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1. Introduction

This note gives a simple, robust, and arbitrage-free example of the absence of a fixed
vector of state prices that applies to asymmetrically informed agents. In the same sense,
the example is such that there is no universal equivalent martingale measure. The example
has a finite number of agents, states, and periods. In this example, moreover, each of the
asymmetrically informed agents has complete market. The example is consistent with a full
rational expectations general equilibrium with learning from prices.

Duffie and Huang (1986)showed conditions implying the existence of a universal equiva-
lent martingale measure. These conditions include the assumption that one of the agents has
more information than each of the others. When there is no agent whose information dom-
inates in this sense, there is no particular reason to believe in the existence of an equivalent
martingale measure (EMM) that applies to all. Our example of non-existence depends on a
special information structure, as it must since prices are generically fully revealing with a
finite number of states. Given this special information structure, the example is robust in that
no perturbation of the payoffs of the securities allows for existence of universal state prices.

2. The example

We consider an example in which both the states of the world and time periods are
finite in number. There are three periods,t ∈ T = {1,2,3}, and nine states of the world,
Ω = {ω1, ω2, . . . , ω9} in our example. We fix the probability space(Ω,F, P ), where
F = 2Ω (meaning that the state is fully revealed byF.) We assume thatP({ωi}) > 0 for all
i. There are two agents,� and�, in the market. How they receive information is formalized
by specifying filtrationsF � = {F �

t : t ∈ T } andF � = {F �
t : t ∈ T }, respectively. Three

∗ Corresponding author.

0304-4068/02/$ – see front matter © 2002 Elsevier Science B.V. All rights reserved.
PII: S0304-4068(02)00064-2



192 D. Duffie, R. Kan / Journal of Mathematical Economics 38 (2002) 191–196

securities are marketed: a riskless zero-coupon bond maturing at time 3 and two risky
securities, A and B. After normalizing by the bond price process, A and B have the price
processS = {(SA

t , SB
t ) : t ∈ T }, adapted to bothF � andF �. The filtration generated by the

processS isF S = {F S
t : t ∈ T }. The join ofF � andF S is denotedG� = {G�

t : t ∈ T }; the
join of F � andF S is denotedG� = {G�

t : t ∈ T }. In the rational expectations framework, it
is common to assume that agents also learn from the prices. Therefore, the total information
that the agents have is described byG� andG�, respectively. Interested readers can refer
to Duffie and Huang (1986)for more details. As they point out, normalization by the bond
price process can “destroy” some of the information revealed by prices, but our example
extends easily to cases not requiring normalization.

The well-known results ofHarrison and Kreps (1979)apply to the caseG� = G�, that
is, the case in which there is no information asymmetry. Duffie and Huang considered
the situation in which one agent has superior information, corresponding toG� ⊂ G� or
G� ⊂ G� in our example. They showed that, in either of these cases, there is no arbitrage
if and only if there is auniversal equivalent martingale measure, a probability measureQ
on (Ω,F ) equivalent toP such thatS is aQ-martingale for all agents. Our example has
neitherG� ⊆ G� nor G� ⊆ G�. A necessary condition for this is thatF S is not equal to,
and does not include, eitherF � or F �.

In our example,F �
1, F �

1, F S
1 are taken to be the trivialσ -algebra:{φ,Ω}. LetF �

3 and

F �
3 both beF , theσ -algebra that fully reveals the state of the world. Let theσ -algebra

F �
2 be generated by the partition{{ω1, ω2, ω3}, {ω4, ω5, ω6, ω7, ω8, ω9}}, and letF �

2 be
generated by the partition{{ω1, ω3, ω5}, {ω2, ω4, ω6, ω7, ω8, ω9}}. Finally, letF S

2 be
generated by{{ω1, ω2, ω3, ω4, ω5, ω6}, {ω7, ω8, ω9}}, as illustrated inFig. 1. It is easy
to see thatG�

2 is generated by{{ω1, ω2, ω3}, {ω4, ω5, ω6}, {ω7, ω8, ω9}} and thatG�
2 is

generated by{{ω1, ω3, ω5}, {ω2, ω4, ω6}, {ω7, ω8, ω9}}.

