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Floating–Fixed Credit Spreads

 

Darrell Duffie and Jun Liu

 

We examine the term structure of yield spreads between floating-rate and
fixed-rate notes of the same credit quality and maturity. Floating–fixed
spreads are theoretically characterized in some practical cases and
quantified in a simple model in terms of maturity, credit quality, yield
volatility, yield-spread volatility, correlation between changes in yield
spreads and default-free yields, and other determining variables. We show
that if the issuer’s default risk is risk-neutrally independent of interest
rates, the sign of floating–fixed spreads is determined by the term structure

 

of the risk-free forward rate. 

 

ntuitively, if the term structure is upward
sloping, investors anticipate that floating-rate
coupons will increase with time. Default risk
for a given issuer increases with time because

the issuer cannot survive to time 

 

t

 

 unless it also
survives to each time 

 

s

 

 < 

 

t

 

. Because the higher
anticipated coupon payments of later dates are also
more likely to be lost to default, investors must be
compensated by a floating-rate spread that is
slightly larger than the fixed-rate spread.

In terms of magnitude, however, in most prac-
tical cases, floating–fixed spreads are small, typi-
cally a few basis points at most, as will be shown
by our examples.
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 Our persistent queries to market
practitioners generated almost no examples in
which market participants make a distinction
between par floating-rate spreads and par fixed-
rate spreads. The exception was certain cases in
which one of these forms of debt was viewed as
“more liquid” than the other, an issue that we do
not pursue.

For example, consider an issuer whose credit
quality implies a fixed-rate spread on five-year
par-coupon debt of 100 basis points (bps) over the
rate on default-free five-year par-coupon fixed-
rate debt. Suppose changes in credit quality are
not correlated with state prices (in a sense to be
made precise). In a typical upward-sloping term-
structure environment, based on the steady-state
behavior of a two-factor CIR (Cox–Ingersoll–Ross
1985) model fitted to LIBOR swap rates recorded
during the 1990s, floating-rate debt of the same

credit quality and maturity would be issued at a
spread of roughly 101 bps.
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 This is, of course, not
to say that the issuer should prefer to issue fixed
over floating debt but, rather, that a slightly higher
credit spread is required to compensate investors
paying par for floating-rate debt.

As suggested by this example, the magnitude
of the floating–fixed spread associated with default
risk is sufficiently small that one could safely
attribute any nontrivial differences that may exist
in actual fixed and floating rates of the same credit
quality to institutional differences between the
fixed- and floating-rate note markets.

For our model, the floating–fixed spread is
roughly linear in the issuer’s fixed-rate credit
spread, roughly linear in the slope of the yield
curve, roughly linear in the level of the yield curve,
and roughly linear in the correlation between
changes in default-free yields and fixed-rate yield
spreads. The floating–fixed spread is nonlinear in
maturity. There is essentially no dependence in the
level of the yield curve when the slope is held
constant. The floating–fixed spread is greatest at
high yield-spread volatility and high correlation
between yield spread and default-free yields.

Our methodology for valuing defaultable debt
is that of Duffie and Singleton (1999). Our numerical
examples are based on three-factor term-structure
models. Two of the three state variables determine
a LIBOR swap term-structure model estimated from
LIBOR swap data; the expected default-loss-rate
process is based on all three factors, which allows for
correlation between default risk and LIBOR swap
rates. For purposes of studying the effects of corre-
lation between yields and credit spreads, we move
from the multifactor CIR setting to a “quadratic-
Gaussian” credit-spread model.
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Getting Started

 

For simplicity, we begin in a discrete time setting:
Let 

 

Γ

 

m,n

 

 denote the time 

 

m

 

 price of a default-free
zero-coupon bond maturing at time 

 

n

 

 > 

 

m

 

.
The one-period default-free floating-rate cou-

pon at time 

 

n

 

, 

 

c

 

(

 

n

 

), is

 

c

 

(

 

n

 

) = (

 

Γ

 

n

 

–1,

 

n

 

)

