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Abstract

This is a survey of the basic theoretical foundations of intertemporal asset pricing
theory. The broader theory is first reviewed in a simple discrete-time setting,
emphasizing the key role of state prices. The existence of state prices is equivalent to
the absence of arbitrage. State prices, which can be obtained from optimizing investors’
marginal rates of substitution, can be used to price contingent claims. In equilibrium,
under locally quadratic utility, this leads to Breeden’s consumption-based capital asset
pricing model. American options call for special handling. After extending the basic
modeling approach to continuous-time settings, we turn to such applications as the
dynamics of the term structure of interest rates, futures and forwards, option pricing
under jumps and stochastic volatility, and the market valuation of corporate securities.
The pricing of defaultable corporate debt is treated from a direct analysis of the
incentives or ability of the firm to pay, and also by standard reduced-form methods that
take as given an intensity process for default. This survey does not consider asymmetric
information, and assumes price-taking behavior and the absence of transactions costs
and many other market imperfections.

Keywords
asset pricing, state pricing, option pricing, interest rates, bond pricing

JEL classification: G12, G13, E43, E44
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1. Introduction

This is a survey of “classical” intertemporal asset pricing theory. A central objective of
this theory is to reduce asset-pricing problems to the identification of “state prices”, a
notion of Arrow (1953) from which any security has an implied value as the weighted
sum of its future cash flows, state by state, time by time, with weights given by
the associated state prices. Such state prices may be viewed as the marginal rates
of substitution among state-time consumption opportunities, for any unconstrained
investor, with respect to a numeraire good. Under many types of market imperfections,
state prices may not exist, or may be of relatively less use or meaning. While market
imperfections constitute an important thrust of recent advances in asset pricing theory,
they will play a limited role in this survey, given the limitations of space and the priority
that should be accorded to first principles based on perfect markets.

Section 2 of this survey provides the conceptual foundations of the broader theory
in a simple discrete-time setting. After extending the basic modeling approach to a
continuous-time setting in Section 3, we turn in Section 4 to term-structure modeling,
in Section 5 to derivative pricing, and in Section 6 to corporate securities.

The theory of optimal portfolio and consumption choice is closely linked to the
theory of asset pricing, for example through the relationship between state prices
and marginal rates of substitution at optimality. While this connection is emphasized,
for example in Sections 2.3-2.4 and 3.12-3.13, the theory of optimal portfolio and
consumption choice, particularly in dynamic incomplete-markets settings, has become
so extenstve as to defy a proper summary in the context of a reasonably sized survey
of asset-pricing theory. The interested reader is especially directed to the treatments
of Karatzas and Shreve (1998) and Schroder and Skiadas (1999, 2002).

For ease of reference, as there is at most one theorem per sub-section, we refer to
a theorem by its subsection number, and likewise for lemmas and propositions. For
example, the unique proposition of Section 2.9 is called “Proposition 2.9”.

2. Basic theory

Radner (1967, 1972) originated our standard approach to a dynamic equilibrium of
“plans, prices, and expectations,” extending the static approach of Arrow (1953) and
Debreu (1953).' After formulating this standard model, this section provides the
equivalence of no arbitrage and state prices, and shows how state prices may be
derived from investors’ marginal rates of substitution among state-time consumption
opportunities. Given state prices, we examine the pricing of derivative securities, such

' The model of Debreu (1953) appears in Chapter 7 of Debreu (1959). For more details in a finance
setting, see Dothan (1990). The monograph by Magill and Quinzii (1996) is a comprehensive survey of
the theory of general equilibrium in a setting such as this.
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as European and American options, whose payoffs can be replicated by trading the
underlying primitive securities.

2.1. Setup

We begin for simplicity with a setting in which uncertainty is modeled as some finite
set Q of states, with associated probabilities. We fix a set F of events, called a tribe,
also known as a g-algebra, which is the collection of subsets of €2 that can be assigned
a probability. The usual rules of probability apply.> We let P(4) denote the probability
of an event 4.

There are T + 1 dates: 0,1, ..., T. At each of these, a tribe F;, C F is the set of
events corresponding to the information available at time #. Any event in F; is known
at time ¢ to be true or false. We adopt the usual convention that F, C F; whenever
t < s, meaning that events are never “forgotten”. For simplicity, we also take it that
events in Fy have probability 0 or 1, meaning roughly that there is no information at
time ¢ = 0. Taken altogether, the filtration F = {Fy, ..., Fr}, sometimes called an
information structure, represents how information is revealed through time. For any
random variable Y, we let E,(Y) = E(Y | F;) denote the conditional expectation of ¥
given F;. In order to simplify things, for any two random variables Y and Z, we always
write “Y = Z” if the probability that ¥ = Z is zero.

An adapted process is a sequence X = {Xp, ..., Xr} such that, for each ¢, X; is a
random variable with respect to (£2, F;). Informally, this means that X; is observable
at time ¢. An adapted process X is a martingale if, for any times ¢ and s > ¢, we have
E(Xs) = X:.

A security is a claim to an adapted dividend process, say 0, with &, denoting the
dividend paid by the security at time ¢. Each security has an adapted security-price
process S, so that S; is the price of the security, ex dividend, at time ¢. That is, at each
time ¢, the security pays its dividend &; and is then available for trade at the price S;.
This convention implies that &y plays no role in determining ex-dividend prices. The
cum-dividend security price at time ¢ is S; + &;.

We suppose that there are N securities defined by an R"-valued adapted dividend
process 8 = (60, ..., ™). These securities have some adapted price process
S = (D, ..., SM). A trading strategy is an adapted process 6 in R". Here, 6,
represents the portfolio held after trading at time ¢. The dividend process 6 generated
by a trading strategy 0 is defined by

‘Stezet—l (S +8)-6 -8, @

with “6_,” taken to be zero by convention.

2 The triple (2, F, P) is a probability space, as defined for example by Jacod and Protter (2000).
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2.2. Arbitrage, state prices, and martingales

Given a dividend-price pair (5, ) for N securities, a trading strategy 6 is an arbitrage
if 8% > 0 (that is, if 8% > 0 and 8° = 0). An arbitrage is thus a trading strategy
that costs nothing to form, never generates losses, and, with positive probability, will
produce strictly positive gains at some time. One of the precepts of modern asset
pricing theory is a notion of efficient markets under which there is no arbitrage. This
is a reasonable axiom, for in the presence of an arbitrage, any rational investor who
prefers to increase his dividends would undertake such arbitrages without limit, so
markets could not be in equilibrium, in a sense that we shall see more formally later in
this section. We will first explore the implications of no arbitrage for the representation
of security prices in terms of “state prices”, the first step toward which is made with
the following result.

Proposition. There is no arbitrage if and only if there is a strictly positive adapted
process T such that, for any trading strategy 0,

T
E (Z n,é?) =0.
t=0

Proof: Let © denote the space of trading strategies. For any 8 and ¢ in © and scalars
a and b, we have ad? + b8? = 5°+5¢_ Thus, the marketed subspace M = {8%: 6 € ©}
of dividend processes generated by trading strategies is a linear subspace of the space L
of adapted processes.

Let L, = {¢ € L: ¢ » 0}. There is no arbitrage if and only if the cone L, and
the marketed subspace M intersect precisely at zero. Suppose there is no arbitrage.
The Separating Hyperplane Theorem, in a version for closed convex cones that is
sometimes called Stiemke’s Lemma (see Appendix B of Duffie (2001)) implies the
existence of a nonzero linear functional F such that F(x) < F(y) for each x in M and
each nonzero y in L,. Since M is a linear subspace, this implies that F(x) = 0 for each
x in M, and thus that F(y) > 0 for each nonzero y in L.. This implies that F is strictly
increasing. By the Riesz representation theorem, for any such linear function F there
is a unique adapted process 7, called the Riesz representation of F, such that

T
F(x)=E (Z n,x,> , xelL

t=0

As F is strictly increasing, 7t is strictly positive, that is, P(s, > 0) =1 for all ¢.
The converse follows from the fact that if ° > 0 and 7 is a strictly positive process,
then E(Y._, m:0f) > 0. O
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For convenience, we call any strictly positive adapted process a deflator. A deflator 7
is a state-price density if, for all ¢,

T
1
S==E | Y ms). )
JE; .
j=t+1
A state-price density is sometimes called a state-price deflator, a pricing kernel, or a
marginal-rate-of-substitution process.
For ¢t = T, the right-hand side of Equation (2) is zero, so St = 0 whenever there is
a state-price density. It can be shown as an exercise that a deflator 7 is a state-price
density if and only if, for any trading strategy 0,

T
9,-S,=ﬂitE, AZ md! |, t<T, 3)
J=t+1
meaning roughly that the market value of a trading strategy is, at any time, the state-
price discounted expected future dividends generated by the strategy.

The gain process G for (4,S5) is defined by G, = S, + ,t'=1 o;, the price plus
accumulated dividend. Given a deflator y, the deflated gain process GV is defined
by G/ = 1S + Jt.:] ¥;6;. We can think of deflation as a change of numeraire.

Theorem. The dividend—price pair (9, S) admits no arbitrage if and only if there is a
state-price density. A deflator 7 is a state-price density if and only if St = 0 and the
state-price-deflated gain process G™ is a martingale.

Proof: It can be shown as an easy exercise that a deflator 7 is a state-price density if
and only if Sy = 0 and the state-price-deflated gain process G” is a martingale.

Suppose there is no arbitrage. Then Sy = 0, for otherwise the strategy 6 is an
arbitrage when defined by 6, = 0, t < T, 0y = —Sr. By the previous proposition,
there is some deflator 7 such that E(ZLO 89m,) = 0 for any strategy 6.

We must prove Equation (2), or equivalently, that G* is a martingale. Doob’s
Optional Sampling Theorem states that an adapted process X is a martingale if and
only if E(X;) = X, for any stopping time 7 < 7. Consider, for an arbitrary security n
and an arbitrary stopping time 7 < 7T, the trading strategy 6 defined by 6® = 0 for
k=nand 8" =1, <1, with 6” =0, t > 7. Since E(Y.,_,m6) =0, we have

T
E (—S(()")Jro + Z A 6,(") + Jt,Sﬁ")) =0,

t=1

implying that the T-deflated gain process G™" of security n satisfies Gy = E(G7™).
Since 7 is arbitrary, G is a martingale, and since » is arbitrary, G”" is a martingale.

This shows that absence of arbitrage implies the existence of a state-price density.
The converse is easy. [J
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The proof is motivated by those of Harrison and Kreps (1979) and Harrison and
Pliska (1981) for a similar result to follow in this section regarding the notion of an
“equivalent martingale measure”. Ross (1987), Prisman (1985), Kabanov and Stricker
(2001), and Schachermayer (2001) show the impact of taxes or transactions costs on
the state-pricing model.

2.3. Individual agent optimality

We introduce an agent, defined by a strictly increasing? utility function U on the
set L, of nonnegative adapted “consumption” processes, and by an endowment process
e in L,. Given a dividend-price process (J,5), a trading strategy 6 leaves the agent
with the total consumption process e + 6°. Thus the agent has the budget-feasible
consumption set

C={e+d8’cL,:0c 0},
and the problem

sup U(c). 4)
ceC

The existence of a solution to Problem (4) implies the absence of arbitrage.
Conversely, if U is continuous,* then the absence of arbitrage implies that there exists
a solution to Problem (4). (This follows from the fact that the feasible consumption
set C is compact if and only if there there is no arbitrage.)

Assuming that (4) has a strictly positive solution ¢* and that U is continuously
differentiable at c*, we can use the first-order conditions for optimality to characterize
security prices in terms of the derivatives of the utility function U at ¢*. Specifically, for
any c in L, the derivative of U at ¢* in the direction c is g’(0), where g(a) = U(c* + ac)
for any scalar ¢ sufficiently small in absolute value. That is, g’(0) is the marginal rate
of improvement of utility as one moves in the direction ¢ away from c*. This directional
derivative is denoted VU(c*; c). Because U is continuously differentiable at c¢*, the
function that maps c to VU(c*; ¢) is linear. Since 8° is a budget-feasible direction of
change for any trading strategy 0, the first-order conditions for optimality of ¢* imply
that

VU(*; 8% =0, 0Oeo.
We now have a characterization of a state-price density.
3 A function f: L — R is strictly increasing if (c) > f(b) whenever ¢ > b,

4 For purposes of checking continuity or the closedness of sets in L, we will say that ¢, converges to
cif E[Z,Tzo |€.() — c(®)|]] = 0. Then U is continuous if U(c,) — U(c) whenever ¢, — c.
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Proposition. Suppose that Problem (4) has a strictly positive solution c* and that U
has a strictly positive continuous derivative at c*. Then there is no arbitrage and a
state-price density is given by the Riesz representation 7t of VU(c"), defined by

T
VU(c*;x)=E (Zﬂ,x,) , x € L.

t=0

The Riesz representation of the utility gradient is also sometimes called the marginal-
rates-of-substitution process. Despite our standing assumption that U is strictly
increasing, VU(c*; -) need not in general be strictly increasing, but is so if U is
concave.

As an example, suppose U has the additive form

U(l)=F

T
> u,(ct)] ,  c€lL, ®)

t=0

for some u;: R, — R, ¢ > 0. It is an exercise to show that if VU(c) exists, then

VU@ x)=E

T
Zu:(c,)x,} : (6)

t=0
If, for all ¢, u, is concave with an unbounded derivative and e is strictly positive, then
any solution ¢* to Equation (4) is strictly positive.

Corollary. Suppose U is defined by Equation (5). Under the conditions of the
Proposition, for any time t < T,

1 *
S = mEz [M;Jrl(CtJrl)(S,Jrl +6t+1)] .

This result is often called the stochastic Euler equation, made famous in a time-
homogeneous Markov setting by Lucas (1978). A precursor is due to LeRoy (1973).

2.4. Habit and recursive utilities

The additive utility model is extremely restrictive, and routinely found to be
inconsistent with experimental evidence on choice under uncertainty, as for example in
Plott (1986). We will illustrate the state pricing associated with some simple extensions
of the additive utility model, such as “habit-formation” utility and “recursive utility”.
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An example of a habit-formation utility is some U: L, — R with

T
Z u(cy, ht)] s

t=0

U(c)=E

where u: R, x R — R is continuously differentiable and, for any ¢, the “habit” level
of consumption is defined by A, = th.:l o;c;_; for some a € ]Rf. For example, we
could take @ = y/ for y € (0, 1), which gives geometrically declining weights on
past consumption. A natural motivation is that the relative desire to consume may be
increased if one has become accustomed to high levels of consumption. By applying
the chain rule, we can calculate the Riesz representation 77 of the gradient of U at a
strictly positive consumption process ¢ as

T = ucler, hy) + E, (Z up(cs, hs) ast> B

s>t

where u, and u;, denote the partial derivatives of » with respect to its first and second
arguments, respectively. The habit-formation utility model was developed by Dunn
and Singleton (1986) and in continuous time by Ryder and Heal (1973), and has been
applied to asset-pricing problems by Constantinides (1990), Sundaresan (1989) and
Chapman (1998).

Recursive utility, inspired by Koopmans (1960), Kreps and Porteus (1978) and
Selden (1978), was developed for general discrete-time multi-period asset-pricing
applications by Epstein and Zin (1989), who take a utility of the form U(c) = ¥y,
where the “utility process” V' is defined recursively, backward in time from 7', by

Vt =F(ct7 ~I/t+1 |‘E)9

where ~V, 1 | F, denotes the probability distribution of V., given F;, where F is a
measurable real-valued function whose first argument is a non-negative real number
and whose second argument is a probability distribution, and finally where we take
Vri1 to be a fixed exogenously specified random variable. One may view V; as
the utility at time ¢ for present and future consumption, noting the dependence on
the future consumption stream through the conditional distribution of the following
period’s utility. As a special case, for example, consider

F(x,m)=f (x, E[K(Yn)]), (M

where f is a function in two real variables, A(-) is a “felicity” function in one variable,
and Y,, is any random variable whose probability distribution is m. This special case
of the “Kreps—Porteus utility” aggregates the role of the conditional distribution of
future consumption through an “expected utility of next period’s utility”. If # and J
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are concave and increasing functions, then U is concave and increasing. If 4(v) = v

and if £ (x,y) = u(x)+ By for some u: R, — R and constant § > 0, then (for V7, = 0)
we recover the special case of additive utility given by

U(c)=E

Zﬂ’u(c;)} :

“Non-expected-utility” aggregation of future consumption utility can be based,
for example, upon the local-expected-utility model of Machina (1982) and the
betweenness-certainty-equivalent model of Chew (1983, 1989), Dekel (1989) and Gul
and Lantto (1990). With recursive utility, as opposed to additive utility, it need not be
the case that the degree of risk aversion is completely determined by the elasticity of
intertemporal substitution.

For the special case (Equation 7) of expected-utility aggregation, and with
differentiability throughout, we have the utility gradient representation

T =fi o EcTh (Vs DD [ (e B Th (Vs DD Ey [ (Vo))

s <t

where f; denotes the partial derivative of f with respect to its ith argument.

Recursive utility allows for preference over early or late resolution of uncertainty
(which have no impact on additive utility). This is relevant for asset prices, as for
example in the context of remarks by Ross (1989), and as shown by Skiadas (1998)
and Duffie, Schroder and Skiadas (1997). Grant, Kajii and Polak (2000) have more to
say on preferences for the resolution of information.

The equilibrium state-price density associated with recursive utility is computed in a
Markovian setting by Kan (1995).3 For further justification and properties of recursive
utility, see Chew and Epstein (1991) and Skiadas (1997, 1998). For further implications
for asset pricing, see Epstein (1988, 1992), Epstein and Zin (1999) and Giovannini and
Weil (1989).

2.5. Equilibrium and Pareto optimality

Now, we explore the implications of multi-agent equilibrium for state prices. A key
objective is to link state prices with important macro-economic variables that are,
hopefully, observable, such as total economy-wide consumption.

Suppose there are m agents. Agent i is defined as above by a strictly increasing
utility function U;: L, — R and an endowment process ¢ in L,. Given a dividend

5 Kan (1993) further explored the utility gradient representation of recursive utility in this setting.
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process & for N securities, an equilibrium is a collection (8(), ..., 8" S), where S
is a security-price process and, for each agent i, 6() is a trading strategy solving

sup U; (e(i) + 66) s
0co

with 37, 69 =0.

We define markets to be complete if, for each process x in L, there is some trading
strategy 6 with ¢ = x;, ¢ > 1. Complete markets thus means that any consumption
process x can be obtained by investing some amount at time 0 in a trading strategy
that, at each future period ¢, generates the dividend x;.

The First Welfare Theorem is that complete-markets equilibria provide efficient
consumption allocations. Specifically, an allocation (c(V, ..., ¢™) of consumption
processes to the m agents is feasible if ¢ + - -+ +c™ < e+ ... + €™ and is Pareto
optimal if there is no feasible allocation (b1, ..., b") such that U;(b?) > Ui(c?)
for all i, with strict inequality for some i. Any equilibrium (67, ..., 8, §) has an
associated feasible consumption allocation (c", ..., ¢™) defined by letting ¢ — e®
be the dividend process generated by 6.

First Welfare Theorem. Suppose (07, ..., 0 S) is an equilibrium and markets
are complete. Then the associated consumption allocation is Pareto optimal.

An easy proof is due to Arrow (1951). Suppose, with the objective of obtaining
a contradiction, that (c(V, ..., ¢™) is the consumption allocation of a complete-
markets equilibrium and that there is a feasible allocation (b, ..., ™) such that
U, (b)Y > Uyc?) for all i, with strict inequality for some i. Because of equilibrium,
there is no arbitrage, and therefore a state-price density 7. For any consumption
process x, let = - x = E(3, mx,;). We have - B9 > - ¢, for otherwise,
given complete markets, the utility of ¢ can be increased strictly by some feasible
trading strategy generating b — ¢, Similarly, for at least some agent, we also have
b > . D, Thus

mZb(” >H'Zc(i)=JT-Ze(i),
i i i

the equality from the market-clearing condition >, 6¥ = 0. This is impossible,
however, for feasibility implies that >, 5% < Y, ¢!, This contradiction implies the
result.

Duffie and Huang (1985) characterize the number of securities necessary for
complete markets. Roughly speaking, extending the spanning insight of Arrow (1953)
to allow for dynamic spanning, it is necessary (and generically sufficient) that there
are at least as many securities as the maximal number of mutually exclusive events of
positive conditional probability that could be revealed between two dates. For example,
if the information generated at each date is that of a coin toss, then complete markets
requires a minimum of two securities, and almost any two will suffice. Cox, Ross
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and Rubinstein (1979) provide the classical example in which one of the original
securities has “binomial” returns and the other has riskless returns. That is, S = (Y, Z)
is strictly positive, and, for all ¢+ < T, we have 6, = 0, ¥;,1/Y; is a Bernoulli trial,
and Z, . 1/Z, is a constant. More generally, however, to be assured of complete markets
given the minimal number of securities, one must verify that the price process, which
is endogenous, is not among the rare set that is associated with a reduced market
span, a point emphasized by Hart (1975) and dealt with by Magill and Shafer (1990).
In general, the dependence of the marketed subspace on endogenous security price
processes makes the demonstration and calculation of an equilibrium problematic.
Conditions for the generic existence of equilibrium in incomplete markets are given
by Duffie and Shafer (1985, 1986). The literature on this topic is extensive. 5

Hahn (1994) raises some philosophical issues regarding the possibility of complete
markets and efficiency, in a setting in which endogenous uncertainty may be of concern
to investors. The Pareto inefficiency of incomplete markets equilibrium consumption
allocations, and notions of constrained efficiency, are discussed by Hart (1975), Kreps
(1979) (and references therein), Citanna, Kajii and Villanacci (1994), Citanna and
Villanacci (1993) and Pan (1993, 1995).

The optimality of individual portfolio and consumption choices in incomplete
markets in this setting is given a dual interpretation by He and Pages (1993). [Girotto
and Ortu (1994) offer related remarks.] Methods for computation of equilibrium
with incomplete markets are developed by Brown, DeMarzo and Eaves (1996a,b),
Cuoco and He (1994), DeMarzo and Eaves (1996) and Dumas and Maenhout (2002).
Kraus and Litzenberger (1975) and Stapleton and Subrahmanyam (1978) gave early
parametric examples of equilibrium.

