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ABSTRACT

We model multiperiod securities markets with differential information. A price

system that admits no free lunches is related to martingales when agents have

rational expectations. We introduce the concept of resolution time, and show that

a better informed agent and a less informed agent must agree on the resolution

times of commonly marketed events if they have rational expectations and if there

are no free lunches. It then follows that if all elementary events are marketed for a

less informed agent then any price system that admits no free lunches to a better

informed agent must eliminate any private information asymmetry between the

two. We provide an example of a dynamically fully revealing price system that is

arbitrage free and yields elementarily complete markets.
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1. Introduction and Summary

This paper addresses differential information in a multiperiod model of security

markets. Focusing on asset price processes that preclude “free lunches,” we first

extend the famous Harrison–Kreps connection between price processes and mar-

tingales. We go on to study the information that must be revealed by a better

informed agent through price processes to a worse informed agent if free lunches are

to be precluded. Finally, we formalize the connection between completely reveal-

ing price processes and dynamically complete markets for elementary contingent

claims. The details and additional results are summarized below. The results of

Harrison and Kreps [1979] connecting the behavior of price processes with martin-

gales have opened up a theory of stochastic equilibrium with symmetric information.

The results here are a limited step toward stochastic equilibrium with differential

information.

The paper is summarized as follows. Section 2 motivates the concepts of differ-

ential information in a continuous–time setting. The less demanding discrete–time

details can easily be surmised by readers. Section 3 presents the formal model.

A contingent claim is marketed if financed by some security trading strategy.

Section 4 shows some of the advantages of better information: a larger space of

admissible trading strategies and thus a larger space of marketed claims. Section 5

shows that the absence of simple free lunches (Kreps [1981]) implies a unique im-

plicit price process for any marketed claim. A better informed agent cannot, in the

absence of simple free lunches, attain a consumption claim at a smaller initial in-

vestment than a worse informed agent. Kreps [1981] shows a need to strengthen the

simple free lunch concept of “no arbitrage” to the free lunch in infinite–dimensional

cases. Barring free lunches for a particular agent, we demonstrate the existence of

a martingale measure for that agent: a probability measure, absolutely continuous

with respect to the agent’s endowed probability measure, under which security price

processes are martingales. This is an extension of a result by Harrison and Kreps

[1979].

By assuming that the consumption space is separable and thereby extending a

result of Kreps [1981], we are able to demonstrate an equivalent martingale measure,

barring free lunches. This is a martingale measure assigning non–zero probability to

3



precisely those events assigned non–zero probability by the agent’s endowed prob-

ability measure. Harrison and Kreps [1979] demonstrated an equivalent martingale

measure on the basis of viability: the existence of an optimal trading strategy for

some agent with strictly monotonic, convex, and continuous preferences. Viability

is in general a stronger assumption than the absence of free lunches, as shown by

Kreps [1981]. Our results here should be of interest even in settings of symmetric

information.

In Section 6 we introduce the resolution time of an event, the first time one

learns that an event is to happen or not to happen with probability one. The

resolution time of an event is random, and of course may be different for differently

informed agents. A better informed agent has no later resolution times than a worse

informed agent. An event A is marketed for an agent if there exists a marketed

elementary contingent claim for this event, or equivalently, if there exists a trading

strategy paying one unit of consumption in event A and nothing otherwise. We

show that the absence of free lunches for a better informed agent implies that the

resolution times of the better and worse informed agents for commonly marketed

events must be equal (almost surely). It follows that, if all events are marketed for

the poorly informed agent and if the better informed agent has no free lunches, then

the price system has symmetrized the information, neutralizing the better informed

agent’s informational advantage.

Section 7 provides an example of a fully revealing arbitrage–free price system.

Uncertainty is modeled by a Brownian Motion. Agent α observes the Brownian

Motion directly. Agent β does not observe the Brownian Motion as it evolves

through time but knows even at the beginning of time the final value of the Brownian

Motion. Two long–lived securities are traded, one risky and one riskless. The price

process of the single risky security symmetrizes the original infinite–dimensional

informational assymetry between agents α and β! Although there is only one price

process from which agents infer information, they have infinitely many observations.

This is analagous to the option pricing theory, wherein two long–lived securities can

effectively complete markets if continuous trading is allowed.

Section 8 adds some discussion, generalizations, and a brief concluding re-

mark.
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2. Differential Information

The central primitive for a model of uncertainty is a set Ω of “states of the world,”

one of which is “correct,” loosely speaking. An agent, say Fred, receives information

through time refining Fred’s knowledge concerning which of the states in Ω is correct.

For this section the time set T is any ordered subset of R+, allowing one to cover

continuous and discrete time, as well as finite and infinite horizon settings, in a

single pass. How Fred receives information is formalized by specifying a filtration

F = {Ft : t ∈ T } of tribes (also termed σ–algebras) on Ω. If some subset A of Ω

is an element of the tribe Ft then at time t Fred knows whether or not the correct

state is an element of A, that is, whether A has “occurred”. To formalize the notion

that such an occurrence is never forgotten, we say that F is increasing, meaning

that Ft ⊂ Fs for all s ≥ t. A further assumption that is often technically convenient

when T is a continuum time set is that the filtration F is right–continuous, or

Ft =
∩
s>t

Fs ∀t ∈ T .

