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This supplement of Duffie, Malamud, and Manso (2013) houses the following ap-
pendices of our paper, “Information Percolation in Segmented Markets.” Appendices A

through C are found in the main paper.

Supplementary Appendices

D. A proof of the existence and uniqueness of a strictly monotone equilibrium of the

double auction.

E. An application of results from Appendix D to obtain approximations for the double-

auction equilibrium for the case of large gains from trade.

F. An application of the results of Appendix E to derive approximations for the ex-

pected trading profits for the case of large gains from trade.

G. An application of the results of Appendix F to approximate the expected gains
from information acquisition for the case of large gains from trade. From this, a
derivation of general properties of equilibrium information acquisition. Appendices
G.1 and G.2 apply these results to special cases of one and two classes of sellers,

respectively.
H. The two-class model.
[. Results on endogenous investment in matching technology.
J. Proofs of results in Section I, on endogenous investment in matching technology.
K. Results for the case of dynamic information acquisition.

L. Proofs of results in Appendix K.



D Existence of Equilibrium for the Double Auction
Existence of equilibrium follows from Proposition 4.6 and the following general result.

Proposition D.1 Fiz a buyer class b and a seller class s such that

¢£I(x) ~ EXp+OO(C,’}/, —Oé) (1)

for some c,a > 0 and some v € R. If a < 1, then there is no equilibrium associated

with Vo = —oo. Suppose, however, that o > «o* and that

(+1)log
log(a+ 1) — loga’
log(a? — ) 2

-y < if @ < 2.
7 log(aw+ 1) — log &’ na

ifa > 2

Then, if the gain from trade G is sufficiently large, there exists a unique strictly monotone
equilibrium with Vo = —oo. This equilibrium is in undominated strategies, and mazrimizes

total welfare among all continuous nondecreasing equilibrium bidding policies.
In order to prove Proposition D.1, we apply the following auxiliary result.

Lemma D.2 Suppose that B,S : R — (v, v) are strictly increasing and that their

inverses Vs and Vy, satisfy
v + Ay P(Vi(z) + Vi(2)) = =

Suppose further that V) (z) solves (12) for all z € (vy,v™). Then (B, S) is an equilibrium.

Proof. Recall that the seller maximizes
+oo
fots) = [ | (50~ AP(0+0) W(P(0),6)do. )
V(s

To show that S(f) is indeed optimal, it suffices to show that fi(s) > 0 for s < S(0)
and that fi(s) < 0 for s > S(0). We prove only the first inequality. A proof of the
second is analogous. So, let s < S(0) < Vi(s) < 6. Then,

fs(s) = Vi(s) (=s + vs + AP0+ Vi(s))) Wo(P(0), Vi(s)) + Go(P(6), Ve(s))

= VOPRPOTE) (=5 v+ AP0+ + )
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By Lemma 4.1, hy(p, Vi(s)) is monotone decreasing in p. Therefore, by (26),

1 1
Vi) (PO, V(s) = V() ha(POV(9)), Vils))

Hence,
fs(s) = Vi(s) Wy (P(6), Vi(s))
X (_S+Us +ASP<9+%(S)) + 5= Vs — AsP(V;(S) +‘/b(s))> Z 07

= s — vy — Ag P(Vis(s) + Vi(s)).

because 0 > V(s).
For the buyer, it suffices to show that

Vs(b)
fult) = max [ (o + AP+ 6) — SO) VPO ()
satisfies f5(b) > 0for b < B(¢), and satisfies f5(b) < 0 for b > B(¢). That is,
vp + By P(¢ + Vi(b)) = S(Va(b)) = v + Ay P(6 + Vi(b)) = b > 0

for b < B(¢), and the reverse inequality for b > B(¢). For b < B(¢), we have ¢ > V,(b)

and therefore
v+ Ay PG+ Vi) — b > v + Ay PVi(b) + Va(b)) — b = 0,
as claimed. The case of b > B(¢) is analogous. =

Proof of Proposition D.1. It follows from Proposition 4.3 and Lemma D.2 that a

strictly monotone equilibrium in undominated strategies exists if and only if there exists

a solution V;(2) to (12) such that V4(v,) = —oo and
Z — Up
Vi(z) = log " — Vi(z) — logR
is monotone increasing in z and satisfies V;(v,) = —oo , Vi(v#) = +o00. Furthermore,
such an equilibrium is unique if the solution to the ODE (12) with Vj(v,) = —oo is
unique.

Fix a t < T and denote for brevity v = ~;; , ¢ = ¢;. Let also

g(z) = etV
Then, a direct calculation shows that Vj(z) solves (12) with Vj(v,) = —oo if and only
if g(z) solves
q'(2)
a+1 Z— 1 1 (4)
= g(2) — H _ H —1 T T -1 ’
vp—vs \ VT =2 Iy ((+ 1) ogg(2)) — hy((er+ 1)~ logg(2))
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with g(v,) = 0. By assumption and Lemma 4.1 |
! (V) ~ V[T e@™Y and  h(V) ~ V[T (5)

as V — —oo because both Gf (V) and GE(V') converge to 1. Hence, the right-hand
side of (4) is continuous and the existence of a solution follows from the Euler theorem.
Furthermore, when studying the asymptotic behavior of g(z) as z | vy, we can replace
h{' and hf by their respective asymptotics (5).

Indeed, let us consider

~ - 1 Z — Uy 1
/ — 1
§() (a+1)5(2) vy — Vg (vH—zc((a+1)—110g1/§)7§
(6)
N 1
<«a+1ru%1mWQMWM>’
with the initial condition g(v,) = 0. We consider only values of z sufficiently close to

vp, SO that log g(z) < 0.
It follows from standard ODE comparison arguments and the results below that

for any € > 0 there exists a z > v, such that

—1\ge (7)

for all z € (v, 2) . The assumptions of the Proposition guarantee that the same asymp-
totics hold for the derivatives of the hazard rates, which implies that the estimates
obtained in this manner are uniform.

First, we will consider the case of general (not necessarily large) v, — vs and show
that, when a < 1, g(z) decays so fast as z | v, that V(2) cannot remain monotone in-
creasing. A similar argument then implies that V(z) cannot remain monotone increasing
when Ga < 1.

At points in the proof, we will define suitable positive constants denoted C7, Cs,

(s, ... without further mention.
Denote
¢ = (a1 (8)
vy —wy)
Then, we can rewrite (6) in the form
() = o (220 gt )
(log1/g)Y \vf — 2 '



From this point, throughout the proof, without loss of generality, we assume that v, = 0.
Furthermore, after rescaling if necessary, we may assume that v” — v, = 1. Then, the
same asymptotic considerations as above imply that, when studying the behavior of g

H

as z | vy, we may replace v — z ~ vl — v, in (6) by 1

Let A(z) be the solution to

A(2)
z = / ¢H(=logx) /) dg
0

A direct calculation shows that

e 1
el / ¢H(=logx)Y z Ot dy ~ C‘la + (—log 2)7 z/(@+D)
Q@
Conjecturing the asymptotics
A(Z) ~ K (_ log Z) v(a+1l)/a (Oé+1)/01 (10)

and substituting these into B(A(z)) = z, we get

(y+1)(at1)

K = < & :
¢ (a+1>

Standard considerations imply that this is indeed the asymptotic behavior of A(z). It is

then easy to see that

a+1

A(z) ~ K (—log z)vletl/e j1/e (11)

By (9), :
</ ~1/(a+1)
(2) > —————7 .
) 2 G173y
Integrating this inequality, we get g(z) > A(z). Now, the factor (log1/g)" is asymptot-
ically negligible as z | v,. Namely, for any £ > 0 there exists a C'; > 0 such that

C G1/(ate+l) - C Gl/(a+1) C 1~1/a E+].)
v (ogl/gr® =

Thus,

!/
(@7=) = &
Integrating this inequality, we get that

a—e+1

9(z) > C3(z—1p) o= . (12)

6



Let

Then, for small z, by (10),
I(z) = §(z)¢" (~logg) g /™D — 1
C z ~1/(x ~\vy »—1/(x
= Gog iy o=z T 97 ) = logg g e —
z 1
T 11—z gY/etD (13)
z 1
1— 2z (A(l(z) + 2))V/(eFV
z 1
1=z (A(l(z)))V/ D

where we have used the fact that {(z) > 0 because h(0) = 0 and I'(z) > 0. Integrating
this inequality, we get that, for small z

l(z) < 0422(01—6)/(04—84-1)'
Hence, for small z,
G(z) = A(l(2) + 2) < A((Cy + 1)/ lam=ty < O 527 (14)

Let C(z) solve

C(2)
/ (—logz)’dx =
0

A calculation similar to that for the function A(z 1mphes that
C(z) ~ Cg(—logz)"2? (15)

as z — 0. Integrating the inequality

we get that

9(z) = C(z).
Let now a < 1. Then, (14) immediately yields that the second term in the brackets in
(6) is asymptotically negligible and, consequently,

¢ z
(log1/g)7 1 -2

(I1+e)¢ =z
(log1/5) 1— =

< J(2) < (16)



holds for sufficiently small z. Integrating this inequality implies that
Clz) < g(z) < (14+¢)C(2).
Now, (16) implies that
(1-6)2C(2)z7" < §(2) < 2(14¢)C(2) 27"

for sufficiently small' z.
Using the asymptotics (5) and repeating the same argument implies that g(z) also

satisfies these bounds. (The calculations for g are lengthier and omitted here.)

Now,
g’(Z) 2 1
VA = —— > (1- .
b2 = e = U957
Therefore,
1
! - - !

for sufficiently small z. Thus, V;(z) cannot be monotone increasing and the equilibrium
does not exist.

Let now a > 1. We will now show that there exists a unique solution to (4) with
g(0) = 0. Since the right-hand side loses Lipschitz continuity only at z = 0, it suffices to
prove local uniqueness at z = 0. Hence, we need only consider the equation in a small
neighborhood of z = 0. (It is recalled that we assume v, = 0.)

As above, we prove the result directly for the ODE (6), and then explain how the
argument extends directly to (4).

Suppose, to the contrary, that there exist two solutions §; and gs to (6). Define
the corresponding functions /4 and Iy via [; = B(g;) — z. Both functions solve (13).
Integrating over a small interval [0, (], we get

ooz 1 1

lli(z) — l(z)] < /0 1=z (AL (z) + V@) T (A(ly(2) + 2)) /ot

Now, we will use the following elementary inequality: There exists a constant Cls > 0
such that

7| dz. (17)

< 06 (CL — b)
— a(a—l)/a + b(a—l)/a
for a > b > 0. Indeed, let © = b/a and = 1/a. Then, we need to show that

al/a . bl/a

(18)

(1+2P)(1 - 2%) < Cs(1 —2)

'We are using the same ¢ in all of these formulae. This can be achieved by shrinking if necessary the
range of z under consideration.



for x € (0,1). That is, we must show that
gt — 2 < (Ce—1)(1 —2).

By continuity and compactness, it suffices to show that the limit
lim ———
z—1 1—=x
is finite. This follows from L’Hopital’s rule.
By (10) and (11), we can replace the function A(z) in (17) by its asymptotics (10)

at the cost of getting a finite constant in front of the integral. Thus, for small z,

h(z) = la(2)]
T (= log(l + 2))7 (I + 2)) Y — ((—log(ly + 2))7 (s + 2)) (19)
< ‘ (log(ls + 2 (b + 2)V((—Tog(la + 2))7 ( + 27 |

By (18),

|((=log(l +2))" (I + 2)* = (= log(lz + 2)) (I + 2)) /]
< c |(=log(ly +2))" (L + 2) — (=log(la + 2))7 (2 + 2| (20)
= (Flog(l + 2)) (Il + 2)@ D+ (= og(la + 2))7 (I, + 2) @ D/e
Now, consider some v > 0. Then, for any sufficiently small a > b > 0, a direct calculation
shows that

0 < (log(1/a))"a — (log(1/0))"b < ((log(1/a))” + (log(1/b))") (a = b).

If, instead, v < 0, then the function a — (log(1/a))” a is continuously differentiable at

a = 0, and hence
0 < (log(1/a))"a — (log(1/b))"b < Cs(a—0).