2.6. Equilibrium asset pricing

We will review a representative-agent state-pricing model of Constantinides (1982).
The idea is to deduce a state-price density from aggregate, rather than individual,
consumption behavior. Among other advantages, this allows for a version of the

% Bottazzi (1995) has a somewhat more advanced version of existence in single-period multiple-
commodity version. Related existence topics are studied by Bottazzi and Hens (1996), Hens (1991)
and Zhou (1997). The literature is reviewed in depth by Geanakoplos (1990). Alternative proofs of
existence of equilibrium are given in the 2-period version of the model by Geanakoplos and Shafer
(1990), Hirsch, Magill and Mas-Colell (1990) and Husseini, Lasry and Magill (1990); and in a T-
period version by Florenzano and Gourdel (1994). If one defines security dividends in nominal terms,
rather than in units of consumption, then equilibria always exist under standard technical conditions on
preferences and endowments, as shown by Cass (1984), Werner (1985), Duffie (1987) and Gottardi and
Hens (1996), although equilibrium may be indeterminate, as shown by Cass (1989) and Geanakoplos
and Mas-Colell (1989). On this point, see also Kydland and Prescott (1991), Mas-Colell (1991) and
Cass (1991). Surveys of general equilibrium models in incomplete markets settings are given by Cass
(1991), Duffie (1992), Geanakoplos (1990), Magill and Quinzii (1996) and Magill and Shafer (1991).
Hindy and Huang (1993) show the implications of linear collateral constraints on security valuation.
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consumption-based capital asset pricing model of Breeden (1979) in the special case
of locally-quadratic utility.

We define, for each vector A in R” of “agent weights”, the utility function
Uy: L, =R by

m
Upx)= sup Y AUlc) subjectto ¢+ .- +c™ <x. ®)

(€, ..,c i1

Proposition. Suppose for all i that U; is concave and strictly increasing. Suppose
that (60, ..., 8" S) is an equilibrium and that markets are complete. Then there
exists some nonzero A € RT such that (0,S) is a (no-trade) equilibrium for the
one-agent economy [(U,e), 8], where e = &V + ... + ™ With this ) and with
x=e=¢eV+ ... +e", problem (8) is solved by the equilibrium consumption
allocation.

A method of proof, as well as the intuition for this proposition, is that with complete
markets, a state-price density T represents Lagrange multipliers for consumption in
the various periods and states for all of the agents simultaneously, as well as for
some representative agent (U,, e), whose agent-weight vector A defines a hyperplane
separating the set of feasible utility improvements from RY. [See, for example, Duffie
(2001) for details. This notion of “representative agent” is weaker than that associated
with aggregation in the sense of Gorman (1953).]

Corollary 1. If, moreover, U, is continuously differentiable at e, then A can be chosen
so that a state-price density is given by the Riesz representation of VU, (e).

Corollary 2. Suppose, for each i, that U, is of the additive form

T
Uc)=E [Z uit(ct):| .

=0
Then U, is also additive, with

T
Uic)=E [Z u)tt(ct):| ,

t=0

where

m
u(y)= sup Zliui,(xi) subjectto x)+ -+ +Xx, <V
xeRm i=1

In this case, the differentiability of U, at e implies that for any times t and T > t,

1

WEI i (er) St + Z uﬁj(ej)éj . )

j=t+1

;=
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2.7. Breeden's consumption-based CAPM

The consumption-based capital asset-pricing model (CAPM) of Breeden (1979)
extends the results of Rubinstein (1976) by showing that if agents have additive utility
that is, locally quadratic, then expected asset returns are linear with respect to their
covariances with aggregate consumption, as will be stated more carefully shortly.
Notably, the result does not depend on complete markets. Locally quadratic additive
utility is an extremely strong assumption. (It does not violate monotonicity, as utility
need not be quadratic at all levels). Breeden actually worked in a continuous-time
setting of Brownian information, reviewed shortly, within which smooth additive utility
functions are automatically locally quadratic, in a sense that is sufficient to recover
a continuous-time analogue of the following consumption-based CAPM.” In a one-
period setting, the consumption-based CAPM corresponds to the classical CAPM of
Sharpe (1964).

First, we need some preliminary definitions. The refurn at time ¢+ 1 on a trading
strategy 8 whose market value 6, - S, is non-zero is

RV = 6 - (Siv1+641)
t+1 01‘ . St .

There is short-term riskless borrowing if, for each given time ¢ < T, there is a

trading strategy 6 with F;-conditionally deterministic return, denoted r;. We refer to

the sequence {ro, 7|, ..., rr— } of such short-term risk-free returns as the associated

“short-rate process”, even though r7 is not defined. Conditional on F,, we let var,(-)

and cov,(-) denote variance and covariance, respectively.

Proposition: Consumption-based CAPM. Suppose, for each agent i, that the utility
Ui(") is of the additive form Ui(c) = E [ZtT _o #i(c))], and moreover that, for equilibrium
consumption processes ¢V, ..., ¢™, we have ul(c) = ay + byc?, where a; and
by > 0 are constants. Let S be the associated equilibrium price process of the
securities. Then, for any time t,

S =AE (641 +8:1)—BE[(Si+1+6+1) ervnl,

Jor adapted strictly positive scalar processes A and B. For a given time t, suppose
that there is riskless borrowing at the short rate r,. Then there is a trading strategy
with the property that its return R} | has maximal F,-conditional correlation with the
aggregate consumption e, (among all trading strategies). Suppose, moreover, that

7 For a theorem and proof, see Duffic and Zame (1989).
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there is riskless borrowing at the short rate v, and that var, (R}, |) is strictly positive.

Then, for any trading strategy 6 with return R,

E; (R?+l —r,) =/3t9Et (Rt*+l —r,) ’
where

o UL R
! var,(RY, )

The essence of the result is that the expected return of any security, in excess of
risk-free rates, is increasing in the degree to which the security’s return depends
(in the sense of regression) on aggregate consumption. This is natural; there is an
average preference in favor of securities that are hedges against aggregate economic
performance. While the consumption-based CAPM does not depend on complete
markets, its reliance on locally-quadratic expected utility, and otherwise perfect
markets, is limiting, and its empirical performance is mixed, at best. For some
evidence, see for example Hansen and Jaganathan (1990).

2.8. Arbitrage and martingale measures

This section shows the equivalence between the absence of arbitrage and the existence
of “risk-neutral” probabilities, under which, roughly speaking, the price of a security is
the sum of its expected discounted dividends. This idea, stemming from Cox and Ross
(1976), was developed into the notion of equivalent martingale measures by Harrison
and Kreps (1979).

We suppose throughout this subsection that there is short-term riskless borrowing at
some uniquely defined short-rate process ». We can define, for any times tand 7 < T,

Rt,r=(1+rz)(1+rt+l)~-~ AQ+r-1,

the payback at time 7 of one unit of account borrowed risklessly at time ¢ and “rolled
over” in short-term borrowing repeatedly until date 7.

It would be a simple situation, both computationally and conceptually, if any
security’s price were merely the expected discounted dividends of the security. Of
course, this is unlikely to be the case in a market with risk-averse investors. We can
nevertheless come close to this sort of characterization of security prices by adjusting
the original probability measure P. For this, we define a new probability measure Q
to be equivalent to P if O and P assign zero probabilities to the same events. An
equivalent probability measure Q is an equivalent martingale measure if

T s,
S, = E2 2 L, t<T,
j=t1 0]

where EQ denotes expectation under Q, and E2(X) = E9(X | ;) for any random
variable X.
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It is easy to show that Q is an equivalent martingale measure if and only if, for any
trading strategy 8,

T 69
6-5=E2| > L], t<T (10)
j=t+1h)

We will show that the absence of arbitrage is equivalent to the existence of an
equivalent martingale measure.

The deflator y defined by ¢, = Ra,lt defines the discounted gain process G7, by
G/ = vS + ]t.:l v;6;. The word “martingale” in the term “equivalent martingale
measure” comes from the following equivalence.

Lemma. 4 probability measure Q equivalent to P is an equivalent martingale measure
Jor (8,8) if and only if St = 0 and the discounted gain process G is a martingale
with respect to Q.

If, for example, a security pays no dividends before T, then the property described
by the lemma is that the discounted price process is a J-martingale.

We already know that the absence of arbitrage is equivalent to the existence of a
state-price density 7. A probability measure Q equivalent to P can be defined in terms
of a Radon—Nikodym derivative, a strictly positive random variable g—g with E (‘;—g) =1,
via the definition of expectation with respect to Q given by E9(Z) = E (g—IQ,Z), for any
random variable Z. We will consider the measure Q defined by % = Er, where

rRor
o )

&r=

(Indeed, one can check by applying the definition of a state-price density to the payoff
Ry r that &7 is strictly positive and of expectation 1.) The density process & for Q is
defined by & = E,(&r). Bayes Rule implies that for any times ¢ and j > ¢, and any
JF;-measurable random variable Z;,

1
&

Fixing some time ¢ < T, consider a trading strategy 0 that invests one unit of account
at time ¢ and repeatedly rolls the value over in short-term riskless borrowing until
time 7, with final value R, 7. That is, 6, - S, = 1 and 6? = R,r. Relation (3) then
implies that

EX(Z) = £ EA§Z). an

E; (mrRo1) _ Ei(5rm0) _ &m0
Ro, Ro, Ro,’

From Equations (11), (12), and the definition of a state-price density, Equation (10)
is satisfied, so Q is indeed an equivalent martingale measure. We have shown the
following result.

= E, (”TRt,T) = (12)
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Theorem. There is no arbitrage if and only if there exists an equivalent martingale
measure. Moreover, T is a state-price density if and only if an equivalent martingale
measure Q has the density process § defined by & = Rg 7t/ 7.

This martingale approach simplifies many asset-pricing problems that might
otherwise appear to be quite complex, and applies much more generally than indicated
here. For example, the assumption of short-term borrowing is merely a convenience,
and one can typically obtain an equivalent martingale measure after normalizing
prices and dividends by the price of some particular security (or trading strategy).
Girotto and Ortu (1996) present general results of this type for this finite-dimensional
setting. Dalang, Morton and Willinger (1990) gave a general discrete-time result on
the equivalence of no arbitrage and the existence of an equivalent martingale measure,
covering even the case with infinitely many states.

2.9. Valuation of redundant securities

Suppose that the dividend—price pair (6,S) for the N given securities is arbitrage-
free, with an associated state-price density ;t. Now consider the introduction of a new
security with dividend process 5 and price process S. We say that b is redundant given
(6,8) if there exists a trading strategy 6, with respect to only the ongmal secunty
dividend—price process (9, S), that replicates 8, in the sense that &0 = 8, t>

If 4 is redundant given (6 S), then the absence of arbitrage for the * augmented”
dividend-price process [(J, 6) (S, S)] implies that S, = Y;, where

T
1 A
Y,=EE, anéj , t<T

Jj=t+1

If this were not the case, there would be an arbitrage, as follows. For example, suppose

that for some stopping time 7, we have S; > Y;, and that T < T with strictly positive

probability. We can then define the strategy:

(a) Sell the redundant security 3 at time 7 for S, and hold this position until T.

(b) Invest 6, - S; at time 7 in the replicating strategy 6, and follow this strategy
until 7.

Since the dividends generated by this combined strategy (a)—(b) after 7 are zero, the

only dividend is at 7, for the amount S; — ¥; > 0, which means that this is an arbitrage.

Likewise, if S < Y, for some non-trivial stopping time 1, the opposite strategy is an

arbitrage. We have shown the following.

Proposition. Suppose (6,S) is arbitrage-free with state-price density . Let b be a
redundant dividend process with price process S. Then the augmented dividend—price
pair [(J, 6) (S, S)] is arbitrage-free if and only if it has 7 as a state-price density.

In applications, it is often assumed that (9, S) generates complete markets, in which
case any additional security is redundant, as in the classical “binomial” model of
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Cox, Ross and Rubinstein (1979), and its continuous-time analogue, the Black—Scholes
option pricing model, coming up in the next section.
Complete markets means that every new security is redundant.

Theorem. Suppose that Fr = F and there is no arbitrage. Then markets are complete
if and only if there is a unique equivalent martingale measure.

Banz and Miller (1978) and Breeden and Litzenberger (1978) explore the ability to
deduce state prices from the valuation of derivative securities.

2.10. American exercise policies and valuation

We now extend our pricing framework to include a family of securities, called
“American,” for which there is discretion regarding the timing of cash flows.

Given an adapted process X, each finite-valued stopping time 7 generates a dividend
process &7 defined by 85" =0, 7 = 7, and 8°F = X;. In this context, a finite-valued
stopping time is an exercise policy, determining the time at which to accept payment.
Any exercise policy 7 is constrained by 7 < 7, for some expiration time T < T. (In
what follows, we might take T to be a stopping time, which is useful for the case of
certain knockout options.)

We say that (X, T) defines an American security. The exercise policy is selected by
the holder of the security. Once exercised, the security has no remaining cash flows.
A standard example is an American put option on a security with price process p.
The American put gives the holder of the option the right, but not the obligation,
to sell the underlying security for a fixed exercise price at any time before a given
expiration time 7. If the option has an exercise price K and expiration time 7 < T,
then X, = (K—p,)*,t<T,and X, =0,¢>T.

We will suppose that, in addition to an American security (X, 7), there are securities
with an arbitrage-free dividend-price process (&, S) that generates complete markets.
The assumption of complete markets will dramatically simplify our analysis since it
implies, for any exercise policy 7, that the dividend process &°°7 is redundant given
(6, S). For notational convenience, we assume that 0 <7 < 7.

Let 7t be a state-price density associated with (8, S). From Proposition 2.9, given
any exercise policy 7, the American security’s dividend process 6% has an associated
cum-dividend price process, say V7, which, in the absence of arbitrage, satisfies

1
.Vtr = _Et (J[‘[Xr), t < T.
7T

This value does not depend on which state-price density is chosen because, with
complete markets, state-price densities are identical up to a positive scaling.
We consider the optimal stopping problem
Vy = ma vy, 13
0 rng)((O) 0 ( )
where, for any time ¢ < 7, we let 7 (¢) denote the set of stopping times bounded below
by t and above by T. A solution to Equation (13) is called a rational exercise policy
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for the American security X, in the sense that it maximizes the initial arbitrage-free
value of the resulting claim. Merton (1973) was the first to attack American option
valuation systematically using this arbitrage-based viewpoint.

We claim that, in the absence of arbitrage, the actual initial price ¥, for the American
security must be V. In order to see this, suppose first that Vj > V. Then one could
buy the American security, adopt for it a rational exercise policy 7, and also undertake
a trading strategy replicating —6*". Since V; = E(7.X;)/ 7, this replication involves
an initial payoff of Vj, and the net effect is a total initial dividend of V;§ — Vy > 0 and
zero dividends after time 0, which defines an arbitrage. Thus the absence of arbitrage
easily leads to the conclusion that ¥y » V. It remains to show that the absence of
arbitrage also implies the opposite inequality Vy < V.

Suppose that Vy > V. One could sell the American security at time 0 for V. We
will show that for an initial investment of ¥}, one can “super-replicate” the payoff at
exercise demanded by the holder of the American security, regardless of the exercise
policy used. Specifically, a super-replicating trading strategy for (X, 7, 6, S) is a trading
strategy 8 involving only the securities with dividend-price process (9, .S) that has the
following properties:

(@ 6% =0for 0 <t<7, and

() VP > X forall t <7,

where ¥/ is the cum-dividend market value of 0 at time ¢. Regardless of the exercise
policy 7 used by the holder of the security, the payment of X; demanded at time 7
is dominated by the market value ¥ of a super-replicating strategy 6. (In effect, one
modifies 8 by liquidating the portfolio 8; at time 7, so that the actual trading strategy ¢
associated with the arbitrage is defined by ¢, = 6, for ¢ < 7 and ¢, = 0 for ¢ > 7.) Now,
suppose 0 is super-replicating, with ¥y = V. If, indeed, V5 > ¥ then the strategy
of selling the American security and adopting a super-replicating strategy, liquidating
at exercise, effectively defines an arbitrage.

This notion of arbitrage for American securities, an extension of the definition
of arbitrage used earlier, is reasonable because a super-replicating strategy does not
depend on the exercise policy adopted by the holder (or sequence of holders over time)
of the American security. It would be unreasonable to call a strategy involving a short
position in the American security an “arbitrage” if, in carrying it out, one requires
knowledge of the exercise policy for the American security that will be adopted by
other agents that hold the security over time, who may after all act “irrationally.”

The approach to American security valuation given here is similar to the continuous-
time treatments of Bensoussan (1984) and Karatzas (1988), who do not formally
connect the valuation of American securities with the absence of arbitrage, but rather
deal with the similar notion of “fair price”.

Proposition. Given (X, T, 6, S), suppose (0, S) is arbitrage free and generates complete
markets. Then there is a super-replicating trading strategy 0 for (X, 7, 90,S) with the
initial value Vj = V.
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In order to construct a super-replicating strategy with the desired property, we will
make a short excursion into the theory of optimal stopping. For any process Y in L,
the Snell envelope W of Y is defined by

W,= max E(Y;), 0<t<T
TeT®

It can be shown that, naturally, for any t < 7, W, = max[Y,, E(W;.,)], which
can be viewed as the Bellman equation for optimal stopping. Thus W, > E(W,. ),
implying that W is a supermartingale, implying that we can decompose W in the form
W = Z — A, for some martingale Z and some increasing adapted® process 4 with
AO =0.

In order to prove the above proposition, we define Y by Y, = X7, and let W, Z,
and A be defined as above. By the definition of complete markets, there is a trading
strategy 6 with the property that
c 80 =0for0<t<T;

« 8¢ = Z¢/ 5,

«8=0fort>T.

Property (a) defining a super-replicating strategy is satisfied by this strategy 8. From
the fact that Z is a martingale and the definition of a state-price density, the cum-
dividend value V7 satisfies

T Vte =E; (ﬂf6$> =E(Z75)=2;, t<T. a4

From Equation (14) and the fact that 4y = 0, we know that ¥{ = ¥ because
Zy = Wy = myVy. Since Z, — 4, = W, » Y, for all ¢, from Equation (14) we also
know that

Z 1 A _
VW=Zs —(+4)=X+=>X, t<T,
.T[t .7[[ 'ﬂ:t

the last inequality following from the fact that 4, > 0 for all ¢. Thus the dominance
property (b) defining a super-replicating strategy is also satisfied, and 8 is indeed a
super-replicating strategy with V¢ = V", This proves the proposition and implies that,
unless there is an arbitrage, the initial price ¥, of the American security is equal to
the market value ¥ associated with a rational exercise policy.

The Snell envelope W is also the key to showing that a rational exercise policy is
given by the dynamic-programming solution 7° = min{z: W, = ¥,}. In order to verify
this, suppose that 7 is a rational exercise policy. Then W, = Y;. (This can be seen

8 More can be said, in that 4, can be taken to be JF,_-measurable.
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from the fact that W, > Y;, and if W; > Y; then 7 cannot be rational.) From this fact,
any rational exercise policy T has the property that 7 > 7°. For any such 7, we have

En[Y(D)] < W(T%) =Y(),
and the law of iterated expectations implies that
E[Y(1)] < E[Y (1)),

so 7° is indeed rational. We have shown the following.

Theorem. Given (X,7,9,S), suppose that (8,S) admits no arbitrage and generates
complete markets. Let 7t be a state-price deflator. Let W be the Snell envelope of X7
up to the expiration time T. Then a rational exercise policy for (X, T, 0, S) is given by
70 = min{z: W, = mX,}. The unique initial cum-dividend arbitrage-free price of the
American security is

1
Pﬁ=%EHU%mWﬁ

In terms of the equivalent martingale measure Q defined in Section 2.8, we can also
write the optimal stopping problem (13) in the form

X,
Vi = E9( ). 15
07 SF) (RO,T ) (1

An optimal exercise time is 7° = min{z: V* = X}, where V;* = W,/ is the price
of the American option at time ¢. This representation of the rational-exercise problem
is sometimes convenient. For example, let us consider the case of an American call
option on a security with price process p. We have X; = (p, — K)* for some exercise
price K. Suppose the underlying security has no dividends before or at the expiration
time T. We suppose positive interest rates, meaning that R, > 1 for all  and s > 1.
With these assumptions, we will show that it is never optimal to exercise the call option
before its expiration date T. This property is sometimes called “no early exercise”, or
“better alive than dead”.

We define the “discounted price process” p* by p; = p,/Ro,. The fact that
the underlying security pays dividends only after the expiration time 7 implies, by
Lemma 2.8, that p* is a Q-martingale at least up to the expiration time 7. That is, for
t <s < T, we have E,Q(p;*) =p}.
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With positive interest rates, we have, for any stopping time 7 < 7,

0| L | - o *_£)+
E [Ro,r (pe K)] E P R

the first inequality by Jensen’s inequality, the second by the positivity of interest rates.
It follows that 7 is a rational exercise policy. In typical cases, 7 is the unique rational
exercise policy.

If the underlying security pays dividends before expiration, then early exercise of
the American call is, in certain cases, optimal. From the fact that the put payoff is
increasing in the strike price (as opposed to decreasing for the call option), the second
inequality above is reversed for the case of a put option, and one can guess that early
exercise of the American put is sometimes optimal.

Difficulties can arise with the valuation of American securities in incomplete
markets. For example, the exercise policy may play a role in determining the marketed
subspace, and therefore a role in pricing securities. If the state-price density depends
on the exercise policy, it could even turn out that the notion of a rational exercise
policy is not well defined.

3. Continuous-time modeling

Many problems are more tractable, or have solutions appearing in a more natural form,
when treated in a continuous-time setting. We first introduce the Brownian model
of uncertainty and continuous security trading, and then derive partial differential
equations for the arbitrage-free prices of derivative securities. The classic example is
the Black—Scholes option-pricing formula. We then examine the connection between
equivalent martingale measures and the “market price of risk” that arises from
Girsanov’s Theorem. Finally, we briefly connect the theory of security valuation
with that of optimal portfolio and consumption choice, using the elegant martingale
approach of Cox and Huang (1989).



662 D. Duffie

3.1. Trading gains for Brownian prices

We fix a probability space (L2, F,P). A process is a measurable® function on

€ % [0, 00) into R. The value of a process X at time ¢ is the random variable variously

written as X;, X(¢), or X(:,#): Q — R. A standard Brownian motion is a process B

defined by the following properties:

(a) By =0 almost surely;

(b) Normality: for any times ¢ and s > ¢, B, — B, is normally distributed with mean
zero and variance s — ¢;

(c) Independent increments: for any times #, ..., #, suchthat 0 < ) <4 < -+ <
t, < oo, the random variables B(#%), B(t;) — B(t), ..., B(t,) — B(t,—1) are
independently distributed; and

(d) Continuity: for each w in £, the sample path t — B(w, t) is continuous.

It is a nontrivial fact, whose proof has a colorful history, that (€2, F,P) can be

constructed so that there exist standard Brownian motions. In perhaps the first scientific

work involving Brownian motion, Bachelier (1900) proposed Brownian motion as a

model of stock prices. We will follow his lead for the time being and suppose that a

given standard Brownian motion B is the price process of a security. Later we consider

more general classes of price processes.

We fix the standard filtration F = {F,: t » 0} of B, defined for example in Protter
(1990). Roughly speaking, !® F, is the set of events that can be distinguished as true
or false by observation of B until time ¢.