 

–1

 

 – 1. (1)

 

The coupon rate at time 0 for fixed-rate par-valued
default-free debt maturing at time 

 

N

 

, 

 

C

 

(

 

N

 

), is deter-
mined by

 

(2)

 

The in-

 

n

 

-for-1 forward rate for maturity 

 

n

 

 is
defined by

 

(3)

 

We will later use the relationship

 

(4)

 

Also let 

 

π

 

(

 

n

 

) denote the state-price density
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for time 

 

n

 

 contingent claims so that, for example,

 

Γ

 

0,

 

n

 

 = 

 

E

 

[

 

π

 

(

 

n

 

)], where 

 

E

 

 denotes expectation.
For an issuer of given credit quality, Pye (1974)

and in a setting of uncertain interest rates and credit
quality, Duffie and Singleton (1999) showed simple
conditions under which one may price a default-
able claim by treating the claim as default free after
an additional discount, 

 

, (5)

 

for contingent cash flows at time 

 

n

 

, where 

 

s

 

(

 

n

 

) 

 

≥

 

 0
is the (state-dependent) short default spread condi-
tional on information at time 

 

n

 

.
For example, letting 

 

Λ

 

m,n

 

 denote the price at
time 

 

m

 

 of a zero-coupon bond maturing at time 

 

n

 

of the given issuer quality produces

 

Λ

 

0

 

,n

 

 = 

 

E

 

[

 

D

 

0,

 

n

 

 

 

π

 

(

 

n

 

)]. (6)

 

We adopt this defaultable valuation model
here. For simplicity, we assume that the short
default spread, 

 

s

 

(

 

n

 

), does not vary among the
claims of the given issuer being considered.
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The spread at time 0 on defaultable floating-
rate debt of maturity 

 

N

 

, 

 

k

 

(

 

N

 

), is defined by match-
ing to 1 the price of a defaultable note that obliges
the issuer, so long as solvent, to pay 

 

c

 

(

 

n

 

) + 

 

k

 

(

 

N

 

) at

each time 

 

n

 

 < 

 

N

 

 and to pay 1 + 

 

c

 

(

 

N

 

) + 

 

k

 

(

 

N

 

) at time

 

N

 

. Thus,

 

(7)

 

The fixed-rate spread on defaultable debt of
maturity 

 

N

 

, 

 

K

 

(

 

N

 

), is similarly determined by

 

(8)

 

The difference between the floating and fixed
spreads, 

 

∆

 

(

 

N

 

), is then 

 

(9)

 

Proposition

 

. 

 

Suppose for all 

 

n

 

 that the state-
price density, 

 

π

 

(

 

n

 

), and the default discount,

 

D

 

0,

 

n

 

, are uncorrelated. Suppose, moreover,
that some 

 

n

 

0

 

 exists such that 

 

f

 

(

 

n

 

) 

 

≤

 

 

 

C

 

(

 

N

 

) for 

 

n

 

≤

 

 

 

n

 

0

 

 and 

 

f

 

(

 

n

 

) 

 

≥

 

 

 

C

 

(

 

N

 

) for 

 

n

 

 < 

 

n

 

0

 

 

 

≤

 

 

 

N

 

. [It is enough
for this that the forward rate, 

 

f

 

(

 

n

 

), is increasing
in 

 

n

 

 up to time 

 

N

 

.] Then, the floating–fixed
spread, 

 

∆

 

(

 

N), is nonnegative. If, in addition,
the short default spread, s(n), is greater than
zero with positive probability for each time n
before default and if f(n) is not constant in n,
then ∆(N) > 0.
We give a continuous-time version of the prop-

osition with a proof in Appendix A. The proof of
the discrete version of the proposition is similar.
The intuition for the result is given in the introduc-
tion. A similar result applies to obtain a negative
floating–fixed spread ∆(N) for an “inverted” for-
ward rate curve.