Since o > 1, the same calculation as that preceding (16) implies that, for sufficiently

small z,

Az) < gi(z) = Alz+1li(2) < (1+e)A(2), 1 =1, 2.
Thus, for z € [0, &],

’ ((=log(l +2))7 (I + 2))/* — (= log(ls + 2))7 (I + 2))/*
((=log(l + 2))7 (l + 2))V/*((—log(lz + 2))7 (2 + 2)) V/*

1
< Golu(z) = L) Smrym= (21)
1
< Cy (2681[1&] li(z) — 52(Z)|> ~((at1)/a)—¢"
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Thus, (19) implies that

z€1[0,¢]

“ 1
’ll(.flﬁ) — lg(.’lﬁ)’ < 010 ( su ”1(2) — l2<2)|> Zmdz
b /0 A(@+D/a) (22
= Cu (@)% sup |h(2) — la(2)]

z €[0,E]

for all [ < &. Taking the supremum over [ € [0, £], we get

sup l1(2) — Ia(2)] < Cii(8)°F = sup [l(2) — ha(2)].
z€[0,8] z€[0,]
Picking € so small that Cy; ()" —° < 1 immediately yields that {; = I, on [0,] and
hence, since the right-hand side of (6) is Lipschitz continuous for z 1 # 0, we have l; = Iy
for all z by a standard uniqueness result for ODEs.
The fact that the same result holds for the original equation (4) follows by the
same arguments as above.
It remains to prove the last claim, namely the existence of equilibrium for suffi-

ciently large v, — vs. By Proposition 4.3, it suffices to show that

Vi) = e — W) > 0 (23)

for all z € (0, 1) provided that v, — v, is sufficiently large.
It follows from the proof of Lemma 4.1 that

Gp ((1=2)T7) < Vi) <G (- 2T )

Thus, as v, — vs T +00, Vj(2) converges to —oo uniformly on compact subsets of [0,1).

By assumption,

) 1 1 , 1 1
im = — im = -
Vortoo W (V) a’ Votoo hE(V) a+1
Thus, as 2z 1 1,
1 1 1
Vi (2)

a(vy—vs) 1—2 = z(1—2)

Fixing a sufficiently small ¢ > 0, we will show below that there exists a threshold W
such that (23) holds for all v, — vy > W and all z such that V;(z) < —e~!. Since,
by the assumptions made, 1/hf (V) and 1/h{(V) are uniformly bounded from above for
V > —e~! it will immediately follow from (12) that (23) holds for all z with V,(z) > —& ™!

as soon as v, — v, is sufficiently large.

10



1. We pick an ¢ so small that we

Thus, it remains to prove (23) when Vj(z) < —e~
can replace the ODE (4) by (6) when proving (23). That is, once we prove the claim for

the “approximate” solution §(z), the actual claim will follow from (7).

Let ¢ ¢
~ o def .
Then, (4) is equivalent to the ODE

b log(1/¢) A L e ek
) = (log(1/<)+1og(1/f(2))) (1_2“ /) ) (24

As vy — vy — 400, we get that (,e — 0. Let

fo(2) 4 /OZ Ty = —log(l—2) — z.

11—z
Using bounds analogous to that preceding (16), it is easy to see that

lim f(z) = fol2) , lim f(z) = fo(2),

Vp—Vs—>+00 Vp—Vs—>+00

and that the convergence is uniform on compact subsets of (0, 1). Fixing a small £; > 0,
we have, for z > ¢q,
. : g'(2)
1 |74 = 1 —
vbf'};goo b(z) vbfll)?ioo (Oé —+ 1)?](2)
/
= lim —f (2)
Vp—Vs—00 (a -+ 1)f(2)
fo(2)
(a+ 1) fo(2)
z

(+1) (1 —2)(—log(l —2) —2)

We then have
d? 1

Therefore, by Taylor’s formula,

1
—log(l—2)—2z > 522.

Hence, . < ) .
(a+1)(1—=2)(=log(l—2)—2) = a+1z(1-2)

Therefore (23) holds for large v, — vs because o > 1. This argument does not work as

z — 0 because f(0) = fy(0) = 0. So, we need to find a way to get uniform upper bounds

11



for f'(2)/f(z) when z is small. By the comparison argument used above, and picking ¢,
sufficiently small, since our goal is to prove inequality (23), we can replace 1 — z by 1 in
(24).

In this part of the proof, it will be more convenient to deal with g instead of f. By

the above, we may replace g by the function ¢; solving

4 = g ()

d(z) = /0 (log (i))v iz

D(z) = d%(z), and k(z) = D(g1(2)). Then, we can rewrite the ODE for g; as

Let

K(z) = ¢ (z+ (D(k(z))VD)  k(0) =0.
Define L(z) via
L(2)
| @@y e -
0
and let
¢(z) = L(Cz) + 5¢2* > L(¢2).
Then, by the monotonicity of D(z),
#(2) = CL(C2) + (2 = ¢ (2 + (DLEYED) < (= + (D(6(C2)))" ).
By a comparison theorem for ODEs (for example, Hartman (1982), Theorem 4.1, p.
26),% we have
k(z) = ¢(z) & g1(z) = D(k(z)) = D(¢(2)). (25)
Therefore, since the functions z(— log z)” and x*/(®+1) (—log )" are monotone increasing

for small x, we have

o d(2)
(1+a)Vy(z) = ()
91(2)
< (1+¢) (a+1)g1(2) 26
_ (+e)¢ (1+e)¢ -
Cogi(=logg)r g/ (og g
(1+¢e)z (1+¢)¢

= D(6() (~log D(6(2)))"  D(#())*/@D (~log D((2)))"

2Even though the right-hand side of the ODE in question is not Lipschitz continuous, the proof of
this comparison theorem easily extends to our case because of the uniqueness of the solution, due to
(22).
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Thus, it suffices to show that
¢z ¢z
D(6(=)) (—log D(6(2)))7 " D(@(=))*/@ (—log D(6(2)))"
for some € > 0, and for all sufficiently small z and (. Now, a direct calculation similar
to that for the functions A(z) and C(z) implies that

< (1-e)(1+a)

d(z) ~ z(—logz)”

and therefore that
D(z) ~ z(—logz)™7.

Thus, it suffices to show that

(7
¢(2) (—log @)= (—log(d(2) (—log ¢)~7))"
+ ¢z (27)
(6(2) (= log ¢)~7)*/(e+1) (—log(¢(2) (—log ¢) 7))
< (1—=¢e)(1+a).

Leaving the leading asymptotic term, we need to show that

¢ 22 N (z < (1)1t

o(z)  (p(2))*/ D) (—log(¢(2)))7/(@+D) :
We have .

/ (D(I))—l/(a—i-l)dx - a+1 Lo/(at1) (_ log Z)'y/(a—i—l)‘
0 o
Therefore
o\ et/ /
~ _ -/
L(z) (a+1z) (—logz) "/,

Hence, we can replace ¢(z

N;(

(a+1)/ax 1
) oo + L

Let
v = ¢
(¢2) /™ (= log(¢2)) /e
Then,
¢z 2
gg(z) (é(z))a/(ourl) (— 1Og(¢}(z)))y/(a+1)
_ 1 —log(¢z) )"/ z
- ) o/(a+1) ( " logd > N :
<(ai+1) o+ O.5x> (QH) + 0.5%
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We have

~ o (a+1)/cx
log(¢) = log(¢z) + log ((a—+1> (C2)Y (—log(Cz)) ™ + 0.52)

< log(¢z)

for small (, z. Furthermore, for any € > 0 there exists a € > 0 such that

o (a+1)/a
<a +1 ) (C2)"* (=log(¢2)) V™ > (¢z)Y*®

for all (z < . Hence,

a—e _ = log(¢z)

< = <1
a—e+1 —log¢

for all sufficiently small (, z. Consequently, to prove (26) it suffices to show that

sup x(z) < 1+aq,

>0
where .
x
x(@) = o afrD) o ’
(3" + 052) (z57) = + 052
with
o\ /@)
A, = max ( ) , 1p .
a+1
Let
a+1
K= (-2
- \a+1 '
Then,

0.5A,« 1 n K
at1 (K +052)2 /@D " (K 10502

Thus, x'(x,) = 0 if and only if

K a+1
K+05CL’* - <0A5Aaa> I

a+1

X'(z) =

which means that ot

w2 ((5)7 1) ()

14



1 Ty
= AOt + a+1

((a%l)T + 0.5x*)a/(a+1) (:%) © + 0.5z,
1 Ll ()" 1) )™ @)
((2/A0)* (af (o + 1))(etD/a)/ (@D 78T 2/ A )t (of (o + 1))@+ D/a

AN\ a+1 A\ Aot
= (== Ay +2- 2 (=2 = 2 -—.
(2) o} T <2) i 2«

Q
—

There are three candidates for x that achieve a maximum of x, namely z =0, * = o0,
and x = x,, which is positive if and only if A, < 2.
If v >0, then A, = 1, so x = 0 and x = +o0 satisfy the required inequality as

soon as o > 1, whereas x(z.) < o+ 1 if and only if @ > a, where

» = 1 .
“ * Qv 2%
A calculation shows that o* € (1.30, 1.31).
If v <0, then
a+1)A,
w0 = CFA ey = 2

and this gives the condition A, < a. If A, > 2, that is, if

log 2
log((a+1)/a)’

then we are done. Otherwise, we need the property

-y > (a+1)

Aol log ((a? — a) 2%)
2 - 1 — .
T e ST T TS ellat 1) /a)

E The Behavior of the Double Auction Equilibrium

Let ( N )
«Q
Cit - Cit a (29)
and
Eit — Cit . (30)

(Hog Gt /(v 4 1))t

Clearly, both (;; and ¢;; are small when G is large.
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Proposition E.1 Let S; = S, j;, By = B, and e, = €. We have, as G — 0,

1
Sy (@) ~ S (0 + a+110g5t>,

where S(0) is the inverse of the function in z defined by

zZ— 1 1 1
1OgvH—z P log<logUH_Z — (z—vb)).

Stmilarly,

B,(6) ~ 8(9 -

1 1
og e
1 gEt

where B(z) is the inverse of the function in z defined by

1 1
. log <logvH—z - (z—vb)) :

Corollary E.2 For any buyer-and-seller class pair (i,7), S;;+(0) is monotone decreasing
in t and in any meeting probability X;, whereas B; ;1(6) is monotone increasing in t and

any A;.

Proof. Without loss of generality, we assume for simplicity that R = 1. (This merely
adds a constant to the inverse of the ask function, by Proposition 4.3.) We fix a time
period t > 0 and omit the time index everywhere and write V, =V}, , V, = V; for the
inverses of the bid and ask functions. We also let v =, , ¢ = ¢;.

Let

B (a1
C - gt - Ca .
As in the proof of Proposition D.1, we define
o ; ¢ def
9(z) = TNE = s ) = (2

Then, as we have shown in the proof of Proposition D.1, we may assume that, for large

G,

1N log(1/¢) T z—w L e o) —
e = <log(1/<)+1og(1/f(2))) (vH—z” 1) ) flun) = 0. (31)

See (24). Furthermore, as G — 0o, we have (,¢ — 0,

dim f(2) = fo(2),

G—oo
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where "
VT — Wy

fol2) = (0 = ) log T — (2~ wy),

and the convergence is uniform on compact subsets of [vy, v7).
From this point, for simplicity we take the case v = 0. The general case follows by

similar but lengthier arguments. Hence, we assume that f solves

fi(z) = Z_sz 4 glfatl f1/(et), (32)

vH —

Since the solution f(z) to (32) is uniformly bounded on compact subsets of [vy, v7), by
integrating (32) we find that

0 < f(2) = folz) = O(ev (z — w)),

uniformly on compact subsets of [vy, v™7) . Furthermore, fo(2) < C (2 —w)?, uniformly

on compact subsets of [vy, v¥) . Substituting these bounds into (32), we get
f2) = folz) < Gy g / /(2 —v) + (2 —v)) D dz
Up
< O gart (z — ) (51/(a+1)2 (2 — Ub)l/(a+1) + (2 — Ub)Z/(oH—l))‘

Let now

1/a+1
_ afetr) _ ST X
i) = 1) 2w,
Then,
o cl/a+,
l/ _ / —1/(a+1)
(2) a+1f(z)f a+1
o« Z— Uy
N 1 1/a+1 1o 33
(2 - +1(2) (8)
« Z— U
Toat 1)
Integrating this inequality, we get
1 2
I(z) < i(z—vb) ,
and therefore
f(z) < Ci((z=w)* + Y% (z —wp) D)) (34)

Consequently,
) = 7 (fol2) + o(eT (2 — )



uniformly on compact subsets of [v,, v1) . Therefore,

, 1 1
lim (VL(Z) - Q—H10g5> = a—Hlong(Z)’

uniformly on compact subsets of (vy, v7).

Now, since V, — —oo uniformly on compact subsets of [vy, v),
Z — Uy
Vi(z) = lo — V(2
(2) g, — V(2

converges to +oo, uniformly on compact subsets of (v,, v?) . Since S(—o0) = v, standard
arguments imply that S(#) converges to v, uniformly on compact subsets of [—o0, +00)

(with —oo included). Furthermore,

zZ — Uy

1 1 def
| oge) 08 m—, ~ oy losflz) = M),

lim <V5(z) +

e—0

uniformly on compact subsets of (vy, v). Let S(2) = M~!(z). We claim that

) 1
}:I_I;[l) S <6 - logg) = S(0), (36)
uniformly on compact subsets of R. Indeed, S ( — a+r1 log 6) is the unique solution to
the equation in y given by
1
0 = Vi 1 )

Since the right-hand side converges uniformly to the strictly monotone function M(-),

this unique solution also converges uniformly to S(#). Furthermore, the equality
v+ Dy P(Vi(z) + Vi(2)) = 2 & o + A PO + Vi(S(0))) = S(0)

implies that
1 S—Ub 1
_ 1 -] _
Vb<5<9 a+10g€)) Og(vH—S) 6+a

and therefore
1 S(@) — Up
1 — 1 1 —— | — 0.
1 Ogg)) a1 0BE T o8 <UH—5(0))

V()(S(é’— !
!