Our first task is to build a model of trading gains based on the possibility of continual
adjustment of the position held. A trading strategy is an adapted process 0 specifying at
each state w and time ¢ the number 8,(w) of units of the security to hold. If a strategy 8
is a constant, say 0, between two dates ¢ and s > ¢, then the total gain between those
two dates is O(B; — B,), the quantity held multiplied by the price change. So long as
the trading strategy 6 is piecewise constant, we would have no difficulty in defining
the total gain between any two times. For example, suppose, for some stopping times
To, ..., Ty with0=Ty < Ty < --- < Ty =T, and for any n, we have 6(¢) = &(T,,_)
for all ¢ € [T,,_ 1, T,). Then we define the total gain from trade as

T N
[ 0a8=Y 6, @) -5 (16)
0 n=1

More generally, in order to make for a good model of trading gains for trading
strategies that are not necessarily piecewise constant, a trading strategy 6 is required
to satisfy the technical condition that fOT 62 dt < oo almost surely for each 7. We
let £? denote the space of adapted processes satisfying this integrability restriction.

% See Duffie (2001) for technical definitions not provided here.
10 The standard filtration is augmented, so that F, contains all null sets of F.



Ch. 11: Intertemporal Asset Pricing Theory 663

For each 6 in £? there is an adapted process with continuous sample paths, denoted
J 6dB, that is called the stochastic integral of € with respect to B. A full definition
of f 6 dB is outlined in a standard source such as Karatzas and Shreve (1988).

The value of the stochastic integral f 60 dB at time T is usually denoted fOT 6, dB;,
and represents the total gain generated up to time T by trading the security with price
process B according to the trading strategy 6. The stochastic integral [ 6 dB has the
properties that one would expect from a good model of trading gains. In particular,
Equation (16) is satisfied for piece-wise constant 8, and in general the stochastic
integral is linear, in that, for any 6 and ¢ in £? and any scalars a and b, the process
af + b is also in L2, and, for any time 7 > 0,

T T T
/ (a9, +b(pt) dBt = a/ 6; dBt+b/ @ dBt. (17)
0 0 0

3.2. Martingale trading gains

The properties of standard Brownian motion imply that B is a martingale. (This
follows basically from the property that its increments are independent and of zero
expectation.) One must impose technical conditions on 6, however, in order to ensure
that [ 6dB is also a martingale. This is natural; it should be impossible to generate an
expected profit by trading a security that never experiences an expected price change.
The following basic proposition can be found, for example, in Protter (1990).

172
Proposition. If £ [( fOT 0? dt) J < oo for all T >0, then [ 0dB is a martingale.
As a model of security-price processes, standard Brownian motion is too restrictive

for most purposes. Consider, more generally, an [fo process, meaning a process S of
the form

t !
S,=x+/ ,usds+/ o; dB;, (18)
0 0

where x is a real number, ¢ is in £2, and ¢ is in £!, meaning that u is an adapted
process such that fot lus]ds < oo almost surely for all . It is common to write
Equation (18) in the informal “differential” form

dsS, = y,dt + 0, dB,.

One often thinks intuitively of dS; as the “increment” of S at time ¢, made up of two
parts, the “locally riskless” part u, d¢, and the “locally uncertain” part ¢; dB,.
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In order to further interpret this differential representation of an Ito process, suppose
that ¢ and u have continuous sample paths and are bounded. It is then literally the
case that for any time ¢,

6y =u  almost surely, (19)
dr T=t
and
d 2
P var, (S7) =0 almost surely, (20)

where the derivatives are taken from the right, and where, for any random variable X
with finite variance, var,(X) = E(X?) — [E,(X))? is the F;-conditional variance of X.
In this sense of Equations (19) and (20), we can interpret 4, as the rate of change of the
expectation of S, conditional on information available at time #, and likewise interpret
o7 as the rate of change of the conditional variance of S at time 7. One sometimes reads
the associated abuses of notation “E,(dS;) = u, d” and “var,(dS,) = 0,2 dr”. Of course,
dS; is not even a random variable, so this sort of characterization is not rigorously
justified and is used purely for its intuitive content. We will refer to ¢ and o as the
drift and diffusion processes of S, respectively.

For an Ito process S of the form (18), let £(S) be the set whose elements are
processes 6 with {6,4,: t > 0} in £' and {6,0;: ¢ > 0} in £%. For 6 in L(S), we
define the stochastic integral [ 6 dS as the Ito process [ 6dS given by

T T T
/ 6, dS; =/ 6, dt+/ 6,0, dB,, T>0.
0 0 0

Assuming no dividends, we also refer to [ 8dS as the gain process generated by the
trading strategy 0, given the price process S.

We will have occasion to refer to adapted processes 8 and @ that are equal almost
everywhere, by which we mean that E( fooo |6, — @;|dt) = 0. In fact, we shall write
“0 = @” whenever 8 = @ almost everywhere. This is a natural convention, for
suppose that X and Y are Ito processes with Xy = ¥y and with dX;, = u,dz + 0, dB;
and dY, = a,dt + b,dB;. Since stochastic integrals are defined for our purposes as
continuous sample-path processes, it turns out that X; = ¥, for all ¢ almost surely if
and only if ¢ = a almost everywhere and ¢ = b almost everywhere. We call this the
unique decomposition property of Ito processes.

Ito’s Formula is the basis for explicit solutions to asset-pricing problems in a
continuous-time setting.

Ito’s Formula. Suppose X is an Ito process with AX, = ,dt + 0, dB, and f: R? > R
is twice continuously differentiable. Then the process Y, defined by Y; = f(X;,1), is an
Ito process with

aY = [/ X 0) W+ fi (X O + 3 (X, 1) 0F] dt+£. (X, 1) 6, dB..
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A generalization of Ito’s Formula appears later in this section.

3.3. The Black—Scholes option-pricing formula

We turn to one of the most important ideas in finance theory, the model of Black and
Scholes (1973) for pricing options. Together with the method of proof provided by
Robert Merton, this model revolutionized the practice of derivative pricing and risk
management, and has changed the entire path of asset-pricing theory.

Consider a security, to be called a stock, with price process

St — xeat+oB(t), > 0’

where x > 0, a, and ¢ are constants. Such a process, called a geometric Brownian
motion, is often called log-normal because, for any ¢, log(S;) = log(x) + at + 0B, is
normally distributed. Moreover, since X, = at + 0B, = fot ads + fol 0 dB; defines an
Ito process X with constant drift a and diffusion o, Ito’s Formula implies that § is an
Ito process and that

dSt = MS[ de + GSt dBt, S() =X,

where 1 = a + 0%/2. From Equations (19) and (20), at any time ¢, the rate of change of
the conditional mean of S; is uS;, and the rate of change of the conditional variance
is 02 8?, so that, per dollar invested in this security at time ¢, one may think of u
as the “instantaneous” expected rate of return, and ¢ as the “instantaneous” standard
deviation of the rate of return. The coefficient ¢ is also known as the volatility of S.
A geometric Brownian motion is a natural two-parameter model of a security-price
process because of these simple interpretations of i and o.

Consider a second security, to be called a bond, with the price process § defined
by

Bi=he", >0,

for some constants f > 0 and . We have the obvious interpretation of r as the
continually compounding short rate. Since {rt: t > 0} is trivially an Ito process, 8
is also an Ito process with

dﬂt - rﬁ, de.

A pair (a, b) consisting of trading strategies a for the stock and b for the bond is said
to be self-financing if it generates no dividends before T (either positive or negative),
meaning that, for all ¢,

t t
atS[ + b[ ﬁt = aOS() + b() ﬁ() + / a, dSu + / bu dﬂu (21)
0 0

This self-financing condition, conveniently defined by Harrison and Kreps (1979), is
merely a statement that the current portfolio value (on the left-hand side) is precisely
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the initial investment plus any trading gains, and therefore that no dividend “inflow”
or “outflow” is generated.

Now consider a third security, an option. We begin with the case of a European call
option on the stock, giving its owner the right, but not the obligation, to buy the stock
at a given exercise price K on a given exercise date 7. The option’s price process Y
is as yet unknown except for the fact that Y7 = (S7 — K)* = max(Sr — K, 0), which
follows from the fact that the option is rationally exercised if and only if St > K.

Suppose that the option is redundant, in that there exists a self-financing trading
strategy (a, b) in the stock and bond with a7 Sy + by fr = Y7. If apSo + bo fy < Yy, then
one could sell the option for Y, make an initial investment of @Sy + by f in the trading
strategy (a, b), and at time T liquidate the entire portfolio (-1, ar, br) of option, stock,
and bond with payoff —Yr + arSr + br fr = 0. The initial profit ¥y —aoSe — bo f > 0
1s thus riskless, so the trading strategy (-1, a, b) would be an arbitrage. Likewise, if
aoSo + by By > Yy, the strategy (1,—a,—b) is an arbitrage. Thus, if there is no arbitrage,
Yo = apSo + bo fo. The same arguments applied at each date ¢ imply that in the absence
of arbitrage, Y, = a,S; + b, ;. A full and careful definition of continuous-time arbitrage
will be given later, but for now we can proceed without much ambiguity at this informal
level. Our immediate objective is to show the following.

The Black—Scheles Formula. If there is no arbitrage, then, forallt < T, Y, = C(S,,1),
where

Clx,1) = x®(@) T KD (z-aVT 1), 22)

with

= log(x/K) + (r + 0?/2(T - {)
ovT -t

k]

where @ is the cumulative standard normal distribution function.

The Black and Scholes (1973) formula was extended by Merton (1973, 1977), and
subsequently given literally hundreds of further extensions and applications. Cox and
Rubinstein (1985) is a standard reference on options, while Hull (2000) has further
applications and references.

We will see different ways to arrive at the Black—Scholes formula. Although not the
shortest argument, the following is perhaps the most obvious and constructive. !!

We start by assuming that ¥, = C(S,, 7), ¢t < T, without knowledge of the function C
aside from the assumption that it is twice continuously differentiable on (0, o0} x {0, T)

1 The line of exposition here is based on Gabay (1982) and Duffie (1988). Andreasen, Jensen and
Poulsen (1998) provide numerous alternative methods of deriving the Black—Scholes Formula. The basic
approach of using continuous-time self-financing strategies as the basis for making arbitrage arguments
is due to Merton (1977).
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(allowing an application of Ito’s Formula). This will lead us to deduce Equation (22),
justifying the assumption and proving the result at the same time.
Based on our assumption that ¥, = C(S;, ) and Ito’s Formula,

dY, = puy(£) dt + C(S,, 1) 0S; dB,, t<T, (23)
where

1y (1) = Cu(St, ) Sy + C(Si, ) + 1 Cu(S,, ) 07 S}
Now suppose there is a self-financing trading strategy (a, b) with

asS; +b =1, t€[0,T]. (24)

This assumption will also be justified shortly. Equations (21) and (24), along with the
linearity of stochastic integration, imply that

dYt = dy dSt +bt dﬁt = (a,uS, + bt [)’,r) dt+a,(7S, dBt. (25)

Based on the unique decomposition property of Ito processes, in order that the
trading strategy (a,b) satisfies both Equation (23) and Equation (25), we must
“match coefficients separately in both dB; and df”. Specifically, we choose a; so
that a,0S, = C(S;, 1) 0S;; for this, we let a; = C,(S;,¢). From Equation (24) and
Y, = C(S,, t), we then have C.(S,,1) S, + b, B, = C(S,, 1), or

b=~ [C(S, 1) - Co (S0t S, 26)

t

Finally, “matching coefficients in d¢”” from Equations (23) and (25) leaves, fort < T,
—rC (S, )+ C, (S, 1) +78,C (S1, 1) + 3 082 Co (i, 1) = 0. 27

In order for Equation (27) to hold, it is enough that C satisfies the partial differential
equation (PDE)

—rCx, )+ Ci(x, 1) + 1xCo(x, ) + $0°X* Cru(x, ) = 0, (28)

for (x,¢) € (0,00) x [0,T). The fact that Yr = C(Sy,T) = (Sr — K)* supplies the
boundary condition:

C(x,Ty=(x-K)", x € (0, 00). 29)

By direct calculation of derivatives, one can show as an exercise that Equation (22) is a
solution to Equations (28) and (29). All of this seems to confirm that C(Sy, 0), with C
defined by the Black—Scholes formula (22), is a good candidate for the initial price of
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the option. In order to confirm this pricing, suppose to the contrary that Yy > C(Sy,0),
where C is defined by Equation (22). Consider the strategy (-1, a, b) in the option,
stock, and bond, with a, = C,(S;,¢) and b, given by Equation (26) for # < 7. We can
choose ar and by arbitrarily so that Equation (24) is satisfied; this does not affect the
self-financing condition (21) because the value of the trading strategy at a single point
in time has no effect on the stochastic integral. The result is that (a, b) is self-financing
by construction and that arSy + by fr = Y7 = (Sr — K)*. This strategy therefore nets
an initial riskless profit of

Yo —aoSo—bofo=Yo—C(S0,0) >0,

which defines an arbitrage. Likewise, if Yy < C(Sy, 0), the trading strategy (+1,—a, —b)
is an arbitrage. Thus, it is indeed a necessary condition for the absence of arbitrage that
Yy = C(Sp, 0). Sufficiency is a more delicate matter. Under mild technical conditions
on trading strategies that will follow, the Black—Scholes formula for the option price
is also sufficient for the absence of arbitrage.

Transactions costs play havoc with the sort of reasoning just applied. For example,
if brokerage fees are any positive fixed fraction of the market value of stock trades,
the stock-trading strategy a constructed above would call for infinite total brokerage
fees, since, in effect, the number of shares traded is infinite! Leland (1985) has
shown, nevertheless, that the Black—Scholes formula applies approximately, for small
proportional transacations costs, once one artificially elevates the volatility parameter
to compensate for the transactions costs.

3.4. Ito’s Formula

Ito’s Formula is extended to the case of multidimensional Brownian motion as follows.
A standard Brownian motion in R? is defined by B = (B!, ..., BY) in R?, where
B', ..., B? are independent standard Brownian motions. We fix a standard Brownian
motion B in RY, restricted to some time interval [0,7T], on a given probability
space (€2, F,P). We also fix the standard filtration F = {F;: t € [0,T]} of B. For
simplicity, we take F to be Fr. For an R?-valued process 8 = (8, ..., 6@) with
09 in £? for each i, the stochastic integral [ 6 dB is defined by

t d t
| eas=3 [ o0as. (30)
0 i Jo
An Ito process is now defined as one of the form

t !
X,=x+/usds+/ 6, dB;,
0 0

where f is a drift (with fot |ts| ds < oo almost surely) and fot 0, dB; is defined as in
Equation (30). In this case, we call 8 the diffusion of X.
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We say that X = (X, ..., X™) an Ito process in RY if, for each i, X® is an Ito
process. The drift of X is the RV -valued process y whose ith coordinate is the drift
of X The diffusion of X is the RY * ?-matrix-valued process ¢ whose ith row is the
diffusion of X®. In this case, we use the notation

dX; = u, dt + 0; dB,. €28)

Ito’s Formula. Suppose X is the Ito process in RY given by Equation (31) and
fiRY x [0,00) x R is C>!, that is, f has at least two continuous derivatives with
respect to its first (x) argument, and at least one continuous derivative with respect to
its second (t) argument. Then { f(X,,t): t > 0} is an Ito process and, for any time t,

S X0 =f(Xo,0)+/t Df (X, s) dS+/tﬁc (X, s) 6;dB;,
0 0
where

Df (X, ) = £ (X, 1) e+, (Ko, ) + 311 (0,0, fir (X, 0)] .

Here, f,, f;, and f;, denote the obvious partial derivatives of f, valued in R", R, and
RV X ¥ respectively, and tr(4) denotes the trace of a square matrix 4 (the sum of its
diagonal elements).

If X is an Ito process in RY with dX; = y,d¢ + 0,dB, and 8 = (0", ..., V) is a
vector of adapted processes such that 6 - ¢ is in £! and, for each i, 6 - ¢’ is in £?,
then we say that € is in £(X), which means that the stochastic integral [ 6 dX exists
as an Ito process when defined by

T T T
/O,dX,E/ Ot-u,dt+/ 0,"6,dB,, T>0.
0 0 0

If X and Y are real-valued Ito processes with dX; = ux(#)dt + ox(¢t)dB; and
dY, = uy(t)dt + oy(¢)dB,, then Ito’s Formula (for N = 2) implies that the product
Z = XY is an Ito process, with

dZ, = X,dY, + Y, dX, + ox(¢) - oy (1) dt. (32)

If uy, uy, Ox, and oy are bounded and have continuous sample paths (weaker
conditions would suffice), then it follows from Equation (32) that

d
s cov; (X, Ys) = 0x(t) - oy(t) almost surely,
s=1

where cov,(X;, ¥s) = E/(X;Y;) — E,(X;) E(Y;), and where the derivative is taken from
the right, extending the intuition developed with Equations (19) and (20).
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3.5. Arbitrage modeling

Now, we turn to a more careful definition of arbitrage for purposes of establishing a
close link between the absence of arbitrage and the existence of state prices.
Suppose the price processes of N given securities form an Ito process X = (X1, ...,
XMy in RN, We suppose, for technical regularity, that each security price process is in
the space H? containing any Ito process Y with dY; = a(¢) dt + b(¢) dB(¢) for which

¢ 2 t
( / a(s) ds) } <oo and E [ / b(s) - b(s) ds} < 00.
0 0

We will suppose that the securities pay no dividends during the time interval [0, T),
and that X7 is the vector of cum-dividend security prices at time 7.

A trading strategy 0 is an RY-valued process 8 in £(X), meaning simply that the
stochastic integral [ @dX defining trading gains is well defined. A trading strategy 6
is self-financing if

E

{
0,-X,=90-X0+/ 0, dX;, t<T (33)
0

We suppose that there is some short-rate process, a process r with the property
that fOT [r¢| d¢ is finite almost surely and, for some security with strictly positive price
process f3,

B = Poexp (/Ot rs ds) , t€[0,T] (34)

In this case, df = r, f, dt, allowing us to view r; as the riskless short-term continuously
compounding rate of interest, in an instantaneous sense, and to view f3; as the market
value of an account that is continually reinvested at the short-term interest rate r.

A self-financing strategy 8 is an arbitrage if 6y - Xp < 0 and 07 - X7 > 0, or if
6 - Xo <0 and 07 - X7 > 0. Our first goal is to characterize the properties of a price
process X that admits no arbitrage, at least after placing some reasonable restrictions
on trading strategies.

3.6. Numeraire invariance

It is often convenient to renormalize all security prices, sometimes relative to a
particular price process. A deflator is a strictly positive Ito process. We can deflate
the previously given security price process X by a deflator ¥ to get the new price
process X! defined by X/ = X,¥,. Such a renormalization has essentially no economic
effects, as suggested by the following result.
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Numeraire Invariance Theorem. Suppose Y is a deflator. Then a trading strategy 0
is self-financing with respect to X if and only if 0 is self-financing with respect to
XY

The proof is an application of Ito’s Formula. We have the following corollary, which
is immediate from the Numeraire Invariance Theorem, the strict positivity of Y, and
the definition of an arbitrage. On numeraire invariance in more general settings, see
Huang (1985a) and Protter (2001). 12

Corollary. Suppose Y is a deflator. A trading strategy is an arbitrage with respect to
X if and only if it is an arbitrage with respect to the deflated price process X7 .

3.7. State prices and doubling strategies

Paralleling the terminology of Section 2.2, a state-price density is a deflator 7t with the
property that the deflated price process X” is a martingale. Other terms used for this
concept in the literature are state-price deflator, marginal-rate-of-substitution process,
and pricing kernel. In the discrete-state discrete-time setting of Section 2, we found
that there is a state-price density if and only if there is no arbitrage. In a general
continuous-time setting, this result is “almost” true, up to some technical issues.

A technical nuisance in a continuous-time setting is that, without some frictions
limiting trade, arbitrage is to be expected. For example, one may think of a series of
bets on fair and independent coin tosses at times 1/2, 3/4, 7/8, and so on. Suppose
one’s goal is to earn a riskless profit of a by time 1, where a is some arbitrarily large
number. One can bet @ on heads for the first coin toss at time 1/2. If the first toss
comes up heads, one stops. Otherwise, one owes @ to one’s opponent. A bet of 2a on
heads for the second toss at time 3/4 produces the desired profit if heads comes up
at that time. In that case, one stops. Otherwise, one is down 3a and bets 4a on the
third toss, and so on. Because there is an infinite number of potential tosses, one will
eventually stop with a riskless profit of a (almost surely), because the probability of
losing on every one of an infinite number of tosses is (1/2) - (1/2) - (1/2)--- = 0. This
is a classic “doubling strategy” that can be ruled out either by a technical limitation,
such as limiting the total number of bets, or by a credit restriction limiting the total
amount that one is allowed to be in debt.

For the case of continuous-time trading strategies, !> we will eliminate the possibility
of “doubling strategies” with a credit constraint, defining the set @(X) of self-financing
trading strategies satisfying the non-negative wealth restriction 6, - X, > 0 for all . An
alternative is to restrict trading strategies with a technical integrability condition, as
reviewed in Duffie (2001). The next result is based on Dybvig and Huang (1988).

12 For more on the role of numeraire, see Geman, El Karoui and Rochet (1995).
3" An actual continuous-time “doubling” strategy can be found in Karatzas (1993).
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Proposition. If there is a state-price density, then there is no arbitrage in ©(X).

Weaker no-arbitrage conditions based on a lower bound on wealth or on integrability
conditions, are summarized in Duffie (2001), who provides a standard proof of this
result.

3.8. Equivalent martingale measures

In the finite-state setting of Section 2, it was shown that the existence of a state-
price deflator is equivalent to the existence of an equivalent martingale measure (after
some deflation). Here, we say that Q is an equivalent martingale measure for the price
process X if Q is equivalent to P (they have the same events of zero probability), and
if X is a martingale under Q.

Theorem. If the price process X admits an equivalent martingale measure, then there
is no arbitrage in O(X).

In most cases, the theorem is applied along the lines of the following corollary, a
consequence of the corollary to the Numeraire Invariance Theorem of Section 3.6.

Corollary. If there is a deflator Y such that the deflated price process X¥ admits an
equivalent martingale measure, then there is no arbitrage in O(X).

As in the finite-state case, the absence of arbitrage and the existence of equivalent
martingale measures are, in spirit, identical properties, although there are some
technical distinctions in this infinite-dimensional setting. Inspired from early work
by Kreps (1981), Delbaen and Schachermayer (1998) showed the equivalence, after
deflation by a numeraire deflator, between no free lunch with vanishing risk (a slight
strengthening of the notion of no arbitrage) and the existence of a local martingale
measure. '4

3.9. Girsanov and market prices of risk

We now look for convenient conditions on X supporting the existence of an equivalent
martingale measure. We will also see how to calculate such a measure, and conditions
for the uniqueness of such a measure, which is in spirit equivalent to complete markets.
This is precisely the case for the finite-state setting of Theorem 2.9.