A different agent, say George, would generally receive information through

time specified by a different filtration G= {Gt : t ∈ T } of tribes on Ω. Of course,

if Gt ⊂ Ft then George is at an informational disadvantage at time t, since Fred

“knows” every event that George knows at time t, and perhaps more. If Gt ⊂ Ft

for all t ∈ T , we write G ⊂ F and say that Fred is better informed than George.

The join of Ft and Gt, denoted Ft ∨ Gt, is the tribe generated by the union of

Ft and Gt, and represents the total information held by the two agents at time t. In

other words, if A ∈ Ft ∨ Gt then at time t, by pooling their information, Fred and

George would know whether A has occurred. The joined filtration, denoted F∨G,

is of course {Ft ∨ Gt : t ∈ T }. The meet of Ft and Gt, on the other hand, is the

intersection of Ft and Gt (which is indeed a σ–algebra), and is denoted Ft ∧ Gt. If

A ∈ Ft ∧ Gt then Fred and George know independently at time t whether A has

occurred. The meet of the filtrations is denoted F ∧G = {Ft ∧ Gt : t ∈ T }.

In the “rational expectations” genre it is common to assume that agents have

private information and also learn information from “market observables”, in partic-

ular, the market values of traded assets. A market observable can be represented as
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a stochastic process, which we take to be nothing more than a real–valued function

Y on Ω×T . The value of Y at time t is denoted Y (t), a function on Ω. The infor-

mation revealed by observing Y up to and including time t is modeled as the tribe

σ(Y )t on Ω generated by the functions {Y (s) : s ∈ T , s ≤ t}. The corresponding

filtration of tribes generated by Y is denoted FY = {σ(Y )t : t ∈ T }. To belabor

the point, if A ∈ σ(Y )t then one will know at time t whether or not A has occurred

by observing the process Y up to and including time t. If Y = (Y1, . . . , YN ) is a

vector process, we write FY =
∨N

n=1 F
Yn .

If an agent is endowed with private information corresponding to a filtration

G and learns from a vector of market observables Y , then the agent’s “total” infor-

mation is of course G ∨ FY .

Suppose there is a set of agents indexed by α ∈ A with private information

given by filtrations F̂α, α ∈ A. The market observable process Y is fully revealing

if ∨
α∈A

F̂α ⊂ F̂
β
∨ FY ∀β ∈ A,

which means that observing Y allows each agent to learn all privately held infor-

mation not already known.

A stochastic process Y is adapted to a filtration G = {Gt : t ∈ T } if Y (t) is

measurable with respect to Gt for all t ∈ T . Roughly, Y is adapted to G if Y only

conveys information already implicit in G. Indeed, Y is adapted to G if and only

if FY ⊂ G.

The question arises: Are market observables such as prices naturally adapted

to the join of all private information? This is essentially a question about the

economic structure of price formation. If one believes that market values are a

direct consequence of individual strategies, such as bidding for example, then it

would be natural to treat market observables as adapted. One could also imagine,

perhaps, that certain market structures add “noise” to price formation. This issue

is also addressed in Kreps [1977]. For our purposes, we are not forced to take a

stance.
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3. The formulation

In this section we consider an intertemporal pure exchange economy under uncer-

tainty with differential information. Taken as primitive is a complete probability

space (Ω,F , P ), where each ω ∈ Ω denotes a complete description of the exogenous

uncertain environment, and where P indicates the common probability assessments

held by agents in the economy. The time set T is a subset of the interval [0, 1],

including both 0 and 1. This allows us to handle both discrete and continuous time

in a single pass. A single good is available for consumption only at time 1. We take

V ≡ L1(P ) as the commodity space, where L1(P ) denotes the space of integrable

random variables on (Ω,F , P ). Thus a given claim v ∈ V provides v(ω) units of

consumption at time one in state ω ∈ Ω. We equip V with the L1–norm topology.

Let F̂ denote a countable collection of information filtrations from which the agents’

private information filtrations are drawn.

The economy is populated with a setA of agents with characteristics {(≽α,Vα,F
α) : α ∈ A},

where for each α ∈ A, Vα ⊂ V is the consumption set of agent α, ≽α is a preference

relation on Vα, and Fα ∈ F̂. Let K denote the positive cone of V with the origin

deleted, and let ≻α denote the strict preference relation on Vα induced by ≽α. We

assume that ≽α is strictly increasing for all α in A, in the sense that v ∈ Vα and

k ∈ K imply that v + k ≻α v. A finite number of long–lived securities in zero

net supply are indexed by n ∈ {1, 2, . . . , N}. Each security n is represented by its

dividend dn ∈ K. We assume that
∑N

n=1 dn = 1 a.s., a normalization. We denote

the N–tuple (d1, . . . , dN ) by d.