We have

Z — Uy

(v — 2) ((vH — ) log (%—jﬁ’) — (z—wp)

M(z) = log

18



Now, for z ~ v,

v — Z— v Z— 1/ z—v \°
Og(vH—z> og( UH—Ub) UH—Ub+2<UH—Ub) ’ (37)
and therefore
_1 " a—1 2z —
M(z) ~ (14 a)  log(2(v" —w)) + 1 log <UH—vb) (38)

as z — 1. Consequently, as 6 — —o0, we have
SO) ~ v, + K ea1?

for some constant K = K(«). m

F The Behavior of Some Important Integrals

For simplicity, many results in this section will be established under technical conditions
on a. The general case can be handled similarly, but is significantly more messy. As
above, we fix a pair (i,j) = (b, s) and use S; and B; to denote the corresponding double
auction equilibrium. Recall that ¢ is the cross-sectional density of the information type
of sellers at time ¢.

As previously, we consider the case of large G and use the notation A ~ B to
denote that A/B — 1 when G — oc.

Lemma F.1 Let

a+1 -
a—1
Then
o |loge |77 a
[ = s eltay ~ eoen [FET sy
R + R
and
/w—&@wgww—m%w
R
CLSE—>OO.

Proof. In the following, we handle the cases of ¥ and ! simultaneously by using the
«,\H,L

ST

Am-&@)?@@

1 1
= HL Ay — 1 — — 1 dy .
/R@DST (y P Oge) (vb Sy (y P Oge)) Y

19
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(39)




Furthermore, by Lemma G.6,

loge |
1+«

—{a,a+1}/(a+1)

Vst
lim ¢! e YL (y— logs) = e {oatlly,
e—0

a+1

By (36),

1
vy — Sf(y—&_i_llogs) — v — S(y).

In order to conclude that
1
loga) (vb - S; (y b logs)) dy
“ (40)

= Cor / S(y)) dy,

e—0

lim e~ "‘H) (U3 <

and that

1 1
L . . . _ a/(a+1)
/R Dyl (y . log 5) (vb S (y | log 5>) dy = o(e ),

we will show that the integrands

1 1
[(y) _ gfa/(a+1) g <y _ ) ]Ogg) (Ub — S‘r (y — a1 logs))
geg—/(atl) Yy — L log e v, — Sy (y— ! loge
a+1 a+1

have an integrable majorant for some ¢ > 0. Then, (40) will follow from the Lebesgue

and

dominated convergence theorem.

We decompose the integral in question into three parts, as

1+a loge A 400
[T wwa s [ wwa s [ R
—o0 H% loge A

and prove the required limit behavior for each integral separately. To this end, we will

need to establish sharp bounds for S(#) and V,(0).

Lemma F.2 Let Q C R2 be a bounded open set and L(0,g) € C*(Q) be a bounded,

continuous function. Then we have

1
0 —
S( a+1

10g5) < v, + C1 L(0,¢) (41)
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for all (g,0) € Q if and only if

atl log f(uy + L(0,¢)) — log(L(f,e)) < Cy — 0. (42)

If (41) holds, we have

1 log e
_ < — 6.
Vi (S (0 ) logs)) S Tha + C5 + log L(0,e) — 6 (43)

Proof. Applying V to both sides of (41) and using the fact that Vj is strictly increasing,

we see that the desired inequality is equivalent to

1
6 — a+1log6 < Vi(up + C1 L)
Now,
1 zZ— U 1 Z—Up 1
Vs 1 =1 -V 1 =1 — 1 .
(2) + —qloge = log 7= —Vi(2) + ——— loge = log 57— — —— log f()
The claim follows because we are in the regime when v — z is uniformly bounded away
from zero.
Furthermore,
log e S —
— Vy(S) =1 —0—1logR. 44
B () = tog (5 ) - 0 log (44)

H

If 8 is bounded from above, then S is uniformly bounded away from v**, and hence

log (USH__”g) — 0 < Cy + log(S —vy) — 0.

The claim follows. m

Lemma F.3 Suppose that ¢ > 0 is sufficiently small. Fiz an A > 0. Then, for

1

0 1 A 45
¢ (ylow=a) (49

we have
S(0— 2 loge) < w4 Cpeitif (46)

- 0 v eoa-
ot g S Wy 5 )
and for
1
0 1 47
< ol (a”)
we have that .

S (0 T ar logs) < v+ Cg GG a1l (48)
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Proof. By Lemma F.2, inequality (48) is equivalent to

1
a+1

Under the condition (47),

max {(Z — Ub>2 7 gl/a (Z — Ub)(a+1)/01 } _ 81/04 (Z . Ub)(a+1)/a

for

1
2z = Cge@rD@ D ea-1?

Hence, by (34),
f(z) < Coell(z— )t/

Consequently,

] log f (v, + Co By ea-1%) — log <06 e eﬁg)

1 lo + L a 0 + ! lo
(a+1)a 8¢ al\la—1 (a+1)(a—1) 8¢

S (7 = o
a1 T (lat(a—1) &°
= —0 + C1107

< Ci +

and (48) follows.

Similarly, when 6 satisfies (45), a direct calculation shows that
max {(z — v)*, € (z —vp) TV} = (2 —w)
for
2 = vy + Cyeat?,
Therefore, by (34),

1
a—+1

a+1

log f(vy + Cs 6%6) — log(Cs eﬁ‘g)

and (46) follows. m

log f(vs + Cs e@ED ea-1%) — log(Cy £GIDE=T ea1?) < -0 4 ;.

(52)

(53)

As above, we recall that 1 is the cross-sectional density of the information type

of sellers at time 7. As above, we handle the cases of ¥Z and ¢ simultaneously by

«, \H, L »

using the notation “i-~.

22



Lemma F.4 If

a+1 -
a—1
then

1 _Joge
/a“lg o (0= X 10ge) (v, — S(0— —loge) ) do = o(eo/te+D)y.
o T a+1 a+1

Proof. By (47), since ¥:F is bounded, we get

/alﬂlogs N s(e- Ly 0
o T atr1 %)\ at+1 08¢

1
Py loge 1 o« g
< 012 clatD)(a=1) ga-1" df

= (54)
— 5(a+1)1(a71) _ 8(&4»1)1(0471) + (a+1)a(a71)
Q@
= 0(50‘/("‘“)).
|
Lemma F.5 If
a+1
a?
a—1
then
o [P i 1 1
lim g™ a+1 / e loge | (vp — S (60— loge | | df
£—=0 IR a+1 a+1
at1 08¢ (55)

and

A 1 1
Lg— ] - 0 — ] df = o(e®(@tD),
[ v (0 aptose) (= 8 (0- qloss) ) a0 = o)

+1

Proof. By assumption, as x — o0,

1/;§£(x) ~ Cgre T,

The claim follows from (36) and (45), which provides an integrable majorant. m

The same argument implies the following result.
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Lemma F.6 We have

a oo 1 1
. - H . . .
lli% g att /A (Vyd (9 P log 5) (vb S (0 P log 5)) de

= Csr / (v — S(0)) e % do
A
and
/+oo Llg— L loge v, — S| 60— L log e do = 0(€a/(a+1)>
A T a+1 b a+1 :
|
We define, for K € {H, L},
K +oo K K
Gn,qo,f_l(x) :/x (0™ * qo—1)(y) dy (57)

FE — (z2)=1 — GE_ (z),

17,40,7—1 7,90,7—1
where g = gio - is the density of increment to information type that an agent of class
i will get during the time interval [0, 7] from trading with counterparties of class j. That
is,
gioo = (1=X)d + Nivjo.
and
Gior+1 = (L=XN)gior + A Z Kij Qi 0, * Wjria-

J
Furthermore, everywhere in the sequel we assume that the density n of the type of an
acquired signal packet satisfies nff ~ Exp +oolCny Yy —av) for some ¢, 7, > 0. This is
without loss of generality by Condition 2 and Lemma 4.5 on p. 29, which together imply
that any number of acquired signal packets satisfies this condition. That is, a convolution
of densities satisfying the specified tail condition also satisfies the same condition. The

same argument also implies that

H
4i0,r ™ EXP+OO(Cz‘,0m Yi0,rs —C¥)

for some ¢; -, vio- > 0 and

T]H * q@'I:IO,T ~ Exp+oo(Ci,n,0,77 Vi, 0,7 + Tn + ]-7 —Oé)

for some Cj 0, > 0.
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Lemma F.7 Suppose that
1 2
a—1

Then,

— (@ Csv T —
| 6 = S L (S dy ~ R e SO
R

757"”‘73,0,7‘—1""777"1‘1 S( _ a+l1
H y) Up —y(2a+1) g
for = s (Gags)

58
log e (58)

1+«

2a+1
X € atl

and
—Q Csa sT—
[ 0 (o) = ) Fy (Vi (S0 dy ~ R e S5
R

YsT+Ys,0,7—1+7, +1 «
v ! S(y) — v —y(20+1)

59
log e (59)

1+«

2041
X g atl

as G — oo.

Proof. As z — —o0, we have

H,L ( ) ~ cS,O,T*l 08777’077— eCC {oz-i-l,a}

’YS,O,T—IJ’_’Y’V]JF]-
17,90,7—1 {Oé + 1, a}

|

The claim follows by the arguments used in the proof of Lemma F.1. Special care is
needed only because (v — S)~1 blows up as 6 1 +oc.
By (44),

1
H
anqoy'rfl (‘/b (S (9 - o+ 1 log 8)))
S — v —0 ot S — v _g L
< 0138( e ) log vH—Se gatl

v — 8
Thus, to get an integrable majorant in a neighborhood of +oo, it would suffice to have

(60)

Ys,0,7—1+¥n+1

a bound
UH — S Z 0146_’80

with some > 0 such that fa < 2a + 1, because this would guarantee that

Sl e ? ) lo Sl e’esa%l
vH — § & v — §

for some € > 0. By the argument used in the proof of Lemma F.2, it suffices to show

¥s,0,7—1+¥n+1 B
67040 S 0146789

that for sufficiently large 6,

1
a—+1

1ng(UH — 014 6_’80) S 015 + (5 - 1)9
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Now, it follows from (32) that

/ 1/(a+1) v —
fiz) = f(2) AT

Since, for sufficiently small €, f(z) is uniformly bounded away from zero on compact

subsets of (vy, v7], we get

d

Z(FYED) < O+ (07 =27,

for some K > 0 when z is close to v. Integrating this inequality, we get
f(2)¥ @) < O (1 — log(v — 2)).

Consequently,

a1 log f(vy — C'146_69) < (g logt

if 6 is sufficiently large. Hence, the required inequality holds for any g > 1 with a

sufficiently large C'4, and the claim follows. m

Lemma F.8 Let

a—+1
> .
a—1
Then
[ (e =) x 0" ) - ) dy
R
(61)
Chtre loge |ttt ol
~ at+ 11 bm,0,7—1 1+ o gotl R(S(?J)—Ub)e w=6) dy
and
logs Yo,t,7—1+vn+1 o
/R(ST(y) —w) X (" x gl )y —0)dy = o ( T o gt (62)

as G — oo.

Lemma F.9 Let
(a+ 1o

a—1
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Then we have, as G — 00,

/ (S-(y) = vs) Fyr (Vor (S7 () (0" % 4 ) (y = 0)dy ~ o1 B Chporael®’
R

1 o (63)
10g€ ” ! 5%—&-1 a+1 / 6—(2a+1)y S(y) — U dy
1+« a  Jr vl — S(y)
and
[ = Sul) FEVin (52 0) (0 5 W) = )
log & Yo,t,r—1+Vn+1 . (64)
1+«

G Proofs for Case of Initial Information Acquisition

For any given agent i, the expected utility U, . from trading during the time interval
[t,T] is

th E u’LtT‘ )

where wu;,, is the expected utility from tradmg at time r conditional on the agent’s
information at time ¢, evaluated at the information type outcome 6.

We denote further by w;,,(6;n) the expected utility from trading at time r con-
ditional on the agent’s information at time ¢ after the agent has made the decision to
acquire a signal packet with type density n™”, before the type of the acquired signal
is observed. With this notation, u;;,(6) = u;,(0; ). The following lemma provides
expressions for wu;;,.(0;n). These expressions follows directly from the definition of the

double-auction trading mechanism.