The basic approach is from Harrison and Kreps (1979) and Harrison and Pliska
(1981), who coined most of the terms and developed most of the techniques and
basic results. Huang (1985a,b) generalized the basic theory. The development here

14 For related results, see Ansel and Stricker (1992a,b), Back and Pliska (1987), Cassese (1996), Duffie
and Huang (1986), El Karoui and Quenez (1995), Frittelli and Lakner (1995), Jacod and Shiryaev (1998),
Kabanov (1997), Kabanov and Kramkov (1995), Kusuoka (1993), Lakner (1993), Levental and Skorohod
(1995), Rogers (1994), Schachermayer (1992, 1994, 2002), Schweizer (1992) and Stricker (1990).
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differs in some minor ways. Most of the results extend to an abstract filtration, not
necessarily generated by Brownian motion, but the following important property of
Brownian filtrations is somewhat special.

Martingale Representation Theorem. For any martingale &, there exists some R?-
valued process 0 such that the stochastic integral [ 6 dB exists and such that, for all t,

t
Et:§0+/ esst'
0

Now, we consider any given probability measure Q equivalent to P, with density
process & defined by (11). By the martingale representation theorem, we can express
the martingale § in terms of a stochastic integral of the form

d& =y, dB,,

for some adapted process y = (Y, ..., ¥®) with fOT ¥ - ¥, dt < oo almost surely.
Girsanov’s Theorem states that a standard Brownian motion BY in R? under Q is
defined by Bg =0 and dB,Q =dB,; + n, dt, where 1, = —v,/&;.

Suppose the price process X of the N given securities (possibly after some change
of numeraire) is an Ito process in RV, with

d./Y[ = W dr+ Oy dBt
We can therefore write
dX, = (i — 6, dr + g, dBE.

If X is to be a Q-martingale, then its drift under Q must be zero, which means that,
almost everywhere,

o(w, )y n(w, t) = p(w,1), (w, 1) € 2 x[0,T] (35)

Thus, the existence of a solution 7 to the system (35) of linear equations (almost
everywhere) is necessary for the existence of an equivalent martingale measure for X.
Under additional technical conditions, we will find that it is also sufficient.

We can also view a solution 7 to Equation (35) as providing a proportional
relationship between mean rates of change of prices (¢) and the amounts (0) of “risk”
in price changes stemming from the underlying 4 Brownian motions. For this reason,
any such solution 7 is called a market-price-of-risk process for X. The idea is that
n;(¢) is the “unit price”, measured in price drift, of bearing exposure to the increment
of BY at time ¢.

A numeraire deflator is a deflator that is the reciprocal of the price process of one of
the securities. It is usually the case that one first chooses some numeraire deflator Y,
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and then calculates the market price of risk for the deflated price process X Y. This is
technically convenient because one of the securities, the “numeraire”, has a price that
is always 1 after such a deflation. If there is a short-rate process r, a typical numeraire
deflator is given by Y, where Y, = exp(— fot rg ds).

If there is no market price of risk, one may guess that something is “wrong”, as the
following result confirms.

Lemma. Let Y be a numeraire deflator. If there is no market-price-of-risk process for
XY, then there are arbitrages in @(X), and there is no equivalent martingale measure
for XV,

Proof: Suppose X! has drift process u’ and diffusion ¢¥, and that there is no
solution 7 to o'y = u¥. Then, as a matter of linear algebra, there exists an adapted
process 0 taking values that are row vectors in RY such that 867 = 0 and 8u” = 0. By
replacing 6(w, t) with zero for any (w, ¢) such that O(w, ¢) u¥ (w, f) < 0, we can arrange
to have OBu” > 0. (This works provided the resulting process 0 is not identically zero;
in that case the same procedure applied to —8 works.) Finally, because the numeraire
security associated with the deflator has a price that is identically equal to 1 after
deflation, we can also choose the trading strategy for the numeraire so that, in addition
to the above properties, 0 is self-financing. That is, assuming without loss of generality
that the numeraire security is the last security, we can let

N-1
oM = [_ S 60,0 1 / g dXSY’(")] .
i=1 0

It follows that 6 is a self-financing trading strategy with 6 - X = 0, whose wealth
process W, defined by W, = 6, - XV, is increasing and not constant. In particular, 6
is in ©(XY). It follows that 0 is an arbitrage for X7, and therefore (by Numeraire
Invariance) for X.

Finally, the reasoning leading to Equation (35) implies that if there is no market-
price-of-risk process, then there can be no equivalent martingale measure for X¥. (1

For any R“-valued adapted process 71 in £(B), we let £” be defined by

H {
gtfl = eXp (_/ Ts st - % / Ns - Ns dS> . (36)
0 0

Ito’s Formula implies that d&; = —£'n, dB,. Novikov’s Condition, a sufficient technical
condition for £ to be a martingale, is that

T
E(exp [%/ ns-nxds]) < 00.
0

Theorem. If X has a market price of risk process 1 satisfying Novikov's condition,
and moreover &} has finite variance, then there is an equivalent martingale measure
Jor X, and there is no arbitrage in O(X).
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Proof: By Novikov’s Condition, £” is a positive martingale. We have &/ = ¢’ = 1, so
&E" is indeed the density process of an equivalent probability measure O defined by
49 = g1
ap ~ ST

By Girsanov’s Theorem, a standard Brownian motion B¢ in R¢ under Q is defined
by dB§2 = dB; + n,dt. Thus dX; = g; dB,Q As %% has finite variance and each security
price process X is by assumption in H?, we know by the Cauchy—Schwartz Inequality
that

172

Y
0 e
E drP

T 172 T
( / O(i)(t)—a(i)(t)dt) }=EP [( / a(")(t)‘o(i)(t)dt)
0 0

is finite. Thus, XV is a (Q-martingale by Proposition 3.2, and Q is therefore
an equivalent martingale measure. The lack of arbitrage in O(X) follows from
Theorem 3.8. [J

Putting this result together with the previous lemma, we see that the existence of
a market-price-of-risk process is necessary and, coupled with a technical integrability
condition, sufficient for the absence of “well-behaved” arbitrages and the existence of
an equivalent martingale measure. Huang and Pages (1992) give an extension to the
case of an infinite-time horizon.

For uniqueness of equivalent martingale measures, we can use the fact that, for any
such measure Q, Girsanov’s Theorem implies that we must have % = £}, for some
market price of risk 7. If 0(w, #) is of maximal rank d, however, there can be at most
one solution M(w,¢) to Equation (35). This maximal rank condition is equivalent to

the condition that the span of the rows of o(w, ¢) is all of R?.

Proposition. If rank(0) = d almost everywhere, then there is at most one market
price of risk and at most one equivalent martingale measure. If there is a unique
market-price-of-risk process, then rank(0) = d almost everywhere.

With incomplete markets, significant attention in the literature has been paid to
the issue of “which equivalent martingale measure to use” for the purpose of pricing
contingent claims that are not redundant. Babbs and Selby (1996), Biithlmann, Delbaen,
Embrechts and Shiryaev (1998), and Follmer and Schweizer (1990) suggest some
selection criteria or parameterization for equivalent martingale measures in incomplete
markets. In particular, Artzner (1995), Bajeux-Besnainou and Portait (1997), Dijkstra
(1996), Johnson (1994) and Long (1990) address the numeraire portfolio, also called
growth-optimal portfolio, as a device for selecting a state-price density. Little of this
literature offers an economic theory for the use of a particular measure for pricing
new contingent claims that are not already traded (or replicated) by the given primitive
securities.
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3.10. Black—Scholes again

Suppose the given security-price process is X = (SO, ..., S¥-D ), where, for
S=(SO, ..., S¥-Dy,

dS; = u, dt + 0, dB;,
and

dBi=rBdt; >0,

where u, 0, and r are adapted processes (valued in RY~-! RW-DXxd and R,
respectively). We also suppose for technical convenience that the short-rate process
is bounded. Then Y = 87! is a convenient numeraire deflator, and we let Z = SY. By
Ito’s Formula,

B By

In order to apply Theorem 3.9 to the deflated price process X =(z, 1), it would be
enough to know that Z has a market price of risk 7 and that the variance of & is finite.
Given this, there would be an equivalent martingale measure Q and no arbitrage in
BO(X). Suppose, for the moment, that this is the case. By Girsanov’s Theorem, there
is a standard Brownian motion B¢ in R? under Q such that

dZt = (_rtZ[ + &> de + gl d.B;.

o/
dz, = - dB?.

(2

Because S = 3Z, another application of Ito’s Formula yields
ds, = r,S,dt + 0, dB. (37

Equation (37) is an important intermediate result for arbitrage-free asset pricing, giving
an explicit expression for security prices under a probability measure Q with the
property that the “discounted” price process S/f is a martingale. For example, this
leads to an easy recovery of the Black—Scholes formula, as follows.

Suppose that, of the securities with price processes S1, ..., SV -1, one is a call
option on another. For convenience, we denote the price process of the call option by
U and the price process of the underlying security by ¥, so that Ur = (Vr — K)*, for
expiration at time 7 with some given exercise price K. Because UY is by assumption
a martingale under O, we have

T
U, = BE? (%ﬁ) =E? <exp [— / r(s) ds] Vr —K)*) . (38)
T t

The reader may verify that this is the Black—Scholes formula for the case of
d = 1, Vo > 0, and with constants 7 and non-zero ¢ such that for all
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t, , = 7 and dV, = V,uy(t)dt + V,0dB,, where uy is a bounded adapted
process. Indeed, in this case, Z has a market-price-of-risk process 7 such that
&} has finite variance, an exercise, so the assumption of an equivalent martingale
measure is justified. More precisely, it is sufficient for the absence of arbitrage
that the option-price process is given by Equation (38). Necessity of the Black—
Scholes formula for the absence of arbitrages in @(X) is addressed in Duffie (2001).
We can already see, however, that the expectation in Equation (38) defining the
Black—Scholes formula does not depend on which equivalent martingale measure Q
one chooses, so one should expect that the Black—Scholes formula (38) is also
necessary for the absence of arbitrage. If Equation (38) is not satisfied, for instance,
there cannot be an equivalent martingale measure for S/f. Unfortunately, and for
purely technical reasons, this is not enough to imply directly the necessity of
Equation (38) for the absence of well-behaved arbitrage, because we do not have a
precise equivalence between the absence of arbitrage and the existence of equivalent
martingale measures.

In the Black—Scholes setting, 0 is of maximal rank d = 1 almost everywhere. Thus,
from Proposition 3.9, there is exactly one equivalent martingale measure.

The detailed calculations of Girsanov’s Theorem appear nowhere in the actual
solution (37) for the “risk-neutral behavior” of arbitrage-free security prices, which
can be given by inspection in terms of ¢ and r only.

3.11. Complete markets

We say that a random variable W can be replicated by a self-financing trading
strategy 0 if W = 6Or - Xr. Our basic objective in this section is to give a simple
spanning condition on the diffusion ¢ of the price process X under which, up to
technical integrability conditions, any random variable can be replicated (without
resorting to “doubling strategies”).

Proposition. Suppose Y is a numerator deflator and Q is an equivalent martingale
measure for the deflated price process XY. Suppose the diffusion 0¥ of X7
is of maximal rank d almost everywhere. Let W be any random variable with
EC(|WY|) < oco. Then there is a self-financing trading strategy O that replicates W
and whose deflated market-value process {0, - XY: <t < T} is a Q-martingale.

Proof: Without loss of generality, the numeraire is the last of the N securities, so we
write X7 = (Z,1). Let B be the standard Brownian motion in R under Q obtained
by Girsanov’s Theorem. The martingale representation property implies that, for any
Q-martingale, there is some @ such that

EC (WYr)=EC (WYr)+ / @, dBY, t€[0,T]. (39)
0
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By the rank assumption on 0" and the fact that g%, = 0, there are adapted processes
oM, ..., BV =D solving

N-1
YoV =¢], teloT] (40)
j=1
Let ™) be defined by
N1 t . .
6" =E2 (WYr)+> ( / 6 az® - 6,(’)2,(’)) : 1)
i=1 \WO

Then 6 = (8, ..., 8™) is self-financing and 67 - X} = WYr. By the Numeraire
Invariance Theorem, 6 is also self-financing with respect to X and 67 - X7 = W.
As [@dB? is by construction a Q-martingale, Equations (39-41) imply that
{6,-XY: 0 <t < T} is a Q-martingale. O

The property that the deflated market-value process {6, - X/: 0 < ¢t < T} is a
Q-martingale ensures that there is no use of doubling strategies. For example, if W > 0,
then the martingale property implies that 6, - X; > 0 for all ¢.

Analogues to some of the results in this section for the case of market imperfections
such as portfolio constraints or transactions costs are provided by Ahn, Dayal, Grannan
and Swindle (1995), Bergman (1995), Constantinides and Zariphopoulou (1999, 2001),
Cvitani¢ and Karatzas (1993), Davis and Clark (1993), Grannan and Swindle (1996),
Henrotte (1991), Jouini and Kallal (1993), Karatzas and Kou (1998), Kusuoka (1992,
1995), Soner, Shreve and Cvitani¢ (1994) and Whalley and Wilmott (1997). Many of
these results are asymptotic, for “small” proportional transactions costs, based on the
approach of Leland (1985).

3.12. Optimal trading and consumption

We now apply the “martingale” characterization of the cost of replicating an arbitrary
payoff, given in the last proposition, to the problem of optimal portfolio and
consumption processes.

The setting is Merton’s problem, as formulated and solved in certain settings, for
geometric Brownian prices, by Merton (1971). Merton used the method of dynamic
programming, solving the associated Hamilton-Jacobi-Bellman (HJB) equation. '
A major alternative method is the martingale approach to optimal investment, which
reached a key stage of development with Cox and Huang (1989), who treat the agent’s
candidate consumption choice as though it is a derivative security, and maximize

13 The book of Fleming and Soner (1993) treats HJB equations, stochastic control problems, emphasizing
the use of viscosity methods.
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the agent’s utility subject to a wealth constraint on the arbitrage-free price of the
consumption. Since that price can be calculated in terms of the given state-price
density, the result is a simple static optimization problem.!® Karatzas and Shreve
(1998) provide a comprehensive treatment of optimal portfolio and consumption
processes in this setting.

Fixing a probability space (2, F, P) and the standard filtration {F;: ¢ > 0} of a
standard Brownian motion B in R?, we suppose that X = (X@ x x™)yis an
Ito process in RY *! for the prices of N + 1 securities, with

dx? = uPxDdr+ x000 dB; X0 >0, (42)

where ¢t = (U@, ..., u™) and the R *?_valued process ¢ are bounded adapted
processes. Letting 0® denote the ith row of g, we suppose that @ = 0, so that
we can treat u© as the short-rate process ». A special case of this setup is to have
geometric Brownian security prices and a constant short rate, which was the setting
of Merton’s original problem.

We assume for simplicity that N = d. The excess expected returns of the “risky”
securities are defined by the R"-valued process A given by lfi) = ‘uy) —ry. A deflated
price process X is defined by X =X exp(— fot rs ds). We assume that ¢ is invertible
(almost everywhere) and that the market-price-of-risk process 7 for X , defined by
n = 0;7'A, is bounded. It follows that markets are complete (in the sense of
Proposition 3.11) and that there are no arbitrages meeting the standard credit constraint
of non-negative wealth.

In this setting, a state-price density s is defined by

7T, = exp (— /t ¥ ds) g, 43)
0

where &7 is the density process defined by Equation (36) for an equivalent martingale
measure (J, after deflation by exp][ fot —r(s)ds].

Utility is defined over the space D of consumption pairs (c,Z), where ¢ is an
adapted nonnegative consumption-rate process with fOT ¢, dt < oo almost surely, and
Z is an Jr-measurable nonnegative random variable describing terminal lump-sum
consumption. Specifically, U: D — R is defined by

T
Ulc,Z)=E [/ u(c,,)dt + F(Z)|, (44)
0

where
* F: R, — R is increasing and concave with F(0) = 0;

16 The related literature is immense, and includes Cox (1983), Pliska (1986), Cox and Huang (1991),
Back (1986, 1991), Back and Pliska (1987), Duffie and Skiadas (1994), Foldes (1978a,b, 1990, 1991a,b,
1992, 2001), Harrison and Kreps (1979), Huang (1985b), Huang and Pagés (1992), Karatzas, Lehoczky
and Shreve (1987), Lakner and Slud (1991), Pagés (1987) and Xu and Shreve (1992).
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*u: R, x [0,T] — R is continuous and, for each ¢ in [0,7], u(-,#): R, — R is

increasing and concave, with u(0,¢) = 0;
 F is strictly concave or zero, or for each ¢ in [0, 7], u(-,¢) is strictly concave or

Zero.

+ At least one of ¥ and F is non-zero.

A trading strategy is a process 0 = (89, ..., 8%)) in £(X), meaning merely that
the gain-from-trade stochastic integral [ 6 dX exists. Given an initial wealth w > 0,
we say that (c, Z, 0) is budget-feasible if (c,Z) is a consumption choice in D and 0 is
a trading strategy satisfying

! t
9,~X,=w+/ OSdXS—/csds>0, te[0,T], (45)
0 0

and
Or - Xr > Z (46)

The first restriction (45) is that the current market value 6, - X; of the trading strategy is
non-negative, a credit constraint, and is equal to its initial value w, plus any gains from
security trade, less the cumulative consumption to date. The second restriction (46) is
that the terminal portfolio value is sufficient to cover the terminal consumption. We
now have the problem, for each initial wealth w,

sup  U(e, 2), 47)
(Z.6) € A(w)

where A(w) is the set of budget-feasible choices at wealth w. First, we state an
extension of the numeraire invariance result of Section 3.4, which obtains from an
application of Ito’s Formula.

Lemma. Let Y be any deflator. Given an initial wealth w > 0, a strategy (¢, Z,0) is
budget-feasible given price process X if and only if it is budget feasible after deflation,
that is,

t t
0,-X,Y=wY0+/ estsY—/ Yicsds > 0, tel0,T], (48)
0 0

and

Or - X} > ZYr. (49)

With numeraire invariance, we can reduce the dynamic trading and consumption
problem to a static optimization problem subject to an initial wealth constraint, as
follows.
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Proposition. Given a consumption choice (c,Z) in D, there exists a trading strategy 0
such that (¢, Z, 0) is budget-feasible at initial wealth w if and only if

T
E (JtTZ + / Ty dt) <w (50)
0

Proof: Suppose (c, Z, 0) is budget-feasible. Applying the previous numeraire-invariance
lemma to the state-price deflator 7, and using the fact that 7y = & = 1, we have

T T
0 0

Because X7 is a martingale under P, the process M, defined by M, = w + fot 0, dX”,
is a non-negative local martingale, and therefore a supermartingale. For the definitions
of local martingale and supermartingale, and for this property, see for example Protter
(1990). By the supermartingale property, My > E(Mry). Taking expectations through
Equation (51) thus leaves Equation (50).

Conversely, suppose (c, Z) satisfies Equation (50), and let M be the Q-martingale
defined by

T
M, =E? (e’TZ + / e"c dt) .
0

By Girsanov’s Theorem, a standard Brownian motion B¢ in R under Q is defined by
dB,Q = dB, + 1, dt, and B has the martingale representation property. Thus, there is
some @ = (¢V, ..., 9) in L£(B?) such that

t
M,=Mo+/ @, dB?, te[0,T],
0

where My < w. For the deflator Y defined by Y, = exp[— fot r(s)ds], we also know that

X=X"isa Q-martingale. From the definitions of the market price of risk 1 and of
BY,

d‘?t(l) =:X\'t(i)0-t(i) dBtQ, 1 < i < N.

Because 0, is invertible and X is strictly positive with continuous sample paths, we
can choose 8% in £(X®) for each i < N such that
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This implies that
N t N
M, = MO+Z / 09 dx . (52)
i=170
We can also let
N t N N s ‘
60 = w+ Z / o0 4RO z X - / e ¢, ds. (53)
i=1 70 i=1 0

From Equation (50) and the fact that & = i, exp[ fot r(s)ds] defines the density
process for Q,

T
My =E?¢ (e’TZ + / e dt) <w (549
0
From Equations (53) and (52), and the fact that [ 8 dX© =0,
R t N t
6 -X = w+/ GSdXS—/ e Pcyds,
0 0
t
=w+M,— My — / e "¢, ds,
0
T
=w-My+ E,Q (/ e ey ds + e’TZ> >0,
t

using Equation (54). With numeraire invariance, Equation (45) follows. We can
also use the same inequality for + = T, Equation (54), and the fact that

Mr = exp[- fOT r(s)ds]Z + fOT exp[~ f()' r(s)ds] c; dt to obtain Equation (46). Thus,
(c, Z, 0) is budget-feasible. (I

Corollary. Given a consumption choice (¢*,Z*) in D and some initial wealth w, there
exists a trading strategy 0* such that (¢*,Z*, 6*) solves Merton’s problem (47) if and
only if (¢*,Z*) solves the problem

T
sup U(c,Z) subjectto E (/ e dt + J‘L’TZ> < W (55)
(c.2)ED 0

3.13. Martingale solution to Merton's problem

We are now in a position to obtain a relatively explicit solution to Merton’s
problem (47) by using the equivalent formulation (55).
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By the Saddle Point Theorem and the strict monotonicity of U, (c*, Z*) solves (55)
if and only if there is a scalar Lagrange multiplier y* > 0 such that, first: (c*,Z*)
solves the unconstrained problem

sup  L(c,Z;v"), (56)
(c,2)ED

where, for any y > 0,

T
L(c,Z; v)=U(c,Z)—yE (J'[TZ+/ e, dt — w) R (57)
0

and second, (c*,Z*) satisfies the complementary-slackness condition

T
E (JL'TZ* +/ e} dt) =w (58)
0

We can summarize our progress on Merton’s problem (47) as follows.

Proposition. Given some (c*,Z*) in D, there is a trading strategy 0° such that
(c*,Z*,8") solves Merton's problem (47) if and only if there is a constant y* > 0
such that (c*,Z*) solves Equation (56) and E(wrZ* + fOT ey dt)y =w.

In order to obtain intuition for the solution of (56), we begin with some arbitrary
y > 0 and treat U(c,Z) = E[ fOT u(c,, tydt + F(Z)] intuitively by thinking of “E”
and “[” as finite sums, in which case the first-order conditions for optimality of
(c*,Z*) > 0 for the problem sup. ;, £(c,Z; ), assuming differentiability of u and F,
are

uc (¢ ,0)—ym =0, t €0, 7], (59
and

F'(Z*) - yar = 0. (60)
Solving, we have

c; =1(ym,1), te€[0,7T], 61)
and

Z* =Ip (yar), (62)

where I(-,t) inverts'” u.(-,t) and where Ir inverts F’. We will confirm these
conjectured forms (61) and (62) of the solution in the next theorem. Under strict

17 If u= 0, we take = 0. If F = 0, we take I = 0.
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concavity of u or F, the inversions I(-,f) and Ir, respectively, are continuous and
strictly decreasing. A decreasing function w: (0,c0) — R is therefore defined by

T
Wwy)=E [ /0 al (yomy, t) dt + swrlp (yor) | (63)

(We have not yet ruled out the possibility that the expectation may be +oc). All of
this implies that (c*, Z*) of Equations (61) and (62) solves Problem (55) provided the
required initial investment Ww(y) is equal to the endowed initial wealth w. This leaves
an equation w(y) = w to solve for the “correct” Lagrange multiplier y*, and with that
an explicit solution to the optimal consumption policy for Merton’s problem.