A price system for long–lived securities is an N–vector of non–negative stochas-

tic processes S = {Sn(t) : n = 1, 2, . . . , N : t ∈ T } satisfying: S is a vector of

semimartingales with respect to some information filtration F such that Fα ⊂ F

for all α ∈ A;1

Sn(t) < 1 a.s. and
N∑

n=1

Sn(t) = 1 a.s. ∀t ∈ T ; (3.1)

and, for n = 1, 2, . . . , N ,

E
[(

F[Sn, Sn]1
) 1

2

]
<∞, (3.2)

1 For the definition of a semimartingale see, for example, Jacod [1979, pp.29].
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where {F[Sn, Sm]t} is the joint variation process between Sn and Sm with respect

to F (Dellacherie and Meyer [1982, VII.44].) We also assume that F = {Ft : t ∈ T }
is augmented, in that Ft contains all of the P–null sets for all t ∈ T . Requiring

S to be a semimartingale with respect to some information structure F involves

little loss of generality. Any discrete time process is a semimartingale with respect

to its natural filtration. A definition of financial gains from trade in continuous–

time requires that S is a semimartingale. Condition (3.1) is a normalization and

condition (3.2) is a technical restriction. A sufficient condition for (3.2) is given by

Dellacherie and Meyer [1982, VII.98].

Agents in A have rational expectations in that they learn from the price sys-

tem to refine their information. The information filtration of agent α after ob-

serving a price system S is denoted Hα(S) = {Hα
t (S) : t ∈ T } = Fα

∨
FS . We

assume throughout that Hα(S) satisfies the usual conditions: augmented and right–

continuous. For consistency, we also require that the dividend d be measurable with

respect to Hα
1 (S) for all α ∈ A. We first record some technical results.

Lemma 3.1. A price system is anN–vector ofHα(S)–semimartingales for all agents

α in A.

proof: We first claim that S is Hα(S)–optional. By construction, S is adapted to

Hα(S) and right–continuous, and therefore Hα(S)–optional (Chung and Williams

[1983, Theorem 3.4]). Thus S is an F–semimartingale and is Hα(S)–optional. It

follows from Theorem 9.19(a) of Jacod [1979] that S is an Hα(S)–semimartingale

since Hα(S) is a sub–filtration of F.

In an intertemporal economy with trading over time, before anything interest-

ing can be said an intertemporal budget constraint for agents must be formulated.

With uncertainty, this budget constraint involves stochastic integration. Jacod

[1979, p.278–279] has shown that in order for stochastic integrals to have reason-

able properties, it is necessary that the integrators be semimartingales. Thus when

a price system carries information that is not endowed to the agent, the agent must

learn the information or have an ill–defined budget constraint. In simple terms, if

one doesn’t observe prices for securities, one’s current wealth is a random variable
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and a budget constraint is somewhat meaningless. This calls for FS ⊂ Hα(S); that

is, rational expectations is required for a mathematically consistent model.

Another lemma is needed.

Lemma 3.2. There exists a process {[Sn, Sm]t : t ∈ T } that is a common version2

of the processes {F[Sn, Sm]t : t ∈ T } and {Hα(S)[Sn, Sm]t : t ∈ T }.

proof: Since Sn and Sm are semimartingales with respect to F and Hα(S), the

two processes {F[Sn, Sm]t : t ∈ T } and {Hα(S)[Sn, Sm]t : t ∈ T } are well defined

(Dellacherie and Meyer [1982, VII.42]). We first note that

F[Sn, Sm]t =
1

4

{
F[Sn + Sm, Sn + Sm]t − F[Sn − Sm, Sn − Sm]t

}
,

and

Hα(S)[Sn, Sm]t =
1

4

{
Hα(S)[Sn + Sm, Sn + Sm]t − Hα(S)[Sn − Sm, Sn − Sm]t

}
from Jacod [1979], Section 2.25. Theorem 9.19(b) of Jacod [1979] demonstrates a

common version of {F[Sn + Sm]t} and {Hα(S)[Sn + Sm]t}, and similarly a common

version of {F [Sn − Sm]t} and {Hα(S)[Sn − Sm]t}. This implies the existence of a

common version of {F [Sn, Sm]t} and {Hα(S)[Sn, Sm]t}.

We use {[Sn, Sm]t} to denote a common version of {F[Sn, Sm]t} and {Hα(S)[Sn, Sm]t}
for all α. (This is possible because F̂ is a countable set.) Note that {[Sn, Sm]t} is

adapted to both F and Hα(S) since both filtrations are complete. Since joint varia-

tion processes are right continuous, {[Sn, Sm]t}, {F[Sn, Sm]t}, and {Hα(S)[Sn, Sm]t}
are in fact indistinguishable3 processes. Indistinguishable processes are indeed the

same process for any practical purpose. The above lemma implies that agents with

rational expectations agree on the joint variation processes of security prices. If price

processes are continuous, joint variation processes are covariance processes (Jacod

[1979]). Thus rational agents agree on the variance–covariance matrix process.

