K.2. This theorem follows from substituting the asymptotic

expressions of Lemma L.14 into the asymptotic formulae of Lemma L.1 for the tail

behaviour of the densities of type distributions.
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