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This paper considers an agent maximizing the expected utility of the sum of the terminal value of 
a fixed portfolio of spot market assets and the terminal value of a margin account on a futures 
trading position. Closed-form solutions for the optimal hedging strategy are provided in several 
special cases. 

1. Introduction 

This paper solves the optimal futures hedging problem in several simple 
continuous-time settings, and examines the resultant equilibrium in one case. 
Spot and futures prices are described by vector diffusion processes. A hedge is 
a vector stochastic process specifying a futures position in each futures market. 
Hedging profits and losses are marked to market in an interest-bearing (or 
interest-paying) margin account. A hedge is optimal if it maximizes the 
expected utility of terminal wealth, which is the market value of a committed 
portfolio of spot market assets plus the terminal value of the margin account. 

The special cases solved in this paper are quite restrictive. In particular, in 
all of the cases, futures prices are either martingales or have independent 
normally distributed price increments. In some cases, it has been difficult to 
empirically reject the martingale hypothesis for many contracts. [See, for 
example, Cornell (1977), Dusak (1973), Hansen and Hodrick (1980), and 
Jackson (1985).] Nevertheless, the martingale assumption is extremely restric- 
tive from a theoretical point of view. The Gaussian price process assumption, 
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which unfortunately allows negative prices with nonzero probability, leads to a 
myopic hedging problem at each time: an agent is hedging only local changes 
in wealth. In these cases, the optimal hedges are therefore the same as the 
corresponding static hedges, as in Anderson and Danthine (1981). This is not 
the case with the log-normal price process, which we also examine in special 
cases. 

Our work was completed independently of the paper by Karp (1986) which 
has one of our results in a discrete-time approximation sense. Svensson (1988) 
has complimentary results on a related problem and surveys the literature on 
this topic. Our paper is restricted to explicit solutions to dynamic hedging 
problems for which no published proofs were available. Most other papers on 
dynamic hedging, such as Ho (1984) Breeden (1984) and Adler and 
DeTemple (1988). instead characterize optimal hedging policies in terms of the 
derivatives of the value function assumed to solve the Bellman Equation for 
optimal control. 

The paper is organized as follows. The next section outlines the general 
model. Section 3 presents five special cases and their solutions. Section 4 
exploits the solution in the Gaussian-exponential case to demonstrate equilib- 
ria in dynamic futures markets in closed form. Section 5 presents proofs. 

2. The basic model 

We consider a single agent choosing a futures trading strategy to maximize 
expected utility of wealth at a future time T. in the following setup. 

(A) Let B = (B’, . . . , BN) denote a Standard Brownian Motion in 88 N which 
is a martingale with respect to the agent’s filtered probability space.’ 
Throughout, probabilistic statements are in the context of this filtered 
probability space. For technical convenience, let L denote the space of 
predictable square-integrable processes. That is, 

L = predictable u: [0, T] X 52 + !R 1 E 

where TER, is a time, a is the state space, and predictable means 
measurable with respect to the u-algebra generated by left-continuous 
processes adapted to the agent’s filtration (or, roughly speaking, that u, 
depends only on information available up to time t). 

‘The reader is referred to Krylov (1988) for definitions that we do not provide 
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(B) There exist M assets to be hedged. The value of these assets is described 
by an M-dimensional Ito process S, with the stochastic differential 
representation 

(1) 

where p is M-dimensional, u is (M X N )-dimensional, and p” E L and 

nl” E L for all m and n (which assures that the Ito process S is well 
ieiined). 

(C) There are K futures contracts available for trade. The futures prices are 
given by a K-dimensional Ito process F with the stochastic differential 
representation 

dF,= m,dt + v,dB,, (2) 

where m’! E L and vh)’ E L for all k and n. A futures position is taken by 
marking to market a margin account according to a K-dimensional 
process 8 = (19,. . . , fl K), with the property that B’m as well as each 
element of BTzj is in L (where T indicates transpose). The space 0 of all 
such futures position strategies is then described by 

o= {e/e ‘rn E L and BTv”E L, Vn}. 