We now consider properties of ¥ and F guaranteeing that w(y) = w can be
solved for a unique y* > 0. A strictly concave increasing function F: R, — R
that is differentiable on (0, cc0) satisfies Inada conditions if inf,F'(x) = 0 and
sup, F'(x) = +o0. If F satisfies these Inada conditions, then the inverse /r of F' is
well defined as a strictly decreasing continuous function on (0, c0) whose image is
(0, 00).

Condition A. Fither F is zero or F is differentiable on (0, c0), strictly concave, and
satisfies Inada conditions. Either u is zero or, for all t, u(-, t) is differentiable on (0, o),
strictly concave, and satisfies Inada conditions. For each y > 0, w(y) is finite.

We recall the standing assumption that at least one of # and F is nonzero. The
assumption of finiteness of w(-) has been shown by Kramkov and Schachermayer
(1999) to follow from natural regularity conditions.

Theorem. Under Condition A and the standing conditions on u, o, and r, for any
w > 0, Merton's problem has the optimal consumption policy given by Equations (61)
and (62) for a unique scalar y > 0.

Proof: Under Condition A, the Dominated Convergence Theorem implies that w(-) is
continuous. Because one or both of /(-, ) and Ix(-) have (0, co0) as their image and are
strictly decreasing, w(-) inherits these two properties. From this, given any initial wealth
w > 0, there is a unique y* with w(y*) = w. Let (¢*, Z*) be defined by Equation (61)
and (62), taking y = y*. The previous proposition tells us there is a trading strategy 6*
such that (c*, Z*, 8*) is budget-feasible. Let (6, ¢, Z) be any budget-feasible choice.
The previous proposition also implies that (¢, Z) satisfies Equation (50). For each (w, 1),
the first-order conditions (59) and (60) are sufficient (by concavity of ¥ and F) for
optimality of ¢*(w, t) and Z*(w) in the problems

sup u(c,t)~ y*m(w, t)c,
¢ €[0,00)

and

sup F(Z)-y*n(w,T)Z,
Z €[0,00)
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respectively. Thus,

u(cl, -y me! > u(e,)—y'me, 0<t<T, 64)
and

FZ")-vY'mZ* > F(Z)- v nrZ. (65)

Integrating Equation (64) from 0 to 7', adding Equation (65), taking expectations,
and then applying the complementary slackness condition (58) and the budget
constraint (50), leaves U(c*,Z*) > Ul(c, Z). As (c,Z, 0) is arbitrary, this implies the
optimality of (c*,Z*,6%). O

In practice, solving the equation w(y*) = w for y* may require a one-dimensional
numerical search, which is straightforward because Ww(-) is strictly monotone.

This result, giving a relatively explicit consumption solution to Merton’s problem,
has been extended in many directions, even generalizing the assumption of additive
utility to allow for habit-formation or recursive utility, as shown by Schroder and
Skiadas (1999).

For a specific example, we treat terminal consumption only by taking ¥ = 0, and
we let F(w) =w®/a for a € (0,1). Then ¢* = 0 and the calculations above imply that
Ww(y) = E[mr(yar)V@ D], Solving w(y*) = w for v* leaves

e (n}x/(a—l))""_
From Equation (62),

ZF=Ip(y*mr).

Although this approach generates a straightforward solution for the optimal
consumption policy, the form of the optimal trading strategy can be difficult to
determine. For the special case of geometric Brownian price processes (constant u
and ) and a constant short rate », we can calculate that Z* = Wr where W is the
geometric Brownian wealth process obtained from

AW, =W,(r+@-A) dt+ W@ 0dB;  Wo=w,

where @ = (60 ")"'A/(1 - a) is the vector of fixed optimal portfolio fractions.

More generally, in a Markov setting, one can derive a PDE for the wealth process,
as for the pricing approach to Black-Scholes option pricing formula, and from the
derivatives of the solution function obtain the associated trading strategy. Merton’s
original stochastic-control approach, in a Markov setting, gives explicit solutions for
the optimal trading strategy in terms of the derivatives of the value function solving the
HIB equation. Although there are only a few examples in which these derivatives are
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known explicitly, they can be approximated by a numerical solution of the Hamilton—
Jacobi—Bellman equation.

This martingale approach to solving Problem (47) has been extended with duality
techniques and other methods to cases of investment with constraints, including
incomplete markets. See, for example, Cvitani¢ and Karatzas (1996), Cvitani¢, Wang
and Schachermayer (2001), Cuoco (1997), and the many sources cited by Karatzas
and Shreve (1998).

4. Term-structure models

This section reviews models of the term structure of interest rates. These models are
used to analyze the dynamic behavior of bond yields and their relationships with
macro-economic covariates, and also for the pricing and hedging of fixed-income
securities, those whose future payoffs are contingent on future interest rates. Term-
structure modeling is one of the most active and sophisticated areas of application of
financial theory to everyday business problems, ranging from managing the risk of a
bond portfolio to the design and pricing of collateralized mortgage obligations. In this
section, we treat default-free instruments. In Section 6, we turn to defaultable bonds.
This section provides only a small skeleton of the extensive literature on term-structure
models. More extensive notes to the literature are found in Duffie (2001) and in the
surveys by Dai and Singleton (2003) and Piazzesi (2002).

We first treat the standard “single-factor” examples of Merton (1974), Cox, Ingersoll
and Ross (1985a), Dothan (1978), Vasicek (1977), Black, Derman and Toy (1990), and
some of their variants. These models treat the entire term structure of interest rates at
any time as a function of a single state variable, the short rate of interest. We will then
turn to multi-factor models, including multi-factor affine models, extending the Cox—
Ingersoll-Ross and Vasicek models. Finally, we turn to the term-structure framework of
Heath, Jarrow and Morton (1992), which allows, under technical conditions, any initial
term structure of forward interest rates and any process for the conditional volatilities
and correlations of these forward rates.

Numerical tractability is essential for practical and econometric applications.
One must fit model parameters from time-series or cross-sectional data on bond
and derivative prices. A fitted model may be used to price or hedge related
contingent claims. Typical numerical methods include “binomial trees,” Fourier-
transform methods, Monte-Carlo simulation, and finite-difference solution of PDEs.
Even the “zero curve” of discounts must be fitted to the prices of coupon bonds. ¥ In

18 See Adams and Van Deventer (1994), Coleman, Fisher and Ibbotson (1992), Diament (1993), Fisher,
Nychka and Zervos (1994), Jaschke (1996), Konno and Takase (1995, 1996) and Svensson and Dahlquist
(1996). Consistency of the curve-fitting method with an underlying term-structure model is examined
by Bjork and Christensen (1999), Bjork and Gombani (1999) and Filipovi¢ (1999).
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econometric applications, bond or option prices must be solved repeatedly for a large
sample of dates and instruments, for each of many candidate parameter choices.

We fix a probability space (€2, F, P) and a filtration F = {F;: 0 < ¢t < T} satisfying
the usual conditions,'® as well as a short-rate process ». We have departed from a
dependence on Brownian information in order to allow for “surprise jumps”, which
are important in certain applications.

A zero-coupon bond maturing at some future time s > ¢ pays no dividends before
time s, and offers a fixed lump-sum payment at time s that we can take without loss
of generality to be 1 unit of account. Although it is not always essential to do so, we
assume throughout that such a bond exists for each maturity date s. One of our main
objectives is to characterize the price A;; at time ¢ of the s-maturity bond, and its
behavior over time.

We fix some equivalent martingale measure (, after taking as a numeraire for
deflation purposes the market value exp| fé r(s)ds] of investments rolled over at the
short-rate process r. The price at time ¢ of the zero-coupon bond maturing at s is then

A =E? (exp [— / ) r(u) duD : (66)

The term structure is often expressed in terms of the yield curve. The continuously
compounding yield y, ; on a zero-coupon bond maturing at time ¢ + 7 is defined by

_ _10g (At,t+ r)

Yix = - .
The term structure can also be represented in terms of forward interest rates, as

explained later in this section.

4.1. One-factor models

A one-factor term-structure model means a model of » that satisfies a stochastic
differential equation (SDE) of the form

dry = u(r,, £)dt + 0(r,, 1) dBY, 67)

where B is a standard Brownian motion under O and where u: R x [0,7] — R
and 0: R x [0,T] — R¥ satisfy technical conditions guaranteeing the existence of a
solution to Equation (67) such that, for all # and s > ¢, the price A, of the zero-coupon
bond maturing at s is finite and well defined by Equation (66).

The one-factor models are so named because the Markov property (under Q) of the
solution » to Equation (67) implies, from Equation (66), that the short rate is the only

19 For these technical conditions, see for example, Protter (1990).
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Table 1
Common single-factor model parameters, Equation (68)
Model K, K, K, H, H v
Cox, Ingersoll and Ross (1985a) . . . 0.5
Pearson and Sun (1994) . . . . 0.5
Dothan (1978) . 1.0
Brennan and Schwartz (1977) . . . 1.0
Merton (1974), Ho and Lee (1986) . . 1.0
Vasicek (1977) . . . 10
Black and Karasinski (1991) . . . 1.0
Constantinides and Ingersoll (1984) . 1.5

state variable, or “factor”, on which the current yield curve depends. That is, for all ¢
and s > ¢, we can write y, s = F(¢,s,r,), for some fixed F: [0,T] x [0,T] x R = R.

Table 1 shows many of the parametric examples of one-factor models appearing in
the literature, with their conventional names. Each of these models is a special case
of the SDE

dr; = [Kor + Kyr: + Kogr, log(ry)] dt + [Hos + Hyr:]” dB2, (68)

for deterministic coefficients Ky, Ky, K3, Ho, and Hy, depending continuously on ¢,
and for some exponent v € [0.5,1.5]. Coeflicient restrictions, and restrictions on the
space of possible short rates, are needed for the existence and uniqueness of solutions.
For each model, Table 1 shows the associated exponent v, and uses the symbol “s”
to indicate those coefficients that appear in nonzero form. We can view a negative
coefficient K, as a mean-reversion parameter, in that a higher short rate generates a
lower drift, and vice versa. Empirically speaking, mean reversion is widely believed
to be a useful attribute to include in single-factor short-rate models. 2°
Non-parametric single-factor models are estimated by Ait-Sahalia (1996a,b, 2002).
The empirical evidence, as examined for example by Dai and Singleton (2000),
however, points strongly toward multifactor extensions, to which we will turn shortly.

20 In most cases, the original versions of these models had constant coefficients, and were only later
extended to allow K, and H;, to depend on ¢, for practical reasons, such as calibration of the model to
a given set of bond and option prices. The Gaussian short-rate model of Merton (1974), who originated
much of the approach taken here, was extended by Ho and Lee (1986), who developed the idea of
calibration of the model to the current yield curve. The calibration idea was further developed by
Black, Derman and Toy (1990), Hull and White (1990, 1993) and Black and Karasinski (1991), among
others. Option evaluation and other applications of the Gaussian model is provided by Carverhill (1988),
Jamshidian (1989a,b,c, 1991a, 1993b) and El Karoui and Rochet (1989). A popular special case of the
Black—Karasinski model is the Black—Derman—-Toy model.
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For essentially any single-factor model, the term structure can be computed
(numerically, if not explicitly) by taking advantange of the Feynman—Kac relationship
between SDEs and PDEs. Fixing for convenience the maturity date s, the Feynman—
Kac approach implies from Equation (66), under technical conditions on y and o, for
all ¢, that A, = f(r,, £), where f € C>!(R x [0, T)) solves the PDE

Df (x, ) —xf(x,£) =0, (x,1) € R x [0,s), (69)
with boundary condition

fx,8)=1, x R,
where

Df (x, 1) = fi06, )+ £:0x, ) HCx, O+ 3fia(x, ) O (x, 1)

This PDE can be quickly solved using standard finite-difference numerical algorithms.

A subset of the models considered in Table 1, those with K, = H; = 0, are
Gaussian.?' Special cases are the models of Merton (1974) (often called “Ho-Lee”)
and Vasicek (1977). For a Gaussian model, we can show that bond-price processes are
log-normal (under Q) by defining a new process y satisfying dy, = —r, d¢, and noting
that (r,y) is a two-dimensional Gaussian Markov process. Thus, for any ¢ and s > ¢,
the random variable y, —y, = — fts r,du is normally distributed under O, with a
mean m(s — t) and variance uv(s — t), conditional on F,, that are easily computed in
terms of r,, Ky, K;, and Hy. The conditional variance v(s — ¢) is deterministic. The
conditional mean m(¢, s) is of the form a(s — ) + B(s — 1) r;, for coefficients a(s — 1)
and (s — t) whose calculation is left to the reader. It follows that

Ags =E,Q [exp (— /S Fu du>] R
= exp (m(t,s) + U(Sz— t)) ,

=expla(s — t)+B(s — )r(D],

where a(s —t) = a(s — t) + v(s — £)/2. Because r; is normally distributed under Q, this
means that any zero-coupon bond price is log-normally distributed under Q. Using this
property, one can compute bond-option prices in this setting using the original Black—
Scholes formula. For this, a key simplifying trick of Jamshidian (1989b) is to adopt as a
new numeraire the zero-coupon bond maturing at the expiration date of the option. The
associated equivalent martingale measure is sometimes called the forward measure.

2l By a Gaussian process, we mean that the short rates #(z,), ..., #(z,) at any finite set {ti, ..., 4} of
times have a joint normal distribution under Q.
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Under the new numeraire and the forward measure, the price of the bond underlying
the option is log-normally distributed with a variance that is easily calculated, and
the Black—Scholes formula can be applied. Aside from the simplicity of the Gaussian
model, this explicit computation is one of its main advantages in applications.

An undesirable feature of the Gaussian model, however, is that it implies that the
short rate and yields on bonds of any maturity are negative with positive probability at
any future date. While negative interest rates are sometimes plausible when expressed
in “real” (consumption numeraire) terms, it is common in practice to express term
structures in nominal terms, relative to the price of money. In nominal terms, negative
bond yields imply a kind of arbitrage. In order to describe this arbitrage, we can
formally view money as a security with no dividends whose price process is identically
equal to 1. (This definition in itself is an arbitrage!) If a particular zero-coupon bond
were to offer a negative yield, consider a short position in the bond (that is, borrowing)
and a long position of an equal number of units of money, both held to the maturity of
the bond. With a negative bond yield, the initial bond price is larger than 1, implying
that this position is an arbitrage. To address properly the role of money in supporting
nonnegative interest rates would, however, require a rather wide detour into monetary
theory and the institutional features of money markets. Let us merely leave this issue
with the sense that allowing negative interest rates is not necessarily “wrong,” but is
somewhat undesirable. Gaussian short-rate models are nevertheless frequently used
because they are relatively tractable and in light of the low likelihood that they would
assign to negative interest rates within a reasonably short time, with reasonable choices
for the coefficient functions.

One of the best-known single-factor term-structure models is that of Cox, Ingersoll
and Ross (1985b), the “CIR model,” which exploits the stochastic properties of the
diffusion model of population sizes of Feller (1951). For constant coefficient functions
Ky, K|, and H, the CIR drift and diffusion functions, ¢ and ¢, may be written in the
form

px, ) =k@E-x);  oxH=Cvx, x>0, (70)

for constants k, X, and C. Provided x and X are non-negative, there is a nonnegative
solution to the associated SDE (67). (Karatzas and Shreve (1988) offer a standard
proof.) Given ry, provided k¥ > C?, we know that r; has a non-central x? distribution
under Q, with parameters that are known explicitly. The drift k(¥ — 7;) indicates
reversion of r, toward a stationary risk-neutral mean X at a rate x, in the sense that

E2(r)=%+e¢ " (ry—%),

which tends to X as ¢ goes to +0o. Cox, Ingersoll and Ross (1985b) show how the
coefficients x, X, and C can be calculated in a general equilibrium setting in terms
of the utility function and endowment of a representative agent. For the CIR model,
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it can be verified by direct computation of the derivatives that the solution for the
term-structure PDE (69) is

f,t)=expla(s — 1)+ B(s — H)x], (71)
where
a(u) = % [log 2y exp [(y + k) w/2]) - log ((y + K)(e™ ~ 1) + 27)],

2(1— e
(y+x)er—1D+2y°

Blu) =

for y = (k2 +2C%)V2,

The Gaussian and Cox—Ingersoll-Ross models are special cases of single-factor
models with the property that the solution f of the term-structure PDE (69) is
given by the exponential-affine form (71) for some coefficients a(-) and f(-) that
are continuously differentiable. For all 7, the yield —log[ f(x, £))/(s — ) obtained from
Equation (71) is affine in x. We therefore call any such model an affine term-structure
model. (A function g: R — R, for some k, is affine if there are constants a and b in
R* such that for all x, g(x) =a+b-x.)

It turns out that, technicalities aside, i and ¢? are affine in x if and only if the
term structure is itself affine in x. The idea that an affine term-structure model is
typically associated with affine drift 4 and squared diffusion 02 is foreshadowed in
Cox, Ingersoll and Ross (1985b) and Hull and White (1990), and is explicit in Brown
and Schaefer (1994). Filipovi¢ (2001a) provides a definitive result for affine term
structure models in a one-dimensional state space. We will get to multi-factor models
shortly. The special cases associated with the Gaussian model and the CIR model have
explicit solutions for @ and §.

Cherif, El Karoui, Myneni and Viswanathan (1995), Constantinides (1992), El
Karoui, Myneni and Viswanathan (1992), Jamshidian (1996) and Rogers (1995)
characterize a model in which the short rate is a linear-quadratic form in a multivariate
Markov Gaussian process. This “LQG” class of models overlaps with the general
affine models, as for example in Piazzesi (1999), although it remains to be seen how
we would maximally nest the affine and quadratic Gaussian models in a simple and
tractable framework.

4.2. Term-structure derivatives

An important application of term-structure models is the arbitrage-free valuation of

derivatives. Some of the most common derivatives are listed below, abstracting from

many institutional details that can be found in a standard reference such as Sundaresan

(1997).

(a) A European option expiring at time s on a zero-coupon bond maturing at some
later time u, with strike price p, is a claim to (A, —p)* at s.
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(b) A forward-rate agreement (FRA) calls for a net payment by the fixed-rate payer of
c* — c(s) at time 5, where ¢” is a fixed payment and c(s) is a floating-rate payment
for a time-to-maturity 8, in arrears, meaning that c(s) = A;! s — 1 is the simple
interest rate applying at time s — 6 for loans maturing at time s. In practice, we
usually have a time to maturity, d, of one quarter or one half year. When originally
sold, the fixed-rate payment c* is usually set so that the FRA is at market, meaning
of zero market value. Cox, Ingersoll and Ross (1981), Duffie and Stanton (1988)
and Grinblatt and Jegadeesh (1996) consider the relative pricing of futures and
forwards.

(¢) An interest-rate swap is a portfolio of FRAs maturing at a given increasing se-
quence #(1),#(2), ..., t(n) of coupon dates. The inter-coupon interval #(i) —t(i — 1)
is usually 3 months or 6 months. The associated FRA for date #(i) calls for a net
payment by the fixed-rate payer of ¢* — c¢(#(i)), where the floating-rate payment
received is c(¢#(i)) = A}_,) ;) — 1, and the fixed-rate payment c* is the same for
all coupon dates. At initiation, the swap is usually ar market, meaning that the fixed
rate ¢* is chosen so that the swap is of zero market value. Ignoring default risk
and market imperfections, this would imply that the fixed-rate coupon c¢* is the par
coupon rate. That is, the at-market swap rate ¢* is set at the origination date ¢ of
the swap so that

1=c* (Ay+ - +Auun) + Ar s

meaning that ¢* is the coupon rate on a par bond, one whose face value and
initial market value are the same. Swap markets are analyzed by Brace and
Musiela (1994), Carr and Chen (1996), Collin-Dufresne and Solnik (2001), Duffie
and Huang (1996), Duffie and Singleton (1997), El Karoui and Geman (1994)
and Sundaresan (1997). For institutional and general economic features of swap
markets, see Lang, Litzenberger and Liu (1998) and Litzenberger (1992).

(d) A cap can be viewed as portfolio of “caplet” payments of the form (c(¢(?)) — c*)",
for a sequence of payment dates #(1),#(2), ..., t(n) and floating rates c(#(i)) that
are defined as for a swap. The fixed rate c* is set with the terms of the cap contract.
For the valuation of caps, see, for example, Chen and Scott (1995), Clewlow, Pang
and Strickland (1997), Miltersen, Sandmann and Sondermann (1997), and Scott
(1997). The basic idea is to view a caplet as a put option on a zero-coupon bond.

(e) A floor is defined symmetrically with a cap, replacing (c(¢(i)) — ¢*)* with
(¢* —c(t(@))".

(f) A swaption is an option to enter into a swap at a given strike rate ¢* at some
exercise time. If the future time is fixed, the swaption is European. Pricing of
European swaptions is developed in Gaussian settings by Jamshidian (1989a,b,c,
1991a), and more generally in affine settings by Berndt (2002), Collin-Dufresne
and Goldstein (2002) and Singleton and Umantsev (2003). An important variant,
the Bermudan swaption, allows exercise at any of a given set of successive coupon
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dates. For valuation methods, see Andersen and Andreasen (2000b) and Longstaff
and Schwartz (2001).

Jamshidian (2001) and Rutkowski (1996, 1998) offer general treatments of LIBOR
(London Interbank Offering Rate) derivative modeling.?? Path-dependent derivative
securities, such as mortgage-backed securities, sometimes call for additional state
variables. 23

In a one-factor setting, suppose a derivative has a payoff at some given time s defined
by g(7,). By the definition of an equivalent martingale measure, the price at time ¢ for
such a security is

F@r,0)= E,Q [exp (— /S Ty du) g(rs)] .

Under technical conditions on u, ¢ and g, we know that F solves the PDE, for
(x,2) € R x[0,5),

Fx,t)+ Fy(x, 1) u(x, ) + %Fxx(x, ) o(x, 1) —xF(x,1) =0, (72)
with boundary condition
F(x,s) = g(x), xR

For example, the valuation of a zero-coupon bond option is given, in a one-factor
setting, by the solution F' to Equation (72), with boundary value g(x) = [f(x,s) — p]*,
where f(x, s) is the price at time s of a zero-coupon bond maturing at u.

4.3. Fundamental solution

Under technical conditions, we can also express the solution F of the PDE (72) for
the value of a derivative term-structure security in the form

Fx,0) = / GG, 1,y,5)2(») . (73)

where G is the fundamental solution of the PDE (72). One may think of G(x, t,y, s)dy
as the price at time ¢, state x, of an “infinitesimal security” paying one unit of account in

22 On the valuation of other specific forms of term-structure derivatives, see Artzner and Roger (1993),
Bajeux-Besnainou and Portait (1998), Brace and Musiela (1994), Chacko and Das (2002), Chen and Scott
(1992, 1993), Cherubini and Esposito (1995), Chesney, Elliott and Gibson (1993), Cohen (1995), Daher,
Romano and Zacklad (1992), Décamps and Rochet (1997), El Karoui, Lepage, Myneni, Roseau and
Viswanathan (1991a,b), and Turnbull (1993), Fleming and Whaley (1994) (wildcard options), Ingersoll
(1977) (convertible bonds), Jamshidian (1993a, 1994) (diff swaps and quantos), Jarrow and Turnbull
(1994), Longstaff (1990) (yield options), and Turnbull (1995).