Fig. 1. Illustration ofF S .
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For notational convenience, we denote the prices, as shown inFig. 1, in the following
way: for j ∈ {A,B}, Sj

1 = q
j

0 ; Sj

2(ωi) = q
j

1 , i ∈ {1, . . . ,6}; Sj

2(ωi) = q
j

2 , i ∈ {7,8,9};
S
j

3({ωi}) = p
j
i , i ∈ {1, 2, . . . ,9}. The price process is thus uniquely determined byx ∈

R24, wherex = (qA
0 , qA

1 , qA
2 , pA

1 , . . . , pA
9 , qB

0 , qB
1 , qB

2 , pB
1 , . . . , pB

9 ).
We now show a robust example of the absence of a universal equivalent martingale mea-

sure, despite the absence of arbitrage for any agent. First, we give the definition of “robust.”

Definition. Fix the filtrationsF �, F �, andF S , as above. LetU be the set of allx ∈ R24

such that if the price process is given byx, then there is no arbitrage for any agent. LetV

be the set of allx ∈ U such that if the price process is given byx, then there is no universal
equivalent martingale measure. Arobust example is a non-empty open subset ofV in the
relative topology ofU .

In order to prove our claim that there is a robust example, it suffices to prove that the
complement ofV , V c, is contained by a closed set in the relative topology ofU , and that
V is non-empty.

We first show thatV is not empty. A necessary and sufficient condition for no arbitrage
for agent� is that there exists an equivalent martingale measureQ� with respect to the
filtration G�, with Q�({ωi}) = π�

i for i ∈ {1, 2, . . . ,9}. In order to determineπ�, we
write the associated martingale condition E� (St+1 |G�

t ) = St , (t = 1,2), where E� denotes
expectation underQ�, in the explicit form:

3∑
i=1

π�
i p

j
i

π�
1 + π�

2 + π�
3

= q
j

1 , j ∈ {A,B}, (1)

6∑
i=4

π�
i p

j
i

π�
4 + π�

5 + π�
6

= q
j

1 , j ∈ {A,B}, (2)

9∑
i=7

π�
i p

j
i

π�
7 + π�

8 + π�
9

= q
j

2 , j ∈ {A,B}, (3)

6∑
i=1

π�
i q

j

1 +
9∑

i=7

π�
i q

j

2 = q
j

0 , j ∈ {A,B}, (4)

9∑
i=1

π�
i = 1, (5)

π�
i > 0, i ∈ {1,2, . . . ,9}. (6)

The associated vectorπ� of probabilities corresponds to “state prices.”
Letx∗ = (8,4,12,3,14,2,1,8,5,8,10,20,10.5,7,14,8,15,3,2,13,10,12,13,18).

It is easy to check that forq andp determined byx∗, π� = (a/2, a/8, 3a/8, 1/4 −
a/2, 1/6− a/3, 1/12− a/6, 1/6, 1/5, 2/15) satisfies all the above equations, wherea is
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any number in(0,1/2). Therefore, if the price process is given byx∗, there is no arbitrage
for agent�. Similarly, we can show that, givenx∗, there is no arbitrage for agent�, and that
the equivalent martingale measureQ� for agent� is given by the vector of probabilities
π� = (b/5,1/26−b/13, b/2,11/52−11b/26,3b/10,1/4−b/2,1/6,1/5,2/15), where
b is any number in(0,1/2).

Now, suppose that there is a universal equivalent martingale measureQdetermined by the
vectorπ of probabilities. Thenπ must satisfyEqs. (1)–(6)and the corresponding equations
for �. For example,

π1p
j

1 + π3p
j

3 + π5p
j

5

π1 + π3 + π5
= q

j

1 , j ∈ {A,B}. (1′)

For q andp given byx∗, it is easy to check thatEqs. (1) and (1′) cannot be satisfied at
the same time. Therefore,V is not empty.

From(1),

π1

π3
= (qA

1 − pA
2 )(pB

3 − pB
2 ) − (qB

1 − pB
2 )(pA

3 − pA
2 )

(qA
1 − pA

1 )(pB
2 − pB

1 ) − (qB
1 − pB

1 )(pA
2 − pA

1 )
.

From(1′),

π1

π3
= (qA

1 − pA
3 )(pB

5 − pB
3 ) − (qB

1 − pB
3 )(pA

5 − pA
3 )

(qA
1 − pA

1 )(pB
3 − pB

1 ) − (qB
1 − pB

1 )(pA
3 − pA

1 )
.