At time t, the position 6, in the K contracts is credited with any gains or 
losses incurred by futures price changes, the credits (or debits) are added 
to the agent’s margin account, and the margin account’s current value, 
denoted X,“, is credited with interest at the constant continuously com- 
pounding rate r 2 0. We assume that losses bringing the account to a 
negative level are covered by borrowing at the same interest rate, and 
ignore transactions costs and other institutional features. In a 
continuous-time model, the margin account then has the form 

indicating that the ‘increment’ 6’,d F, to the margin account at time s is 
re-invested at the rate r, implying a corresponding increment of 
er(r395 d F, to the margin account by time t. It is useful for dynamic 
programming purposes to apply Ito’s Lemma in order to obtain the 
equivalent stochastic differential representation 

dX,” = (rX,@ + O’m,)dt + BTvIdBt. 
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(D) 

(E) 
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The agent in question is committed to receiving the value at time T of a 
position in these assets represented by a fixed portfolio ~7 E R”, leaving 
the terminal value rTSr. Given a futures position strategy 8, the total 
wealth of the agent at time T is then W$, where We is the Ito process 
having the stochastic differential representation 

dW,B = ~~ dS, + d X,‘. (4) 

Preferences of the agent over wealth at time T are given by a strictly 
concave function U: Iw --* R, for a von Neumann-Morgenstern utility 
representation E[U( .)I. This leaves the problem 

(5) 

A futures position strategy 0 is defined to be optimal if it solves (5). 

3. Cases and solutions 

We will delineate special cases of the problem defined in the previous 
section, along with their solutions. Proofs appear in the final section. The 
proofs use several different methods, verification of the necessity and suffi- 
ciency of the Bellman Equation, direct calculation, and the theory of second- 
order stochastic dominance. 

Case 1: Guussian prices - Martingales futures - Smooth utility 

Our assumption here is that the processes S and F are Gaussian. That is, I”, 
u, m, and u are deterministic’ processes which, for technical convenience, are 
bounded, with c’,cJ,? nonsingular for all t. (The family of solutions is also easily 
derived when c’,v: IS singular.) For this case, we also assume that m = 0, the 
martingale futures price hypothesis discussed in the introduction. Finally, we 
assume that U is ‘smooth’, meaning monotonic, twice continuously differen- 
tiable. satisfying a Lipschitz condition, with CJ’ and U” each satisfying a 
(linear) growth condition. [The function U satisfies a Lipschitz condition if 
there exists a constant k E R such that 1 U(w) - U(w’)l 5 klw - w’l for all 
real numbers w and u”. A function f : Iw -+ R satisfies a (linear) growth 
condition if there exists a constant k E R such that If(x)] < k(1 + Ixj) for all 
x E R.] We have our first result. 

‘That is. for example. there exists a measurable function /: [O, T] + Iw” such that pr =!(I). 
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Solution 1. Under the assumptions of case 1, the optimal futures position 
strategy is 8*, where 

e,* = -e--)( “,v;)-lv,fJ;B. (6) 

In this case, the solution does not depend on p or U. Since m = 0, the 
demand for futures is based only on the hedge they provide. That is, futures 
are only used to control ‘noise’ in the portfolio process. The optimal manner 
of doing so depends solely on the structure of the ‘noise’ in the price 
processes, not on the structure of utility (given that it is concave), nor on the 
drift of the assets’ price processes. 

Case 2: Gaussian prices - Exponential utility 

Our assumption in case 2 is that prices are Gaussian, in the sense of case 1, 
and that U(w) = -e-Y”‘, where y > 0 is a constant measure of risk aversion. 

Solution 2. Under the assumptions of case 2, the optimal futures position 
strategy is t3*, where 

(j,* = -e- ‘(r-‘)( v,v:)-‘( v,oy77 - m/y). (7) 

This is completely analogous with the static hedge, as shown for example, in 
Bray (1981). One can also write out an obvious analogue in the discrete-time 
version of case 2. 

Case 3: Martingale prices - Mean-variance preferences 

This case is of limited theoretical interest, since we make two unrealistic 
assumptions. First, prices are martingales (p = m = 0). Second, the agent’s 
utility is mean-variance, meaning U is quadratic. Under these two assump- 
tions, problem (5) is equivalent to the problem 

where var( .) denotes variance. Again for technical convenience, we assume, 
for all t, that v,v: is nonsingular. 

