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�� Introduction

This paper de	nes and analyses a simple multi�factor model of the term structure of in�

terest rates� The factors of the model are the yields X � �X��X�� � � � �Xn� of zero�coupon

bonds of n various 	xed maturities� f��� ��� � � � � �ng� For example� one could think of the
current ��year �zero�coupon� yield as a factor� The yield factors form a Markov process�

to be described below� that can be thought of as a multivariate version of the single�factor

model of Cox� Ingersoll� and Ross �����a�� As opposed to most multi�factor term structure

models� the factors �Markov state variables� are observable from the current yield curve and

their increments can have an arbitrarily speci	ed correlation matrix� The model includes

stochastic volatility factors that are speci	ed linear combinations of yield factors� Dis�

count bond prices at any maturity are given as solutions to Ricatti �ordinary di
erential�

equations� and path�independent derivative prices can be solved by� among other methods�

an alternating�direction implicit 	nite�di
erence solution of the �usual
 partial di
erential

equation �PDE�� Fully worked examples of solutions to these Ricatti equations and PDEs

are included�

Our yield model is �a�ne�
 in the sense that there is� for each maturity � � an a�ne

function Y� � IR
n � IR such that� at any time t� the yield of any zero�coupon bond of

maturity � is Y� �Xt�� Indeed� ruling out singularities� essentially any n yields would serve

as the factors� and given the imperfections of any model� it is an empirical issue as to which

n yields will serve best as such� Likewise� because of linearity� the Markov state variables

can be taken to be forward rates at given maturities� so that the model can be viewed as

a multi�factor Markov parameterization of the Heath� Jarrow� and Morton �HJM� ������

model� In fact� Frachot and Lesne ������ have extended our model to the HJM setting�

One could also take speci	ed linear combinations of zero�coupon yields� such as the slope

of the yield curve� or even derivatives of the yield curve with respect to maturity at a given

point��

Special cases of our model are those of Chen ������� Chen and Scott �����a�� Cox�

Ingersoll� and Ross �CIR� �����a� �in its multivariate form�� Heston ������� El Karoui and

Rochet ������� Jamshidian ������ ����� ������ Langetieg ������� Longsta
 and Schwartz

� Vincent Lacoste developed this point of view at a lecture at the Newton Institute� at
Cambridge University� in June� �����
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������� and Pennachi ������� In all of these other earlier models� the state�variable processes

are treated as �shocks
 of various kinds that are not necessarily designed to be observable

from the current yield curve� After solving the models for the term structure� however� the

yield at any given maturity � can be seen to be a � �dependent a�ne function of the under�

lying state variables� Given a set of maturities equal in number with the underlying factors�

one can therefore typically �that is� when the coe�cient vectors de	ning the correspond�

ing a�ne forms are linearly independent� perform a change of basis under which the state

variables are yields at these various 	xed maturities� as in our model� This idea has been

pursued by Pearson and Sun ������ and by Chen and Scott �����b�� who have recently and

independently estimated a special case� based on a multi�factor version of Cox� Ingersoll�

and Ross �����a�� by performing just such a change of variables� Our model uni	es and

strictly extends these a�ne models to the maximum possible degree� and fully exploits the

idea of using yields as state variables�

Empirical studies of multi�factor models in our �a�ne yield
 setting include those of

Brown and Schaefer ������� Chen and Scott ������ ������ Du�e and Singleton �������

Frachot� Janci� and Lacoste ������� Frachot and Lesne ������� Heston ������� Pearson and

Sun ������� Pennachi ������� and Stambaugh ������� In such parametric special cases�

depending on the model speci	cation and regularity conditions� one can generally identify

the parameters of �� �� and R� to the extent that they a
ect bond prices� from cross�sectional

observations of the yield curve� For example� in the one�factor CIR model� for which rt � Xt

evolves according to the stochastic di
erential equation dXt � ����Xt� dt��
p
Xt dWt� one

can identifyXt� �� �� and � from essentially any four distinct bond prices at time t� assuming

a correct speci	cation without measurement error� �Given the likely mis�speci	cation of this

model� this identi	cation is not relied on in practice� Instead� it is common to use time

series data and to assume fewer bond price observations at a given time than parameters�

or to assume measurement error� or both�� In order to estimate the behavior of the state

process X under the original probability measure P � one generally must resort to time�series

observations� so as to capture the implied restrictions on the drift process 	� In this paper�

although one of our goals is to classify a family of models that is convenient for empirical

work� we are not directly concerned with estimation issues� We refer readers to the empirical

studies cited above for such issues� We will restrict our attention to behavior under one
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particular equivalent martingale measure Q� �There may be a multiplicity of such measures

in some cases� for example the case of jump�di
usions considered in Section ����

As with all multi�factor models� solving for all but a few types of derivative security

prices is computationally intensive� We present a practical 	nite�di
erence algorithm for

this purpose�

In short� we have a model speci	ying simple relationships among yields� and providing

term structure derivative prices� that is both computationally tractable and consistent with

the absence of arbitrage� While we have not described an economy whose general equilib�

rium implies the behavior of the term structure appearing in our model� that is easily done

along the lines of Cox� Ingersoll� and Ross �����a�b� or Heston ������� and adds little to

what we o
er�

In the model of Heath� Jarrow� and Morton ������� as placed in a Markovian setting by

Musiela ������� the state variable is� in essence� the entire current yield curve� As such� any

initial yield curve is� under regularity� consistent with the HJM model� Being in a 	nite�

dimensional state�space setting� our model has the disadvantage that not every initial yield

curve is consistent with a given paramaterization of the model� �In industry practice� this is

often handled by �calibration�
 meaning the addition of time�dependence to the coe�cients

of the model in such a way as to match the given initial yield curve� That procedure has

obvious disadvantages�� The disadvantage of the 	nite�dimensional state�space setting can

also be one of its merits� for example in terms of numerical tractability� In any case� our

approach of taking yields as a�ne factors was independently accomplished within the HJM

setting by El Karoui and Lacoste ������� taking the special Gaussian �constant volatility�

case� Their work has since been extended to the stochastic volatility case by Frachot� Janci�

and Lacoste �������

Other multi�factor term structure models include those of Litterman and Scheinkman

������� El Karoui� Myneni� and Viswanathan ������� Jamshidian ������� Chan ������� and

Rogers ������� In these models one could treat an unobserved factor as a �latent
 variable

that can be 	ltered or otherwise calibrated from observations on the yield curve�

The remainder of the paper is organized as follows� Section � discusses the general

concepts involved in Markovian models of the yield curve� Section � specializes to a class

of �a�ne factor models�
 in which yields are a�ne in some abstract state variables� It is
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shown that the yields are a�ne if� and essentially only if� the drift and di
usion functions of

the stochastic di
erential equation for the factors are also a�ne� Section � gives conditions

for existence and uniqueness of solutions to the associated stochastic di
erential equation�

Section � specializes to the case in which the factors are yields at 	xed maturities� Sections

� and � present examples of constant and stochastic volatility versions of the yield�factor

model� respectively� in which one of the factors is� for simplicity� the short rate itself�

Section � deals with the partial di
erential equation �PDE� for derivative prices� providing

a change of variables that orthogonalizes the di
usion so as to simplify the 	nite�di
erence

solution� Sections � and �� present examples of the solution to this PDE� in the stochastic

and deterministic volatility cases� respectively� showing �convergence
 to the theoretical

solutions� Section �� sketches an extension to the case of jump�di
usions�

�� General Factor Models of the Term Structure

For purposes of setting up the parametric model that we have in mind� we begin with the

general idea of a factor model for the yield curve� Under a given complete probability space