Floating-Rate Debt in an Affine 
Setting5

To work with an econometrically estimated model
of the term structure and to provide for sufficient
analytical tractability, we now move to a traditional
continuous-time setting that involves a short-rate
process, r, and a “risk-neutral” probability mea-
sure, Q, defined by the property that any contingent
claim paying X at some time T has a price at any
time t < T given by 

where Et
Q  is  expectation under Q conditional on

information available to investors at time t.6 For
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example, the default-free zero-coupon bond price
in this setting is given by

(10)

Duffie and Singleton (1999) provided condi-
tions under which, for the issuer’s given credit
quality, there exists a default-risk-adjusted short-
rate process R ≥ r such that the price at time t of a
defaultable claim to X at time T is given by

That is, one can apply the standard formula for
pricing default-free claims to defaultable claims
provided the default-free short rate, r, is replaced
by the risk-adjusted short rate, R. For example, the
defaultable zero-coupon bond price is given by

(11)

The continuous-time analog of the zero-
correlation assumption given in the proposition is
that the short spread process, S = R – r, is indepen-
dent of r under Q. We extend that proposition in
Appendix A and here explore cases in which this
assumption does not necessarily hold.

To tractably value floating-rate debt in a flexi-
ble parametric setting, we work with some “state”
process X that is a k-dimensional affine jump diffu-
sion, in the sense of Duffie and Kan (1996). That is,
X is valued in some appropriate domain D that is a
subset of a k-dimensional Euclidian space Rk, with

dXt = µ(Xt)dt + σ(Xt)dWt + dJt, (12)

where 
µ(x) = the risk-neutral drift at x 
σ(x)σ(x)T = the instantaneous covariance at x
W = a standard Brownian motion in

Rk under Q
J = a pure jump process with risk-

neutral jump-arrival intensity of
{κ (Xt) : t ≥ 0} and with a risk-
neutral jump-size probability
distribution of υ on Rk 

and where κ(x), µ(x), and C(x) ≡ σ(x)σ(x)T have
affine (constant plus linear) dependence on x.7 We
delete time dependencies in the coefficients for
notational simplicity only; the following approach
extends to the case of time-dependent coefficients
in a straightforward manner.

A classical special case is the “multifactor CIR
state process” X valued in D = Rk

+, for which X(1),
X(2), . . . , X(k) are risk-neutrally independent pro-
cesses of the “square-root” type introduced into
term-structure modeling by Cox, Ingersoll, and
Ross.8

We can take advantage of the affine setting for
pricing defaultable floating-rate and fixed-rate debt
by supposing that the default-adjusted short-rate
process R of a given issuer is of the affine form, in that

R(t) = A + B[X(t)], (13)

where

, (14)

A is a real number, and B ∈ Rk. For analytical
approaches based on the affine structure just
described, one can repeatedly use the following
calculation, regularity conditions for which are pro-
vided by Proposition 1 of Duffie, Pan, and Single-
ton (2000). For given times t and s > t and given
coefficients a ∈ R and b ∈ Rk, let

(15)

Under technical conditions, there are ordinary dif-
ferential equations (ODEs) for α:(0,s) → R and
β:(0,s) → Rk such that 

g(x,t) = exp[α(t) + β(t)x], (16)

with boundary conditions α(s) = a and β(s) = b.
Provided the Laplace transform of the distribution
of the jump size of X is given explicitly, the ODEs
for α and β are easily and routinely solved by
numerical methods such as that of Runge–Kutta
(see Press, Teukolsky, Veterling, and Flannery
1992). Details, with illustrative numerical examples
and empirical applications, can be found in Duffie,
Pan, and Singleton. For the special multifactor CIR
case, explicit closed-form solutions for α and β can
be deduced from Cox, Ingersoll, and Ross.