2 A process {X(t)} is a version of another process {Y (t)} if X(t) = Y (t) with
probability one for all t ∈ T .

3 Two processes {X(t)} and {Y (t)} are indistinguishable if X(t) = Y (t) for all
t ∈ T with probability one.
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Let Pα(S) denote the predictable tribe of subsets of Ω× [0, 1], that generated

by left continuous Hα(S)–adapted processes. A real–valued process Y on Ω× [0, 1]

is Hα(S)–predictable if measurable with respect to Pα(S). Given a price system

S, an admissible trading strategy for agent α is an N–vector of Hα(S)–predictable

processes θ = (θ1, . . . , θN ) such that: (i) the stochastic integral
∫
θ(s)⊤dS(s) is

well–defined (with respect to Hα(S)); (ii) the strategy θ is self–financing:

θ(t)⊤S(t) = θ(0)⊤S(0) +

∫ t

0

θ(s)⊤dS(s) ∀t ∈ T a.s., (3.3)

(iii) θ(1)⊤d ∈ V ; and (iv) for all n = 1, 2, . . . , N,

E

[∫ 1

0

(
θn(t)

2d[Sn, Sn]t
)]1/2

<∞. (3.4)

Condition (3.3) is a natural budget constraint; condition (3.4) is technical. For the

definition of
∫
θ⊤dS, see Jacod [1979].

Let Θα[S] denote the space of admissible trading strategies for agent α when

the price system is S. By the linearity of stochastic integration and an application

of the Kunita–Watanabe inequality (Dellacherie and Meyer [1982, pp.277]), Θα[S]

is a linear space.

4. The advantages of better information

We show in this section that a better informed agent is better off in the sense that

he or she has access to more admissible trading strategies and therefore enjoys a

larger feasible net trade space. The converse of the above statement is not true.

We show that if agent α has access to a bigger space of admissible strategies than

agent β, then agent α’s information as refined by a price system is finer than that

of agent β, except possibly at date 1.

Following Harrison and Kreps [1979], a consumption claim v ∈ V is marketed

for agent α given a price system S if there exists θ ∈ Θα[S] such that θ(1)⊤d = v

almost surely. In that case, θ generates v for agent α and θ(0)⊤S(0) is an implicit

market value for v at time zero. Let Mα denote the space of marketed consumption

claims for agent α. Since Θα[S] is a linear space, Mα is a linear subspace of V .
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Theorem 4.1. If agent α is better informed than agent β, then Θβ [S] ⊂ Θα[S],

and therefore Mβ ⊂Mα.

proof: Let θ ∈ Θβ [S]. We must show that θ satisfies the defining properties of

Θα[S]. That the stochastic integral
∫
θdS is well–defined with respect to Hα(S)

follows from the first assertion of Theorem 9.26 of Jacod [1979]. Also, θ(1)⊤d ∈ V

since θ ∈ Θβ [S]. That θ is self–financing with respect to Hα(S) follows from the

second assertion of Theorem 9.26 of Jacod [1979]. That θ satisfies (3.4) is trivial.

Therefore θ ∈ Θα[S] and Mβ ⊂Mα.

We have just shown that a better informed agent can employ any strategy

available to a less informed agent. The converse of the above proposition is not

true. For example, let α and β be agents whose private information structures are

not ordered. Suppose that the information generated by the price system is identical

to Fβ . Then Hβ(S) ⊂ Hα(S) and Θβ [S] ⊂ Θα[S]. The following proposition shows

that Θβ [S] ⊂ Θα[S] (more trading strategies) does not imply that Hβ [S] ⊂ Hα[S]

(more information).

Proposition 4.1. Suppose Hβ
t (S) ⊂ Hα

t (S) ∀t ∈ T \ {1}. Then Pβ(S) ⊂ Pα(S)

and Θβ [S] ⊂ Θα[S].

proof: The predictable tribe Pβ(S) is generated by the collection of Hβ(S)–

predictable rectangles of the form {0} × B0 and (s, t] × B with B0 ∈ Hβ
0 (S) and

B ∈ Hβ
s (S) for s, t ∈ T , s < t. [See, for example, Chapter 2 of Chung and Williams

[1983].] By assumption, every Pβ(S)–predictable rectangle is a Pα(S)–predictable

rectangle, implying Pβ(S) ⊂ Pα(S). The rest of the assertion follows from argu-

ments such as those of Theorem 4.1.

The intuition behind this proposition is clear. In a finite–horizon single com-

modity economy agents do not take advantage of information revealed at the final

date of the economy. There need be no trading at the final date! A more precise

statement follows.