Lemma G.1 For a given buyer with posterior information type 6 at time 0,

w0 (0:m) = P(O)A / (W — S,()) G (Vin (S, () — 6) P (y) dy

(65)
(U= PO [ (00 5:0) Gl (hr(5:0) = 6) 0 )
whereas a seller’s utility s
usor(0:n) = P(B)A / (S, 5) — v™) GEL Vi (S ))) (0 = af' 1)y — ) dy
(L= PO [ (5:00) = 0 G VinlS: () (1 b 1)y~ 6)dy
: (66)
Here, by convention, we set qt{(t_l = Jp.
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The next result provides approximate expressions for the gains from information
acquisition when G is sufficiently large. Recall that the asymptotic behaviour for large

G in the double auction between a class i of buyers and a class j of seller is determined

by
o (a+1)
C’Lt - Cit 6 .

Lemma G.2 Let b be a buyer of class i. Denote by s the set of seller classes with which

buyers of class i trade and let
Yor = WAXYjr.
Further, let
Sm = {J €5 1 Yyr =Vsr )

Let also v, = .. Then

—efp-a _ a+l
Up0.+(0:m) — upor(0) ~ i[fa“u / W = S(y)) (M) ev2etl) gy,
R

1+ Re? vH — S(y)
(67)
as G — oo, where
]gain Z 1 CT 251:»11 log CT Vit ].Og C’r ¥b,0,7—1
© T e ) \TeG /@ )7 ) [THal “Ta
__log¢ |t
X (C’b,n,o,T(Nb, Ny) : ica 1
1 2041 10 - ’waoaT_l_aL_H"/T-i_(/YjT_"/T)
- Z Cir —— 1\ G Cs,0,7—1 86
j a(a+1) I1+a
JESm
__|log¢
x (Cbm,O,T(Nb, Ns) 1 _g|_<a -1 .
(63)

Lemma G.3 Let s be a seller of class 1. Denote by b the set buyer classes with which

seller of class i trade and let
Y = MAXYjr.
Further, let
b, = {j€b : v, =7}
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Then 190
€ Jain o Gs

tso.r(0i) = uspr(0) ~ =i IS

as G — oo, where

Gy= ) /R ((S(y) —uy) - O‘T“e—wmy (;I(@/_)—;(Z’))a) e gy

Yn+1
-1 o1

Lemmas G.2 and G.3 follow directly from Lemmas F.1-F.9 above. The following

and

Vs,0,7—1— a‘-)lé—l Ir

log CJT
14+«

10g CJT
14+«

[sgain — Z j‘j'? (Cb’n’oﬂ-(]vz),]vs)

Jj€Ebm

result is then an immediate consequence.

Corollary G.4 For buyers and sellers, the utility gain from acquiring information is
convex in the number of signal packets acquired. Consequently, any optimal pure strateqy

is either to acquire the mazximum number n of signal packets, or to acquire none.
The next lemma is a direct consequence of Lemma 4.5 .

Lemma G.5 Suppose that \;j = \iki; # 0 for all i,j.* Let N, be the mazimal number
of signal packets for sellers, and Ny, the mazimal number of signals for buyers. Then,
for any class 1,
Vi = Ni+ LicsNy + Licy N,
and thus, for allt > 2,
Yie = 27 Ny + N,) = 1 + N = Lie, N, — Ligy Ny,

where we write 1 € b if class v s a buyer class, and similarly for the sellers’ classes.
Furthermore,
Yio,r—1 = Yir — Ni .

Proof of Theorem 5.2 . It follows from Lemmas G.2-G.3 that it suffices to show
that the exponents for |log (| are monotone increasing in N if T is sufficiently large. For
buyers, we have

20+ 1
a+1

Yb,0,7—1 — Vr + Yir = _Nb - Yor + Yir

a—+1

3The case when some of the matching probabilities are zero can be studied by a limiting procedure.
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whereas, for sellers, we need to show that

a
a+1
is monotone increasing in the number of acquired signals. This follows directly from

73,0,771 - Yr

Lemma G.5. =
Proof of Lemma C.3 . By the Perron-Frobenius Theorem (see Meyer (2000),
chapter 8, page 668), we have

(AsAb)til ~ Tzilpsqz

where ps and ¢, are right and left Perron eigenvectors of A A, respectively, and r, is the

corresponding Perron eigenvalue. Similarly,
(MA)T ~ o)

where p, and ¢, are the right and left Perron eigenvectors of A,A, respectively, and 7y is
the corresponding Perron eigenvalue. Now, applying A, to the identity AgAyps = 75ps, We
get that Ayp, is a positive right eigenvector of A, A, corresponding to a positive eigenvalue
rs. Uniqueness part of the Perron-Frobenius Theorem (see Meyer (2000), chapter 8, page
667) implies that ry = r,. To prove the last statement, we note that, by the Collatz-
Wielandt formula (see Meyer (2000), chapter 8, page 667),
r. — maxmin (AsAp); min (AsApps)
z 4 x i Dsi

If we increase one of the elements of A, or Ay, all coordinates of A;Ayps become strictly

larger since ps > 0, and hence the Collatz-Wielandt formula implies that r, also strictly
increases. m

Proof of Proposition 5.5 . The claim of monotonicity in N;, and n follows
directly from Lemmas F.1-F.9 and the proof of Theorem 5.2 . Furthermore, for large ¢,
Cs; it/ c?]/ EQH) is monotone increasing in A, p, if and only if so does the principal eigenvalue
rs, and hence the claim follows from Lemma C.3 .

This completes the proof of the claim for seller and buyer classes from s and b.

For a seller class i € s, we have ¢;¢ = )| ; Aib, c?,t_l by Lemma C.2 , and the claim
follows. A similar argument applies for a buyer of class ¢ ¢ b, with the only exception
that A;,; appear in the denominator leading to within-class strategic substitutability of
matching probabilities. The latter however is offset by the factor \; entering the expected
gains from trade. m

We will now study examples illustrating our general model. We will first treat the

case of one class of sellers, and then consider the case of two classes of sellers.
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G.1 One Class of Sellers

In order to calculate the equilibria, we will first need to determine the dependence of the
cross-sectional type distributions on the model parameters. Suppose that buyers and
sellers acquire N, and N signal packets respectively. Then, let N; = Npin + N; be the
total number of signals packets that class ¢ possesses. The maximum feasible number of
signal packets is Npax = Nmin + 7. Using Lemma 4.5 , we immediately get the following

two technical lemmas.

Lemma G.6 Suppose that at time 0 buyers and sellers acquire Ny, and N, signals respec-
tiely. Then, ¢y = cq = ¢ and Yy = Vst = V¢ S0 that Vg , Y ~ Exp_ (¢, v, a+ 1)
for allt > 1, where y1 = Ny + N, — 1. 1t follows that v, = 2v,_1 + 1 fort > 2,

(N, — 1)1 (N, — 1)!

= \e, _
AT AT NN, — 1)
and ( ')2
Cty1 = AG & i
V41

In particular,

and
¢ = Dy, () NI

for a model-independent combinatorial function Dy, . ().
Lemma G.7 Fori=2>b ori=s, we have qfw ~ Exp_(cior Yior a+ 1), where
%,O,T = (2T — 1) (Nb + Ns) -1 + Nj

and
27t+l_1

Cior = Di,Nb,Ns(()?T) CoA )

for model-independent combinatorial function D; y, 5.(0,7) .

We will also need the following auxiliary lemma, whose proof is straightforward.

Lemma G.8 Fori € {b,s}, let Gain;(N,, N},) denote the utility gain from acquiring the
mazimum number . = Npax — Nmin 0f signal packets, for a market in which all other

buyers and sellers have N, and N, signal packets, respectively. Let
™ = Gains(Nmaxv Nmin)7 Ty = Gains<Nmin7 Nmin>7

(69)
T3 = Gainb(Nmaxa Nmax)a Ty = Gain(NmaX7 Nmin)-

Then:
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® (Numax, Nmin) @8 an equilibrium if and only if © € [mq, m1].
® (Nuax; Nmax) s an equilibrium if and only if m < 3.
® (Nuin, Nmin) s an equilibrium if and only if m > m.
Lemma G.9 Let T = logy(av+ 1) + 1. Then, the following are true:

o [fT = 0 then m; = my > w4 > mw3. Thus, an equilibrium exists if and only if

T & (m3,74).

e [fO<T < T then m > mp > Ty > 73, and an equilibrium exists if and only if

T & (73, m4).
o [ft> T then m > Ty > My > Ty, and an equilibrium always exists.

e [For all i, m; is increasing in Ny and in n.

Proof. For small values of ¢, the constants my, 7y, 73, and m, satisfy

T ~ (0, Ny, Ny) Z;(0, Ny, Ny,

for corresponding pairs of Ny, N,. Here,

N, max

R log ¢ log ¢ Nonin
Q[Z<O, Ns,Nb> == (Nmax - ]\/'Irlin)i1 (Cj,anllax,O,T 1+ o ijﬁNmm 0, T 1 +a ) )
(70)
where j = s when ¢ = b, and where j = b when i = s. Furthermore,
R— 1 2a+11
NN YA 2T 1 o
Zy(0, Ng, Ny) ~ T+ R (0, ¢, Ny, N, ) A <)\2T_16>
% \2T-1 ‘1 ‘(QT U 1) (Np+Ns) — 14+ No— 325 2T (N +Ns)—1)
R~ T —(a+1) )
2% —(a+1)42a4+1 — 2a+1
= 1 00l0.co, Ny, Noy) Ao (@)
— 2Tl s 5 N 1
X ‘1Og G‘TH(Nb'i‘Ns)_Nb_TH’
for some function D,(0, ¢y, Ny, N, ). Similarly,
_ R« 2T _(a+1)+2a+1
ZS OyNsuNb 0 cOaNbaNéH A atl G a+1
(0N, ) ~ ) @ -
|10gG| L (Nt ) Nb_?
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for some function D,(cy, Ny, Ny, ). For T = 0, there is only one trading round and

therefore
Z4(0, Ny, N}y) = 1R+;©b(00, Ny, Ny, ) A (@)iﬁﬂ log(a)|—(]vb—1)a/(a+1)
and
20(0, Ny Ny) = (o, Ny, Ny, ) AG) 5T | log G|~ (Vo Do/ (@4 1)+(No o).

1+ R
When G is sufficiently large, Z, > Z, and the impact of ©; and Cino+(Np, Ng) is small

and does not affect the monotonicity results. The claim follows by direct calculation. m

G.2 Two Classes of Sellers

As above, we denote by N; = N + V; the total number of signal packets held by agents
of class i. We have the following results.
Let N, = max{N;, No} and let m € {1,2} be the corresponding seller class that

acquired more information and —m be the other seller class. Then,

0.5\, , N, # Ny
05()\14’)\2) 5 Nl :Ng.

Lemma G.10 We have ¢y ~ Exp_.(ci, e, + 1) for I € {sy, 9,0} for all t > 1,
where 5, 1 = N+ Ny —1 and v,y = N,+ Ny — 1, and where, fort > 2,

’Vsk,t = ’Ysk,tfl + Vb,tfl + 1 (73>
Yo = Vot—1 Tt Vspi—1+ 1 (74)

and where further

(N, — 1)! (N, — 1)! (Np — DV (N — 1)

Ch1 = ACsoCho ; Cspl = Ak Csp,0CH0

(N, + N, — 1)! (Np + Ny — 1) 7
Vot! ’Ysm,t! Aot N1 # Nz
Cht+1 = Cut 1 _ _

Vo,t4+1- 0.5 ()\1 Csy it + )\2 Csz,t) s N1 = Nz,

and
. Vot! Vsmt!
Cspt+1 = Cut Y oy Csy t-
Vo,t+1

Consequently,

ot = Vsmit — 2“1(]\_/},—1—](75) -1



and, fort > 2,

Yot = 27H(Ny+N,) — 1 + N_,, — N..
Thus, for Ny # N,

t=1(Ng+Ny) t_ by
Cpt = Dﬁbﬂs(t)cg (Ns+No) (O.5)\m)2 1 y Copt = DNb,Nl,Nz(t) X,; (0.5/\m)2 t 1,

for some combinatorial functions Dy, x_(t), Dy N, 5,.5,(t) -

However, when Ny = Ny, we get

t—1

Cb,t e db,Nb,Ns )\t _’_At H )\T’ _’_AT 2- T

r=1

and

t—r—1
Cort = dy x5, (t H (AT + Ap)?
for some combinatorial functions d, 5, 5. (t) and d §, x,(t).
Now, we need to calculate 7 ;.

Lemma G.11 We have hl” ~ Exp_(citr, Vs o+ 1), where

Csptt = Ak Cht, Yt = Vot,
and
0.-5Am Csp t Ny # N
bttt —
0.5()\1631,15 + )\2 CSQ,L‘) s N1 NQ

Then we define inductively

Vsp b, ' Yo, r+1 '

Csp t,r+1 = )\k Csp t,m Cbr+1 | y Vs, 0,r+1 = Vs,0,1 + Vo, r+1 +1
73,0,T+1-
and
C N fyb,t,‘r ’Ysm,7'+1 0. 5>\mcsm T+1 Nl 7é N2
bt,r+1 — Cbtr
Vo,tr41! 0.5 (MCspr41 + A2Csyrt1) Ny =Ns,
and

Vot r+1 = Vot,r + Vsm,m+1 + 1.