2 The pricing of mortgage-backed securities based on term-structure models is pursued by Boudoukh,
Richardson, Stanton and Whitelaw (1997), Cheyette (1996), Jakobsen (1992), Stanton (1995) and Stanton
and Wallace (1995, 1998), who also review some of the related literature.
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the event that the state is at level y at time s, and nothing otherwise. One can compute
the fundamental solution G by solving a PDE that is “dual” to Equation (72), in the
following sense. Under technical conditions, for each (x,?) in R x [0, T), a function
Y € CH(R x (0,T)) is defined by y(y,s) = G(x,t,y,s), and solves the forward
Kolmogorov equation (also known as the Fokker—Planck equation):

D*yY(y,s) - yy¥(y,5) =0, (74)
where

9
%

The “intuitive” boundary condition for Equation (74) is obtained from the role of G
in pricing securities. Imagine that the current short rate at time 7 is x, and consider
an instrument that pays one unit of account immediately, if and only if the current
short rate is some number y. Presumably this contingent claim is valued at 1 unit of
account if x = y, and otherwise has no value. From continuity in s, one can thus think
of (.,s) as the density at time s of a measure on R that converges as s | f to a
probability measure v with v({x}) = 1, sometimes called the Dirac measure at x. This
initial boundary condition on 1 can be made more precise. See, for example, Karatzas
and Shreve (1988) for details.

Applications to term-structure modeling of the fundamental solution, sometimes
erroneously called the “Green’s function,” are illustrated by Dash (1989), Beaglehole
(1990), Beaglehole and Tenney (1991), Biittler and Waldvogel (1996), Dai (1994)
and Jamshidian (1991b). For example, Beaglehole and Tenney (1991) show that the
fundamental solution G of the Cox—Ingersoll-Ross model (70) is given explicitly in
terms of the parameters x, X and C by

82
D* W(y’ S) = _wS(y’S)— [W(J’a S) [,l.(y, S)] + %b? [W(J’a S) U(y, S)z] .

o001, (900 3y ™) (ewy ) %

GO0 Ty rxe M T xE I\ x

X
where v = (k2 +2C?)V2, n = (x — y)/C?,

2y 2kx

. — =
ca-ery 1T

@)=

and [,(-) is the modified Bessel function of the first kind of order g. For time-
independent 4 and o, as with the CIR model, we have, for all # and s > ¢,
G(x,t,y,5)= G(x,0,y,5 — 1).

The fundamental solution for the Dothan (log-normal) short-rate model can be
deduced from the form of the solution by Hogan and Weintraub (1993) of what he
calls the “conditional discounting function”. Chen (1996) provides the fundamental
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solution for his 3-factor affine model. Van Steenkiste and Foresi (1999) provide a
general treatment of fundamental solutions of the PDE for affine models. For more
technical details and references see, for example, Karatzas and Shreve (1988).

Given the fundamental solution G, the derivative asset-price function F is more
easily computed by numerically integrating Equation (73) than from a direct numerical
attack on the PDE (72). Thus, given a sufficient number of derivative securities whose
prices must be computed, it may be worth the effort to compute G.

4.4. Multifactor term-structure models

The one-factor model (67) for the short rate is limiting. Even a casual review of the
empirical properties of the term structure, for example as reviewed in the surveys
of Dai and Singleton (2003) and Piazzesi (2002), shows the significant potential
improvements in fit offered by a multifactor term-structure model. While terminology
varies from place to place, by a “multifactor” model we mean a model in which the
short rate is of the form r, = R(X;, ), t > 0, where X is a Markov process with a state
space D that is some subset of R¥, for k > 1. For example, in much of the literature,
X is an Ito process solving a stochastic differential equation of the form

dX, = u(X,, ) de + o(X,, 1) dBY, (75)

where B? is a standard Brownian motion in RY under Q and the given functions R,
uand 0 on D x [0, 00) into R, R¥ and R* * ¢, respectively, satisfy enough technical
regularity to guarantee that Equation (75) has a unique solution and that the term
structure (66) is well defined. In empirical applications, one often supposes that the
state process X also satisfies a stochastic differential equation under the probability
measure P, in order to exploit the time-series behavior of observed prices and price-
determining variables in estimating the model.

There are various approaches for identifying the state vector JX;. In certain models,
some or all elements of the state vector X; are latent, that is, unobservable to the
modeler, except insofar as they can be inferred from prices that depend on the levels
of X. For example, k state variables might be identified from bond yields at £ distinct
maturities. Alternatively, one might use both bond and bond option prices, as in
Singleton and Umantsev (2003) or Collin-Dufresne and Goldstein (2001b, 2002).
This is typically possible once one knows the parameters, as explained below, but
the parameters must of course be estimated at the same time as the latent states
are estimated. This latent-variable approach has nevertheless been popular in much
of the empirical literature. Notable examples include Dai and Singleton (2000), and
references cited by them.

Another approach is to take some or all of the state variables to be directly
observable variables, such as macro-economic determinants of the business cycle
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and inflation, that are thought to play a role in determining the term structure. This
approach has also been explored by Piazzesi (1999), among others. 2*

A derivative security, in this setting, can often be represented in terms of some real-
valued terminal payment function g on R*, for some maturity date s < 7. By the
definition of an equivalent martingale measure, the associated derivative security price
is

F(X,1)=E? [exp (— / "R (K1) du) g(Xs)] :

For the case of a diffusion state process X satisfying Equation (75), extending
Equation (72), under technical conditions we have the PDE characterization

DF(x,t)-R(x,t)F(x,t) =0, (x,t) € D x[0,s), (76)
with boundary condition

F(x,5) = g(x), x€eD, 77N
where

DF(x,1) = Fi(x, 1)+ Fx(x, ) i(x, £) + 3tr [0(x, 1) 0(x, 1) T Fre(x, 1)] .

The case of a zero-coupon bond is g(x) = 1. Under technical conditions, we can also
express the solution F, as in Equation (73), in terms of the fundamental solution G of
the PDE (76).

4.5. Affine models

Many financial applications including term-structure modeling are based on a state
process that is Markov, under some reference probability measure that, depending on
the application, may or may not be an equivalent martingale measure. We will fix the
probability measure P for the current discussion.

A useful assumption is that the Markov state process is “affine”. While several
equivalent definitions of the class of affine processes can be usefully applied, perhaps
the simplest definition of the affine property for a Markov process X in a state
space D C RY is that its conditional characteristic function is of the form, for any
ucRe,

E (exp[iv- X ()] | X(s)) = exp [@(t — s,u) + Y(t — s,u) - X(5)]. (78)

for some deterministic coefficients @(t — s,u) and (¢ — s,u). Duffie, Filipovi¢ and
Schachermayer (2003) show that, for a time-homogeneous?® affine process X with a

24 See also Babbs and Webber (1994), Balduzzi, Bertola, Foresi and Klapper (1998) and Piazzesi (1997).
On modeling the term-structure of real interest rates, see Brown and Schaefer (1996) and Pennacchi
(1991).

25 Filipovié (2001b) extends to the time inhomogeneous case.
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state space of the form R” x R?~", provided the coefficients ¢(-) and () of the
characteristic function are differentiable and their derivatives are continuous at 0, the
affine process X must be a jump-diffusion process, in that

dX, = u(X;) dt + 0(X;)dB, +dJ,, (79)

for a standard Brownian motion B in R and a pure-jump process J, and moreoever the
drift u(X;), the “instantaneous” covariance matrix o(X;) 6(X;)’, and the jump measure
associated with J must all have affine dependence on the state X;. This result also
provides necessary and sufficient conditions on the coefficients of the drift, diffusion,
and jump measure for the process to be a well defined affine process, and provides
that the coefficients @(-,#) and (-, u) of the characteristic function satisfy a certain
(generalized Riccati) ordinary differential equation (ODE), the key to tractability for
this class of processes.%® Conversely, any jump-diffusion whose coefficients are of this
affine class is an affine process in the sense of Equation (78). A complete statement
of this result is found in Duffie, Filipovi¢ and Schachermayer (2003).

Simple examples of affine processes used in financial modeling are the Gaussian
Ornstein—Uhlenbeck model, applied to interest rates by Vasicek (1977), and the Feller
(1951) diffusion, applied to interest-rate modeling by Cox, Ingersoll and Ross (1985b),
as already mentioned in the context of one-factor models. A general multivariate class
of affine term-structure jump-diffusion models was introduced by Duffie and Kan
(1996) for term-structure modeling. Dai and Singleton (2000) classified 3-dimensional
affine diffusion models, and found evidence in U.S. swap rate data that both time-
varying conditional variances and negatively correlated state variables are essential
ingredients to explaining the historical behavior of term structures.

For option pricing, there is a substantial literature building on the particular affine
stochastic-volatility model for currency and equity prices proposed by Heston (1993).
Bates (1997), Bakshi, Cao and Chen (1997), Bakshi and Madan (2000) and Duffie,
Pan and Singleton (2000) brought more general affine models to bear in order to
allow for stochastic volatility and jumps, while maintaining and exploiting the simple
property (78).

A key property related to Equation (78) is that, for any affine function R: D — R
and any w € R¥, subject only to technical conditions reviewed in Duffie, Filipovi¢ and
Schachermayer (2003),

E, (exp [/S —RX(u)du+w - X(S)J ) =expla(s — )+ P(s — 1) - X()], (80)

for coefficients a(-) and §(-) that satisfy generalized Riccati ODEs (with real boundary
conditions) of the same type solved by ¢ and 3 of Equation (78), respectively.

26 Recent work, yet to be distributed, by Martino Graselli of CREST, Paris, and Claudio Tebaldi, provides
explicit solutions for the Riccati equations of multi-factor affine diffusion processes.
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In order to get a quick sense of how the Riccati equations for a(-) and B(-) arise,
we consider the special case of an affine diffusion process X solving the stochastic
differential equation (79), with state space D = R,, and with u(x) = a + bx and
0%(x) = cx, for constant coefficients a, b and c. (This is the continuous branching
process of Feller (1951).) We let R(x) = po + p1x, for constants py and p;, and apply
the Feynman—Kac partial differential equation (PDE) (69) to the candidate solution
exp[a(s — 1) + B(s — 1) - x] of Equation (80). After calculating all terms of the PDE and
then dividing each term of the PDE by the common factor exp[a(s — t) + (s — ) - x],
we arrive at

- d'(z) - B'(2)x +Bz)a+ bx) + 3 (2)*Px — po— p1x = 0, (81)

for all z > 0. Collecting terms in x, we have

u(z)x +uv(z) =0, (82)
where

u(z) =)+ B b+ 1)V - p1, (83)

uz) = ~a'(z)+B(z)a~po. (84)

Because Equation (82) must hold for all x, it must be the case that u(z) = v(z) = 0.
This leaves the Riccati equations:

B'(z) = Bz) b+ 1Bz)’c* —pu, (85)
a'(z) = B(z) a - po, (86)

with the boundary conditions @(0) = 0 and $(0) = w, from Equation (80) for s = ¢.
The explicit solutions for a(z) and f(z) were stated earlier for the CIR model (the case
w = 0), and are given explicitly in a more general case with jumps, called a “basic
affine process”, in Duffie and Garleanu (2001).

Beyond the Gaussian case, any Ornstein~Uhlenbeck process, whether driven by a
Brownian motion (as for the Vasicek model) or by a more general Lévy process with
jumps, as in Sato (1999), is affine. Moreover, any continuous-branching process with
immigration (CBI process), including multi-type extensions of the Feller process, is
affine. [See Kawazu and Watanabe (1971).] Conversely, an affine process in RY is a
CBI process.

For term-structure modeling,?’ the state process X is typically assumed to be
affine under a given equivalent martingale measure (. For econometric modeling of

27 Special cases of affine term-structure models include those of Balduzzi, Das and Foresi (1998),
Balduzzi, Das, Foresi and Sundaram (1996), Baz and Das (1996), Berardi and Esposito (1999), Chen
(1996), Cox, Ingersoll and Ross (1985b), Das (1993, 1995, 1997, 1998), Das and Foresi (1996), Duffie
and Kan (1996), Duffie, Pedersen and Singleton (2003), Heston (1988), Langetieg (1980), Longstaff and
Schwartz (1992, 1993), Pang and Hodges (1995) and Selby and Strickland (1993).
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bond yields, the affine assumption is sometimes also made under the data-generating
measure P, although Duffee (1999b) suggests that this is overly restrictive from an
empirical viewpoint, at least for 3-factor models of interest rates in the USA that do not
have jumps. For general reviews of this issue, and summaries of the empirical evidence
on affine term structure models, see Dai and Singleton (2003) and Piazzesi (2002). The
affine class allows for the analytic calculation of bond option prices on zero-coupon
bonds and other derivative securities, as reviewed in Section 5, and extends to the case
of defaultable models, as we show in Section 6. For related computational results, see
Liu, Pan and Pedersen (1999) and Van Steenkiste and Foresi (1999). Singleton (2001)
exploits the explicit form of the characteristic function of affine models to provide a
class of moment conditions for econometric estimation.

4.6. The HIM model of forward rates

We turn to the term structure model of Heath, Jarrow and Morton (1992). Until
this point, we have taken as the primitive a model of the short-rate process of the
form », = R(X,,t), where (under some equivalent martingale measure) X is a finite-
dimensional Markov process. This approach has analytical advantages, especially for
derivative pricing and statistical modeling. A more general approach that is especially
popular in business applications is to directly model the risk-neutral stochastic behavior
of the entire term structure of interest rates. This is the essence of the Heath—Jarrow—
Morton (HIM) model. The remainder of this section is a summary of the basic elements
of the HIM model.

If the discount A, is differentiable with respect to the maturity date s, a mild
regularity, we can write

Ay s = exp (— /Sf(t, u) du) s

where

1 8Al,u
At,u 8“

f(t,u)=-—

The term structure can thus be represented in terms of the instantaneous forward rates,
{ft,uw): u > t}.

The HIM approach is to take as primitive a particular stochastic model of these
forward rates. First, for each fixed maturity date s, one models the one-dimensional
forward-rate process f(-,s) = {f(#,5): 0 < ¢ < s} as an Ito process, in that

f(t,5) =£(0,5)+ /0 t w(u, s)du + /0 t o(u,s)dBY, 0<t<s, 87
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where u(-,s) = {u(t,s): 0 < t < s} and 0(-,5) = {0(t,5): 0 < t < s} are adapted
processes valued in R and R?, respectively, such that Equation (87) is well defined.?®
Under purely technical conditions, it must be the case that

u(t,s) = o(t, s) - / ' o(t, u) du. (88)

In order to confirm this key risk-neutral drift restriction (88), consider the Q-martingale
M defined by

M, = E,Q [exp (— /S Ty du)]
0
= exp <— / t Tu du) Ass (89)
0

=exp(X;+7Y),
where

t S
X,=—/rudu; n=—/f(t,u)du.
0 t

We can view Y as an infinite sum of the [to processes for forward rates over all
maturities ranging from ¢ to 5. Under technical conditions? for Fubini’s Theorem for
stochastic integrals, we thus have

dy, = uy () dt + oy(r)dB2,
where

wr® =10~ [ e,
and t
oy(t)=— / ) o(t,u)du.
We can then ap;ly Ito’s Formula in the usual way to M, = ¢¥®W*Y® and obtain the

drift under Q of M as

tar(8) = M, (y (D) + Joy (D) - oy(O) — 1) .
Because M is a O-martingale, we must have py, = 0, so, substituting iy (¢) into this
equation, we obtain

/tsu(t,u)du= % (/ts a(t,u)du) . (/ts 0(t,u)du> .

Taking the derivative of each side with respect to s then leaves the risk-neutral drift
restriction (88) which in turn provides, naturally, the property that »(¢) = f(z, ).

2 The necessary and sufficient condition is that, almost surely, f(; |u(t,s)|dt < oo and
fs 0(2,5) - 0(2,5) dt < co.

29 In addition to measurability, it suffices that u(¢, u, w) and o(¢,u, w) are uniformly bounded and, for
each w, continuous in (¢, ). For weaker conditions, see Protter (1990).
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Thus, the initial forward rates { £(0,s): 0 < s < T'} and the forward-rate “volatility”
process ¢ can be specified with nothing more than technical restrictions, and these
are enough to determine all bond and interest-rate derivative price processes. Aside
from the Gaussian special case associated with deterministic volatility o(z, s), however,
most valuation work in the HIM setting is typically done by Monte Carlo simulation.
Special cases aside, > there is no finite-dimensional state variable for the HIM model,
so PDE-based computational methods cannot be used.

The HIM model has been extensively treated in the case of Gaussian instantaneous
forward rates by Jamshidian (1989b), who developed the forward-measure approach,
and Jamshidian (1989a,c, 1991a) and El Karoui and Rochet (1989), and extended by El
Karoui, Lepage, Myneni, Roseau and Viswanathan (1991a,b), El Karoui and Lacoste
(1992), Frachot (1995), Frachot, Janci and Lacoste (1993), Frachot and Lesne (1993)
and Miltersen (1994). A related model of log-normal discrete-period interest rates, the
“market model,” was developed by Miltersen, Sandmann and Sondermann (1997).3!

Musiela (1994b) suggested treating the entire forward-rate curve

gt,u)={f(t,t+u): 0 <u < oo},

itself as a Markov process. Here, u indexes time to maturity, not date of maturity. That
is, we treat the term structure g(f) = g(¢,-) as an element of some convenient state
space S of real-valued continuously differentiable functions on [0, o). Now, letting
o(t,u) = o(t,t + u), the risk-neutral drift restriction (88) on £, and enough regularity,
imply the stochastic partial differential equation (SPDE) for g given by

dg(t,u) = 2L u)dt+V(t u)dt +o(t, u) B2,

where
Vit,u)=uv(t,u)- /" u(t,z)dz.
0

This formulation is an example of a rather delicate class of SPDEs that are called
“hyperbolic”. Existence is usually not shown, or shown only in a “weak sense”, as by
Kusuoka (2000). The idea is nevertheless elegant and potentially important in getting
a parsimonious treatment of the yield curve as a Markov process. One may even allow

30 See Au and Thurston (1993), Bhar and Chiarella (1995), Cheyette (1995), Jeffrey (1995), Musiela
(1994b), Ritchken and Sankarasubramaniam (1992) and Ritchken and Trevor (1993).

31 See also Andersen and Andreasen (2000a), Brace and Musiela (1995), Dothan (1978), Goldberg
(1998), Goldys, Musicla and Sondermann (1994), Hansen and Jorgensen (2000), Hogan and Weintraub
(1993), Jamshidian (1997a,b, 2001), Sandmann and Sondermann (1997), Miltersen, Sandmann and
Sondermann (1997), Musiela (1994a) and Vargiolu (1999). A related log-normal futures-price term
structure model is due to Heath (1998).
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the Brownian motion B? to be “infinite-dimensional”. For related work in this setting,
sometimes called a string, random field, or SPDE model of the term structure, see Cont
(1998), Jong and Santa-Clara (1999), Goldstein (1997, 2000), Goldys and Musiela
(1996), Hamza and Klebaner (1995), Kennedy (1994), Kusuoka (2000), Musicla
and Sondermann (1994), Pang (1996), Santa-Clara and Sornette (2001) and Sornette
(1998).

5. Derivative pricing

We turn to a review of the pricing of derivative securities, taking first futures and
forwards, and then turning to options. The literature is immense, and we shall again
merely provide a brief summary of results. Again, we fix a probability space (2, F, P)
and a filtration F = {F;: 0 < # < T} satisfying the usual conditions, as well as a short-
rate process r.

5.1. Forward and futures prices

We briefly address the pricing of forward and futures contracts, an important class of
derivatives.

The forward contract is the simpler of these two closely related securities. Let W
be an Fr-measurable finite-variance random variable underlying the claim payable to
a holder of the forward contract at its delivery date T'. For example, with a forward
contract for delivery of a foreign currency at time 7', the random variable W is the
market value at time 7 of the foreign currency. The forward-price process F is defined
by the fact that one forward contract at time ¢ is a commitment to pay the net amount
F, — W at time T, with no other cash flows at any time. In particular, the true price
of a forward contract, at the contract date, is zero.

We fix an equivalent martingale measure Q for the available securities, after deflation
by exp[— fot r(u) du], where r is a short-rate process that, for convenience, is assumed
to be bounded. The dividend process H defined by the forward contract made at time ¢
is given by H; = 0, s < T, and Hr = W — F;. Because the true price of the forward
contract at ¢ is zero,

7
0=E£? [exp(—/ ro ds) (W—F,)} .

Solving for the forward price,

_ E? [exp (— f{T 75 ds) W]

E,Q [exp (— ftT ¥ ds)]

t
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If we assume that there exists at time ¢ a zero-coupon riskless bond maturing at time 7,
with price A;r, then

1 T
F,= ——E,Q [exp(—/ rs ds) W] .
Ayt ‘

If » and W are statistically independent with respect to Q, we have the simplified
expression F, = E,Q (W), implying that the forward price is a Q-martingale. This would
be true, for instance, if the short-rate process r is deterministic.

As an example, suppose that the forward contract is for delivery at time 7' of one
unit of a particular security with price process S and cumulative dividend process D.
In particular, W = Sy. We can obtain a more concrete representation of the forward
price, as follows. We have

T s
F,=AL(S,—E,Q [/ exp(—/ r,,du) dD{l)
t,T t t

If the short-rate process r is deterministic, we can simplify further to

T T
F, = ASt —EtQ [/ exp(/ Tu du) dDS] , (90)
1,7 t 5

which is known as the cost-of-carry formula for forward prices for the case in which
interest rates and dividends are deterministic.

As with a forward contract, a futures contract with delivery date T is keyed to some
delivery value W, which we take to be an Fr-measurable random variable with finite
variance. The contract is completely defined by a futures-price process @ with the
property that @7 = W. As we shall see, the contract is literally a security whose price
process is zero and whose cumulative dividend process is @. In other words, changes
in the futures price are credited to the holder of the contract as they occur.

This definition is an abstraction of the traditional notion of a futures contract,
which calls for the holder of one contract at the delivery time 7 to accept delivery
of some asset (whose spot market value at 7 is represented here by /) in return
for simultaneous payment of the current futures price @r. Likewise, the holder of
—1 contract, also known as a short position of 1 contract, is traditionally obliged
to make delivery of the same underlying assset in exchange for the current futures
price @r. This informally justifies the property @7 = W of the futures-price process @
given in the definition above. Roughly speaking, if @r is not equal to W (and if we
continue to neglect transactions costs and other details), there is a delivery arbitrage.
We won’t explicitly define a delivery arbitrage since it only complicates the analysis of
futures prices that follows. Informally, however, in the event that W > ®r, one could
buy at time T the deliverable asset for W, simultaneously sell one futures contract,
and make immediate delivery for a profit of W — ®r. Thus, the potential of delivery
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arbitrage will naturally equate @7 with the delivery value . This is sometimes known
as the principle of convergence.