Theorem 4.2. Suppose Hβ
1 (S) ⊂ Hα

1 (S). Then Θβ [S] ⊂ Θα[S] implies Hβ(S) ⊂
Hα(S).
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proof: Suppose that there exists t ∈ T \ {1} such that Hβ
t (S) ̸⊂ Hα

t (S). Then

there is a set B ∈ Hβ
t (S) such that B ̸∈ Hα

t (S). The rectangle (t, 1] × B is an

element of Pβ(S) but not an element of Pα(S). Define a self–financing trading

strategy by

θi(ω, s) = 1(t,1]×B(ω, s) (1− Si(ω, t)) for some i,

θn(ω, s) = −1(t,1]×B(ω, s)Si(ω, t) for all n ̸= i.

It is quickly checked that θ as defined above is an element of Θβ [S]. But θ is not

Pα(S)–predictable since θ−1
i (ℜ+ \ {0}) = (t, 1]× B ̸∈ Pα(S). This contradicts the

hypothesis that Θβ [S] ⊂ Θα[S]. Thus Hβ(S) ⊂ Hα(S).

Corollary 4.1. Suppose that Hα
1 (S) = Hβ

1 (S) and that Θα[S] = Θβ [S]. Then

Hα(S) = Hβ(S).

5. Free lunches and martingales

We now show how a price system precluding free lunches is connected with martin-

gales when agents have rational expectations. The following definitions of a simple

free lunch and a free lunch are due to Kreps [1981]. A simple free lunch for agent

α is a strategy θ ∈ Θα[S] such that θ(0)⊤S(0) ≤ 0 and θ(0)⊤d ∈ K. A free lunch

for agent α is a net {(θλ, vλ) : λ ∈ Λ} ⊂ Θα[S] × V and a choice k ∈ K such

that θλ(1)⊤d − vλ ∈ K ∪ {0} for all λ with vλ → k and lim inf{θλ(0)⊤S(0)} ≤ 0.

Implicit in the definition of a free lunch is a sense of continuity of agent α’s prefer-

ences. We refer interested readers to Kreps [1981] for a host of related issues. Some

consequences of the simple free lunch definition follow. The first has a trivial proof.

Proposition 5.1. Suppose that a price system S admits no simple free lunches

for some agent α. Then Sn(1) = dn a.s. for all n ∈ {1, . . . , N}.

Proposition 5.2. Suppose that S admits no simple free lunches for agent α. Then

there exists a linear functional πα on Mα such that πα(v) is the implicit market

value of v for all v in Mα.

proof: If S admits no simple free lunches for agent α, there exists a unique implicit

price for every marketed claim (for agent α). Let θ ∈ Θα[S] be a strategy that
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generates m ∈ Mα. Let πα(m) = θ(0)⊤S(0). Defined as such for all m ∈ Mα, πα

has the desired property.

For a given marketed claim m ∈Mα, there is some trading strategy θ ∈ Θα[S]

with the property that agent α can finance m by investing Sα
m(t) ≡ θ(0)⊤S(0) +∫ t

0
θ⊤dS at time t and then proceeding with the trading strategy θ from time t

onward. If the resulting process Sα
m is unique in this regard (up to indistinguisha-

bility), we define Sα
m to be the implicit price process of agent α for m.

Proposition 5.3. Let m ∈ Mα be marketed for agent α. If there are no simple

free lunches, there exists an implicit price process {Sα
m(t) : t ∈ T } for m for agent

α.

proof: This is a direct consequence of no simple free lunch and the fact that there

exists a portfolio of securities, available for all agents, whose implicit price process

is unity throughout. (That is, hold one share of each long–lived security.)

This proposition is actually valid in any economy allowing agents to transfer

strictly positive values across time.

Corollary 5.1. Suppose that agent α is better informed than agent β and that

the price system admits no simple free lunches for agent α. Let m ∈Mβ . Then the

implicit price processes {Sα
m(t)} and {Sβ

m(t)} are indistinguishable.

proof: This a consequence of Theorem 4.1.

If a price system precludes simple free lunches for a better informed agent, that

agent cannot dynamically finance a consumption claim at a lower initial portfolio

value than available to a less informed agent. The advantage of better information,

when there are no simple free lunches, is not in the sense that some consumption

claims can be financed at lower cost.

When a price system admits no free lunches we are able to say a bit more.

Let Φ denote the set of non–zero positive linear functionals on V . Any positive

linear functional on V is continuous (Schaefer [1980]). By the Riesz representation

theorem, we can thus identify Φ with the positive cone of L∞(P ) with the origin
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deleted, where L∞(P ) denotes the space of essentially bounded random variables on

(Ω,F , P ). A uniform martingale measure for agent α is a probability measure Qα

on (Ω,F), uniformly absolutely continuous with respect to P (meaning dQ
dP ∈ L∞),

under which the price system S is a vector of Hα(S)–martingales. The following

proposition is due to Kreps [1981].

Proposition 5.4. Suppose S admits no free lunches for agent α. Then π has a

positive linear extension ϕα ∈ Φ.

proof: See Lemma 1 of Kreps [1981].