In particular, fort > 0,
ﬁ)/l,t,T = (27- - 2t71) (Nb+Ns) -1 ) le {517827b}7

34



Fort =0,
Vs,0,r = (2T — 1) (Nb+Ns) — 1+ Nb; Vb0,r = (27- — 1) (Nb+Ns) — 1+ Ns-
If Ny # Ny then

+1_2t 27+1_2t
M\ A
m m

) Csp t,r = Ds,Nb,Ns (t7 T, CO)

—t+1
Am )
Csfm,tﬂ— - Csmatﬂ—
Am

for all t >0, for some combinatorial functions Dy, g (t,7) and Dy, 5.(0,7).
When Nl = NQ,

Cotr — Db,Nb,NS (t77—7 CO)

)

and

t—1 T
Cslwth = dstbst (t7 T))\ql;_t+1 (H()\g + )\72“)2T7r_2t77“71 ) H ()\71‘ + A£)2T7T

r=1 r=t
and
AT+1 + >\T+1 L r rN2T T — t—r—1 ° r r\27TT
Cor =y, w0, (F T)ﬁ H()‘l + )% H (AT + Ap)°
1 2 r=1 r=t

for all t >0, for some combinatorial functions dy x, 5,(t,7) and dy, 5, 5, (L, T).

Proposition G.12 Suppose that T > T. Let A < Ao. In equilibrium, we always have
N, < N; < N,. Furthermore, there exist constants w4 > Ty > T3 > T4 > T5 > Tg such

that the following are true:
1. If 7 >, then the unique equilibrium is (Ny, Ny, N2) = (Nuins Nmin, Nimin)-
2. If my > m > my then there are two equilibria:

hd (Nb7N1aN2) = (NminaNminaNmin)
L (Nb>N17N2) - (NminaNmamNmax)‘

i (Nb>N17N2) - (NminaNminaNmin)
) = (Nmina Nmax; Nmax)
) = (NminaNminaNmax)‘
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4. If mg > m > my then there are two equilibria:

i (Nb7N1aN2) - (NminaNminaNmin)
L (Nb>N17N2) - (NminaNmamNmax)‘

5. If mqy > m > w5 then there is a unique equilibrium

(Nba Nh NZ) = (Nmim Nmax: Nmax)-

6. If m5 > m > mg there are two equilibria:

hd (Nb7N1aN2) = (NmaxaNmaxaNmax>
hd (Nb7N17N2) - (NminaNmamNmax)‘

7. If mg > m then there is a unique equilibrium

(Nln Nlu NQ) = (Nmax; NrnaX7 Nmax)~

Proof. Denote by Gaini(Nb, Ny, ]\72) the gains from acquiring the maximal number of
signals for an agent of class ¢, conditional on the numbers of signals packets acquired by

all other agents. As in Lemma G.8, we define
m = Gaing (Nmin, Nmax; Vmax), T2 = Gaing(Nmin, Nmins Nmax)
3 = Gaing (Numin, Nmin, Nmax), 71 = Gaing(Nmin, Nminy Nmin) (75)
75 = Gaing(Nmax, Nmax, Nmax)s 76 = Gaing(Nmin, Nmax, NVmax) -

Then, it suffices to prove that 7; are monotone decreasing in ¢. As in the proof of Lemma

G.9, we have
o~ A 7y,

and it remains to study the asymptotic behavior of Z;. We have
Zy(0, Ny, N1, No) = Z31(0, Ny, N1, No) + Z72(0, Ny, Ny, No),

where

2a+1

R—Oé
1+R

- _
X s [logGor- s

Z;k (0, Nb, Nl, Ng) ~ 05)\k

D4(0, co, Ny, N, —
000 5 Ser (o (70
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for some function D,(0, ¢y, Ny, N, ). Similarly,

—Q

93(07 Co, Nb, N57 Oé) )\k Cs;,,0,T—1 (CbT 6)_%+1

- R
Zsk<07Nb7N17N2) ~ 1+R

x |log G

(77)

¥5,0,T—1~ 57T

We first study equilibria with N} = Npim < Ny = Npax. Since, for both seller
classes, the surpluses from acquiring information are of comparable magnitude and are
much larger than those of the buyers, we ought to have N, = N, . This will be an

equilibrium if
> (Z;1(0, Nmins Ninin, Nmax) + Z;2(0, Nimins Ninin Nmax)) A,
but this automatically follows from
g ~ AZs (0, Nmins Nmins Nmax) < T < AZ5, (0, Nminy, Nmins Nmax) ~ To.

Since Z, /Zs, = (A1/X2)™ "1, this is only possible if A\; < \y. Furthermore,

R~ . A L v o
Zsk(O;NminuNminmeax) ~ 1+R©3)\k <)\—Z) )\;+1(2 l)G e+l

X |10ga|(2T_1 - 1) (Ntnin“l'NmaX) - 1-‘rNmin_%_‘_1(2T_1(Nmin+Nmax)—1).
(78)
Now, Ny = Ny = Npax, Ny = Npin forms an equilibrium if and only if

T™> Tg (Zlfl(07NminaNmaxaNmax) + Z§2(07 NminuNmamNmax))Q[b

and
T Zsl (07 Nmim Nmaxa Nmax)
R™ )\,{ fhuc r ry——2T-r
Y IFR N T AT Hl (A4 A5) = (79)

X 67 Oéil | log 6|(2T_1 - 1) (Nmin+Nmax) - 1+Nmin7aLH(2T_1(Nmin+Nmax) - 1)

Next, Ny = N; = Ny = Npin is an equilibrium if and only if
T > Ty ~ Z82(07Nmin7Nmina Nmin)

R~ AT
~ Do e 3Ty
1+R (M + M)/l
T—-1
x TT O+ Xp) & 12G 74| log G| — D @Nmin) = 1+ Nonin =57 (277 (2Nain) = 1)

=1

<

(80)
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Finally, N, = Ny = Ny = Ny is an equilibrium if and only if
T <T5 ~ (Z[fl (07 Nmaxy Nmaxa Nmax) + Z[f2 (07 Nmaxu Nmax; Nmax)) Q[b . (81)

The fact that m; decreases with 7 follows directly from their asymptotic expressions. m

Lemma G.13 There exists a unique solution T > max{2, f} to the equation (a+1)T

27 — 1, and a unique solution T to the equation (2 + 1)T = of _ 1. Furthermore,

[ O+
(AT + AD)e

e is monotone decreasing in Ay for all \a > Ay if T < T.

e is monotone increasing in Ay for all Ao > Xy if T > T.

Proof. The fact that T exists and is unique follows directly from the convexity of the
function 27. To prove that T < T, we need to show that (4 1)f > 27 — 1. Substituting

T =logy(a+ 1)+ 1, we get
2:?—1—(&—1-1)%:2(a+1)—1—(a+1)(10g2(0z+1)+1) =a—(a+1)logy(a+1) <0,

because a + 1 > 2 implies that log,(a + 1) > 1.
Let now & = A\y/A\; > 1. Then, by homogeneity, it suffices to show that

[T (12
(1+aT)e

is monotone decreasing in z. Differentiating, we see that we need to show that

T-1 " J}T
» 2 r—— < aT =
— 1+ 1+z

Since = > 1, we have

r IT

v <
1+2r — 14+ 27

Therefore, using the simple identity

T—-1
d oottt = 2T -1,
r=1
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we get

T-1 o

Z 2T_1_T7" r S (2T —1- T)
xr

r=1

for all T < 7. Similarly, since

z" 1 1 2T
> > = ,
1+a2r =2 = 21+27
we get that
T-1 " 1 T T
oot —— > (2" - 1-T)= =>aT .
— 1+ 21+« 1+«

foral T>T. m

The next proposition gives the partial-equilibrium impact on the information gath-
ering incentives of class-1 sellers of increasing the contact probability Ay of the more active

sellers.

Proposition G.14 Suppose Condition 2 holds and Ay < Ag. Fizing the numbers Nq,
Ny, and Ny of signal packets gathered by all agents, consider the utility ui, — uin, of
a particular class-1 seller for gathering n signal packets. There exist integers T and T,
larger than the time T of Proposition 5.6 such that, for any n > Ny, the utility gain
Uy, — Uiy, of acquiring additional signal packets is decreasing in Ay for 0 < T < T and

is increasing in Ay for T > T.

Proofs of Propositions G.14 and 5.7 . Monotonicity of the gains Gain; follows
from Lemma G.13 and the expressions for this gain, provided in the proof of Proposition

G.12. Proposition 5.7 follows from Lemma G.13 if we set K =7;. ®

H Two-Class Case

This appendix focuses more closely on information acquisition externalities by specializ-
ing to the case in which all investors have the same contact probability A. In this case,
there are only two classes of investors, buyers b and sellers s. For a small time horizon T
the lack of complementarity suggested by Proposition 5.7 implies that symmetric equi-
libria may fail to exist. For larger T, symmetric equilibria always exist and are generally

non-unique.
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Definition H.1 An asymmetric rational expectations equilibrium is: for each class i €
{b, s}, the masses pyn,n =0, ... 70, where p, is the mass of the sub-group of group i that
acquires exactly n packets; for each time t and seller-buyer pair (i, j), a pair (Si;i, Bijt) of
bid and ask functions; and for each class i and time t, a cross-sectional type distribution
Wy such that:

Nmin —‘rTL)

(1) The cross-sectional type distribution vy is initially 1y = ZZ:O pma*( and

satisfies the evolution equation (6).

2) The bid and ask functions (S;it, Biit) form the equilibrium uniquely defined by The-
J J

orem 4.7.
(3) Eachn € {0,...,n} with py > 0 solves max, ¢ 0,7} Uin, for each class i.

It turns out that, in all asymmetric equilibria, agents in each sub-group either do
not acquire information at all or acquire the maximal number 7 of signal packets. We
will denote the corresponding strategy (7, p;), meaning that a group of mass p; of agents
of class i acquires the maximal number 7 of packets and the other sub-group (of mass

1 — p;) does not acquire any information.

Proposition H.2 There exist thresholds T > 7 > w such that the following are true.

1. If T < T then:

o A symmetric equilibrium exists if and only if T & (xw, 7).

o An asymmetric equilibrium exists if and only if m > w.
2. If T > f, then:

o A symmetric equilibrium always exists.

o Asymmetric equilibria exist if and only if m < 7.

Furthermore, there is always at most one equilibrium in which different sub-groups of
sellers acquire different amounts of information, and at most one equilibrium in which

different sub-groups of buyers acquire different amounts of information.

In order to determine how the equilibrium mass of those agents who acquire in-
formation depends on the model parameters, we need to study the behavior of the gain
from acquiring information. The next proposition studies externalities from information
acquisition by other agents on the information acquisition incentives of any given agent

in an out-of-equilibrium setting.
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Proposition H.3 For all v, the gain
Gain; = mag)({(um — o) /n}
n>

from information acquisition is increasing in Ny, N, and X. Fix an © and suppose that
only a subgroup of mass p; of class-i agents acquire information. Let us also fix the

information acquisition policy of the other class.
1. If T > f, then Gain;/p; is monotone increasing in p;.
2. If T < f, then Gain;/p; is monotone decreasing in p;.

Proof of Proposition H.3. Let 7 = m; > m = 7. Suppose that a mass p of buyers
acquire i packets and the rest (mass 1 — p) do acquire no packets. For our asymptotic
formulae, this is equivalent to simply multiplying ¢, by p'/Mm=x for the initial density
of the buyers’ type distribution. Furthermore, the same recursive calculation as above
implies that ¢; ; is proportional to p? " for 7 > 0 whereas Cio.- is proportional to p* .
By the same argument as above, sellers always acquire more information and therefore
we ought to have that Ny = Npax. The equilibrium condition is just the indifference
condition for a buyer,

pr = Gainy,

because then a seller will always acquire information since the gain from doing so is always
higher for him. Substituting the asymptotic expressions for the gains of information

acquisition, we get the asymptotic relation

min{1,27 141} pmaX{QT*l—l,O} s 20 min{1,27-1} T3,

pm ~ p

For T' < TV, this gives a unique equilibrium value of p for any 7 > m3. For T" > f, this
gives a unique value of p for all 7 < 3.
Similarly, for the case when different groups of sellers acquire different amounts of

information, the equilibrium condition is

max{27~1 1} o min{1,27-1} -

pwT o~ P pfrﬂ

For T' < T, this gives a unique equilibrium value for p for any © > 7. For T > T, this
gives a unique value for p for all 7 < my.

The fact that there are no equilibria in which both buyers and sellers acquire
information asymmetrically follows from the expressions for the asymptotic size of the

gains of information acquisition. =
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The intuition behind Proposition H.3 is similar to that behind Proposition G.14.
An increase in the mass p gives rise to both a learning effect and a pricing effect. The
learning effect dominates the pricing effect if and only if there are sufficiently many
trading rounds, that is, when 7' > T.