Many modern futures contracts have streamlined procedures that avoid the delivery
process. For these, the only link that exists with the notion of delivery is that the
terminal futures price @y is contractually equated to some such variable #, which
could be the price of some commodity or security, or even some abstract variable of
general economic interest such as a price deflator. This procedure, finessing the actual
delivery of some asset, is known as cash settlement. In any case, whether based on cash
settlement or the absence of delivery arbitrage, we shall always take it by definition
that the delivery futures price @7 is equal to the given delivery value W.

The institutional feature of futures markets that is central to our analysis of futures
prices is resettlement, the process that generates daily or even more frequent payments
to and from the holders of futures contracts based on changes in the futures price. As
with the expression “forward price”, the term “futures price” can be misleading in
that the futures price &, at time ¢ is not at all the price of the contract. Instead, at
each resettlement time ¢, an investor who has held 6 futures contracts since the last
resettlement time, say s, receives the resettlement payment 6(®; — &), following the
simplest resettlement recipe. More complicated resettlement arrangements often apply
in practice. The continuous-time abstraction is to take the futures-price process @ to
be an Ito process and a futures position process to be some 6 in £(®P) generating the
resettlement gain [ 6 d® as a cumulative-dividend process. In particular, as we have
already stated in its definition, the futures-price process @ is itself, formally speaking,
the cumulative dividend process associated with the contract. The true price process
is zero, since (again ignoring some of the detailed institutional procedures), there is
no payment against the contract due at the time a contract is bought or sold.

The futures-price process @ can now be characterized as follows. We suppose that
the short-rate process r is bounded. For all ¢, let ¥, = exp[— fot r(s)ds]. Because @ is
strictly speaking the cumulative-dividend process associated with the futures contract,
and since the true-price process of the contract is zero, from the fact that the risk-
neutral discounted gain is a martingale,

T
0=E? (/ stqbs), t<T,
t

from which it follows that the stochastic integral f Y d® is a O-martingale. Because
r is bounded, there are constants k; > 0 and k&, such that k; < ¥; < k; for all ¢. The
process [ Y d@ is therefore a Q-martingale if and only if @ is also a Q-martingale.
Since &r = W, we have deduced a convenient representation for the futures-price
process:

&, =E2W), te[0,T]. 91)

If  and W are statistically independent under Q, the futures-price process @ and the
forward-price process F are thus identical. Otherwise, as pointed out by Cox, Ingersoll
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and Ross (1981), there is a distinction based on correlation between changes in futures
prices and interest rates.

5.2. Options and stochastic volatility

The Black—Scholes formula, which treats option prices under constant volatility, can be
extended to cases with stochastic volatility, which is crucial in many markets from an
empirical viewpoint. We will briefly examine several basic approaches, and then turn
to the computation of option prices using the Fourier-transform method introduced by
Stein and Stein (1991), and then first exploited in an affine setting by Heston (1993).

We recall that the Black—Scholes option-pricing formula is of the form C(x, p, 7, t, 0),
for C: R? — R,, where x is the current underlying asset price, p is the exercise price,
7 is the constant short rate, ¢ is the time to expiration, and & is the volatility coefficient
for the underlying asset. For each fixed (x, p, 7, t) with non-zero x and ¢, the map from
o0 to C(x,p, 7,1, 0) is strictly increasing, and its range is unbounded. We may therefore
invert and obtain the volatility from the option price. That is, we can define an implied
volatility function I: R} — R, by

c=Cx,p,7,t,1(x,p,7,t,0)), (92)

for all sufficiently large ¢ € R,.

If ¢; is the Black—Scholes price of an option on a given asset at strike p; and
expiration #;, and c¢; is the Black—-Scholes price of an option on the same asset at
strike p, and expiration t,, then the associated implied volatilities I(x, p;, 7, #;,¢;) and
I(x,p2,7, 1, c2) must be identical, if indeed the assumptions underlying the Black—
Scholes formula apply literally, and in particular if the underlying asset-price process
has the constant volatility of a geometric Brownian motion. It has been widely noted,
however, that actual market prices for European options on the same underlying asset
have associated Black-Scholes implied volatilities that vary with both exercise price
and expiration date. For example, in certain markets at certain times, the implied
volatilities of options with a given exercise date depend on strike prices in a manner
that is often termed a smile curve. Figure 1 illustrates the dependence of Black—Scholes
implied volatilities on moneyness (the ratio of strike price to futures price), for various
S&P 500 index options on November 2, 1993. Other forms of systematic deviation
from constant implied volatilities have been noted, both over time and across various
derivatives at a point in time.

Three major lines of modeling address these systematic deviations from the
assumptions underlying the Black—Scholes model. In all of these, a key step is to
generalize the underlying log-normal price process by replacing the constant volatility
parameter O of the Black—Scholes model with +/7;, an adapted non-negative process ¥
with fOT V¥, dt < oo such that the underlying asset price process S satisfies

ds, =rS,dt + 8,1/V, de’, 93)



706 D. Duffie

24 T T T T T
o ¢ 17 days
22 L o O 45 days B
v v 80 days
20 + + 136 days
B * * 227 days | |
= % v 318 days
:o/ 18 L |
=
k=]
% 16 | 4
]
g 1l i}
S
=
[
%
E 12 L 4
[2a]
101 .
8 | N
6 1 1 I I
0.6 0.7 0.8 0.9 1 1.1 1.2

Moneyness = Strike/Futures

Fig. 1. “Smile curves” implied by SP500 Index options of 6 different times to expiration, from market
data for November 2, 1993.

where B? is a standard Brownian motion in R under the given equivalent martingale
measure Q, and € = ¢g - BY is a standard Brownian motion under Q obtained from
any cg in R? with unit norm.

In the first class of models, V, = v(S;,t), for some function v: R x {0,7] — R
satisfying technical regularity conditions. In practical applications, the function v, or
its discrete-time discrete-state analogue, is often “calibrated” to the available option
prices. This approach, sometimes referred to as the implied-tree model, was developed
by Dupire (1994), Rubinstein (1995) and Jackwerth and Rubinstein (1996).

For a second class of models, called autoregressive conditional heteroscedastic,
or ARCH, the volatility depends on the path of squared returns, as formulated by
Engle (1982). The GARCH (generalized ARCH) variant has the squared volatility 7,
at time ¢ of the discrete-period return R, = log S, .1 — log S, adjusting according to
the recursive formula

Vi=a+bV,_1+cR?, (94)

for fixed coefficients @, b and ¢ satisfying regularity conditions. By taking a time period
of length 4, normalizing in a natural way, and taking limits, a natural continous-time
limiting behavior for volatility is simply a deterministic mean-reverting process V
satisfying the ordinary differential equation

— =k @-V(). (95)
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Corradi (2000) explains that this deterministic continuous-time limit is more natural
than the stochastic limit of Nelson (1990). For both the implied-tree approach and
the GARCH approach, the volatility process V' depends only on the underlying asset
prices; volatility is not a separate source of risk.

In a third approach, however, the increments of the squared-volatility process V
depend on Brownian motions that are not perfectly correlated with €5. For example,
in a simple “one-factor” setting,

dv, = uy (V) dt + oy (V) de/, (96)

where €/ = ¢y - BC is a standard Brownian motion under O, for some constant
vector ¢y of unit norm. As we shall see, the correlation parameter csy = cs - ¢y has
an important influence on option prices.

The price of a European option at exercise price p and expiration at time ¢ is

f (S5, Vy,5) = EZ (exp[-F(t - )] (S: —p)') ,

which can be solved, for example, by reducing to a PDE and applying, if necessary,
a finite-difference approach.

In many settings, a pronounced skew to the smile, as in Figure 1, indicates an
important potential role for correlation between the increments of the return-driving
and volatility-driving Brownian motions, €5 and €”. This role is borne out directly by
the correlation apparent from time-series data on implied volatilities and returns for
certain important asset classes, as indicated for example by Pan (2002).

A tractable model that allows for the skew effects of correlation is the Heston model,
the special case of Equation (96) for which

dv,=x @-V,) dt+a,\/V,de’, )

for positive coefficients k, 0 and 0, that play the same respective roles for V as
for a Cox—Ingersoll-Ross interest-rate model. Indeed, this Feller diffusion model of
volatility (97) is sometimes called a “CIR volatility model.” In the original Heston
model, the short rate is a constant, say 7, and option prices can be computed
analytically, using transform methods explained later in this section, in terms of the
parameters (7, csy, K, U, 0,) of the Heston model, as well as the initial volatility ¥, the
initial underlying price Sy, the strike price, and the expiration time.

Figure 2 shows the “smile curves,” for the same options illustrated in Figure 1,
that are implied by the Heston model for parameters, including V;, chosen to
minimize the sum of squared differences between actual and theoretical option prices,
a calibration approach popularized for this application by Bates (1997). Notably, the
distinctly downward slopes, often called skews, are captured with a negative correlation
coefficient ¢sy. Adopting a short rate 7 = 0.0319 that roughly captures the effects of
contemporary short-term interest rates, the remaining coefficients of the Heston model
are calibrated to cgy = —0.66, K = 19.66, 0= 0.017, 6, = 1.516, and /7, = 0.094.
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Fig. 2. “Smile curves” calculated for SP500 Index options of 6 different exercise dates, November 2,
1993, using the Heston Model.

Going beyond the calibration approach, time-series data on both options and
underlying prices have been used simultaneously to fit the parameters of various
stochastic-volatility models, for example by Ait-Sahalia, Wang and Yared (2001),
Benzoni (2002), Chernov and Ghysels (2000), Guo (1998), Pan (2002), Poteshman
(1998) and Renault and Touzi (1992). The empirical evidence for S&P 500 index
returns and option prices suggests that the Heston model is overly restrictive for these
data. For example, Pan (2002) rejects the Heston model in favor of a generalization
with jumps in returns, proposed by Bates (1997), that is a special case of the affine
model for option pricing to which we now turn.

5.3. Option valuation by transform analysis

We now address the calculation of option prices with stochastic volatility and jumps in
an affine setting of the type already introduced for term-structure modeling, a special
case being the model of Heston (1993). We use an approach based on transform
analysis that was initiated by Stein and Stein (1991) and Heston (1993), allowing for
relatively rich and tractable specifications of stochastic interest rates and volatility,
and for jumps. This approach and the underlying stochastic models were subsequently
generalized by Bakshi, Cao and Chen (1997), Bakshi and Madan (2000), Bates (1997)
and Duffie, Pan and Singleton (2000).

We assume that there is a state process X that is affine under Q in a state
space D C R, and that the short-rate process r is of the affine form », = po + p; - X;,
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for coefficients py in R and p; in R¥. The price process S underlying the options in
question is assumed to be of the exponential-affine form S; = expla(?) + b(¢) - X (£)], for
potentially time-dependent coefficients a(z) in R and b(¢) in RF. An example would be
the price of an equity, a foreign currency, or, as shown earlier in the context of affine
term-structure models, the price of a zero-coupon bond.

The Heston model (97) is a special case, for an affine process X = (X1, X@), with
X,“) =Y, = log(S,), and X,(Z) = V,, and with a constant short rate 7 = py. From Ito’s
Formula,

dY, = (7= 3V2) de+ Vi de], (98)

which indeed makes the state vector X; = (¥;, V;) an affine process, whose state space is
D =R x [0, 00), as we can see from the fact that the drift and instantaneous covariance
matrix of X, are affine with respect to X;. The underlying asset price is indeed of the
desired exponential-affine form because S, = e’ We will return to the Heston model
shortly with some explicit results on option valuation.

One of the affine models generalizing Heston’s that was tested by Pan (2002) took

dy, = (F- 1¥,) dt +/V, de’ +dz, (99)

where, under the equivalent martingale measure Q, Z is a pure-jump process whose
jump times have an arrival intensity (as defined in Section 6) that is affine with respect
to the volatility process V', and whose jump sizes are independent normals.

For the general affine case, suppose we are interested in valuing a European call
option on the underlying security, with strike price p and exercise date r. We have the
initial option price

Uy = E? {exp (- / t Fu du) (S, — p)+J )
0

Letting A denote the exercise event {w: S(w, ) > p}, we have the option price

Us =E? [exp(—/ ¥y ds) (S, 14 —plA)} .
0

Because S(¢) = exp[a(?) + b(t) - X (1)],
Up = G (~logp + a(t); t, b(t), ~b(1))

(100)
—-pG(-logp +a(t); 1,0,-b(2)),
where, for any y € R and for any coefficient vectors d and & in R,
t
G(y; t,d,0) = E¢ [exp(—/ ¥ ds) expld - X(D] ls.xr <y | - (101)
0

So, if we can compute the function G, we can obtain the prices of options of any
strike and exercise date. Likewise, the prices of European puts, interest-rate caps,
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chooser options, and many other derivatives can be derived in terms of G. For example,
following this approach of Heston (1993), the valuation of discount bond options and
caps in an affine setting was undertaken by Chen and Scott (1995), Duffie, Pan and
Singleton (2000), Nunes, Clewlow and Hodges (1999) and Scaillet (1996).

We note, for fixed (¢,d, §), assuming EC(exp[— fot r(u)du] expld - X(#)]) < oo, that
G(-; t,d, ) is a bounded increasing function. For any such function g: R — [0, 00),
an associated transform g: R — C, where C is the set of complex numbers, is defined
by

8() - / ¢ dg(y), (102)

where i is the usual imaginary number, often denoted v/—1. Depending on one’s
conventions, one may refer to ¢ as the Fourier transform of g. Under the technical
condition that ff:: | £(z) | dz < oo, we have the Lévy Inversion Formula

g(0) 1 [1 .
=52 [7 m[eee) &, (103)

2 T

where Im(c) denotes the imaginary part of a complex number c.

For the case g(-) = G(:; t,d, 8), with the associated transform G( t,d,5), we can
compute G(y; t,d,d) from Equation (103), typically by computing the integral in
Equation (103) numerically, and thereby obtain option prices from Equation (100). Our
final objective is therefore to compute the transform G. Fixing z, and applying Fubini’s
Theorem to Equation (102), we have G(z t,d, ) = f(Xy,0), where f: D x [0,/]] > C
is defined by

f(Xs,s) = E? <exp [— /t r(u) du} exp [d - X ()] exp [izd - X(#)] {Xs) ) (104)

From Equation (104), the same separation-of-variables arguments used to treat the
affine term-structure models imply, under technical regularity conditions, that

fx,5) =expla(t—s)+p(t—s)-x], (105)

where (a,f5) solves the generalized Riccati ordinary differential equation (ODE)
associated with the affine model and the coefficients py and p; of the short rate. The
solutions for a(-) and S(-) are complex numbers, in light of the complex boundary
condition 5(0) = d + izd. For technical details, see Duffie, Filipovi¢ and Schachermayer
(2003).

Thus, under technical conditions, we have our transform G(z t,d, ), evaluated at
a particular z. We then have the option-pricing formula (100), where G(y; ¢,d,0) is
obtained from the inversion formula (103) applied to the transforms G( t, b(t),—b(t))
and G( ; 1,0,-b(1)).
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For option pricing with the Heston model, we require only the transform p(u) =

e " EQ(exp[uY (£)]), for some particular choices of # € C. Heston (1993) solved the
Riccati equation for this case, arriving at

W) = exp [a(z, u) + uY (0) + B(t, u) V(O)] i

where, letting b = uo,csy —k, a = u(l —u), and y = /b + ad?,

- 3 a(l—e)
'B(t’u)__2)/—()/+b)(1—e—>")’
Bt u) = Fo(u 1)—K5(y;bt+ 2 g [1— 72—*;” (1-e—w)D.

Other special cases for which one can compute explicit solutions are cited in Duffie,
Pan and Singleton (2000).

6. Corporate securities

This section offers a basic review of the valuation of equities and corporate liabilities,
beginning with some standard issues regarding the capital structure of a firm. Then,
we turn to models of the valuation of defaultable debt that are based on an assumed
stochastic arrival intensity of the stopping time defining default. The use of intensity-
based defaultable bond pricing models was instigated by Artzner and Delbaen (1990,
1992, 1995), Lando (1994, 1998) and Jarrow and Turnbull (1995), and has become
commonplace in business applications among banks and investment banks.

We begin with an extremely simple model of the stochastic behavior of the market
values of assets, equity, and debt. We may think of equity and debt, at this first pass,
as derivatives with respect to the total market value of the firm, as proposed by Black
and Scholes (1973) and Merton (1974). In the simplest case, equity is merely a call
option on the assets of the firm, struck at the level of liabilities, with possible exercise
at the maturity date of the debt.3?

At first, we are in a setting of perfect capital markets, where the results of Modigliani
and Miller (1958) imply the irrelevance of capital structure for the total market value
of the firm. Later, we introduce market imperfections and increase the degree of
control that may be exercised by holders of equity and debt. With this, the theory
becomes more complex and less like a derivative valuation model. There are many
more interesting variations than could be addressed well in the space available here.

32 Geske (1977) used compound option modeling so as to extend to the Black—Scholes—Merton model
to cases of debt at various maturities.
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Our objective is merely to convey some sense of the types of issues and standard
modeling approaches.

We let B be a standard Brownian motion in RY on a complete probability
space (2, F, P), and fix the standard filtration {F;: ¢ > 0} of B. Later, we allow for
information revealed by “Poisson-like arrivals”, in order to tractably model “sudden-
surprise” defaults that cannot be easily treated in a setting of Brownian information.

6.1. Endogenous default timing

We assume a constant short rate » and take as given a martingale measure (Q, in the
infinite-horizon sense of Huang and Pagés (1992), after deflation by e .

The resources of a given firm are assumed to consist of cash flows at a rate 6, for
each time ¢, where ¢ is an adapted process with fot | & [ds < oo almost surely for all
t. The market value of the assets of the firm at time ¢ is defined as the market value 4,
of the future cash flows. That is,

4, =E? ( / ” exp [—r(s — )] 6, ds) . (106)

t

We assume that 4, is well defined and finite for all ¢. The martingale representation
theorem implies that

dd, = (r4,~ &) dt + 0, dB?, (107)

for some adapted R¥-valued process ¢ such that fOT 0; - g,dt < oo for all T € [0, 00),
and where B? is the standard Brownian motion in R under Q obtained from B and
Girsanov’s Theorem. 3

We suppose that the original owners of the firm chose its capital structure to consist
of a single bond as its debt, and pure equity, defined in detail below. The bond and
equity investors have already paid the original owners for these securities. Before we
consider the effects of market imperfections, the total of the market values of equity
and debt must be the market value A4 of the assets, which is a given process, so the
design of the capital structure is irrelevant from the viewpoint of maximizing the total
value received by the original owners of the firm.

For simplicity, we suppose that the bond promises to pay coupons at a constant
total rate ¢, continually in time, until default. This sort of bond is sometimes called
a consol. Equityholders receive the residual cash flow in the form of dividends at the
rate &; — ¢ at time ¢, until default. At default, the firm’s future cash flows are assigned
to debtholders.

3 For an explanation of how Girsanov’s Theorem applies in an infinite-horizon setting, see for example
the last section of Chapter 6 of Duffie (2001), based on Huang and Pageés (1992).
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The equityholders’ dividend rate, §, — ¢, may have negative outcomes. It is
commonly stipulated, however, that equity claimants have limited liability, meaning
that they should not experience negative cash flows. One can arrange for limited
liability by dilution of equity. 3*

Equityholders are assumed to have the contractual right to declare default at any
stopping time 7, at which time equityholders give up to debtholders the rights to
all future cash flows, a contractual arrangement termed strict priority, or sometimes
absolute priority. We assume that equityholders are not permitted to delay liquidation
after the value 4 of the firm reaches 0, so we ignore the possibility that Ar < 0.
We could also consider the option of equityholders to change the firm’s production
technology, or to call in the debt for some price.

The bond contract may convey to debtholders, under a protective covenant, the right
to force liquidation at any stopping time t at which the asset value 4, is as low or
lower than some stipulated level. We ignore this feature for brevity.

6.2. Example: Brownian dividend growth

We turn to a specific model proposed by Fisher, Heinkel and Zechner (1989), and
explicitly solved by Leland (1994), for optimal default timing and for the valuation
of equity and debt. Once we allow for taxes and bankruptcy distress costs,>> capital
structure matters, and, within the following simple parametric framework, Leland
(1994) calculated the initial capital structure that maximizes the total initial market
value of the firm.

Suppose the cash-flow rate process d is a geometric Brownian motion under Q, in
that

dé, = ué, dt + 068, dB2,

for constants 4 and o, where B? is a standard Brownian motion under Q. We assume
throughout that ¢ < r, so that, from Equation (106), 4 is finite and

dA, = pd,dt + 04, dBL.

3 That is, so long as the market value of equity remains strictly positive, newly issued equity can be
sold into the market so as to continually finance the negative portion (¢ — §;)* of the residual cash flow.
While dilution increases the quantity of shares outstanding, it does not alter the total market value of
all shares, and so is a relatively simple modeling device. Moreover, dilution is irrelevant to individual
shareholders, who would in any case be in a position to avoid negative cash flows by selling their own
shares as necessary to finance the negative portion of their dividends, with the same effect as if the firm
had diluted their shares for this purpose. We are ignoring here any frictional costs of equity issuance or
trading.

35 The model was further elaborated to treat coupon debt of finite maturity in Leland and Toft (1996),
endogenous calling of debt and re-capitalization in Leland (1998) and Uhrig-Homburg (1998), incomplete
observation by bond investors, with default intensity, in Duffie and Lando (2001), and alternative
approaches to default recovery by Anderson and Sundaresan (1996), Anderson, Pan and Sundaresan
(2001), Décamps and Faure-Grimaud (2000, 2002), Fan and Sundaresan (2000), Mella-Barral (1999)
and Mella-Barral and Perraudin (1997).
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We calculate that §; = (r — u) 4;.
For any given constant K € (0, 4p), the market value of a security that claims one
unit of account at the hitting time 7(K) = inf{#: 4, < K} is, at any time ¢ < 7(X),

4\
E? (exp [-r(T(K) - )]) = (E) , (108)
where
m+ vVm?+2ro?
Y= T

and where m = y — 0%/2. This can be shown by applying Ito’s Formula to see that
e"(4,/K)" is a Q-martingale.

Let us consider for simplicity the case in which bondholders have no protective
covenant. Then, equityholders declare default at a stopping time that attains the
maximum equity valuation

T

w(dg) = sup E? [/ e (8 -0c) dt] , (109)
reT 0

where T is the set of stopping times.

We naturally conjecture that the maximization problem (109} is solved by a hitting
time of the form 7(4g) = inf{#: A, < Ag}, for some default-triggering level Az of
assets to be determined. Black and Cox (1976) developed the idea of default at the first
passage of assets to a sufficiently low level, but used an exogenous default boundary.
Longstaff and Schwartz (1995) extended this approach to allow for stochastic default-
free interest rates. Their work was then refined by Collin-Dufresne and Goldstein
(2001a).