Now, suppose there is a reference discrete-
tenor floating rate, such as LIBOR, on which an
individual issuer’s floating-rate payments are
based. For an intercoupon time interval of length δ,
such as one-half year, the reference rate L(t) paid at
time t on floating-rate loans is the simple rate of
interest set at time t – δ for loans maturing at t,
defined by the fact that the price pL(t – δ,t) of a zero-
coupon reference-quality bond sold at time t – δ for
maturity at time t satisfies

(17)

[We emphasize that L (t) is set at time t – δ and
paid at time t.] If the default risk of an issuer of
the reference (say, LIBOR) quality is captured by
a default-adjusted short-rate process of the form
RL = AL + BLX, where AL ∈ R and BL ∈ Rk are fixed
(for simplicity), then

. (18)

Γ0 n, E0
Q exp rt td
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t
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Under the technical regularity conditions of Propo-
sition 1 in Duffie, Pan, and Singleton, from Equation
16, we have

(19)

for fixed coefficients αL and βL that are easily calcu-
lated. Then, from Equation 17,

(20)

Now, consider a nonreference issuer with
default-adjusted short-rate process R = A + BX. Let
V(t,δ ,K,n) denote the price at time t of a floating-
rate note of the same intercoupon period δ as that
of reference rate L with spread K to the reference
floating rate and with a time to maturity of nδ for
some integer number n ≥ 1 of coupon periods. This
floating-rate note is a defaultable claim to a total
coupon payment of L (t + δ j) + K at coupon date
t + δ j for each j ≤ n and a claim to the principal of
1 at the nth (maturity) coupon date. Therefore,

(21)

where for any s,

(22)

is the market value of a zero-coupon bond of this
quality to maturity date s and

(23)

is the market value at time t of the jth floating-rate
coupon.

We now show how to calculate p(t,s) and q(t,s)
for any s, thereby providing a calculation of the
value of the floating-rate note V(t,δ,K,n). From
Equations 15 and 16,

p(t, s) = ec(s–t) + C(s–t)[X(t)] (24)

for some coefficients c(s – t) ∈ R and C(s – t) ∈ Rd

that depend only on s – t. 
Substituting Equation 20 into Equation 23

produces

q(t,s) = (K – 1)p(t,s) + u(t,s), (25)

where

. (26)

Now, by the law of iterated expectations,

(27)

Because

(28)

another application of Equations 15 and 16 (again
under the technical conditions of Duffie, Pan, and
Singleton, Proposition 1) implies that new coeffi-
cients  and  can be calculated so that

(29)

Thus,

(30)

Finally, both p(t,s) and q(t,s) are explicit (and
easily calculated) and we have V(t,δ,K,n) from
Equation 21. The par floating-rate spread at time t
for a time to maturity of nδ is that spread K with
the property that V(t,δ,K,n) = 1. That spread is
normally expressed at the annualized rate of K/δ.

Computational Examples
A concrete example will help clarify the procedure.
The state process X = (X1,X2,X3)′ is made up of
three independent CIR processes; that is, for each i,

(31)

for given coefficients κi, λi (a risk premium coeffi-
cient), θi (a long-run mean), and σi , where
W = (W1,W2,W3) is a standard Brownian motion in
R3 under Q.9 For this example, we assume that

(32)

for a constant . Table 1 shows estimates of the
coefficients κi, σi , θi, and λi for i ∈ {1, 2} that were
estimated from LIBOR swap data at several
maturities by Duffie and Singleton (1997). (The
coefficient  was estimated to be 0.58.) 

As for the short-spread process, we assume that
S = γ1X1 + γ2X2 + γ3X3, (33)
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where γ1, γ2, and γ3 are coefficients that we adjusted,
together with the coefficients and initial condition
of X3, to obtain various alternative credit-spread
behaviors.

Because all zero-coupon default yields and
yield spreads are in closed form for this model, we
could easily set up the model for the following
given values:10 
• 3-month zero-coupon yield (10 percent in the

base case),

• 10-year yield minus 3-month yield, or slope
(1.5 percent in the base case),

• 5-year credit spread, the difference between
the 5-year zero-coupon defaultable yield and
the 5-year zero-coupon default-free yield (100
bps in the base case), and

• conditional volatility of the 5-year credit
spread (48 percent in the base case).
For the CIR model, one can compute par

defaultable fixed- and floating-rate spreads explic-
itly, as shown in Appendix A. For the calculations
that follow, we took fixed- and floating-coupon
payments to be made continuously in time to sim-
plify the calculations, as shown in Appendix A. The
numerical results are roughly the same as for dis-
crete coupon payments except for maturities close
to zero. For these results, we kept to the base-case
parameters with the exception of the parameter
whose level was to be varied in each case.