Now, the equilibrium indifference condition, determining the mass p; is given by
7 = p; ! Gaing(pi, A, Nuin, 7). (82)
Proposition H.3 immediately yields the following result.

Proposition H.4 The following are true:
o IfT > T then equiltbrium masses py, and ps are decreasing in A, Ny, N;

o [fT < T then equilibrium masses py and ps are increasing in A, Ny, 1.

We note that a stark difference between the monotonicity results of Propositions
G.14 and H.3. By Proposition H.3, in the two-class model, gains from information acqui-
sition are always increasing in the “market liquidity” parameter \. By contrast, Propo-
sition G.14 shows that, with more than two classes, this is not true anymore. Gains
may decrease with liquidity. The effect of this monotonicity of gains differs, however,
between symmetric and asymmetric equilibria. In symmetric equilibiria, the effect goes
in the intuitive direction: Since gains increase with A, so does the equilibrium amount
of information acquisition. By contrast, equation (82) shows that, for asymmetric equi-
libria, the effect goes in the opposite direction: Since the gains increase in both A and
the mass p of agents that acquire information (when 7" > T), this mass must go down in
equilibrium in order to make the agents indifferent between acquiring and not acquiring
information.

From this result, we can also consider the effect of “education policies” such as the

following.

e Educating agents before they enter the market by increasing the number N, of

endowed signal packets.

e Increasing the number 7 of signal packets that can be acquired.

4Recall that, by Proposition H.2, equilibrium masses p, and p, are always unique (if they exist).
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Proposition H.4 implies that, in a dynamic model with sufficiently many trading
rounds, both policies improve market efficiency. By contrast, a static model that does
not account for the effects of information percolation would lead to the opposite policy

implications.

I Endogenous Investment in Matching Technology

In this section, we take initial information endowments as given and instead focus on
endogenous investment in matching technologies. In particular, the initial type densities
are characterized by a fixed vector N = (Ny, ..., Nys) of initially acquired signal packets.
Before the initial signals are revealed to each agent, agents in class ¢ individually choose
an amount x;; € K = {x,X} to invest in a technology for meeting investors of class j,
for some minimum investment y > 0 and maximum investment X > x. We examine the
case of symmetric choices within classes, so that agents of class ¢+ commonly choose the
investment x;;. Given these choices, in each period the probability with which an agent of
class i meets some agent in class j is fi;(xij, X;i), for a given function f;; : K x K — (0,1).

By the exact law of large numbers, this technology satisfies
m fij(Xigs Xgi) = ™ f5i(Xis Xag)-
We always make the non-satiation assumption that
> fx) < 1.
J#i

Given the M x (M — 1) matching-technology investments y = (x;;), the cross-

sectional type density v;; of the class-i agents satisfies the evolution equation
Vigr1 = (1 - Z fij(Xiijji)) Vir + Z Fiz (X Xi) Vie * iz (83)
ji J#i
Similarly, given y, a particular agent of class ¢ who makes the technology choice ¢ €

KM~=1 has a Markov type process whose probability density ¢;X at time ¢ satisfies the

Kolmogorov forward equation

= (1 - Z fz‘j(%in)) YoX + Z fig(ejy X5i) V0 * P (84)

J#i J#i
We will be applying the following technical assumption.
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Condition 3 . For any integer T' > 1 and any pair (i,7) of agent classes, the function

e (fi;(e)" = (fiij(x. )" is nonnegative and monotone increasing in c.

This assumption guarantees that the increase in matching probabilities associated
with investing in a more effective matching technology is increasing in the investments in
matching technology by other agents. The complementarity property holds, for example,
for the constant-returns-to-scale technology of Duffie, Malamud and Manso (2009), by
which fi;(Xij, Xji) = kijXijX;i for some constant k;;. The idea is natural: the greater the
efforts of other agents at being matched, the more easily are they found by improving

one’s own search technology.

Definition I.1 A (symmetric) rational expectations equilibrium consists of matching
technology investments x = (xi;); for each time t and each seller-buyer pair (i, j), a pair
(Sijt, Bijt) of bid and ask functions; and for each class i and time t, a cross-sectional

type density 1;; such that:

1. The cross-sectional type density 1, satisfies the evolution equation (83).

2. The bid and ask functions (S;ji, Bijt) are the equilibrium bidding strategies uniquely
defined by Theorem 4.7.

3. The matching-technology investments x; = (X, ---,Xim) of class i mazimize, for
any agent of class i, the expected total trading gains net of matching-technology

costs. That is, x; solves

sup Ui(ca X>7

ce KM-1

where

T
Ui(e,x) = E (Z > fisles xii) vige(©5% Bije, Sijt)) — (X1 + -+ xim),  (85)
t=1 j
where the agent’s type process Oy has probability density 1y satisfying (84) and
the expected gain v associated with a given sort of trading encounter is as de-
fined by (9) or (11), depending on whether class-i agents are sellers or buyers,

respectively.

We say that search is a strategic complement if, for any agent class ¢ and any

matching technology investments x = (;;), the utility gain U;(¢/, x) —Ui(c, x) associated
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with increasing the matching technology investments from ¢ to ¢ > ¢ is increasing in x_;,
the matching-technology investments of classes j # i. The main result of this section is

the following theorem.

Theorem 1.2 Suppose Conditions 2 and 3 hold. Let T and g be as in Proposition 5.5.
Then, for any proportional gain from trade G > G and market duration T > T, search is

a strategic complement.

The intuition for this result is analogous to that of Proposition 5.5. If other agents
are assumed to have increased their ability to find counterparties, and thereby collect
more information from trading encounters, then under the stated conditions a given
agent is encouraged to do the same in order to mitigate adverse selection in trade with
better informed counterparties.

This complementarity can be responsible for the existence or non-existence of equi-
libria, depending on the duration T" of markets, just as in the previous section. The Tarski

(1955) fixed point theorem implies the following analogue of Corollary 5.3.

Corollary 1.3 Suppose Conditions 2 and 3 hold. For any proportional gain from trade
G > G and market duration T > T, there exists a symmetric equilibrium. Furthermore,
the set of equilibria investments in matching technology is a lattice with respect to the
natural partial order on KM*M=1)

Just as with the discussion following Corollary 5.3, a maximal and a minimal
element of the set of equilibria can be selected by the same standard iteration procedure.

We also have the following comparative-statics variant of Proposition 5.5 .

Proposition 1.4 Under Conditions 2 and 3, there exist some g and T such that for any
proportional gain from trade G > G and market duration T > T, equilibrium investment

in matching technology is increasing in the initial vector N of acquired signal packets.

The intuition behind this result is analogous to that behind Theorem 5.2. If traders
are initially better informed and T is large, then the learning effect dominates, giving
agents an incentive to invest more in search technologies.

This result also illustrates the role of cross-class externalities. Even if agents in
class j do not trade with those in class ¢, an increase in the initial information endowment

of class 7 increases the search incentives of class j. This is a “pure” learning externality in
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that, if class 7 is better informed, this information will eventually percolate to the trading
counterparties of class j. This encourages class j to have a better search technology.’
We also consider the incentive effects for the formation of “trading networks.”
(Because our model is based on a continuum agents, the network effect is with respect to
agent classes, not individual agents.) With respect to information gathering incentives,
agents prefer to trade with better informed agents. This incentive can even overcome

the associated direct impact of adverse selection.

Condition 4 (Symmetry). Classes are symmetric in the sense that they have equal

masses m; = m; and f;; does not depend on (3, j).

Theorem 1.5 Suppose that class-i agents are initially better informed than those of class
J, that s, N; > N;. Under Conditions 2, 3, and 4, there exists some g and some T such
that for any proportional gain from trade G > G and market duration T > T, in any

equilibrium:

1. There is more investment in matching with class © than with class 7. That s,

Xki = Xkj Jor all k.

2. Class-i agents invest more in matching technology than do class-j agents. That is,

Xi = Xj-

The incentive effects associated with this result naturally support the existence

b}

of “hub-spoke trading networks,” with better informed agents situated in the “center,”
and with other agents trading more with central agents by virtue of establishing trading
relationships, meaning investment in the associated matching technologies. As a result,
one expects a positive correlation between the frequency of trade of a class of agents
and its information quality. While this effect accounts for learning opportunities, pricing
effects, and adverse selection, we do not capture some other important effects, such as
those associated with size variation in trades and risk aversion.

Finally, we note that if the market duration is moderate, meaning that T' € (T, T),
the learning effect may not be strong enough to create the complementarity effects that
we have described. Indeed, there are counterexamples for the 3-class model of the pre-

vious section.

5As before, this is based on the assumption that there is an ordered path of classes connecting class
1 with class j.
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J Proofs: Endogenous Matching Technology

Proof of Theorem 1.2. To prove the theorem, we need to show that, for any k # 4, the
utility gain for an agent of class ¢ from searching more for agents of class k is monotone

increasing in the search efforts of all other agents. This utility gain is given by

S5 Fulvn 1) / 0.5(r% (00T, (. 0) + 7L, (0)hEyy (T, 0)) dB

t=0 jik

30 Falo) [ 05l Ol (5 0) + 7l OhE o (11 6) df
t;() R (86)
— Z Z fij(Xijani)/O5( z]l&(e)hg%l()(fﬁve) +7Til,/j,t(6)hi[:t+1<Xfﬁv€))de

t=0 j#ik

T
- Zfik(Xvin)/O5( zkt(e)hztﬂ( o 79)+7TiL,j,t<0)hzt+1(Xz 0))db,
t=0

where Xf’i coincides with x;, but with x;, replaced by x and Y, respectively. Lemmas
G.2-G.3 imply that the leading asymptotic term of this gains from search can be written

Z (fir (X, X)) = (fir (X X)) Kij,

for some nonnegative coefficients K;;; that do not depend on x;. Furthermore, a slight
modification of the proof of Proposition 5.5 implies that these coefficients Kj;;; are mono-
tone increasing in the matching-technology investments of other classes whenever T is

sufficiently large. The claim follows. m

Proof of Proposition 1.4. The proof follows directly from the arguments in the
proof of Theorem 1.2 because the coefficients K;j;; are monotone in the initial amount of

information. m

Proof of Theorem 1.5. It follows from Lemmas G.2-G.3 that the expected profit
from trading with better informed classes is always larger when T is sufficiently large,
and that these profits are larger for initially better informed agents. The claim follows.
]
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K Dynamic Information Acquisition

For settings in which side investment in information gathering can be done dynamically,
based on learning over time, we are able to get analytical results only with a sufficiently
low cost of information acquisition, corresponding to a per-packet cost of signals of
my > 7, the case considered in the previous appendix.

In this case, we can show that there is a “threshold equilibrium,” characterized
by thresholds X,, < Xy, such that agents of type i acquire additional information only
when their log-likelihood is in the interval (X, X ).

The timing of the game is as follows. At the beginning of each period ¢, an agent
may acquire information. Trading then takes place after an agent meets a counterparty
with probability A. Without loss of generality, when they acquire information, they
choose between N, and Np.. packets. Otherwise, there will be multiple thresholds
for each intermediate level number of signals. This is feasible to model, but much more
complicated.

We let 1);, denote the cross-sectional density of types after information acquisition,
and before trading takes place, and let x;; denote the cross-sectional density of types

after the auctions take place. Thus,

Vi1 = (Xig [(L.)M,E,M)) NN T (Xt IR\(L}M,E,HI)) * 1 Nomin

is the density that determines the bid and ask functions, and

Xit+l = (1 - )\) Vit + AUpp1 * Yspp1, 1 =10, 5,

is the cross-sectional density of types after the auctions took place.

We now denote by Q;+,(6, x) the cross-sectional type density at time 7 right before
the auctions take place of an agent of class ¢ conditional on his type being 6 at time
t after the information has been acquired. Then, conditional on his type being 6 at
time t before information has been acquired, depending on whether the agent acquires

N; € {Nmax, Nmin} signals, his type density at time 7 is
Rﬁiﬁr(ea l‘) = / 77N1-(Z - 0) Qz’,t,r(zv l’) dz.
R
Furthermore, Q;;,(z,z) satisfies the recursion

Qi,tﬂ'—l—l(ea r) = <Qi,t77<0) ')[[K Y”HD * NNpax T (qi,t,’r(eu ')][&JH ,Ywﬂ]) * TN omin

i, T+1
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where
qi,t,T(gy ) - AQi,t,T(07 ) * d)j,T + (1 - )\) Qi,t,T .

We will also need the following additional technical condition.
Condition 3. Suppose there exist K, e > 0 such that
[0 (—a)e 7 — o] + [ (@) — o < K (87)
for all z > 0.

Theorem K.1 There ezist A, g > 0 such that, for all G > g and all ®# < e 4%, there

exists a threshold equilibrium.

We let Mf L note the mass of agents of class ¢ who acquire information at time ¢,

indicating with a superscript the corresponding outcome of Y, H or L.