���F � P � and the augmented 	ltration� fFt � t � �g generated by a standard Brownian
motionW � in IRn� we suppose that there is a time�homogeneous Markov processX valued in

some open subset D of IRn such that� for any times t and � � the market value pt�� at time t of

a zero�coupon bond maturing at time t�� is given by f�Xt� ��� where f � C����D� �������
The short rate process r is assumed to be de	ned by continuity� in that there is a measurable

function R � D � IR de	ned as the limit of yields as maturity goes to zero� or

R�x� � lim
���

� log f�x� ��
�

� x � D� �����

As is well understood from Harrison and Kreps ������ and Harrison and Pliska �������

as well as others to follow such as Ansel and Stricker ������� only technical regularity

is required for the equivalence between the absence of arbitrage and the existence of an

equivalent martingale measure� that is� a probability measure Q equivalent to P under

which the price process of any security is a Q�martingale after normalization at each time

t by the value exp
�R t

� R�Xs� ds
�
of continual re�investment of interest from one unit of

account held from time zero at the short rate�

� See� for example� Protter ������ for de	nitions involving the theory of stochastic
processes�

�



Suppose that X satis	es a stochastic di
erential equation of the form

dXt � 	�Xt� dt� ��Xt� dW
�
t � �����

where 	 � D � IRn and � � D � IRn�n are regular enough for ����� to have a unique

�strong� solution� Additional technical regularity implies that there is a standard Brownian

motion W in IRn under Q such that

dXt � ��Xt� dt� ��Xt� dWt� �����

where � � D � IRn is a function that can be calculated in terms of 	� �� and f � General

equilibrium models of this form of asset pricing behavior are given by Cox� Ingersoll� and

Ross �����b� and Huang ������� The models in these papers are actually 	nite�horizon

models with time�dependent coe�cients� but can be extended to time�homogeneous models

in an in	nite�horizon setting� Our work here could be extended to time�dependent coe��

cients merely by notational changes and minor technical regularity� Such time�dependency�

by �calibration�
 is standard operating procedure in trading implementations of term struc�

ture models� See� for example� Ho and Lee ������ or Black� Derman� and Toy �������

Here� we are interested in choices for �f� �� �� that are compatible� in the sense that we

indeed have

f�Xt� T � t� � E

�
exp

�
�
Z T

t

R�Xs� ds

� ���� Xt

�
a�s�� � � t � T 
�� �����

where E denotes expectation under Q� Expression ����� is merely the de	nition of Q as an

equivalent martingale measure� applied to zero�coupon bonds�

Of course� it is relatively easy to construct compatible �f� �� ���

For example� let �� �� and R be de	ned arbitrarily so that ����� and the right�hand side

of ����� are well de	ned� and then let f be de	ned by ������ This is the �usual
 approach in

arbitrage�based term structure models� as in Dothan ������� Vasicek ������� Richard �������

Black� Derman� and Toy ������� and Hull and White ������� among many other such models

in which X is the short rate itself and R is the identity� For multivariate models� we have

examples such as those of El Karoui� Myneni� and Viswanathan� ������� Jamshidian �������

Beaglehole and Tenney ������� and Rogers ������� in which X is Gauss�Markov �constant

�



�� a�ne �� and R is a linear�quadratic form� �By �a�ne
 �� we mean as usual that there is

a constant matrix a and a vector b such that ��x� � ax� b�� Constantinides ������ gives a

general equilibrium �representative agent� parametric model that implies this sort of linear�

quadratic�gaussian behavior for short rates� There are also similar general equilibrium

models� such as those of Cox� Ingersoll� and Ross �����b�� Heston ������� Longsta
 and

Schwartz ������� Nielsen and Sa�a�Requejo ������� and others in which one quickly arrives

at an expression such as ����� in which we can write R�x� �
P

i xi� where the component

processes X�i�� X���� � � � �X�n� are univariate processes satisfying the �CIR
 equation

dX
�i�
t � �ai � biX

�i�
t � dt� ci

q
di �X

�i�
t dW i

t � X
�i�
� � �� �����

for scalar coe�cients ai� bi� ci� and di� These latter models are a special case of the model

presented later in this paper�

In any case� given any candidate for the short rate process r satisfying mild regularity�

it is easy to support r in a general equilibrium model based on a representative agent with�

say� HARA utility and a consumption process constructed in terms of r� �See� for example�

Heston ������ and Du�e ������ Exercise ������� The available equilibrium models provide

useful theoretical relationships between the term structure� preferences� technology� and

macro�variables such as consumption� but have yet to add much to the practical day�to�day

problems of pricing and managing the risk of 	xed�income instruments� For our purposes we

will follow the lead of others mentioned earlier by beginning directly with some compatible

model �f� �� ��� We are particularly interested in a class of models that is likely to be

numerically and empirically tractable� and eventually models in which the state vector Xt

can be treated as an observation on the term structure itself� such as intended in the 	rst

model of this sort due to Brennan and Schwartz ������� in which the proposed factors are

the short rate and the yield on a consol� �The yield on a consol is the reciprocal of its price�

If one computes the price of a consol in the Brennan�Schwartz model� there is no reason to

expect the result to be the reciprocal of their state variable ���
 which is labeled the �consol

rate
 by Brennan and Schwartz for expositional reasons� See Du�e� Ma� and Yong ������

for an analysis of this issue��

�



�� A�ne Factor Models

We will consider a class of compatible models �f� �� �� with

f�x� �� � exp�A��� �B��� � x�� �����

for which� by virtue of the maintained assumption that f � C����D � ������� we know
that A and B are C� functions on ������ This parametric class of models� which we call
exponential�a�ne in light of the a�ne relationship between yields and factors� is relatively

tractable and o
ers some empirical advantages� In explaining the model� we will use the

fact that if an a�ne relationship of the form 
�� �x � � holds for all x in some non�empty
open Euclidean set� then 
 � � and � � �� We call this the �matching principle�


Since f�x� �� � � for all x in D� which is an open set� ����� and the matching principle

implies the boundary conditions

A��� � �� B��� � �� �����

Since R is assumed to be well�de	ned by ������ we also know that R is an a�ne function

on D�

Consider� for a 	xed maturity date T � the zero�coupon bond price process pt �

F �Xt� t� 	 f�Xt� T � t�� t � T � By Ito�s Lemma�

dpt � DF �Xt� t� dt� Fx�Xt� t���Xt� dWt� �����

where

DF �x� t� � Ft�x� t� � Fx�x� t���x� �
�

�
tr
�
Fxx�x� t���x���x�

�
	
�

We can calculate from ����� that

DF �x� t� � F �x� t�
��A��T � t��B��T � t� � x�B�T � t� � ��x�

�
�

�

nX
i��

nX
j��

Bi�T � t�Bj�T � t��i�x��j�x�
�
	
�

�����

By ������ we also know that DF �Xt� t��R�Xt�F �Xt� t� � �� Since F is strictly positive

valued� from ����� we have

� ��R�x��A�����B���� � x�B��� � ��x�

�
�

�

X
i

X
j

Bi���Bj����i�x��j�x�
�� �x� �� � D � ������ �����
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This equation applies for all � 
� since T is arbitrary�

Under a mild non�degeneracy condition� ����� implies that � and ��� are a�ne func�

tions on D� In order to see this� we can re�write ����� as

a�x� �� �
nX
i��

Bi����i�x� �
�

�

X
i

X
j

Bi���Bj����ij�x�� �x� �� � D � ������ �����

where a�x� �� � R�x��A�����B���� �x and where �ij�x� � �i�x��j�x�
�� Since R is known

to be a�ne� for each 	xed � the function a� � � �� is a�ne� We let H be the function on D

into IRN � for N � �n� �n� � n���� de	ned by

H�x� � ����x�� ���x�� � � � � �n�x�� ����x�� ����x�� � � � � �nn�x��
�
�

where only the �upper�triangular
 �ij�x�� those with i � j� are included� We want to show

that each element of H is a�ne in x�

We can now view ����� as a system of equations in � and x of the form

a�x� �� � c����H�x�� �x� �� � D � ������ �����

where c � ����� � IRN � For example� c���� � B���� �the coe
cient of H��x� � ���x��

while cn����� � B����
��� �the coe�cient of ����x���

We can repeat ����� for each of any N maturities m�� � � � �mN to get

C�m�� � � � �mN �H�x� �


BBBB�
a�x�m��

a�x�m��
���

a�x�mN �

�CCCCA � x � D �����

where C�m�� � � � �mN � is the N�N matrix whose i�th row is c�mi�
�� If C�m�� � � � �mN � can

be chosen to be non�singular� then H must be a�ne� as stated and proved in the following

proposition� which generalizes a one�dimensional result of Brown and Schaefer ������� Of

course� for arbitrary distinct non�zero times m�� � � � �mN � the matrix C�m�� � � � �mN � is

non�singular except for �B�m��� � � � � B�mN �� in a closed subset of measure zero of IR
Nn�

which means that the a�ne characterization given below for ��� ���� is both su�cient and

generically necessary for the a�ne yield�relationship ������
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Now� suppose indeed that ��x� and ��x���x�� are a�ne in x� For any 	xed i� we

can collect all terms in xi from ����� into an expression of the form ��B�
i��� �Bi�B�����xi�

where Bi�B���� is of the form a�
P

j bjBj��� �
P

jk djkBj���Bk��� for 	xed coe�cients a�

bj � and djk� That is� Bi is �linear�quadratic�
 By the matching principle� since ����� holds
for x in an open set� we must have �B�

i��� � Bi�B���� � �� This is true for all i and � �

giving us the di
erential equation

B���� � B�B����� B��� � �� �����

where B � IRn � IRn is linear�quadratic� The ordinary di
erential ����� is sometimes known

as a Ricatti equation�

Now� the term in ����� not involving x is of the form �A���� � A�B����� where A �

IRn � IR is also linear�quadratic� This term must also be identically zero in order for �����

to be satis	ed� again by the matching principle� This implies the equation

A���� � A�B����� A��� � �� �����

to be solved for A� with the unique solution

A��� �

Z �

�

A��B�s�� ds� ������

where B solves ������

There is a non�trivial issue of existence of 	nite solutions to Ricatti equations� since

the coe�cients are not Lipschitz� Solutions exist on the whole time domain for special cases

such as that of Cox�Ingersoll�Ross� and� for any given particular case� they exist up to some

time T � �� since ����� is locally Lipschitz� We implicitly assume that T � �� in the

following proposition� but the results apply more generally by restricting T �

Proposition� Suppose �f� �� �� is a compatible term structure factor model and there is

a �nite solution to the ordinary di�erential equation ������ If �� ���� and R are a	ne�

then f is exponential
a	ne� Conversely� if f is exponential
a	ne and there exist maturities

m�� � � � �mN such that C�m�� � � � �mN � is non
singular� then �� ���� and R are a	ne�

Proof� First� suppose that �� ���� and R are a�ne� Consider the candidate solution for

f given by ����� for some A and B� If we can choose A and B so that ����� is satis	ed�
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then the 	rst part of the result follows� Since ����� has a unique solution� so does ������ and

there is indeed a solution A and B to ������ implying �since f is uniquely de	ned� that f is

exponential�a�ne�

Conversely� suppose that f is exponential�a�ne� Then R is a�ne� If� moreover� there

exists m�� � � � �mN such that C�m�� � � � �mN �� as de	ned above� is non�singular� then there

is a unique solution H� � � to ������ which is a linear combination of a�ne functions� and is
therefore a�ne� This completes the proof�

It should be noted that the solution for �A�B� is not uniquely de	ned by the coe�cients

of the a�ne forms � and ���� it also depends on the coe�cients de	ning R� Although there

are few closed�form solutions for Ricatti equations� the solutions can be quickly computed

numerically� an example is given later in the paper� For the one�dimensional cases con�

sidered by Vasicek ������ and Cox� Ingersoll� and Ross �CIR� �����a�� there is an explicit

solution for �A�B�� Likewise� for the previous extensions of the CIR model in the literature�

there is an explicit solution for B by virtue of the fact that f is of the form of a product

�ifi�X
�i�� ��� where fi is of the form of the CIR discount bond�price function� Chen ������

provides a ��factor special case� distinct from the ��factor CIR model� for which closed�form

solutions are also available� For the case of � and ��� that are a�ne but time�dependent�

the same a�ne yield model ����� applies� with �A�B� the solution of Ricatti equations with

time�dependent coe�cients�

�� The A�ne Stochastic Di�erential Equation

As indicated by the last theorem� the a�ne class of term structure models seems to be well�

behaved and o
ers reasonable tractability� via ������������ Now we address the conditions

on the domain D and the coe�cients of the a�ne forms � and ��� under which there is

indeed a unique �strong� solution to the SDE ������

Without loss of generality for our purposes� we take � to be symmetric� because for

empirical issues or asset�pricing purposes there is no e
ect of replacing ��x� with a matrix

square root �x by x� of ��x���x��� The appendix shows that� if ��� is a�ne in x� then�

under non�degeneracy conditions and a possible re�ordering of indices� we can take ����� to

��



be of the form

dXt � �aXt � b� dt� 


BBBBB�

p
v��Xt� � � � � �

�
p
v��Xt� � � � �

� � �

� � � � �
p
vn�Xt�

�CCCCCA dWt� X� � D� �����

where a � IRn�n� b � IRn� and  � IRn�n� and

vi�x� � 
i � �i � x� �����

where� for each i� 
i is a scalar and �i � IRn� For existence of unique solutions� coe�cient

restrictions apply� as indicated below�

The coe�cient vectors ��� � � � � �n generate �stochastic volatility
 unless they are all

zero� in which case ����� de	nes a Gauss�Markov process� The Gauss�Markov �constant

volatility� case� originally treated by Vasicek ������ and Langetieg ������� is reconsidered

by El Karoui and Lacoste ������ in independent work in the framework of Heath� Jarrow�

and Morton ������� This Gaussian case certainly presents no di�culty in terms of existence

and uniqueness of solutions to ������ provided D � IRn� With stochastic volatility� however�

there is an existence issue to consider�

There are actually two delicate issues to overcome in order to assure strong solutions to

������ First� the di
usion function � is not Lipschitz� Second� the volatility process vi�Xt�

clearly must be non�negative for all i and t� The open domain D implied by non�negative

volatilities is

D � fx � IRn � vi�x� � �� i � f�� � � � � ngg � �����

We must ensure that there is a unique solution to ����� that remains in D� For a solution

X to exist� we will therefore need to assume� in e
ect� that for each i the volatility process

vi�Xt� has a su�ciently strong positive drift on the i�th boundary segment �Di � fx � D �

vi�x� � �g�

Condition A� For all i�

�a� For all x such that vi�x� � �� �
�
i �ax� b� � ��i   

��i���

�b� For all j� if ���i  �j 
� �� then vi � vj �

��



Both parts of Condition A are designed to ensure strictly positive volatility� and are both

e
ectively necessary for this purpose� Part �b� ensures that the i�th volatility term� when

at zero� cannot be driven �negative
 by dependence on other non�zero volatilities� �This

part �b� can be relaxed to replace �vi � vj
 with �vi � kvj for some positive scalar k�
 but

that scalar k can be absorbed into the constant matrix  and treated as � without loss of

generality�� Condition A is not generically satis	ed� and is a signi	cant restriction on the

model� An example satisfying Condition A �beyond the obvious Gaussian case of �i � �

for all i� is given later in the paper� The �stacked
 univariate �square�root
 processes

appearing in Cox� Ingersoll� and Ross �����a�� Heston ������� Longsta
 and Schwartz