The following theorem connects the no–free–lunch condition to martingale the-

ory.

Theorem 5.1. There is a one–to–one correspondence between uniform martingale

measures Qα for agent α and extensions ϕα ∈ Φ of πα. The correspondence is given

by

Qα(B) = ϕα(1B) ∀B ∈ F , and ϕα(v) = Eα(v) ∀v ∈ V,

where Eα(·) denotes the expectation under Qα.

proof: Let ϕα be an extension of πα to all of V that lies in Φ. Then there exists

a nonzero positive essentially bounded random variable yα on (Ω,F) such that

ϕα(v) = E(vyα) ∀v ∈ V . By our normalization of prices to the unit simplex,

ϕα(1Ω) = 1, so E(yα) = 1. Define the probability measure

Qα(B) =

∫
B

yα(ω)P (dω), B ∈ F .

We must show that S is a vector of Hα(S)–martingales under Qα. Fix i ∈
{1, . . . , N}. Let 0 ≤ t1 ≤ t2 ≤ 1 with {t1, t2} ⊂ T . For any B ∈ Hα

t1(S) con-

sider the trading strategy:

θi(ω, t) = 1− Si(ω, t1) for t ∈ (t1, t2] andω ∈ B

= Si(ω, t2)− Si(ω, t1) for t ∈ (t2, 1] andω ∈ B

= 0otherwise;
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and, for all n ̸= i,

θn(ω, t) = −Si(ω, t1) for t ∈ (t1, t2] andω ∈ B

= Si(ω, t2)− Si(ω, t1) for t ∈ (t2, 1] andω ∈ B

= 0otherwise.

We claim that θ ∈ Θα[S]. First, the stochastic integral
∫
θdS is well–defined with

respect to Hα(S) since B ∈ Hα
t1(S) and since θ is a left–continuous (and therefore

predictable) simple trading strategy. The fact that θ is self–financing follows from

reasoning similar to that given in Theorem 3.1 of Huang [1985]. Thirdly, since | θ |
is bounded by 1,[

E

(∫ 1

0

θn(t)
2d[Sn, Sn]

) 1
2

]
≤ E

[
([Sn, Sn]1)

1
2

]
<∞.

Finally, θ(1)⊤d ∈ V since θ(1)⊤d = 1B (Si(t2)− Si(t1)) is bounded.

The consumption claim 1B(Si(t2)−Si(t1)) is marketed and has a implicit price

of zero at time zero. Since t1, t2 and i are arbitrary, it follows that S is an N–vector

of Hα(S)–martingales under Qα by the definition of a martingale.

Conversely, let Qα be a uniform martingale measure for agent α and let y =

dQα/dP . We note that

Eα

(∫ 1

0

(θn(t))
2
d[Sn, Sn]t

) 1
2

≤ (ess sup y)E

(∫ 1

0

(θn(t))
2
d[Sn, Sn]t

) 1
2

<∞,

using the fact that joint variation processes are invariant under substitution of

an absolutely continuous probability measure. The assertion then follows from

arguments similar to those in Theorem 3.1 of Huang [1985].

This theorem generalizes the martingale results of Harrision and Kreps [1979].

If a price system S admits no free lunches for an agent α with rational expectations,

then S is a vector Hα(S)–martingale under some probability Qα absolutely contin-

uous with respect P . The converse is also true. A price system S is arbitrage–free

if it admits no free lunches for all agents in A. In that case, for any agent α there

exists a martingale measure Qα.
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The driving force behind the martingale result is the existence of a portfolio

whose market value is unity throughout. The assumption that
∑N

n=1 Sn(t) = 1 a.s.

for all t ∈ T is not necessary. For example, if there exists a riskless asset with a

zero interest rate, then a price system that admits no free lunches for agent α is a

Hα(S)–martingale with respect to some martingale measure.

6. Resolution Times

In this section we show that the absence of free lunches implies that a better in-

formed agent and a less informed agent agree on the resolution times of a particular

set of events. We go on to formalize the link between dynamic market completeness

and a dynamically fully revealing price system. Under some regularity conditions

a price system precluding free lunches for a better informed agent and allowing

dynamically complete markets for a less informed agent must convey all of the

information of the better informed agent to the less informed agent.

For any event B in Hα
1 (S), the resolution time of B is in the stopping time

Tα
B : Ω → [0,∞] defined by:

Tα
B = inf{t ∈ [0, 1] : E[1B | Hα

t (S)] = 1 or 0},

where, as usual, when the infimum does not exist Tα
B takes the value ∞. Given that

E(1B | Hα
1 ) = 1B a.s. we know Tα

B ∈ [0, 1] P–almost surely. We can thus redefine

Tα
B on a P–null set such that its range is [0, 1]. Literally, Tα

B is the first time that

agent α knows that event B is to happen or not to happen with P–probability

one, after observing the price system. Intuition suggests that if agent α is better

informed than agent β, then agent α’s resolution time for any B ∈ Hβ
1 (S) is no

later than that of agent β. The following proposition formalizes this notion. Some

technical lemmas are first recorded. For any stopping time T let Hα
T (S) denote

the “stopped tribe” representing information known to agent α at time T . For

the definition of a stopping time (or equivalently, optional time), see Chung and

Williams [1983; Section 17]. For the definition of Hα
T (S), see Dellacherie and Meyer

[1982].