Figure 1 shows the relationship between matu-
rity and the differential (floating–fixed) spread. As
maturity goes to zero, the defaultable fixed and

Table 1. Model Parameters for Risk-Free Term 
Structure

κ1 0.544
κ2 0.003
σ1 0.023
σ2 0.019
θ1 0.374
θ2 0.258
λ1 –0.036
λ2 –0.004

Figure 1. Differential Spread as a Function of Maturity

Note: For each maturity, the spread indicated is the difference between the par spread on floating-rate
debt less the par spread on fixed-rate debt at the base-case parameters. At each maturity, the initial short
spread, S(0), was adjusted [through adjustment of X3(0)] to guarantee a zero-coupon yield spread at
each maturity of 100 bps.
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floating spreads both approach the difference
between default-adjusted short rate Rt and risk-free
short rate rt, so the floating–fixed spread approaches
zero. The long-maturity behavior in Figure 1 is
determined essentially by the shape of the default-
free yield curve. 

Figure 2 shows the dependence of the floating–
fixed spread on the slope of the yield curve. For
changes in the level of the yield curve up to 15
percent, with slope held constant, the impact on the
floating–fixed spread is, at most, 0.05 bps. Figure 3
shows the dependence, which is close to linear, on
the five-year zero-coupon yield spread of the issuer. 

CIR models—in fact, even general affine term-
structure models of the sort introduced by Duffie
and Kan—have limited flexibility with regard to
the correlation between yield spread and default-
free yield. For example, one apparently cannot
have this correlation be negative, within this class,
while guaranteeing that yields and yield spreads
remain positive. Therefore, to explore the implica-
tions of negative correlation for floating–fixed
spreads (and only for that purpose), we used a

quadratic-Gaussian term-structure model sug-
gested by El Karoui, Myneni, and Viswanathan
(1992). We took

(34)

and

(35)

where the state process Y = (Y1,Y2,Y3)′ is of the
Ornstein–Uhlenbeck form: 

dYt = (β – BYt)dt + ΣdWt, (36)

where B is a diagonal 3 × 3 matrix, β is a vector in
R3, and 

(37)

for given σi and ρi. For this model, zero-coupon
yields and yield spreads of maturity t are of the
form Σi[φ0(t) + φ1i(t)Yi(0) + φ2i(t)Yi(0)2] for φji(t),
where φji(t) (for j = 0, 1, 2 and i = 1, 2, 3) solve

rt Y1t
2

Y2t
2 y ,–+=

St Y3t
2 ,=

Σ

σ1 0 0

0 σ2 0

ρ1σ3 ρ2σ3 1 ρ1
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– ρ2
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 
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,=

Figure 2. Differential Spread as a Function of Yield-Curve Slope 

Note: For each slope (10-year minus 3-month yield spread), the spread indicated is the difference
between the par spread on floating-rate debt less the par spread on fixed-rate debt at the base-case
parameters.
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ordinary differential Riccati equations in t that are
shown in Appendix A.11 

Figure 4 shows the relative impact on differ-
ential spread of the correlation between credit
spread and changes in the default-free yields.
Increasing the correlation between changes in the
risk-free term structure and default risk implies
that, conditional on the event that the payment on
floating debt is high, the probability of default is
high. The floating spread is, therefore, increasing
relative to fixed, intuitively, in this correlation.
This effect is indicated in Figure 4, which also
shows that the magnitude of the effect, unsurpris-
ingly, grows with the volatility of the default
spreads and default-free term structure. For exam-
ple, increasing the correlation from 0 to 0.4
increases the floating–fixed spread by 6 percent of
its base-case level or, if the volatilities are also
doubled, by 22 percent of its base-case level. This
result is consistent with that of Longstaff and
Schwartz (1995), who found that the correlation

between default risk and default-free interest rates
has a significant effect on the properties of both
floating- and fixed-rate spreads. 