Solution 3. Under the assumptions of case 3, the optimal futures position 
strategy 9* is given by 

6,* = -epr(‘-‘)( v,v~)d1v,o~7r. 
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Case 4: Log-normal asset prices - Martingale futures prices - 
Mean-variance utility 

In the previous special cases, the solutions are directly comparable to 
analogous solutions in the static and discrete-time cases, as in the results of 
Anderson and Danthine (1981, 1983a, b). Now, however, we assume that asset 
price increments are lognormal. Taking the mth asset for example, this means 
that there exist deterministic processes3 g” and h” such that 

dSln’= S,“‘g:‘dt + S,“‘hydB,. (9) 

[A special case is geometric Brownian Motion.] Furthermore, for this case, 
futures prices are martingales (m = 0), and utility is mean-variance, in the 
sense of case 3. In this case, the continuous-time solution is not obtained by a 
simple analogy from the discrete-time case. nor is this discrete-time solution as 
convenient to represent as the continuous-time solution. 

Solution 4. Under the assumptions of case 4, the optimal futures position 
strategy is 8*, where 

(j* = _e-,-(r-l) 
f (v,v:) -1”,H;7r, (10) 

where H, is the M X N matrix whose mth row is hyS”‘exp[ /I’gf’ - ihp’hy ds]. 

For the case of M=K=l, with dS,=S,gdt+S,hdB, and dF,=F,JdB,, 
for constant J, g. and h, we then have the simple hedging calculation: 

_ - 

B,*= -exp(-[r--g+ +JiTh](T-t))~$~. f (11) 

In subsequent work. Dufhe and Richardson (1989) have extended the solution 
for this case to that for nonmartingale futures prices, using a different solution 
technique. 

Case 5: Log-normal asset prices - Delivery basis risk only 

We take the case of log-normal asset price increments, as given by (9), and 
assume that the futures contracts are for delivery of the same respective assets 
at some time 7 2 T. Of course, at delivery, F, = S,. For case 5, we assume the 
so-called expectations hypothesis: at any time t, we have F, = E,[S,], where E, 

‘As earlier. y’” : [0, T] + R and h”’ : [O. T] --* W * are bounded measurable functions. 
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denotes conditional expectation4 at time t. No (additional) utility assumptions 
are invoked. 

Solution 5. Under the assumptions of case 5, the optimal futures position 
strategy is b*, where 

e,* = -e-“r-” GrT, 02) 

where G, is the M X M diagonal matrix with mth diagonal element exp[ j,kT ds]. 

4. Equilibrium in the Gaussian model 

Consider an economy with a finite number, I, of agents. Let pit be agent i’s 
spot commitment at time t (where pi: [0, T] + W M is a bounded measur- 
able function) and let U,(w) = -e-Yc” represent the agent’s Von 
Neumann-Morgenstern utility for terminal wealth. Then, by an easy extension 
of case 2, the agent’s optimal hedging strategy at time t, assuming r = 0, is5 

et1 = - (vT)F’[ wT:Pit - m,/v,]. 
Market clearing, c:=,0,, = 0, implies that 

I 

ur(7: c P,r 
,=I 

mr= I 

c WY,) . 
t=l 

(13) 

One can view a futures contract as specified exogenously by the process v,, 
and treat m, as chosen so that markets clear. We have the following properties 
in equilibrium. First, m, is proportional to the net spot position c;_lpit. 
Second, m, is proportional to the covariance between the futures contracts 
and spot prices. A high covariance term indicates that the futures contract 
provides a good hedge, increasing the demand for hedging. The higher 
expected return to the futures contract (which is of a sign that attracts 
investors to positions opposite the excess demand for hedges) offsets the excess 
demand. Finally, m, is proportional to the risk aversion of investors. Higher 

4Formally, 5 = E[$Ie], where 5 denotes the o-algebra generated by {B,: 0 s s 5 t), 
representing information available at time 1. 