Lemma 6.1. Let B be an event in Hα
1 (S). Then B ∈ Hα

Tα
B
(S).
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proof: Define T̂α
B : Ω → [0,∞] by

T̂α
B(ω) = Tα

B(ω) ω ∈ B

= ∞, ω ̸∈ B.

Then T̂α
B = inf{t ∈ [0, 1] : E(1B | Hα

t (S)) = 1}. Thus T̂α
B is an Hα(S)–stopping

time. It follows from Theorem IV.53 of Dellacherie and Meyer [1982] that B ∈
Hα

Tα
B
(S).

Lemma 6.2. If Hβ(S) ⊂ Hα(S), then any Hβ(S)–stopping time is an Hα(S)–

stopping time. Furthermore, let T be an Hβ(S)–stopping time. Then Hβ
T (S) ⊂

Hα
T (S).

proof: Let T be an Hβ(S)–stopping time. Then we have {T ≤ t} ∈ Hβ
t (S), t ∈ T ,

by the definition of stopping time. Since Hβ
t (S) ⊂ Hα

t (S), t ∈ T , we know {T ≤
t} ∈ Hα

t (S), t ∈ T . This implies that T is an Hα(S)–stopping time by definition.

By definition Hβ
T (S) contains all sets B ∈ Hβ

1 (S), such that B
∩
{T ≤ t} ∈

Hβ
t (S) for all t ∈ T . Let B ∈ Hβ

T (S). Since Hβ(S) ⊂ Hα(S), we know that

B ∈ Hα
1 (S) and B

∩
{T ≤ t} ∈ Hα

t (S), t ∈ T . Thus B ∈ Hα
T (S).

Proposition 6.1. Suppose Fβ ⊂ Fα and B ∈ Hβ
1 (S). Then T

α
B ≤ T β

B P–a.s.

proof: From the hypothesis, Hβ(S) ⊂ Hα(S). From Lemma 6.1, B ∈ Hβ

Tβ
B

(S).

Thus

E(1B | Hβ

Tβ
B

(S)) = 1B P − a.s.

From Lemma 6.2, Hβ

Tβ
B

(S) ⊂ Hα
Tβ
B

(S). Then by the law of iterative expectation we

get

E

(
1B | Hβ

Tβ
B

(S)

)
= E

(
E
(
1B | Hα

Tβ
B

(S)
)
| Hβ

Tβ
B

(S)

)
= 1B P − a.s.

Since E(1B | Hα
Tβ
B

(S)) ∈ [0, 1] P–a.s. we have

E
(
1B | Hα

Tβ
B

(S)
)
= 1B P − a.s.,

which implies that Tα
B(S) ≤ T β

B(S) P–a.s.
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The following proposition shows that the definition of resolution times is in-

variant under the substitution of an equivalent probability measure.

Proposition 6.2. Let B ∈ Hα
1 (S) and Q be a probability measure equivalent

to P . Suppose Tα
B and T̂α

B are resolution times for B with respect to P and Q,

respectively. Then Tα
B = T̂α

B P–a.s. and therefore Q–a.s.

proof: Let ξ = dQ/dP and fix a right–continuous version of ξ(t) = E(ξ | Hα
t (S)), t ∈

T . Since Q is absolutely continuous with respect to P , {ξ(t)} is a strictly positive

process except possibly on a P–null set. We have

EQ(1B | Hα
Tα
B
) =

E(1Bξ | Hα
Tα
B
(S))

ξ(Tα
B)

= 1B P − a.s.

Then T̂α
B ≤ Tα

B P–a.s. and therefore Q–a.s., since Q is absolutely continuous with

respect to P . Reversing the above argument, Tα
B ≥ T̂α

B P–a.s. and Q–a.s. Hence

Tα
B = T̂α

B P–a.s. and Q–a.s.

Before proceeding to the main theorems of this section, we first strengthen

certain results of Section 5. We now assume that (Ω,F , P ) is separable. Let Ψ

denote the space of strictly positive linear functionals on V . An equivalent uniform

martingale measure for agent α is a uniform martingale measure Qα for α that is

equivalent to P . The following proposition applies an extension of Theorem 3 of

Kreps [1981].

Proposition 6.3. Suppose that S admits no free lunches for agent α. Then the

implicit price functional πα has a strictly positive linear extension ψα ∈ Ψ.

proof: Since (Ω,F , P ) is a separable probability space, V is a separable normed

space. The assertion then follows from an Appendix theorem.