Conclusion
We examined the term structure of yield spreads
between floating-rate and fixed-rate notes of the
same credit quality and maturity. Floating–fixed
spreads were theoretically characterized in some
practical cases and quantified in a simple model in
terms of maturity, credit quality, yield volatility,
yield-spread volatility, correlation between
changes in yield spreads and default-free yields,
and other determining variables. We showed that
if the issuer’s default risk is risk-neutrally
independent of interest rates, the sign of floating–
fixed spreads is determined by the term structure
of the risk-free forward rate. For example, if the
term structure of default-free rates is increasing up
to some maturity, then spreads on floating-rate

Figure 3. Differential Spread as a Function of Default Spread

Note: For each five-year zero-coupon yield spread, the spread indicated is the difference between the
par spread on floating-rate debt less the par spread on fixed-rate debt at the base-case parameters.
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debt are larger than spreads on fixed-rate debt.
Conversely, under the same independence
assumption, if the default-free term structure is
inverted, floating-rate spreads are smaller than
fixed-rate spreads.

Figure 4. Differential Spread as a Function of Correlation between the Yield 
and Credit Spreads

Note: The horizontal axis shows the correlation between “instantaneous” increments of the three-month
yield and the five-year default spread. The vertical axis shows the percentage difference between the
differential spread at the indicated correlation and the differential spread at zero correlation. For
example, if the spread is 105 bps at the given correlation and 100 bps at zero correlation, the percentage
difference is 5 percent. The solid line is at the base-case parameters; the dotted line shows the same effect
with the diffusion coefficients σ1, σ2, and σ3 all doubled.
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Appendix A. Proof and Model Explanation
Here we provide the proof of the proposition stated in the text and explain the quadratic-Gaussian term-
structure model of credit spreads.

Proof of the Proposition. The version of the proposition in this appendix is a continuous-time version.
We assume that both Γ(t) and f(t) exist, with instantaneous forward rate f(t) defined by

(A1)

The coupon rate of a par default-free fixed-rate bond of maturity T, C(T), is defined by

(A2)

We now have

(A3)

The floating-rate spread for maturity T, k(T), is given by

(A4)

The fixed-rate spread, K(T), is given by

(A5)

The floating–fixed spread is then

(A6)

� Proposition. Suppose t0 exists such that f(t) ≤ C(T) for t ≤ t0 and f(t) ≥ C(T) for t > t0. [This is true if f
is increasing on (0,T).] If S is independent of r under the risk-neutral probability measure Q, then ∆(t) ≥ 0
for all t ≤ T. If, in addition, f is continuous and not constant on (0,T) and S is strictly positive, then ∆(t) > 0.

� Proof. Because r and S are Q-independent,

(A7)

We have 
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and
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Because S ≥ 0,

(A10)

is decreasing in t. It follows that

(A11)

We have assumed that f(t) ≤ C(T) for t ≤ t0, and because S ≥ 0, we know that g(t) ≥ g(t0) for t ≤ t0, so

(A12)

Because for t ≥ t0, f(t) ≥  C(T) and g(t) ≥  g(t0),

(A13)

We thus have

(A14)

If S is strictly positive, then g(t) is strictly decreasing. If, in addition, f(t) is continuous and not constant,
then at least one of the preceding inequalities is strict and we obtain ∆(T) > 0.