Theorem K.2 There exists a critical time t* such that the following hold in any thresh-

old equilibrium under the conditions of Theorem K.1.

o Sellers:

— For both H and L, the mass Mg’L 1s monotone decreasing with t, and increas-
ing in E‘l, T, Nyax-

— M is monotone increasing in A for t < t* and is monotone decreasing in
A fort > t*.

e Buyers:

— The mass M, is monotone decreasing in t and is increasing in T', Nyax.
‘ _ =1
— M} is monotone increasing in G .

— M} is monotone increasing in A for t < t* and is monotone decreasing in \
fort >t~

: |
— M is monotone decreasing in G .
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L Proofs: Dynamic Information Acquisition

In this section we study asymptotic equilibrium behavior when G and 7! become large.

1

. ... - —A .
Furthermore, we will assume that 7! is significantly larger than G, so that 77! /G" is

large for a sufficiently large A > 0. Throughout the proof, we will constantly use the
notation X >> Y if, asymptotically, X —Y — 4o00.

L.1 Exponential Tails

Note that, by Lemma 4.5 |
x2(x) = (1-=X) ﬁ) + )\wfo * @bfo ~ cpe O |g|PNmah = gy g0
Furthermore, as we show below, in any equilibrium we always have
Xy << Xpppg << X << Xy (88)

and
Npip1 << Xpp << X1 << Xy (89)

Lemma L.1 Suppose that x — +00 and X;; — 00 in such a way that

X << Xy << X401 << X

for all t and such that, for any fized i,t, the difference x — X, either stays bounded or

converges to +00 or converges to —oo. Let 11, be the indicator of the L state. Then,

bu(z) ~ C¥eletine pof

and
Xit(T) ~ C’?g e (atlr)z x%x’
where
71? = NmaX"f’%?il
and

7 = 27%4—1.

The powers my', mX with which \ enters C'y’X satisfy

mf=2mf +1, mf=m),.
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Furthermore, there exists a constant K such that
n
[Win(z)] < Rye O
and
()] < Ry e @ o

In addition, there exists a d;; > 0 such that
[n()e™ 2™ — O] < Fye

for all x > A.

Proof. The proof is by induction. Recall that

Fix a sufficiently large A > 0. Then,
Xit+1 = / ¢bt T — ¢st / @Z)bt T — ¢st( )

+ ¢bt( Y) ¢st( ) dy

x
—+00

= U (y)Vst(x — y)dy + / Vo (Y) Vst — y) dy

—+00

0
_ / Do () (z — )y + Uyt (y) ot (x — y) dy

+ /_ Vot (Y) Vst (7 — y) dy

= [1+[2+13.

Pick an A so large that 1y can be replaced by its asymptotic from the induction hy-
pothesis. Note that we can only take the “relevant” asymptotic coming from the values
of y satisfying y < X, because the tail behavior coming from “further away” regimes

are asymptotically negligible. Then,

—+00

I, = U (Y)Vst(2 — y) dy

A

+oo
~ / C 6_(a+1L)y yvzpr(/)st(l' — y) dy
A

rz—A
— O e lotin)e o) / eloti)y 11— y/xlﬁ%t(y) dy. (90)
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Now, applying I'Hopital’s rule and using the induction hypothesis, we get that
z—A

f—oo 6(a+1L)y wst (y)dy
(o + D ani

Thus, we have proved the required asymptotic for the term Is.

~ Cst-

To bound the term I, we again use the induction hypothesis and get
A A
/ (W) sr(x —y) dy < R / nly)e” @D gyl dy @D PEC,
0 0

for some constant Cs, so the term I; is asymptotically negligible relative to I.

Finally, for the term I3, we have

/ - Vot (z — y)se(y) dy = / U (Y) st (z —y) dy . (91)

Now, picking a sufficiently large A > 0 and using the same argument as above, we can
replace the integral by ff , and then use the induction hypothesis to replace 1q(z — y)
by Cye(et1o)@=y)|g — y|7§p. Therefore,

0 0
— (o T— e
/ Un()ur(z — y) dy ~ / Une(y) o™ D@0 |y gy
—o0 —o0 ) . (92)
~ ste_(a+1L)x x'Yt / wbt (y)e(a+1L)y dy ,

which is negligible relative to I5. Thus, we have completed the proof of the induction

step for x;. It remains to prove it for ;. We have

Xit Xt
Vir(r) = / Xit—1 (Y) M (2 — ) dy + / Xit—1 (W) NN (T — ¥) dy
X —00
e H H
s [ ) by
Xt
Yit Xit (93)
= / Xit—1 (Y) NN (T — ) dy — / X1 (W), (z —y) dy
X +oo
+ / X ()N (2 — ) dy + / Xit—1 (Y) N (T — y) dy .
—00 Xt

Since X,;,; — —oo, the induction hypothesis implies that

Xit Xit
/ Xi,t—1(y)77N(x — y) dy ~ / Ci7t_1e(a+1H)y|y Y1 CéVe—(oc+1L)(x—y) |:v o y|N—1 dy

—00 — 00

X —
et L= (y + Xy) 2 [M T dy

y+ Xy

0
— o1 C(])Ve—(a—‘rlL)z $N—1 / e(2a+1)(y+£it)
—00

'Yz'x,z—1> .
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The same argument as above (the induction step for x;;) implies that

/ X1 (Y)nn(z —y)dy ~ Ce @iz g N
R

Now, we will have to consider two different cases. If © — X;; — +o00, we can replace

nf(z — y) in the integral below by ¢} |z — y|N ' e=*@=¥) and get

/ il Xit—1(y)nn(r — y)dy
- - (95)

Xi1
~ cemlottn)T g N7 / Xi—1(y) €TV |1 —y/z|N "1 dy

—00

Using I'Hopital’s rule and the induction hypothesis, we get

Xit o

o0

It remains to consider the case when x — X, stays bounded from above. In this case,

/ Xig—1(y)nn(r —y)dy = / io Xig—1(7 — 2)nn(2) dy - (96)

—o0 —Xit

Now, the same argument as in (94) implies that ff;f“ Xit—1(z — 2)nn(z) dy is asymp-

totically negligible relative to f;_o%l Xii—1(z — 2)nn(2) dy because x — X1 is bounded

from above. Therefore,

+o0 400
—ax X
[ -ty ~ [ M- 2l dy ~ Gt

_Xit — 0o
for the H state, and similarly for the state L. The induction step follows now from (93).

The proof of the upper bounds for the densities is analogous. m

The arguments in the proof of Lemma L.1 also imply the following result.

Lemma L.2 Under the hypothesis of Lemma L.1, we have that, when 6 — +oo so that

6 — 2z — +o0,
QitT(Q,x) ~ (1 elatly)(z—0) \:U—Q]’Yfm

2,t,T

Qi,t,7(97 l’) ~ Cic?t,r e(a—i—lH)(w—Q) |JI . 0|7S7_ (97)
N (0,3) ~ CRNiglatlm)@=0) | _ gyt

it T i,t,T
where

Ve = e+l + 1
o . (98)
rYt,T = rYt,‘rfl + Nmax .
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Lemmas L.1 and L.2 immediately yield the next result.
Lemma L.3 We have:
W= (27 1) Nipax — 1
W= (2" = 2)Nuax — 1
Ve = (272 — 21 )Ny — 1
o= (27T = 2 N — 1.

(99)

Furthermore, the powers my, of A\ with which \ enters the corresponding coefficients c;

and Cy» are given by:
m{ = 271 —1

my = 28 -1

(100)
m;]ﬂ- — 2T+1 2t
me, = 27 =2

L.2 Gains from Information Acquisition

For any given agent i, the expected utility U, . from trading during the time interval

from t to 7 immediately before information is acquired can be represented as

Ui,t,T(e) = Z ui,t,‘r(e)'

r=t
Suppose that, at time ¢, an agent of type ¢ with posterior # makes a decision to acquire
information with type density 7. Then, the agent knows that his type at time 7, at

the moment when the next auction takes place, his posterior will be distributed as

K
69 * 1) gi,t,T*l'

We will use the following notation:

400
G0, ) = REN O, y)dy , FYPN(0,2) = 1 — GV, ),

t,T

for K € {H,L}.
The following analog of Lemma G.1 holds.

Proposition L.4 For a given buyer with posterior 6 at time t, before the time-t auction

takes place,
wner (N.6) = P(6)A / (67 — S,(y)) G (0, Vi (S, (4))) 2 () dy

(101)
T+ (1-P@)A / (05 — S, () GERN (6, Vi (S, (4)) 6L (3) dy.

R
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whereas for a seller,

et (N.0) = POX [ (S:l0) = ) GIEVin(S:(0))) REE" 0,3 dy
® (102)
(L= PO)A [ (Suly) = 0) GE(ie(5:(0)) RE (0.3 dy
R
Thus, the gain from acquiring additional information is given by
Z(ui,t,T(Nmaxa 0) - ui,t,T(Nmina 0)) .

T>t

The following lemma provides asymptotic behavior of these gains for extreme type values.

Lemma L.5 We have

e For a buyer:

— As 0 — o0,
ub,t,T(Nmaxae) _ub,t,T<Nmin79) ~ Ofgﬁmaxe—(a—i-l)@‘0|'YST+Nmax
So(y) — v\ _ (103)
X v — S, (T— e @TVY () dy.
[ = s (2 U () dy
— As O - —o0,

ub,t,T(Nmaxa 9) - ub,t,T(Nmim 9) ~ Cligi\—[max Re(a+1)9’9|’737+1\7max
Sey) v )~ (104)
x [ (v — S.(y <T— e Yl (y) dy.
[ = s (e )
e For a seller, as § — —o0,°

us,O,T(Nmaxa 9) - us,O,T(Nmim 9) ~ Ogé{\qf—max Re(a+1)9|‘9|’737+1\7max

<), <<(5T<y> =)+ (0" = 5.(9) B (Vie(S: (1)) ) (105)

4 (S ) = )+ (0. = S, (1) Fbewz,T(sT(y))))) @ gy
Furthermore, the derivatives of ;s (Nmax,0) — Uit +(Nmin, 0) with respect to 0 have the

same asymptotic behavior, but with all constants on the right-hand sides multiplied by

a+ 1 when  — —oo and by —(a + 1) when § — +o0.

6The case § — 400 will be considered separately below.
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Proof. Throughout the proof, we will often interchange limit and integration without
showing the formal justification, which is based the same arguments as in the case of
initial information acquisition considered above. However, the calculations are lengthy
and omitted for the reader’s convenience.

We have
/R (0 — S, () GERN (6, Vi (S, () ¥ (0 dy = (0" — vy)

n / (00— S, (4)) V2 (y) dy — / (07 — S,(y)) ELRN (0, Vi (S, (4))) () dy
(106)

and

/R (05 — 5, () GERN (6, Vi (S, (9))) 6L (y) dy

= /R (v — Se(y) Vi (y) dy — /IR (5 — So(y)) FLN(0, Vi (S () 5 (y) dy.
(107)

By Lemma L.2, for a fixed x, we have

FEN(0, Vi (S, () ~ CHEN ot 1m Vi (S-w)=0) g 4N

bt,T

and the first claim follows from the identity

Vin(S, () = log S5 =

The case of the limit 8§ — —oo is completely analogous.

It remains to consider the case of a seller. The term corresponding to state H gives
[ (5:) = o) GETie(S,0)) REY 0.0 dy
R

= (vp—0") + /R ((ST(y) —wp) + (v = S:(y)) szf(%(&(@/)))) RN (0,y) dy.
(108)
In the limit as  — —oo,

[ (5100 =)+ (07 = 52000 FEEVin (. 0))) R 0.0y

. (109)
~ Clgre Pt /R ((S:(9) = ) + (0" = S,(y)) B (Vir(S2(y))) ) e~ dy.
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The term corresponding to state L gives
[ (5:0) = 00 GETin(5-0) REX 0.0 dy

= (v —wvs) + /R ((ST(y) — ) + (vs — S7(y)) Fzﬁ(%(&@)))) RN (0, y) dy.
(110)
In the limit as § — —o0,

[ (-0 = 1)+ (0= .0)) FE Vi (S0 0))) RE 6.9)

~ CIYEIOPEY [ ((,(0) = ) + (0 = 1) FE(in (5. 0)) )7 .
R
(111)
This completes the proof.

The claim concerning the derivatives with respect to 6 is proved analogously. m

The arguments of the proof of Lemmas F.1-F.9 imply the following result.

Lemma L.6 Let
(o +1)°

a—1

> Q.

Then

[ = s (SO e

loge |7 S(y) — v, \ (112)
~ =iy H _ oW =% ~(20+1)y
¥t | BT [0 =) (S250) e
Similarly, we have the following result.
Lemma L.7 Let
a+1 -
p— .
Then
/ ((wy) =)+ (0 = S,(y)) (Ve S- (1)) )
+ ((Se(y) = ) + (v, = 5:(v)) Fﬁ%(&(@»)) e (o gy (113)
o e Cotear O eary, (SO —w T
gat /R<(S(y) vp)e ¢ o —S(y) Y.
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In order to prove the next asymptotic result, we will need the following auxiliary

lemma.