������� and Chen and Scott ������ all satisfy Condition A� Part �b� allows for �and goes

beyond� the stacking of multivariate versions of the CIR model� each component of which

is a multivarate process of the form in ����� with identical stochastic volatility term in each

dimension�

Regarding part �a� of Condition A� Ikeda and Watanabe ������ show that ��i b �

��i   
��i�� is necessary and su�cient for zero to be an entrance boundary �that is� never

hit� for a univariate process V de	ned by dVt � �i � b dt �
p
Vt�i dWt with V� � �� The

proof� found in the appendix� of the following theorem extends this idea to the multivariate

case� using part �a� of Condition A� Again� the intuition is that a su�ciently positive drift

for the process vi�Xt� near the boundary where its own �volatility
 is zero will ensure that

this boundary is never hit� The proof is somewhat complicated by the fact that the square

root function appearing in the di
usion has a derivative that approaches in	nity as the

stochastic volatility term vi�x� goes to zero� The reader uninterested in the details can

easily skip the proof� found in the appendix� at no cost to what follows�

Theorem� Under Condition A� there is a unique �strong� solution X in D to the stochastic

di�erential equation ���
�
�����
������ Moreoever� for this solution X� and for all i� we have

vi�Xt� � � for all t almost surely�

It is worth remarking that for the state process X given by this theorem� there is always

a strictly positive non�constant short rate process R�Xt�� This follows from the Separating

Hyperplane Theorem and the fact that D� as an interesection of open half�spaces� is a

convex open set� For example� one could take R�x� �
P

i �ivi�x� for non�negative �i�

��



�� The A�ne Yield	Factor Models

The previous sections presented a relatively general theory of a�ne term structure models

with abstract factors� At this point we would like to consider situations in which� for 	xed

maturities ��� � � � � �n� for each i and t� we can view Xit as the yield at time t on a zero�

coupon bond of maturity �i� The practical advantages of choosing factors that are yields

at 	xed maturities seem evident� In order for �f� �� �� to be an a�ne factor model with

f�x� �� � exp�A��� �B��� � x�� and�

xi �
��
�i
log f�x� �i�� x � D� i � f�� � � � � ng� �����

we need not only the initial conditions A��� � � and B��� � � for ������������ but also� for

all i�

A��j� � Bi��j� � �� j 
� i� Bi��i� � ��i� �����

We call a compatible factor model �f� �� �� satisfying ����� and ����� an a�ne yield�factor

model�

There are two possible ways to construct an a�ne yield�factor model� One is to suppose

from the beginning that the factors are yields� and to ensure that the coe
cients de	ning

�f� �� �� are chosen so that ����� is satis	ed� We will get to this direct approach a bit later�

The other� indirect� approach is to allow X to be the state process for an arbitrary

a�ne factor model �f� �� ��� and to attempt a change of variables from the original state

vector Xt to a new yield state vector Yt in IR
n de	ned by

Yit � �A��i� �B��i� �Xt

�i
� �����

Provided the matrix K� whose �i� j��element is �Bj��i���i� is non�singular� we know that

Xt � K���Yt � k�� where ki � A��i���i� making the change of variables possible� In this

case� we can write

dYt � ���Yt� dt� ���Yt� dWt� �����

where

���y� � K��K���y � k��� ���y� � K��K���y � k��� �����

which is well de	ned in the domain D� � fKx�k � x � Dg� The equivalent term structure

model is �f�� ��� ���� where

f��y� �� � exp�A���� �B���� � y�� �����

��



for A���� � A����B����K��k and B����� � B����K��� Clearly� �f�� ��� ��� is an a�ne

yield factor model�

While we have accomplished our goal indirectly� via this change of variables� for prac�

tical purposes the �covariance
 function ��� � ���� � �� de	ned by ����� may be cumbersome
to �calibrate
 to observed volatilities or correlations� say from current or historical option�

related price data� since the matrix K depends� via a solution of the Ricatti equation

������������ on the original parameters de	ning � and �� There may be some practical

reasons� then� to begin with an a�ne factor model �f� �� �� for which the the state vector

Xt is already treated as a vector of yields at 	xed maturities ��� � � � � �n� The matrix  

and the volatility�related coe�cients 
i and �i could be chosen directly from calibration or

econometric estimation� or both� There remains� however� the question of consistency with

the de	nition of Xit as the zero�coupon yield for maturity �i� that is� with the boundary

condition ������ Only by adjusting the coe�cients in � or � can we expect the solution

to ����������� to satisfy both the initial �zero� boundary conditions as well as the bound�

ary conditions in ������ At the same time� we need to respect Condition A� of Section ��

which guarantees the existence of a solution to the stochastic di
erential equation de	ned

by ��� ��� We do not have theoretical results describing how certain coe�cients can be 	xed

in advance and others can be adjusted to so as to achieve consistency with these various

conditions� In practice� however� we have encountered no problem in 	xing the coe�cients

in � and then adjusting the drift coe�cients so as to obtain consistency� at least in two�

factor implementations� Certainly� by counting the number of equations and the number of

unknowns� this success is not surprising� In the next sections we explain how to do this for

��factor versions of the model�


� Simple Examples

As an example to illustrate our method� we will now give more explicit treatment for special

cases involving a single volatility factor or the non�stochastic volatility case� � � �� In the

latter case� the solution of the stochastic di
erential equation for the factors is Gaussian�

The independent work of El Karoui and Lacoste ������� is in this Gaussian setting� although

they work with forward rate models in the Heath�Jarrow�Morton framework� That is� they

actually take the factors to be the forward rates at certain maturities� in the sense of Heath�

��



Jarrow� and Morton ������� Since the yield at any maturity is a�ne in the factors� yield�

factor and forward�rate factor models are mathematically equivalent in our setting� but

HJM goes beyond this by allowing any initial term structure� El Karoui and Lacoste also

provide extensive discussion of the choice of factors� �See also Frachot� Janci� and Lacoste

������ as well as Frachot and Lesne ������ for factor representations of the model��

From this point� for simplicity� we take Xt � �X�t�X�t� � � � �Xn���t�� with R�Xt� � X�t�

That is� we take one of the factors to be the short rate itself� The slight changes in notation

occasioned by this should be apparent without further comment� We also take a single

stochastic volatility term� that is� vi�x� � vj�x� � 
� � � x for all i� j� and x�

While it is traditional to take one of the factors to be the short rate� there is no need for

this� In fact� taking the short rate itself as a state variable can cause empirical di�culties� at

least if the model is 	tted to �short rate
 data� which tend to have idiosyncrasies� Indeed�

one may argue that the short rate itself is literally unobservable� as it is a limit of yields�

rather than a yield itself�

In this special case� ����������� can be written


����������
A��t� � b � B�t� � 


�
q�t�

B�
��t� � a� � B�t� � ��

�
q�t�� �

B�
i�t� � ai � B�t� � �i

�
q�t�� i � f�� � � � � n� �g�

�����

where

q�t� �
n��X
i��

n��X
j��

 i 
�
j Bi�t�Bj�t��

For the case of determinsitic volatility� de	ned by � � �� the last n equations form a

simple linear system and have the standard solution�

Bi��� �

n��X
j��

�ij exp��j�� � �in� i � f�� �� � � � � n� �g� �����

where f�ijg are constants that can be easily computed and f��� � � � � �ng are the n roots

��



�assuming no multiplicity� of the characteristic equation�

det


BBBB�
a�� � � a�� � � � a��n��

a�� a�� � � � � � a��n��
���

���
� � �

���

an���� an���� � � � an���n�� � �

�CCCCA � �� �����

This solution for B is then put into the 	rst equation of ����� to obtain A by easy integration�

If we use only 	rst the two factors� x� and x�� we have

���� �
�

�

�
a�� � a�� �

p
!
�
� �����

where ! � a��� � a��� � �a��a�� � �a��a��� The constraints in ����� can then be explicitly
written as constraints on the drift coe�cients of the form�

�a�� � a�� �
p
!��a�� � a�� �

p
!�e����

� �a�� � a�� �
p
!��a�� � a�� �

p
!�e���� � �a��

p
! � � �����

a���a�� � a�� �
p
!�e���� � a���a�� � a�� �

p
!�e����

� �
p
!�a�� � ���a��a�� � a��a���� � �� �����

This deterministic volatility example is extended in Section ��� where we o
er explicit

and numerical solutions for bond option prices by adapting to our model the results of

Jamshidian ������ ������ El Karoui and Rochet ������� and others�

�� Two	Factor Stochastic	Volatility Model

We now concentrate on the two�factor case�

First� we consider the coe�cient restriction required for non�negativity of volatility� In

this case� the �hyperplane
 de	ning zero volatility is given by

H � f�x�� x�� � 
� ��x� � ��x� � �g� �����

Without loss of generality if �� 
� �� we take �� � �� so that on H we have x� � ��
���x���
On H� the drift function for Vt � 
� ��X�t � ��X�t is therefore

�����x� � �����x� � ���b� � a��x� � a���
� ��x��� � b� � a��x� � a���
� ��x��

� k� � k�x��

��



where

k� � ��b� � 
��a�� � b� � 
a��

k� � ��a�� � ���a�� � a�� � ��a���

In this case� an a�ne yield�factor model calls for b� a� and  in a manifold satisfying ������

������ and

k� � � and k� � �� �����

We give an example in Section ��

�� Finite	Di�erence Solution of Derivative Asset Prices

By the de	nition of an equivalent martingale measure� an asset de	ned by a payo
 u at

time T has a price at any time t 
 T given by

E

�
exp

�
�
Z T

t

R�Xs� ds

�
u

���� Ft
�
�

If u is a random variable that is a measurable function of the term structure at time T �

then �since the term structure is itself a measurable function of the state variables XT �� we

can write u � g�XT �� and express the price in the form

F �Xt� t� � E

�
exp

�
�
Z T

t

R�Xs� ds

�
g�XT �

���� Xt

�
� �����

Under mild regularity conditions �see� for example� Friedman �������� the unique solu�

tion to ����� satis	es the PDE

DF �x� t��R�x�F �x� t� � �� x � D� �����

where DF �x� t� is as de	ned by ������ with the boundary condition

F �x� T � � g�x�� x � D� �����

There are well known 	nite�di
erence algorithms for solving a parabolic PDE of this

form� In order to simplify the numerical solution in the two�factor case described in the

previous section� it is convenient to make the change of variables�

y �
�

� � k
p

� ��x� � ��x�

z � arctan�h���x� � ��x����

�����

��



where �� � �� � 
�
� ��� � 

�
� and �� � �� � 

�
� ��� � 

�
� � It is easy to see that � � y � �

and ���� � z � ����

The inverse of this transformation is given by

x� � �� � ��
��� y��

k�y�
� ��

tan�z�

h

x� � �� � ��
��� y��

k�y�
� ��

tan�z�

h
�

�����

where

�� � � 
��
���� � ����

�� � � 
��
���� � ����

�� �
��

���� � ����

�� �
��

���� � ����

�� � � ��
���� � ����

�� �
��

���� � ����
�

Then� ����� is written� for "F �y� z� t� 	 F �x�� x�� t�� in the form

�� "F � �t "Ft � �y "Fy � �z "Fz � �y "Fyy � �z "Fzz � �� �����

where

�t �k
�y���� y� cos�z�

� �k���y
���� y� cos�z� � ����� y�� cos�z� � k���y

���� y�
sin�z�

h

�y �� k�y�

�

�
�y�k

�y� cos�z� � �y���� y�� cos�z� � �y�k
�y�

sin�z�

h

�
�
k	� � 

�
� �

�
� � � 

�
� �

�
� � � � 

�
� �����

�
y
��� �y� cos�z�

�z �� h��� y� cos��z�

�
�z�k

�y� cos�z� � �z���� y�� cos�z� � �z�k
�y�

sin�z�

h

�
� h�� � 

�
� �

�
� � � 

�
� �

�
� � � � 

�
� �������� y�� cos	�z� sin�z�

�y �
k	���� � 

�
� � ����� � 

�
� � ��� � 

�
� �

�
y���� y� cos�z�

��z �
h����� � 

�
� � ����� � 

�
� � ��� � 

�
� �

�
��� y�� cos
�z��

��



with

�y� ���b� � ��b� � ��a���� � ��a���� � ��a���� � ��a����

�y� ���a���� � ��a���� � ��a���� � ��a����

�y� ���a���� � ��a���� � ��a���� � ��a����

�z� ���b� � ��b� � ��a���� � ��a���� � ��a���� � ��a����

�z� ���a���� � ��a���� � ��a���� � ��a����

�z� ���a���� � ��a���� � ��a���� � ��a�����

The reduction of ����� to ����� has two main advantages� First� we have converted

the coordinates x� and x�� which in general take any real values� to coordinates y and z

that take values in compact sets� An evenly spaced grid over these compact sets implies a

concentration of grid points in the original variables that can be controlled for accuracy of

the solution� placing greater grid density near more frequently encountered rates� Second�

we have orthogonalized the system so that an alternating�directions 	nite�di
erence method

can be applied� given the absence in ����� of cross partial derivatives in the two new space

variables� y and z� For the alternating directions implicit method� see Ames ������ and

Press et al �������


� Stochastic Volatility Example

In this section� we give an example of the two�factor model discussed in last section�

We 	rst solve the two�dimensional ODE
����
B�
��t� � a��B��t� � a��B��t� �

��
�
q�t�� �

B�
��t� � a��B��t� � a��B��t� �

��
�
q�t��

�����

where

q�t� �  � 
�
� B

�
��t� �  � 

�
� B

�
��t� � � � 

�
� B��t�B��t�� �����

subject to the initial conditions B���� � B���� � �� using the fourth�order Runge�Kutta

method� The resulting solution �B�� B�� depends on the parameter vector �a� �� Then�

	xing  � we use a Newton�Raphson algorithm to solve for a so as to match the consistency

conditions B����� � � and B����� � ��� of ������ As is well known� the success of the
Newton�Raphson method in multi�dimensions depends critically on the accuracy of the

��



	rst guess� We suggest that one 	nds the solution to the deterministic volatility case� and

use that as the 	rst guess here� For the fourth�order Runge�Kutta ODE solution method

and Newton�Raphson search method� please see Press et al �������

Given the solution of ����� for B� we numerically integrate

A��t� � b�B��t� � b�B��t� �

q�t�

�
� A��� � �� �����

to obtain A� and then choose b� and b� so as to match the consistency condition A���� � ��

As an example� we 	x the parameters� b� � ����� a�� � �����  � 
�
� �  � 

�
� � ����

 � 
�
� � ���� 
 � ����� �� � ����� and �� � �� We use the Newton�Raphson method to 	nd

a�� and a�� satisfying the consistency conditions� The rule used to terminate the Newton�

Raphson iteration is to stop when both j B����� j
 ������ and j B����� � �� j
 �������

Table � presents an example of the results� The grid size is the reciprocal of the step size

used to numerically solve the ODE� The coe�cient a�� is calculated by setting k� � � in

������ while b� is calculated by setting A���� � �� The resulting set of parameters satis	es