‘The case of r + 0 can also be solved. The solution is the obvious extension of what we obtain if 
T is the same for all agents. If T differs across agents the solution is still straightforward to 
compute. 
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levels of risk aversion (lower y,‘s) correspond to a higher (in absolute 
value) m,. 

Conditions under which the expectations hypothesis holds follow quite 
naturally from (13). Any of the following is sufficient: (i) cJ=tplt = 0, 
(ii) u,u,~ = 0. or (iii) y, = 0 for some i. In case (i) there is no excess demand for 
hedging. This means that agents can costlessly insure themselves since there 
exists someone who wishes to take an opposite position6 and so there is no 
need to attract ‘speculators’ into the market. [For a similar result see Anderson 
and Danthine (1983a).] In case (ii) the futures provide no hedge, while in case 
(iii) there is a risk-neutral agent who drives out any expected returns. 

We remark that, substituting (13) into the expression for 8,,, equilibrium 
implies that 

i 

iP,* 
e,, = - ( up:) ~-lU,u; plr - 

r=l 
, 

L Y, c (l/Y,) 
t=l 

(14) 

which leaves a formula for open interest as a function of exogenous param- 
eters. 

5. Proofs 

Case 1 is proved using Bellman’s Principle. Cases 2, 3, and 4 are solved by 
direct calculation. Case 5 is solved by observing that the theory of second-order 
stochastic dominance applies in a simple way. 

Case I 

Let W” define the wealth process that would obtain starting at time t and 
with futures strategy 8, translating time parameters back t time units to time 
0, or 

d W,” = u ,+,ds + b,+.sdB,, 

where u,,, = rX,B’ + 7rT/.l,+ s + d,~,m,+, and br+s=rTu,+,, + et~su,+,y and X” 

‘Remark that in solution 2 the agent’s risk aversion enters only through the term linked to the 
expected return III. The agent’s ‘hedging demand’ depends only on the spot position and 
covariance structure of the nrices and is independent of risk aversion. The intuition for this is the 
same as that given following solution 1. 1 
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is the t-translate of the process X defined by 

dXe’= oL ., ,+,ds + P,+,dBs, 

where a,+,, = rX,f’ + 8,;sm,+s and /3,+, = 0,~,u,+,. We define the value func- 
tion V:R’x[O,T]+R by 

where W{’ = u’ and X,“’ = x. We then have the Bellman equation: 

- i 

d2V a*v d2V 
+ t tr ,w,b:b,+2 -b;fi, + - 

awax dx2 KP, = 09 (15) 

where tr( .) indicates trace, as a necessary and sufficient condition for optimal- 
ity under our assumptions [provided that V satisfies V(T, w) = U(w) and a 
growth condition]. The reader is referred to Krylov (1980, especially theorem 
5.3.14) for a rigorous derivation of (15). 

We now demonstrate that the futures position 8* defined in solution 1 
induces a function which satisfies (15) and is the value function. We have 
assumed that the utility function U : R + R is twice continuously differentiable 
and satisfies a Lipschitz condition. We have also assumed that u’ and U” 
satisfy a growth condition. Let 0 * be defined as in solution 1, and let 
?:lR2X[0,T]+R bedefinedby 

where Woe*’ = w and Xi*’ = x. The drift function a, and the diffusion function 
b, are then bounded measurable functions of time. It follows from standard 
partial differential equations theory [for example, Krylov (1980, theorem 
2.9.10)] that c is the solution of the partial differential equation: 

(16) 
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where u, and h, are evaluated for strategy i3* with boundary condition 
f( ~1, X. T) = U(w), ( w. x) E [w 2, and furthermore, that P satisfies growth and 
Lipschitz conditions. 

We differentiate inside the expectations operator to observe that 

a’c; 
~[exp(r[T-r])-l]2=~[exp(r[T-i])-1]=$. 