Lemma L.8 Let f(z) solve

v log(1/¢) T, L ek f(yeh
) = (1og<1/<> +—1og<1/f<z>>) (= + &7 1)), (1)

with f(0) = 0. Then, r.(y) = f(eﬁy)e_w(a_l) converges to the function r(y) that is

the unique solution to

as € — 0.

Proof. We have
r(y) = e a1 fleay)

= g a-1 IOg(l/g) ! Eﬁ gﬁﬂ gﬁ %H
(log(l/g‘) + log(l/f(gally))> ( y+ fle=y) ) (115)

(10g(1/<) +11(<))gg((lg/—<22<a—1> /m(y))) (y + (Ts(y))#l) :

The right-hand side of this equation converges to y + (r.(y))"/(®*1). The fact that r.(y)

1

converges to r(y) follows from the uniqueness part of the proof of Proposition D.1 and

standard continuity arguments. m

Lemma L.9 We have
ST(y) — Uy - oy
[ o= s (5E58) et ay

o (116)
~ E—a/(a—l)/ y—a—l ¢5’r (y—l r(y)l/(a—i-l)) dy,
0

where
dsr(y) = y "YlL(—logy).

Proof. For simplicity, we make the normalization v* = 1, v, = 0.
We make the change of variable S;(y) =z, y = Vi (2), dy = V! (2)dz. Using
the identity Vi, (2) = log

= — Vir(2), we get

1
2(1—2)

Vile) = V().
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We will also use the notation g(z) = @Y%) from the proof of Proposition D.1.

Then, we have
[ = s (S255) ety
- [a-o (B2) e e v

z

= [ e (o ) (g - ) @

— /01 (1—2)g(z) at1 gl <log 0 i - kffj)) <z(11_ ) @ i,f);(z» dz.
(117)

As we have shown in the proof of Proposition D.1, g(z)/e converges to a limit fy(z) when

e — 0. A direct calculation based on dominated convergence theorem and the bounds

for f(z) established in the proof of Proposition D.1 implies that the limit

s /Tl(l—z)g(z)‘ail ol (logl z _logg(z)) (Z( I AC)) (Z)) I

e0 —z  a+l1 1—2) (a+1)g

exists and is finite for any r > 0. By contrast, as we will show below,

cafT /OT (1—2)g(z) art L (log 1 i S kffj)) (2(11— 2) (o Jgr/(lz))g(z)) +

blows up to +oo as € — 0. Therefore, the part f: of the integral is asymptotically

negligible and we will in the sequel only consider the integral for with a sufficiently small
r > 0. Then, it follows from the proof of Proposition D.1 that we may assume that
g(z) = ef(z) where f(z) solves the ODE (114). For the same reason, we may replace
1 — 2z by 1. It also follows from the proof of Proposition D.1 that

K D(¢() < g(=) < KiD(q(2)) (118)

for some K; > Ky > 0, where

with v = ~,, and
1
q(z) _ C1+1/a C«z(a—i-l)/a (_ log(cz))—w/a + §<22
for some constant C > 0.
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Denote
ple™®) = e pi(x).
We have ¢¥(z) ~ cye @z when 2 — +oo and Y2 (z) ~ ceel@?|z)r when
x — —o0. Therefore,
Oy) =y Pil(—logy) ~ cory e T logy = ¢y [logy|”

when y — 0 and, similarly,

y) ~ CSTy_Qa_1| log y[™"
as y — +00.

With this notation, we have

/OT (1—2)g(z) a1 L (IOgZ - loag—gk(i)) (2(1 1— 2) (o Jgrl(lj)g(z)) v (119)

I A, —1 _1/(a+1) 1 _ J'(2) )
= [ o) (g - )
By (118), for some K3 > 0,

q(2) - K (Ve (—log(Cz)) ™ (222 + 2 (=log(¢z))™!) + 2
g(z) — 3 CHe O ZletD/e (—log(Cz)) /e + %22 (120)
x (—logq(2))™" (1 + v (~logq(2))™h).

Since we are in the regime when both z and ¢ are small, 1 + v (—logq(z))™" ~ 1, so

we can ignore this factor when we determine the asymptotic behavior. Furthermore, for

the same reason,

Qb1 CUeCH (—log(¢a) T (S + 2 (—log(Ca) )+ = _
z
a (Ve O zletD/e (—log(Cz)) /> + % 22 -
for small ¢, z. Therefore, since for small ¢,z (—logq(z))~7 is sufficiently small, we have

q
1 q'(z) 1
z

z g2

~ = (121)

for small z, C.
Making the transformation z = (Y=Y (~log()™/(@Yy, standard dominated

convergence arguments together with Lemma L.8 imply that

/ Z_a_1¢ (Z_l gl/(a—i-l)) dz
0
~1/(a—1)

—efle=) rr(r)
- (@) /0( | y o (vt () ) dy o (122)

—a/(a—1) oo
) et
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completing the proof. m

Lemma L.10 We have

as z 1 1, for some constant K (¢).

Proof. As above, we will everywhere use the normalization v = 1, v, = 0. For brevity,

let WL = pb" . We have

—

/ — (N~ c ! !
Vi (z) = (@) <1_ZhH<vbT<z>> i hL(VbT«z)))’

and therefore

L z y 1 1
Vir(2) = Vir(20) + (G) /ZO (1—y R Vin(y)) hL(VbT(y)))dy

for any zo € (0,1). A direct application of I’'Hopital’s rule implies that

1 _ G (x) ~1
i) 9w
as r — +00. Using the identity
Cl) o T ) ey () — e (@) dy
() B e x P (x) ’

it is possible to show that this will converge to zero at least as fast as x77. Indeed,
condition (87) implies that we can replace ey~ 7 (y) by its limit value ¢, as the

difference will be asymptotically negligible. Thus, it remains to consider

+o00 e’} [e’e)
/ e ((y/a)? — 1) dy = / (1 +yfz) —1)dy < a7 / ey dy.
x 0 0

Therefore, we can write

[y 1 1
Vir(2) = Vir(20) + (G) / <1—y RV (y) hL<%T(y>>>dy
_(_

2o — log(1 — 2p))) (123)

1
Ga

* %/ (ﬂy (hH(v;@» ‘$> y W) w
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Consequently, when z 1 1,

1 1
T ~ = 1
Vir(2) ~ =—log —

+ K(e),
where

K@) = Vi(z) + %(—1+z0+10g(1—z0))

L (5 G 2) )
= - — 7 | 4y,
G Joy \1 =y \W(Vir(y)) «a hE(Var ()
and the claim follows. m
Lemma L.11 When G becomes large, K(g) converges to
A 400
K - A—/ o~ W (2)de + / (1= 1 (2)/a) dz .
—o0 A
Proof. Based on the change of variables
_( B.(z) 1 1 \'
= dy = B.(z)dx =
Virly) =, dy = Bi(o)ds =G ({250 s+ s )
we have
1 [/ vy 1 1 1
G Lo \1 =y \W(Vir(y)) hE (Vi (y)
B (x 125
e 2 (e = d) + ol 1)
= B 1 N dz.
Vir (20) 1-B;(z) hH(z) + hi(x)

When G — oo, B;(z) — v = 1. Hence the leading asymptotic of the integrand is given
by 1 — h¥ (x)/a. Therefore, for any A > 0,

B, (x
Hoo _1_3(7(?7;) <h+(m)_§) T h+m
B (z) 1 1 du
Virz0)  Topn) W@ T RE@)
+oo
~ / (1= r'(z)/e) dx
‘/bT(ZO) (126)
A +oo
— A=V (20) —/ a ' n (z)dr + / (1= h"(z)/a) dx
VbT(ZO) A
A +oo
~ A= Vir(z) —/ o n (z)de + / (1= hr(x)/a)dx,
oo A

and the claim follows. =
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Lemma L.12 When 6 — +oco and G — oo in such a way that  —loge/(a+1) — +oo,

we have
us,O,T(Nmaxa 9) - us,O,T(Nmim 9) ~ —(CH‘l Go—1 |0|’YT
and

9 a+1
an s,0,7 Nma)UH — Us 0.1 Nmin,g ~N ——¢€
80 (U ,0, ( ) Us,0, ( )) Co— 1

for some constant Z > 0.

Proof. When y — oo we have S;(y) — 1. Thus,
S:(y)
1—5,(y)

( Ga) 1og1_;57(y) ~ K(e).

= Vir(S:(y)) = log
(127)

Therefore,
1 — S (y+0) ~ o~ WK )/ (1-55)

when 6 — oo and

y+6+ Kl

%T(ST(y+0)) ~ o <aa>,1

—(y+90).

Hence
y+9+GaK

Gir(Vr (Sr(y +0))) ~ —|9|7 Gat
Therefore, in the high state, we get
[ (Selu+6) = 1) GEL V(S (3 + 6))) RIEV 0,y + ) dy
R

~ gy / e~ 0T REN/(1-) oGS RIN (g 4 1 9 dy (128)
R

a(G+1) “(a
= —|0pre” (a+1) 2 1K) - ( e 1)_7 / (et =1, yRHN(H,y—i—H)dy.
@ Jr

In the low state, using S, (y + 0) — v, ~ G, we get

/R (S0 (y +6) — 0,) GE (Ver (S, (y + 6))) B=Y (8, y + 0) dy

~ G|8|’Y7’

a+1/ e CVIESEREN (0, 1 0) dy (129)

~ G lrDEEE \ewail/ e VG REN 0,y + 0) dy.

63



Thus, in the limit as G — 0, the gain in the low state from acquiring information satisfies

a a a T o i
O g Eo [ VG (RN 0,4 0) — RED 0,4 0) dy
R (130)

1 _(a —(a+1)=f0—
~ ae (a+tDE ~(atl) g i CT/ (_y)(m@mx — n]@mm) * h{“’T(y) dy,
R

whereas the loss in the H state is asymptotically negligible because the additional factor
G is missing. m

The following lemma completes the proof of Theorem K.1.

Lemma L.13 There exist g, A > 0 such that a threshold equilibrium exists whenever
G > g and 7 < e A% In any such equilibrium, conditions (88) and (89) hold as 7', G —

Q.

Proof. Fix a threshold acquisition policy {X, X;; izpss>1 of all the agents in the
market. It follows from the above (Lemmas L.1, 1.3, L.5 and L.12) that there exist
constants a, g, B > 0 such that the gains from information acquisition are monotone
decreasing in |f| when |0] > B, G > g and

min{min [X;|, min| X, |} > oG
7, 7,

Therefore, the optimal acquisition policy for any agent is also of threshold type, given
by {?it, X,,}, whenever 7 is sufficiently small. Tt follows from the proofs of Lemmas L.5
and L.12 that, in fact, there exists an A > 0 such that 7 < e~4¢ is sufficient for this.
Clearly, choosing A > 0 sufficiently big, we can achieve that

min{min (X, min | X, [} > oG
7, %,

Making the change of variables § — Re/(1 + Re’), we immediately get that the
mapping from {X;;, X it Viebst>1 tO {?it,X it yiebst>1 maps bounded convex set into it-
self. Therefore, existence of a threshold equilibrium follows by the Brower fixed point
Theorem. The fact that any equilibrium satisfies (88) and (89) follows by a careful
examination of alternative cases, is very lengthy and is therefore omitted. m
We can now calculate approximations for the optimal acquisition thresholds. Though

we cannot prove that an equilibrium is unique, the next result implies that the equilib-
rium is asymptotically unique, in the sense that the asymptotic behavior of the equilib-

rium thresholds is the same for any equilibrium.
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Lemma L.14 For any equilibrium, in the limit when G — oo and ™ — 0 in such a way

that ™ < e~ A% the optimal information acquisition thresholds satisfy

1.
— — Q a ¥ _1 200+ 1 —
(a+ )Xy~ Kpir+ | mip — ——mip | log A +log(n™ ) — log G
™ ’ o+ 1 + 1 (131)
___ 2a+1
+ (3% + Nunax) log(log(r~'G™ 1)) — %% loglog G.
2.
(01X, ~ Ky, +logR + (log(n) + (0% + Nyw) log(log(n )
[0 — [0 —
+ —logG + (%?T + Nnax + Eﬁ) loglog G.
(132)
3. o .
(a+ 1) Xy =~ (Ga—1)
Epp— Ga—1 = (133)
(log(w Y+ K.or +7rlog ( (log(m™1) + KS,O,T)) )
a+1
4.
a
_(OZ+1)XS =~ KSOT + <m?T—a—+1mT>log)\ + 10g( )
— ——105G + (3% + Nuw) log(log(x ™G 7)) (134)

&Y
— FWT loglog G,
where v = (2711 — 1) Nypax — 1 and ’YtT 2T+ — 2N — 1.

Proof. The proof follows directly from Lemma L.5 and Lemmas L.6-1..12. =

Proof of Theorem K.2. This theorem follows from substituting the asymptotic
expressions of Lemma L.14 into the asymptotic formulae of Lemma L.1 for the tail

behaviour of the densities of type distributions. m
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