Given this conjectured form 7(4p) for the optimal default time, we further conjecture
from Ito’s Formula that the equity value function w: (0,00) — [0, 00) defined by
Equation (109) solves the ODE

Dw(x)—rwx)+(r—uw)x—c=0, x> A, (110)
where
Dw(x) = w'(x) px + 3w (x) 0°x7, 111

with the absolute-priority boundary condition

wx)=0, x<A; (112)
Finally, we conjecture the smooth-pasting condition

w'(4p) =0, (113)

based on Equation (112) and continuity of the first derivative w'(-) at Az. Although
not an obvious requirement for optimality, the smooth-pasting condition, sometimes
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called the high-order-contact condition, has proven to be a fruitful method by which
to conjecture solutions, as follows.

If we are correct in conjecturing that the optimal default time is of the form
T(4dp) = inf{t: 4, < Ap}, then, given an initial asset level 49 = x > Ap, the value
of equity must be

4 =Y
w(x) = x—Ap (Aig) —%[1—(}8) } (114)

This conjectured value of equity is merely the market value x of the total future cash
flows of the firm, less a deduction equal to the market value of the debtholders’ claim
to Ap at the default time 7(4) using Equation (108), less another deduction equal to
the market value of coupon payments to bondholders before default. The market value
of those coupon payments is easily computed as the present value ¢/ of coupons paid
at the rate ¢ from time 0 to time +o0, less the present value of coupons paid at the rate ¢
from the default time 7(4z) until +o0, again using Equation (108). In order to complete
our conjecture, we apply the smooth-pasting condition w’(4) = 0 to this functional
form (114), and by calculation obtain the conjectured default triggering asset level as

Ap = e, (115)
where
_ Y
ﬁ’r(1+y)‘ (116)

We are ready to state and verify this result of Leland (1994).

Proposition. The default timing problem (109) is solved by inf{t: A, < Pc}. The
associated initial market value w(Aq) of equity is W(Ay,c), where

W(x,c)=0, x<pfc, (117)

and

W(x,c)=x—fc (ﬁic)_y—; [1 - (l%)_y} . x> fe (118)

The initial value of debt is Ay — W(Ay, ¢).

Proof: First, it may be checked by calcuation that W(-,c) satisfies the differential
equation (110) and the smooth-pasting condition (113). Ito’s Formula applies to C?
(twice continuously differentiable) functions. In our case, although W{(-,c) need not
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be C?, it is convex, is C', and is C? except at Bc, where W,(fc,c) = 0. Under these
conditions, we obtain the result of applying Ito’s Formula as

W (4s,¢) = W(Ao,c)+/ DW (4;,¢) dt+/ W, (4,,c) 04,dB2,
0 0

where DW (x, c) is defined as usual by
DW (x,c) = Wi(x,c) ux + 1 W (x, 0) 0752,

except at x = fBc, where we may replace “W,,( Sc, c)” with zero. [This slight extension
of Ito’s Formula is found, for example, in Karatzas and Shreve (1988), p. 219.]
For each time ¢, let

t
q=e "W (4s,0) +/ e ((r—p) 4;—c) ds.
0

From Ito’s Formula,

dg, = e'f (4,) dt +e " Wy (4, ¢) 04, dB?, (119)
where

fx)=DWix,c)—rW(x,0)+(r—u)x—c.

Because W, is bounded, the last term of Equation (119) defines a Q-martingale. For
x < PBe, we have both W(x,c) =0 and (r — )x — ¢ < 0, so f(x) < 0. For x > fic, we
have Equation (110), and therefore f(x) = 0. The drift of g is therefore never positive,
and for any stopping time T we have qo > E(gr), or equivalently,

- T
W (Ao, ¢) > E¢ / e (6 -¢) ds+e_’TW(AT,c)} .
[Jo

For the particular stopping time 7(fc), we have

7(fc)
W (4q,c) = E? / e (6 —c¢) ds] "
0

using the boundary condition (117) and the fact that f(x) = 0 for x > fBc. So, for any
stopping time 7,

7(Bc)
W (4q,¢) = E¢ [ / e (& —¢) ds]
0

T
> E9 [ / e (0 —c)ds+e TW (4r, c)}
0

T
> E¢ [/ e*"(as—c)ds],
0

using the non-negativity of W for the last inequality. This implies the optimality
of the stopping time 7(Bc) and verification of the proposed solution W(4p,c) of
Equation (109). O
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Boyarchenko and Levendorskii (2002), Hilberink and Rogers (2002) and Zhou
(2000) extend this first passage model of optimal default timing to the case of jump-
diffusion asset processes.

6.3. Taxes, bankruptcy costs, capital structure

In order to see how the original owners of the firm may have a strict but limited

incentive to issue debt, we introduce two market imperfections:

+ A tax deduction, at a tax rate of 8, on interest expense, so that the after-tax effective
coupon rate paid by the firm is (1 - 6)c.

« Bankruptcy costs, so that, with default at time ¢, the assets of the firm are disposed
of at a salvage value of A, < A;, where 4 is a given continuous adapted process.
We also consider more carefully the formulation of an equilibrium, in which

equityholders and bondholders each exercise their own rights so as to maximize
the market values of their own securities, given correct conjectures regarding the
equilibrium policy of the other claimant. Because the total of the market values
of equity and debt is not the fixed process 4, new considerations arise, including
inefficiencies. That is, in an equilibrium, the total of the market values of equity
and bond may be strictly less than maximal, for example because of default that is
premature from the viewpoint of maximizing the total value of the firm. An unrestricted
central planner could in such a case split the firm’s cash flows between equityholders
and bondholders so as to achieve strictly larger market values for each than the
equilibrium values of their respective securities.

Absent the tax shield on debt, the original owner of the firm, who selects a capital
structure at time 0 so as to maximize the total initial market value of all corporate
securities, would have avoided a capital structure that involves an inefficiency of this
type. For example, an all-equity firm would avoid bankruptcy costs.

In order to illustrate the endogenous choice of capital structure based on the tradeoff
between the values of tax shields and of bankruptcy losses, we extend the example of
Section 6.2 by assuming a tax rate of 6 € (0, 1) and bankruptcy recovery 4 = €4, for
a constant fractional recovery rate € € [0, 1]. For simplicity, we assume no protective
covenant.

The equity valuation and optimal default timing problem is identical to Equa-
tion (109), except that equityholders treat the effective coupon rate as the after-tax
rate ¢(1 — 0). Thus, the optimal equity market value is W(4y, c(1 — 0)), where W(x,y)
is given by Equations (117) and (118). The optimal default time is

T* =inf{t: 4, < f(1-0)c}.

For a given coupon rate ¢, the bankruptcy recovery rate € has no effect on the equity
value. The market value U(4g, ¢) of debt, at asset level 4y and coupon rate ¢, is indeed
affected by distress costs, in that

Ux,o)=ex, x<p(l-0)ec, (120)
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and, for x > f(1 - B)c,

_ -Y c x -Y
R S R

The first term of Equation (121) is the market value of the payment of the recovery
value €4(T*) = €fc(1 — 8) at default, using Equation (108). The second term is the
market value of receiving the coupon rate ¢ until T*.

The capital structure that maximizes the market value received by the initial owners
for sale of equity and debt can now be determined from the coupon rate ¢* solving

sup {U (do,c) + W (4p, (1 - B) )} . (122)

Leland (1994) provides an explicit solution for ¢*, which then allows one to easily
examine the resolution of the tradeoff between the market value

=Y
Huwo = |1 (gg) |

of tax shields and the market value

40 7
o = pett -0) (1)

of financial distress costs associated with bankruptcy. The coupon rate that solves
Equation (122) is that which maximizes H(4y, ¢) — h(A4y, ¢), the benefit—cost difference.
Although the tax shield is valuable to the firm, it is merely a transfer from somewhere
else in the economy. The bankruptcy distress cost, however, involves a net social cost,
illustrating one of the inefficiencies caused by taxes.

Leland and Toft (1996) extend the model so as to treat bonds of finite maturity with
discrete coupons. One can also allow for multiple classes of debtholders, each with its
own contractual cash flows and rights. For example, bonds are conventionally classified
by priority, so that, at liquidation, senior bondholders are contractually entitled to
cash flows resulting from liquidation up to the total face value of senior debt (in
proportion to the face values of the respective senior bonds, and normally without
regard to maturity dates). If the most senior class of debtholders can be paid off in
full, the next most senior class is assigned liquidation cash flows, and so on, to the
lowest subordination class. Some bonds may be secured by certain identified assets, or
collateralized, in effect giving them seniority over the liquidation value resulting from
those cash flows, before any unsecured bonds may be paid according to the seniority of
unsecured claims. In practice, the overall priority structure may be rather complicated.

Corporate bonds are often callable, within certain time restrictions. Not infrequently,
corporate bonds may be converted to equity at pre-arranged conversion ratios (number
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of shares for a given face value) at the timing option of bondholders. Such convertible
bonds present a challenging set of valuation issues, some examined by Brennan and
Schwartz (1980) and Nyborg (1996). Occasionally, corporate bonds are puttable, that
is, may be sold back to the issuer at a pre-arranged price at the option of bondholders.

One can also allow for adjustments in capital structure, normally instigated by
equityholders, that result in the issuing and retiring of securities, subject to legal
restrictions, some of which may be embedded in debt contracts.

6.4. Intensity-based modeling of default

This section introduces a model for a default time as a stopping time 7 with a given
intensity process A, as defined below. From the joint behavior of A, the short-rate
process #, the promised payment of the security, and the model of recovery at default,
as well as risk premia, one can characterize the stochastic behavior of the term structure
of yields on defaultable bonds.

In applications, default intensities may be modeled as functions of observable
variables that are linked with the likelihood of default, such as debt-to-equity ratios,
asset volatility measures, other accounting measures of indebtedness, market equity
prices, bond yield spreads, industry performance measures, and macroeconomic
variables related to the business cycle. This dependence could, but in practice does
not usually, arise endogenously from a model of the ability or incentives of the firm to
make payments on its debt. Because the approach presented here does not depend on
the specific setting of a firm, it has also been applied to the valuation of defaultable
sovereign debt, as in Duffie, Pedersen and Singleton (2003) and Pagés (2000).

We fix a complete probability space (€2, F, P) and a filtration {G,: ¢t > 0} satisfying
the usual conditions. At some points, it will be important to make a distinction between
an adapted process and a predictable process. A predictable process is, intuitively
speaking, one whose value at any time ¢ depends only on the information in the
underlying filtration that is available up to, but not including, time ¢. Protter (1990)
provides a full definition.

A non-explosive counting process K (for example, a Poisson process) has an
intensity A if A is a predictable non-negative process satisfying f(; Asds < oo almost
surely for all ¢, with the property that a local martingale M, the compensated counting
process, is given by

t
M, =K,—/ A ds. (123)
0

The compensated counting process M is a martingale if, for all ¢, we have
E( fot As ds) < oo. A standard reference on counting processes is Brémaud (1981).
For simplicity, we will say that a stopping time T has an intensity A if T is the
first jump time of a non-explosive counting process whose intensity process is A.
The accompanying intuition is that, at any time ¢ and state @ with ¢ < T(w), the
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G,-conditional probability of an arrival before ¢ + A is approximately A(w, ) A, for
small A. This intuition is justified in the sense of derivatives if A is bounded and
continuous, and under weaker conditions.

A stopping time T is non-trivial if P(t € (0,00)) > 0. If a stopping time 7 is
non-trivial and if the filtration {G,: ¢ > 0} is the standard filtration of some Brownian
motion B in R?, then T could not have an intensity. We know this from the fact that,
if {G;: t > 0} is the standard filtration of B, then the associated compensated counting
process M of Equation (123) (indeed, any local martingale) could be represented as a
stochastic integral with respect to B, and therefore cannot jump, but M must jump at
7. In order to have an intensity, a stopping time 7 must be fotally inaccessible, roughly
meaning that it cannot be “foretold” by an increasing sequence of stopping times that
converges to 7. An inaccessible stopping time is a “sudden surprise”, but there are no
such surprises on a Brownian filtration!

As an illustration, we could imagine that the firm’s equityholders or managers are
equipped with some Brownian filtration for purposes of determining their optimal
default time 7, but that bondholders have imperfect monitoring, and may view 7 as
having an intensity with respect to the bondholders’ own filtration {G;: ¢ > 0}, which
contains less information than the Brownian filtration. Such a situation arises in Duffie
and Lando (2001).

We say that 7 is doubly stochastic with intensity A if the underlying counting process
whose first jump time is 7 is doubly stochastic with intensity A. This means roughly
that, conditional on the intensity process, the counting process is a Poisson process
with that same (conditionally deterministic) intensity. The doubly-stochastic property
thus implies that, for 1 < 7, using the law of iterated expectations,

P(T>S | gz):E[P(T>S | gt’{)'u: t<u<s})| gt]

=K (exp [— /s Mu) du] ‘Q,) , (124)

using the fact that the probability of no jump between ¢ and s of a Poisson process
with time-varying (deterministic) intensity A is exp[— fts A(u) du]. This property (124)
is convenient for calculations, because evaluating E(exp[— fts Mwydu]l | G) is
computationally equivalent to the pricing of a default-free zero-coupon bond, treating
A as a short rate. Indeed, this analogy is also quite helpful for intuition and suggests
tractable models for intensities based on models of the short rate that are tractable for
default-free term structure modeling.

As we shall see, it would be sufficient for Equation (124) that A, = A(X, ¢) for some
measurable A: R” x [0, 00) — [0, 00), where X in R¥ solves a stochastic differential
equation of the form

dX; = u (X, 1) dt+ 0 (X;, 1) dBy, (125)

for some (G,)-standard Brownian motion B in RY. More generally, Equation (124)
follows from assuming that the doubly-stochastic counting process K whose first jump



Ch. 11: Intertemporal Asset Pricing Theory 721

time is 7 is driven by some filtration {F,: t > 0}. This means roughly that, for any ¢,
conditional on F;, the distribution of X during [0, #] is that of a Poisson process with
time-varying conditionally deterministic intensity A. A complete definition is provided
in Duffie (2001).3¢

For purposes of the market valuation of bonds and other securities whose cash
flows are sensitive to default timing, we would want to have a risk-neutral intensity
process, that is, an intensity process A? for the default time 7 that is associated with
(2, F,Q) and the given filtration {G;: ¢ > 0}, where Q is an equivalent martingale
measure. In this case, we call A2 the Q-intensity of T. (As usual, there may be more
than one equivalent martingale measure.) Such an intensity always exists, as shown
by Artzner and Delbaen (1995), but the doubly-stochastic property may be lost with a
change of measure [Kusuoka (1999)]. The ratio A¢/A (for A strictly positive) is in some
sense a multiplicative risk premium for the uncertainty associated with the timing of
default. This issue is pursued by Jarrow, Lando and Yu (2003), who provide sufficient
conditions for no default-timing risk premium (but allowing nevertheless a default risk
premium).

6.5. Zero-recovery bond pricing

We fix a short-rate process r and an equivalent martingale measure ( after deflation by
exp[— fot r(u) du]. We consider the valuation of a security that pays F1(; ) at a given
time s > 0, where F' is a Gr-measurable bounded random variable. Because 1y, ¢} is
the random variable that is 1 in the event of no default by s and zero otherwise, we may
view F as the contractually promised payment of the security at time s, with default
by s leading to no payment. The case of a defaultable zero-coupon bond is treated by
letting F = 1. In the next sub-section, we will consider recovery at default.

From the definition of O as an equivalent martingale measure, the price S, of this
security at any time ¢ < 5 is

S, =E? (exp [—/sr(u)du] lirsg) F), (126)

where E,Q denotes G,-conditional expectation under Q. From Equation (126) and the
fact that 7 is a stopping time, .S; must be zero for all ¢ > 7.
Under Q, the default time 7 is assumed to have a Q-intensity process AC.

Theorem. Suppose that F, r and A° are bounded and that t is doubly stochastic
under Q driven by a filtration {F,: t > 0} such that r is (F,)-adapted and F is
Fs-measurable. Fix any t < s. Then, for t > T, we have S, =0, and for t < 1,

S, =E? (exp [— / ' (r(u) + A2(w)) duJ F) . (127)

36 Included in the definition is the condition that A is (F;)-predictable, that F, C G,, and that {F,: t > 0}
satisfies the usual conditions.
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This theorem is based on Lando (1998).3” The idea of this representation (127) of the
pre-default price is that discounting for default that occurs at an intensity is analogous
to discounting at the short rate 7.

Proof: From Equation (126), the law of iterated expectations, and the assumption that
r is (F,)-adapted and F is F,-measurable,

S, = E¢ (EQ {exp[—/sr(u)du] Lo F | .EVQ,} ‘g:)
t

= E? <exp[—/sr(u)du] FE? 115 | sV G| Ig,).

The result then follows from the implication of double stochasticity that Q(1 > s |
Fs VG =exp[ [ 12(w)du]. O

As a special case, suppose the filtration {F;: ¢ > 0} is that generated by a process X
that is affine under Q and valued in D C R7. It is natural to allow dependence of A2,
r and F on the state process X in the sense that

A=AX), rn=pX), F=explfX()], (128)

where A, p and f are affine on D.
Under the technical regularity in Duffie, Filipovi¢ and Schachermayer (2003),
relation (127) then implies that, for ¢ < 7, we have

S, = exp[a(T - )+ B(T — 1) - X (D], (129)

for coefficients a(-) and () that are computed from the associated Generalized Riccati
equations.

6.6. Pricing with recovery at default

The next step is to consider the recovery of some random payoff W at the default
time 7, if default occurs before the maturity date s of the security. We adopt the
assumptions of Theorem 6.5, and add the assumption that W = w,, where w is a
bounded predictable process that is also adapted to the driving filtration {F;: ¢ > 0}.

37 Additional work in this vein is by Bielecki and Rutkowski (1999a,b, 2001), Cooper and Mello (1991,
1992), Das and Sundaram (2000), Das and Tufano (1995), Davydov, Linetsky and Lotz (1999), Duffie
(1998), Duffie and Huang (1996), Duffie, Schroder and Skiadas (1996), Duffie and Singleton (1999),
Elliott, Jeanblanc and Yor (2000), Hull and White (1992, 1995), Jarrow and Yu (2001), Jeanblanc and
Rutkowski (2000), Madan and Unal (1998) and Nielsen and Ronn (1995).
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The market value at any time ¢ < min(s, ) of any default recovery is, by definition
of the equivalent martingale measure Q, given by

J, = E2 (exp [/T—r(u)du] 1{,<S}wt> . (130)

The doubly-stochastic assumption implies that 7 has a probability density under Q,
at any time u in [¢, 5], conditional on G, V F;, and on the event that 7 > ¢, of

q(t,u) = exp [ / ’ -A9(2) dz} A2u).

£

Thus, using the same iterated-expectations argument of the proof of Theorem 6.5, we
have, on the event that 7 > ¢,
o)

J, =E° (EQ [exp(/ —r(z)dz> iz esywr fsvg,]

= g9 (/S o [/" _r(z)dz] q(t, u) w, du}g,)

using Fubini’s Theorem, where

&(t,u) = EX (exp [— / u[)LQ(z)+ r(2)] dz} A2(u) w(u)) . (131)

We summarize the main defaultable valuation result as follows.

Theorem. Consider a security that pays F at s if T > s, and otherwise pays w; at T.
Suppose that w, F, A2 and r are bounded. Suppose that T is doubly stochastic under
O, driven by a filtration {F,: t > 0} with the property that r and w are (F,)-adapted
and F is Fs-measurable. Then, for t > T, we have S; =0, and for t < 7,

S, = E? {exp [— / s(r(u) + A2(u)) du] F} + / ) &(t, u) du. (132)

These results are based on Duffie, Schroder and Skiadas (1996) and Lando (1994,
1998). Schonbucher (1998) extends to treat the case of recovery W which is not of the
form w, for some predictable process w, but rather allows the recovery to be revealed
just at the default time 7. For details on this construction, see Duffie (2002).



724 D. Duffie

In the affine state-space setting described at the end of the previous section,
D(t,u) can be computed by our usual “affine” methods, provided that w is of form
w, = e+ 2 X for constant coefficients a and b. In this case, under technical regularity,

P, u)y=expla(u—)+u—1) - XOllc(u—-t)+ Clu—1)- X(1)], (133)

for readily computed deterministic coefficients ¢, f, ¢ and C, as in Duffie, Pan
and Singleton (2000). This still leaves the task of numerical computation of the
integral [ &(t,u)du.

For the price of a typical defaultable bond promising periodic coupons followed by
its principal at maturity, one may sum the prices of the coupons and of the principal,
treating each of these payments as though it were a separate zero-coupon bond. An
often-used assumption, although one that need not apply in practice, is that there is
no default recovery for coupons remaining to be paid as of the time of default, and
that bonds of different maturities have the same recovery of principal. In any case,
convenient parametric assumptions, based for example on an affine driving process X,
lead to straightforward computation of a term structure of defaultable bond yields that
may be applied in practical situations, such as the valuation of credit derivatives, a
class of derivative securities designed to transfer credit risk that is treated in Duffie
and Singleton (2003).

For the case of defaultable bonds with embedded American options, the most
typical cases being callable or convertible bonds, the usual resort is valuation by
some numerical implementation of the associated dynamic programming problems.
See Berndt (2002).

6.7. Default-adjusted short rate

In the setting of Theorem 6.6, a particularly simple pricing representation can be based
on the definition of a predictable process ¢ for the fractional loss in market value at
default, according to

(1-£)(Sr) = wy. (134)

Manipulation left to the reader shows that, under the conditions of Theorem 6.6, for
t<T,

S, =E? (exp [ / T (r(u) + £(u) A9(u)) duJ F) . (135)

This valuation model (135) is from Duffie and Singleton (1999), and based on a
precursor of Pye (1974). This representation (135) is particularly convenient if we take
£ as an exogenously given fractional loss process, as it allows for the application of
standard valuation methods, treating the payoff F as default-free, but accounting for the
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intensity and severity of default losses through the “default-adjusted” short-rate process
r+£A2. The adjustment £A€ is in fact the risk-neutral mean rate of proportional loss
in market value due to default.

Notably, the dependence of the bond price on the intensity A€ and fractional loss £
at default is only through the product /A2. For example, doubling A¢ and halving #
has no effect on the bond price process.

Suppose, for example, that T is doubly stochastic driven by the filtration of a state
process X that is affine under Q, and we take r, + Z,AtQ = R(X;) and F = exp[ f(X(T))],
for affine R(-) and f(-). Then, under regularity conditions, we obtain at each time ¢
before default a bond price of the simple form (129), again for coefficients solving
the associated Generalized Riccati equation.

Using this affine approach to default-adjusted short rates, Duffee (1999a) provides
an empirical model of risk-neutral default intensities for corporate bonds. 3®
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