An argument justifying differentiation inside the expectations operator ap- 
pears in the appendix. Since i3*V/8w2 = E[ c?‘U/JW’] < 0 (again, we differ- 
entiate inside the expectations sign by an argument presented in the appendix) 
and m, = 0, it follows that 0, E R K maximizes 

ar; ari a$ a2P a+ 
~+~u,+~a,+$tr ,,rb:b,+ 2 aw,xb:P~ + ,x,&X 

if and only if it minimizes 

tr( b:b, + 2b,?&[exp(r[T- r]) - l] + ,8:P,[exp(r[T- t]) - 11’). 

Therefore, since S,* minimizes (17), it follows from (16) that 3 satisfies (15) 
and we can apply stochastic coAntrol verification theorem [for example, Krylov 
(1980. theorem 5.3.14)]. Thus I’= V and 8* is the optimal control. 

Case 2 

Let Y;.“’ = exp( - yl+‘f’). We apply Ito’s Lemma to find that 

tr(b:+,b,+,) - ~a,+~ ds 1 
+ I T-‘Yff( -yb,+,) de,. 

0 

Thus, 

E[ Y$,] = Y$+ E G tr(b:+,b,+,) - ~a,+~ ds . 1 1 

(18) 

Since 8* minimizes (~*/2)tr(b:+,b,+,) - ya,,, at each s, it follows from the 
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structure of Ye’ given in (18) that 8* minimizes E[ Jor-‘Y,B’[(y2/2)tr(b:+,b,,,) 

-y~,+,~]d.s]. Hence, 8* maximizes E[ -exp( -VW:‘,)] = -E[Y:I,]. 

Case 3 

As described before, in case 3 the agent’s expected utility maximization 
problem is equivalent to (8). For a given futures strategy 8, since p = m = 0, 
the definition of variance implies that 

which can also be written [referring, for example, 
the form 

to Oksendal(l980, ch. 3)] in 

This expression is minimized pointwise by 

e, = - ( u,u:) -lUta,h,. 

In order to account for interest earned on margin, from eq. (3) we replace u, 
with e”(r-‘)u,, which provides expression (10). 

Case 4 

We merely observe that, by Ito’s Lemma, 

log@:‘) = log(S,“‘) + [[ 8,” - th:Q:] ds + Jdhe dB,. 

We can therefore write 

SF = exp@ g:’ - @;‘h,“] d+“‘, 

where $“I is the martingale defined by 

d$“l=$“‘h:‘dB, and $“=S$. 
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We can then apply case 3, after converting to the asset commitment 7j, defined 

by 

7j,, = r,,‘,,exp g,” - :hy’h,“] ds, 

and the diffusion term 3, defined by 

‘[g:’ - :h;Thy] ds S,“%~. 
i 

Case 5 

This case is particularly easy. Under the expectations hypothesis and since S 
is log-normal, the futures price process is described by 

Thus, 

d 4”’ = exp 
T 

d St”’ - g:’ exp 
i/ i 

g,” ds S,“’ d t 
f 

or 

d 4”’ = exp 

Given the expression for dF, we note that var(B’;*), the variance of the 
terminal wealth induced by the trading strategy proposed in (12) is zero; all 
risk is eliminated. Hence, F is a martingale and it follows that any other 
futures position strategy induces a terminal wealth which is a mean-preserving 
spread of IV,“‘. By the theory of second-order stochastic dominance [Rothschild 
and Stiglitz (1970)] and the concavity of 0: the solution is verified. 

Appendix 

We now discuss sufficient conditions for differentiation inside the expecta- 
tions operator, which we applied in the proof of case 1. Define an open 
interval I = ( wl. wz), I c R. The first two conditions required by Lang (1969, 
p. 375) are: E[j V(@*)]] < cc and E[] u’(W+!*)]] -C cc for all W, E I. Since 
E[ 1 W,“*I] < 00, these conditions follow from the growth conditions satisfied by 
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U and u’. The third condition is that there exists a real-valued function h with 
E[]h(W:*)]] < cc such that ]U’(W~‘)] 2 ]h(W~‘)] for all W,EZ. This condi- 
tion is met when we define h by h(x) = U’( w2 + x). Lemma 2 of Lang (1969, 
p. 375) then allows us to differentiate inside the expectations operator for any 
W, E I. Since we can apply this argument for any open interval Z c Iw, it holds 
for all W, E R. 
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