Condition A for the existence and uniqueness of solutions to the SDE ������������������

Table �� Example Parameter Solution

grid size n a�� a�� a�� b�

����� ������� ������ ������ ������

����� ������� ������ ������ ������

Using the parameters obtained above� we use the alternating direction implicit �ADI�

method to solve the PDE ����� in the form of ������ In relative terms� solving for the pa�

rameters b and a is a much faster procedure than solving this PDE for given parameters�

As is well�known� there is no general theory guaranteeing the convergence of the ADI algo�

rithm when applied to a speci	c problem� In our case� this method is in fact divergent near

some boundaries� perhaps due to the rapid change of the value of "F near those boundaries�

�Indeed� "F is in	nite along some boundaries because x� and x� can be negative in this pa�

rameterization of our model�� In order to restore convergence� we apply the ADI algorithm

��



on the domain� y � ���� � � ��� and z � ����� � ��� ��� � �	�� where ��� ��� �� and �	 are

small non�negative numbers� By appropriately choosing these small numbers� we indeed

obtain convergence as shown below� The computation time can in principle be improved

by �hopscotch
 methods� which alternate implicit and explicit steps��

In order to examine the precision of this method� Table � shows numerical results for

the price of a zero�coupon bond with � unit of time to maturity� The exact result is given

by exp��x��� In the parenthesis� we also give the numerical solution to the PDE for the
price for an American call on this bond maturing at time ���� with strike price ���� We

have chosen h � k � ����� �� � ����� �� � �� � �� and �	 � �����

Table �� Example Finite�Di
erence PDE Solution of Bond and Bond Option Prices

�Bond Option Prices in Parentheses�

Grid Size N Exact

short rate �x�� long rate �x�� ��� ��� ��� �

������ ������ ������ ������ ������ ������

�������� �������� ��������

������ ������ ������ ������ ������ ������

�������� �������� ��������

������ ������ ������ ������ ������ ������

�������� �������� ��������

��� Deterministic Volatility Bond Option Pricing Example

In the case of a short rate process that can be viewed as a component of a multivariate

Gauss�Markov process� Jamshidian ������ ������ El Karoui and Rochet ������� and others

have computed the prices of bond options explicitly� In this setting� we can use our results

� We have subsequently found that a variation of the ADI method� which averages the
short rate between grid points associated with transitions� performs substantially faster�
For the one�dimensional case� see Chapter �� of Du�e �������

��



to restrict the coe�cients of the Gauss�Markov process so that the state variables can be

taken to be yields� We thereby obtain a convenient example in which bond option prices

can be computed in terms of the yields at the basis maturities� and can thus verify the

accuracy of our numerical solution for option prices against the explicit solution�

For our example� we take the two�factor deterministic volatility yield�factor model�

with 
 � � and �� � �� � �� Under the variable transformation�
y � arctan�kx��

z � arctan�h� � 
�
� x� �  �"�

�
� x����

������

the PDE ����� can be written in the form of ������ with

�t �kh cos�y� cos�z�

� �h sin�y� cos�z�

�y � kh cos��y� cos�z��kb� cos�y� � a�� sin�y�� k� � 
�
� cos

��y� sin�y��

�
ka��
 � ��

cos��y��h � 
�
� sin�y� cos�z� � k cos�y� sin�z��

�z � kh� cos�y� cos��z��b� � 
�
� � b� � 

�
� � h cos�z� sin�z� � 

�
� �� � 

�
� �

� � � � 
�
� �� � 

�
� ���

� h� sin�y� cos��z��a�� � 
�
� � a�� � 

�
� �

�
h

"�� 
�
�

�a�� � 
�
� � a�� � 

�
� ��h � 

�
� sin�y� cos�z� � k cos�y� sin�z��

�y �
k�h � 

�
�

�
cos
�y� cos�z�

�z �
kh� � 

�
� �� � 

�
� �� � 

�
� �� � � 

�
� �

��

�
cos�y� cos
�z��

For the sake of convergence� we restrict ourself to the domain y � ������ ��� ���� ���

and z � ����� � ��� ��� � �	��

By applying the results of Jamshidian ������ ������ it can be shown that the price at

time t of a European call option on a zero�coupon bond that pays #� at time T � with strike

price K and expiration time �� 
 T� is given by�

C�Xt� t� � f�Xt� T � t�N

�
$�Xt� t� �

���t�

�

�
�Kf�Xt� �

� � t�N

�
$�Xt� t�� ���t�

�

�
�

������

where

$�Xt� t� �
�

���t�
log

�
f�Xt� T � t�

Kf�Xt� �� � t�

�
��



N� � � denotes the cumulative standard normal distribution� and �� is the function on ��� ���
given by ���t�� �

R ��
t

H�s� ds� where

H�s� � � 
�
� �B��T � s��B���

� � s��� � � 
�
� �B��T � s��B���

� � s���

� � � 
�
� �B��T � s��B���

� � s���B��T � s��B���
� � s���

with B�� � � and B�� � � as given in ������ The option pricing formula ������ is a version of
the Black�Scholes ������ formula�

For our numerical example� we take�

b� � ����� b� � ������� a�� � �������� a�� � ����� a�� � ������ a�� � �������

 � 
�
� �  � 

�
� � ����  � 

�
� � ���� k � h � ����� �� � �� � ����� and �� � �	 � ��

Table � shows the computed prices of a European Call with strike priceK � ���� option

expiration time �� � ���� and bond maturity T � ����

Table �� Bond and Bond Option Prices with Deterministic Volatlity

�Bond Option Prices in Parentheses�

Grid Size n Exact

short rate �x�� long rate �x�� ��� ��� ��� �

������ ������ ������ ������ ������ ������

�������� �������� �������� ��������

������� ������� ������ ������ ������ ������

�������� �������� �������� ��������

������� ������� ������ ������ ������ ������

�������� �������� �������� ��������

��� Jump	Du�usion State Process

Because of the possibility of sudden changes in perceptions of future interest rates� one may

wish to allow for �surprise
 jumps in the state vector X� For example� one can maintain

��



the a�ne yield�factor model with a standard jump�di
usion model for X based on the

in	nitesimal generator D� de	ned by

D�F �x� t� � DF �x� t� � ��x�

Z
D

�F �x� z� t�� F �x� t�� d	�z�� ������

where D is the di
usion generator de	ned by ������ � � D � IR� is an a�ne function

determining the arrival intensity ��Xt� of jumps in X at time t� and where 	 is a 	xed

probability measure on IRn de	ning the distribution of jumps� As before the zero�coupon

bond price with maturity T has a price F �Xt� t� at time t� where� under technical regularity�

F solves the PDE

D�F �x� t��R�x�F �x� t� � � ������

with the boundary condition

F �x� T � � �� ������

With �� ���� �� and � all a�ne functions on the state space D� the PDE �������������

is� under regularity� solved by usual exponential a�ne form

F �x� t� � exp �a�T � t� � b�T � t� � x� � ������

where a � ��� T � � IR and b � ��� T � � IRn are solutions of ordinary di
erential equations

that are easily computed numerically in many cases� It is convenient� as one can see from

substituting ������ into ������ in order to derive the ODE for b� to choose a distribution 	

whose Laplace transform �� � � is known explicitly� so as to avoid a numerical computation
of the term ��b�T � t��� Combinations of exponential� binomial� degenerate �	xed jump

size�� and gaussian distributions are convenient� although one must take care to choose a

distribution that ensures that the state process X� jumping from any point in the state

space D� remains in the state space� For a Gaussian special case �in which ��� is constant

and 	 is a Gaussian distribution on D � IRn�� closed�form solutions are given by Das �������

Closed form solutions are also available when one chooses D to the the generator associated
with the multi�factor CIR model� and takes 	 to be a product of n exponential distributions�

By changing the boundary condition ������ to one appropriate for a given derivative

payo
� one can also value the derivative security� Numerical solution of the PDE by 	nite

di
erence is relatively straightforward� although the usual staircase algorithm for inverting

��



the implicit di
erence step is not directly applicable with non�degenerate jump distribu�

tions� We have successfully implemented a numerical algorithm for option valuation with

exponential jump distributions in ��dimensional special cases�

Also� with jumps� it may be impossible to perfectly hedge a given claim with fewer

positions in other claims than the cardinality of the support of the jump distribution 	�

Appendix� SDE Results

This appendix addresses the form and existence of �a�ne stochastic di
erential equa�

tions�
 those in some state space D � IRn� of the form

dXt � ��Xt� dt� ��Xt� dWt� X� � D� �A���

where � � D � IRn and ��� � D � Ms are a�ne� taking M to denote the space of real

n� n matrices� andMs �M to denote the subset of symmetric matrices�

Since % � ��� is a�ne� for any i and j we have %ij�x� � aij � bij � x� for some aij in
IR and bij in IR

n� For each i in L � fi � bii 
� �g� the a�ne space Ai � IRn of roots to the

equation aii � bii � x � � is an �n� ���dimensional manifold de	ning points that� if in the
state space� would be associated with zero �instantaneous
 variance of the changes in the

state process X�

We will 	x a particular �canonical
 state space S � IRn� Since the diagonal elements

of %�x� must be non�negative for all x� and are a�ne in x� we know that S is contained by

the intersection of half�spaces bS � fx � %ii�x� � �� i � Lg� In fact� up to closure� it is
reasonable to suppose that S � bS� since a point x in the boundary of S that is not in the
boundary of bS is in the interior of bS� At such a starting point� �barring degeneracies� the
state process X would exit from S� We therefore take the canonical state space S to be bS�

Allowing for the possibility that Ai � Aj for some i 
� j� we can always choose some

minimal subset K � L such that bS � fx � %ii�x� � �� i � Kg�

Non�Degeneracy of %� The set fbii � i � Kg � IRn is linearly independent�

For example� non�degeneracy rules out parallel boundaries for the state space S� which

is ruled out in any case by consideration of existence of solutions to the SDE for X� unless

��



two of the co�ordinate processesXi andXj are scalings of each other� Under non�degeneracy�

the sub�manifold bAi � Ai

T
S is also �n� ���dimensional� The boundary of S is Si�K

bAi�

A strip is a set of the form fx � IRn � c � u�x� � dg � IRn� for some c � IR� d � IR�

and linear u � IRn � IR�

Lemma A��� If % is non
degenerate then S is not contained by a strip�

Proof� Suppose not� Then there exists some linear u � IRn � IR such that c � u�x� � d for

all x in S� Let y be a non�singular linear transformation of x with y� � u�x�� �That is� we

pick some invertible linear Y � IRn � IRn such that Y��x� � u�x�� x � IRn� Throughout� we

write �y
 for �Y �x��
 for any typical point x in IRn�� For each i � K� we have bii �x � "bi � y
for some "bi in IR

n� It follows from non�degeneracy that f"bi � i � Kg is linearly independent�
There exists some i � K and some &y � IRn with &y� 
� � such that "bj � &y � � for all j 
� i and
"bi � &yi � �� Hence� for any y � Y �S�� y � &y � Y �S�� Then� in order to have y� � c� &y� must

be positive� But in order to have y� � d� &y� must be negative� a contradiction�

We will say that a result applies to % �up to a re�ordering of indices
 if the result

applies after replacing % with a the function x 
� �
%�x���i����j�

�
� for some permutation

� � f�� � � � � ng � f�� � � � � ng�
Since we can� without loss of generality for our purposes� replace � with any measurable

�square root
 of %� it is without loss of generality that we suppose ��x� to be symmetric

for all x�

Lemma A�� If % is non
degenerate� then� up to a re
ordering of indices�

%�x� �


BBBB�
B�u��x� � � � � �

� B�u��x� � � � �
���

���
� � �

���

� � � � � BMuM �x�

�CCCCA � x � S� �A���

where � � M � n� and for i � f�� �� � � � �Mg� Bi is an Ni � Ni positive semi
de�nite

symmetric matrix� with
P

iNi � n� and where u�� � � � � uM are a	ne on IRn into IR� with

linear components that are pairwise linearly independent�

Proof� Because ��x� is symmetric� we have

%ij�x� �

nX
k��

�ik�x��kj�x� �

nX
k��

�ik�x��jk�x��

��



Especially�

%ii�x� �
nX

k��

��ik�x��

Hence� for x such that %ii�x� � �� we must have �
�
ik�x� � � for all k and thus %ij�x� � �

for all j� From this� we will show that %ij� � � is proportional to %ii� � �� proving the result�
There are two possible cases�

�� Suppose %ii� � � is not a constant� By the above reasoning and non�degeneracy� both
%ii and %ij are zero everywhere on bAi� which is a relatively open subset of an �n� ���
dimensional a�ne space� Ai� We can treat Ai as a translation by some �possibly zero�

scaling of bii of the linear subspaceMi orthogonal to bii� Since bAi is relatively open and

%ij is zero everywhere on bAi� bij must also be orthogonal to Mi� and thus bij � kijbii

for some constant kij � We now have aii�bii �x � � � aij�kijbii �x for all x in bAi� This

can only be true if aij � kijaii� Thus� for some constant scalar kij �possibly zero�� we

have %ij � kij%ii�

�� Suppose %ii� � � is constant� In this case� %ij�x� must also be a constant� If not� the

sub�matrix �
%ii�x� %ij�x�

%ji�x� %jj�x�

�
cannot be semi�positive de	nite� shown as follows� There are two sub�cases to consider�

If %jj is constant� and %ij is not� the fact that S is not contained by a strip implies

failure of positive�semi�de	niteness� If %ij is not constant� then� from case ���� %ij�x� �

%ji�x� can be written as kji%jj�x� for some constant scalar kji� The determinant of the

above sub�matrix is then %ii�x�%jj�x��k�ji%�
jj�x�� This determinant can be arbitrarily

negative because S is not contained by a strip� This� however� contradicts the positive�

semi�de	nite nature of %�x��

Proposition A��� Suppose % is non
degenerate� and there is some "x � S such that %�"x�

is positive
de�nite� Then there exists a non
singular constant matrix Q such that

Q%�x�Q� �


BBBB�
v��x� � � � � �

� v��x� � � � �
���

���
� � �

���

� � � � � vn�x�

�CCCCA � x � IRn�

where� for each i� "vi � IR
n � IR is a	ne�

Proof� We can always write %�x� � A � $�x� where A � Ms and $ is of the form

�A���� for linear ui� There exists some non�singular constant matrix P such that PAP� is

��



diagonal� Since P$�x�P� is symmetric and linear in x� it must have the form given by the

right�hand side of �A���� for linear ui� Therefore� up to a re�ordering of indices� we have the

block�diagonal form�

P%�x�P� �


BBBB�
A� �B�u��x� � � � � �

� A� �B�u��x� � � � �
���

���
� � �

���

� � � � � AM �BMuM �x�

�CCCCA � x � IRn

where� for each block i� Ai is diagonal and Bi is symmetric� Consider a particular diagonal

block i� For some "x� as assumed� Ai � Biui�"x� is positive�de	nite� By a result found in

Hohn ������� there exists some non�singular matrix Qi of the dimensions of Ai and Bi such

that Qi�Ai �Biui�"x��Q
�
i is the identity matrix and QiBiQ

�
i is diagonal� Noticing that

Ai �Biui�x� � Ai �Biui�"x� �Bi�ui�x�� ui�"x���

we can let

Q �


BBBB�
Q� � � � � �

� Q� � � � �
���

���
� � �

���

� � � � � QK

�CCCCAP�

Since a diagonal matrix is diagonal even after a re�ordering of indices� we have the result�

Corollary A��� Under the assumptions of the Proposition�

��x� �  


BBBBB�

p
v��x� � � � � �

�
p
v��x� � � � �

���
���

� � �
���

� � � � �
p
vn�x�

�CCCCCA � x � S� �A���

where  is a non
singular matrix and v�� � � � � vn are a	ne functions�

Proof� From Proposition A��� there exists a non�singular matrix Q such that Q%�x�Q� �

'�x� for all x� where '�x� is diagonal for all x� and a�ne in x� Let vi�x� � 'ii�x� and

 � Q��� The conclusion follows immediately�

This implies another characterization� as follows�

��



Corollary A��� % has the properties assumed in Proposition A�
 if and only if

%�x� �

nX
i��

ViV
�
i "wi�x�� �A���

where the vectors V�� � � � � Vn are linearly independent in IRn� the functions "w�� � � � � "wn are

a	ne on IRn and non
negative on S� and the set fx � "wi � �� i � f�� � � � � ngg has an

interior point�

We have by now characterized % and �� � � under the implicit assumption that the state
space D is of the form taken for S� that is� a closed intersection of half�spaces� In fact� we

can and do take D to be the interior of S� and apply conditions �Condition A of Section ��

that prevent the boundary of S from being hit� This is the focus of the remainder of this

appendix�

In order to state the comparison Lemma used in the proof of the Theorem in Section

�� we record the following property of a di
usion function�

Yamada Condition� A function � � IR� � IR satis�es the Yamada Condition if

bounded and measurable� and if there exists a function � � IR� � IR�� strictly increas


ing� continuous� with ���� � ��
R �
��

��u��� du � ��� and j��u� � ��v�j � ��ju � vj� for all
u and v�

For example� � satis	es the Yamada condition if ��u� � min�
p
u� k�� for some constant k�

Lemma A��� Suppose that Z is a standard Brownian motion� � satis�es the Yamada

condition� and � � IR � IR is Lipschitz� Then there is a unique �strong� solution to the

SDE

dYt � ��Yt� dt� ��Yt� dZt� Y� � �� �A���

Suppose� moreover� that Y � is a process satisfying

Y �
t � Y� �

Z t

�

�s ds�

Z t

�

��Y �
t � dZt� �A���

where � is a progressively measurable process such that �t � ��Yt� for all t� Then Y �
t � Yt

for all t almost surely�

Proof� The proof shown in Ikeda and Watanabe ������ pp� �������� implies existence

and uniqueness of the solution to �A���� For the second assertion� we can extend a standard

��



SDE comparison result �for example� as in Protter �������� An extension is called for since

the usual �Gronwall�inequality�based� proof relies on a Lipschitz condition for the di
usion�

It is enough to show that E��Yt � Y �
t �

�� � � for any time t� which we will do with a slight

variation of the Ikeda�Watanabe uniquess proof� Let

�n�x� �

Z x�

�

Z y

�

�n�u� du dy� x � IR�

where �n is de	ned exactly as in Ikeda and Watanabe ������� pages �������� in terms of the

function � satisfying the properties speci	ed in the Yamada Condition� Almost exactly as

in Ikeda and Watanabe� we have �n � C��IR�� � � ��n�u� � �� and �n�u� � u� as n���
Now�

E��n�Yt � Y �
t �� � E

�Z t

�

��n�Ys � Y �
s ����Ys�� �s� ds

�
�
�

�
E

�Z t

�

���n�Ys � Y �
s ����Ys�� ��Y �

s ��
� ds

�
� t

n
�

The equality is an application of Ito�s Lemma� using the fact that ��n and � are bounded�

The inequality follows from the negativity of the 	rst expectation� the Yamada condition�

and the fact that ����u� � �����juj��n� following the calculations in Ikeda and Watanabe
������ pp� ��������� Letting n pass to in	nity� dominated convergence implies that that

� � E��Yt � Y �
t �

�� � lim
n
E��n�Yt � Y �

t �� � lim
n

t

n
� ��

which is the desired result�

Proof of Theorem�

First we take the case in which vi�x� � v�x� � 
� � � x for all i� Then we generalize�
Let f�ng be a positive strictly decreasing sequence of numbers converging to zero� For

each n� let X�n� be the solution of the stochastic di
erential equation de	ned by ����� for

t � �n � inffs � v�X�n�
s � � �ng� and by X�n��t� � X�n���n� for t � �n� This is the process

satisfying ����� that is absorbed at the boundary fx � v�x� � �ng� Since the coe�cient
functions de	ning ����� are uniformly Lipschitz on the domain fx � v�x� � �ng� X�n� is

uniquely well de	ned and is a strong Markov process by standard SDE results�

With �� � �� we can now de	ne a unique process X on the closed time interval �����
by Xt � X

�n�
t for �n�� � t � �n� and by Xt � x� for t � � 	 limn �n� If � � �� almost

surely� then X uniquely solves ����� on ������ as desired� and is strong Markov�

��



We let Vt � v�Xt�� the �volatility
 process� write dVt � ��Xt� dt�
p
Vt�

� dWt� where

��x� � ���ax� b�� Without loss of generality� we can assume that �� is close enough to �

that� using Condition A� we have a constant (� � ��  ���� such that ��x� � (� � � for

all x in the strip fx � � � v�x� � ��g� We can assume that v�x�� � ��� also without loss of

generality� We construct below a strictly positive �comparison volatility
 process &V such

that Vt � &Vt for all t almost surely� With this� �n � &�n � infft � &Vt � �ng � �� almost

surely� completing the proof�

In order to construct &V � we 	rst construct the �excursions
 of X de	ned by passages

of v�Xt� from �� to ��� The excursion time intervals are �T �i�� T
��i��� where T ���� � � and�

for i � ��

T �i� � infft � T ��i� �� � v�Xt� � ��g� T ��i� � infft � T �i� � v�Xt� � ��g�

For t � �T �i�� T ��i��� let

&Vt � �� � �t� T �i��(� �

Z t

T �i�

q
&Vt dZt� �A���

where Z � �� W �that is� Z is a multiple of a standard Brownian motion�� For t in other

�non�excursion� intervals �T ��i�� T �i � ���� let &Vt � Vt� The process &V is strictly positive�

This is obvious o
 excursions� and during excursions follows from Ikeda and Watanabe

�������

We claim that &Vt � Vt for all t almost surely� Clearly this inequality is maintained o


excursions� During the i�th excursion� V is given by

Vt � �� �

Z t

T �i�

��Xs� ds�

Z t

T �i�

p
Vs dZs� �A���

Since (� 
 ��Xt� for all t � �T �i�� T ��i��� the comparison Lemma appearing before this proof
shows that &Vt � Vt during excursions� almost surely� Thus &Vt � Vt for all t� almost surely�

The proof is complete in the case considered� of a single stochastic volatility factor�

Now� for the general case� let

Dn � fx � D � vi�x� � �n� i � f�� � � � � ngg �

As before� there is a unique solution X�n� to ����� in Dn up to the hitting time �n � infft �
mini vi�X

�n�
t � � �ng� and we let X�n��t� � X�n���n� for t � �n� Again we de	ne X as the

��



limit process� The proof proceeds as before� except that there is a volatility comparison

process &Vi for each i� de	ned i by i as above� By exploiting part �b� of Condition A�

essentially the same arguments as above show that� for all i� we have vi�Xt� � &Vit � � for

all t almost surely� The result then follows as in the simpler case 	rst considered�

��
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