The Quadratic-Gaussian Term-Structure Credit-Spread Model. We can write r = YT ξY and R = YT

ΞY for diagonal ξ and Ξ.12 We will use the fact that defaultable forward rate F(t) satisfies

(A15)

for diagonal δ. 
One can show that

Λ0,t = exp[Yt
TU(t)Yt + b(t)TYt + a(t)], (A16)

and that

F(t) = [Yt
T V(t)Yt + d(t)TYt + c(t)]exp[a(t) + b(t)TYt + Yt

T U(t)Yt], (A17)

for time-dependent coefficients U, V, a, b, c, and d. 
Substituting these expressions into the partial differential equation satisfied by Λ and F gives the

following ordinary differential equations:
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with the initial conditions a(0) = b(0) = U(0) = c(0) = d(0) = 0, and V(0) = δ. (These differential equations are
solved by Runge–Kutta methods for our examples.)

To compute the correlations between the yields, we use the fact that 

(A20)

where Bi denotes the ith diagonal element of the diagonal matrix B and

(A21)

For our special example of Σ, this covariance matrix, cov(Yt) ≡ ΣY(t), is computed as 

. (A22)
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and

w2(t) = Yt
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Then, suppressing t from the notation, we have 

(A24)

where tr(A) denotes the trace of a matrix A. This allows the computation of yield correlations and thus
enables us to “calibrate” coefficients to given yield correlations.
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Notes 

1. Previous work on this topic by Cooper and Mello (1988)
pointed to differences between fixed- and floating-rate
spreads that are at least an order of magnitude larger than
those we found. One possible explanation is the artificial
definition of a floating-rate note that Cooper and Mello
used for illustration. Longstaff and Schwartz (1995) pro-
vided some model results for floating- and fixed-rate pric-
ing but not in a format that would allow a direct
calculation of the spread between floating-rate and fixed-
rate debt of the same maturity and issuer.

2. The parameters of the CIR model are as estimated by Duffie
and Singleton (1997).

3. We fix a probability space. The existence of a state-price
density, a positive random variable sometimes called a
“state-price deflator,” or “state-price kernel,” is implied by
the absence of arbitrage and mild integrability conditions.

4. This assumption is found in most reduced-form defaultable
valuation models, such as that of Duffie and Singleton
(1999) or Jarrow and Turnbull (1995).

5. An affine setting is one in which zero-coupon yields are
linear with respect to underlying state variables. For a more
precise definition, see Duffie and Kan (1996).

6. Underlying the model is a probability space (Ω,F,P) and a
filtration (Ft:t ≥ 0) satisfying the usual conditions, as stated
for example in Protter (1990). The probability measure Q is
equivalent to P, and integrability is assumed as required for
the analysis shown. Expectation under Q given Ft is
denoted Et

Q . The short-rate process r is assumed to be
progressively measurable.

7. This is made precise by defining the generator A of X by

for any C2 function f with compact support. One may add
time dependencies to these coefficients. Conditions must be
imposed for existence and uniqueness of solutions, as indi-
cated by Duffie and Kan. Generalizations are discussed in
Duffie, Pan, and Singleton.

8. That is  for some given

constants 

9. The risk-premium coefficients λ1, λ2, and λ3 can be used to
determine the behavior under the original probability mea-
sure P, as in the conventional model of Cox, Ingersoll, and
Ross, but we have no need for that here.

10. The base-case parameters for S were γ1 = 0.005, γ2 = 0.01,
γ3 = 1, λ3 = 0, κ3 = 0.01, θ3 = 0.005, and σ3 = 0.0015. We adjusted
X3(0) for the desired five-year zero-coupon yield spread.

11. The base-case parameters are β1 = 0.165, B1 = 0.504, σ1 =
0.07,  β2 = 0.0001, B2 = 0.001, σ2 = 0.001, β3 = 0.01, B3 = 0.5,
σ3 = 0.05, and ρ1 = ρ2 = 0. These parameters were chosen so
as to match by “calibration” to our base-case CIR model.
Because Yi 

2  behaves approximately like Xi, we chose σi for
Yi to be half of the corresponding coefficient for Xi , Bi = κi
+ λi, βi/Bi = [κiθi/(κi + λi)]

2, and Yi(0) = 
12. One can introduce terms linear in y and a constant term

without any difficulty. 
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