Since

W =
{
x ∈ R24 :

(qA
1 − pA

2 )(pB
3 − pB

2 ) − (qB
1 − pB

2 )(pA
3 − pA

2 )

(qA
1 − pA

1 )(pB
2 − pB

1 ) − (qB
1 − pB

1 )(pA
2 − pA

1 )

= (qA
1 − pA

3 )(pB
5 − pB

3 ) − (qB
1 − pB

3 )(pA
5 − pA

3 )

(qA
1 − pA

1 )(pB
3 − pB

1 ) − (qB
1 − pB

1 )(pA
3 − pA

1 )

}

is closed inR24, W ∩ U is closed in the relative topology ofU . SinceV c ⊂ W ∩ U , we
get the desired result.

3. Discussion

The existence of a universal equivalent martingale measure (EMM) would imply that
all agents have the same marginal rates of transfer of wealth among the various state-date
nodes of the tree. These marginal rates of substitution are determined in part by trading
opportunities. But the different agents have different trading opportunities because they
have different information. Thus, there is nothing from theory that suggests that there
should be a universal EMM.

Our example is consistent with a rational expectations equilibrium (REE). A degenerate
example is obtained by having linear preferences over terminal consumption of the form
Ui(c) = Ei(c), whereEi denotes expectation with respect toQi . Then any measurable
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(agent by agent) endowments and no trade is an equilibrium, trivially. For a slightly less
trivial example, we could have, say, additive utility of the formUi(c) = E[u(c)], where the
marginal utility mapv = u′(·) on (0,∞) onto(0,∞) is strictly monotone (as implied by
strictly concave utility and Inada conditions). We can then letξi denote the Radon-Nikodym
derivative ofQi with respect to the reference probability measureP , and letci = v−1(ξi)

denote the endowment and the consumption level of agenti in a no-trade equilibrium. In
this last example, the total endowment need not, in general, by adapted to each agent’s
filtration, so one would not generally presume that total consumption is observable.

Because at each periodt , each agent faces a partition of the state space revealing three
possible events in the next period, three securities is a necessary and sufficient number
(given linear independence) of securities for spanning. In our example, each agent indeed
has access to three securities, two risky securities and one risk-free (after normalization)
bond. We ensured that their event-contingent payoff matrices are of full rank. As for the
prices before normalization, as warned byDuffie and Huang (1986), they may or may not
reveal the same information, and they may or may not have the same span. One can in
any case treat ours as an example in which normalization is not necessary (as in our first
example above, in which the bond paying one unit of consumption has a price of one in the
consumption numeraire). More generally, one can, beginning from our example, construct
examples in which spanning and non-existence of a universal EMM is present even when
the bond price process is random.

Although, in our example, the market for contingent claims that payoff based on future
information is complete for each agent, prices do not fully reveal the state of the world
before the last period. While one agent can adjust his portfolio to form any state-contingent
claim, other agents cannot observe the composition of his or her portfolio.

Despite the completeness of markets for each agent, a derivative security, for example,
a call option on one of the original securities, is in general not redundant. Since there is
no universal equivalent martigale measure, the price of the call fixed by no arbitrage for
one agent will in general introduce an arbitrage for the other agent, unless prices for the
underlying assets change in response to the introduction of the call. See also,Kraus and
Smith (1990), in this vein. The new equilibrium price process will, in general, generate a
finer filtration than the originalF S . That is to say, the introduction of a deriviative security
will reveal more information to all agents.

A point of connection with the case of homogeneous information, as suggested by a
referee, might be made through asymmetric participation constraints, as considered, for
example, byBalasko et al. (1990). In their model, the different agents are restricted, asym-
metrically, in the portfolios that they are allowed to hold at given state and dates, and the
restrictions are linear. (For example, an agent is not allowed to trade certain securities in
certain events). Informational asymmetries can likewise be viewed in terms of symmet-
ric information with linear restrictions on portfolio trades. What prevents a direct appli-
cation of portfolio constraints to treat asymmetric information, in general, is the typical
rational-expectations assumption that agents observe prices. (Our example is consistent
with that observational assumption.)

As is traditional in the REE setting, we do not assume that portfolio demands by other
agents, individually, are observable. (Our example is in any case consistent with learning
from demands, because, as mentioned, it is consistent with a no-trade equilibrium.)
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