A direct consequence of the above proposition and Theorem 5.1 is:

Proposition 6.4. There is a one–to–one correspondence between equivalent uni-

form martingale measures Qα for agent α, and extensions ψα ∈ Ψ of πα. The
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correspondence is given by

Qα(B) = ψα(1B), B ∈ F , andψα(v) = Eα(v) ∀v ∈ V,

where Eα denotes the expectation under Qα.

In summary, if the underlying probability space is separable, no free lunches for

agent α implies the existence of a strictly positive extension of πα to all of V . This

in turn implies the existence of an equivalent uniform martingale measure for agent

α.

Since all of the probability measures to appear are equivalent we use a.s. to

denote almost surely under any probability measure involved. We next show that

commonly marketed events are revealed to differently informed agents at the same

time.

Theorem 6.1. Suppose that agent α is better informed than agent β, and that

the price system admits no free lunches for agent α. Let B ∈ Hβ
1 (S) be such that

1B ∈Mβ . Then

Tα
B = T β

B a.s.

proof: Let {Sα
B(t)} and {Sβ

B(t)} denote the implicit price processes for 1B for

agents α and β, respectively. From Corollary 5.1, {Sα
B(t)} and {Sβ

B(t)} are indistin-

guishable. We therefore use {SB(t)} to denote either. From Propositions 4.1 and

5.4, as well as Theorem 5.1,

SB(t) = Eα(1B | Hα
t (S)) ∀t ∈ T a.s.

= Eβ(1B | Hβ
t (S)) ∀t ∈ T a.s.,

where Eα(·) and Eβ(·) denote the expectations under equivalent martingale mea-

sures Qα and Qβ for agents α and β, respectively. Thus the resolution times of B

under (Hα(S), Qα) and under (Hβ(S), Qβ) are equal almost surely. It then follows

from Proposition 6.2 that the resolution times of B under (Hα(S), P ) and under

(Hβ(S), P ) are equal almost surely.

Markets are elementarily complete for agent α if 1B ∈ Mα for all events B ∈
Hα

1 (S), meaning that agent α has some trading strategy financing a elementary

contingent claim for any given event.
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Theorem 6.2. Suppose that agent α is better informed than agent β. If markets

are elementarily complete for β, then a price system precluding free lunches for

agent α satisfies

Hβ
t (S) = Hα

t (S)
∩

Hβ
1 (S).

proof: Elementary market completeness implies that any event in Hβ
1 (S) is mar-

keted. Theorem 6.1 then implies that the resolution times for any event inHβ
1 (S) un-

der (Hα(S), P ) and under (Hβ(S), P ) is equal. We claim thatHβ
t (S) = Hα

t (S)
∩
Hβ

1 (S)

for all t ∈ T . Since α is better informed than β, this equality holds at time 1. Also,

clearly Hβ
t (S) ⊂ Hα

t (S)
∩

Hβ
1 (S) for all t ∈ T \ {1}. Now, suppose there exists

t ∈ T \ {1} such that Hβ
1 (S) ̸= Hα

t (S)
∩
Hβ

1 (S). Let B ∈ Hα
t (S)

∩
Hβ

1 (S) and

B ̸∈ Hβ
t (S). We know P (B) > 0 since the filtrations are augmented. Note that

B ∈ Hα
t (S) implies that

E[1B |Hα
t (S)] = 1B a.s.

Also, since B ̸∈ Hβ
t (S), on some event of strictly positive probability we have

E[1B |Hβ
t (S)] ̸= 1B .

By right–continuity of the filtrations and the fact that B ∈ Hβ
1 (S), we know that the

resolution times for B under Hα(S) and under Hβ(S) are not equal, a contradiction

of Thereom 6.1.

The basic notion of the theorem, under its hypotheses, is that any event that

β eventually resolves is resolved by β and α at the same time.

Corollary 6.1. Suppose that α is better informed than β, that Fα
1 = Fβ

1 , and

that markets are elementarily complete for β. Then Hα(S) = Hβ(S). Moreover,

suppose that agent β is one of the least informed agents in A, meaning Fβ ⊂
Fα ∀α ∈ A, that Fα

1 = Fβ
1 for all agents α in A, and that markets are elementarily

complete for agent β. Then any arbitrage free price system is dynamically fully

revealing in the sense that Hα(S) = Hβ(S) for all agents α and β in A.

proof: If Fα
1 = Fβ

1 , then Hα
1 (S) = Hβ

1 (S). The assertions then follow from Theo-

rem 6.2.
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The assumption Fα
1 = Fβ

1 of course means that the two agents eventually learn the

same events, but at perhaps different times. The assumption that all elementary

contingent claims for events in F are marketed (for example, the Black–Scholes

model with assymetric learning) certainly implies that Fα
1 = Fβ

1 . In an extension

of our results to an infinite horizon with intermediate consumption, the analagous

assumption is that Fα
∞ = Fβ

∞, which is obviously unrestrictive.

We take this section to be the central contribution of the paper. Probability

theorists have recognized that the way information is revealed over time is closely

related to the behavior of martingales and optional times. In an economic con-

text with common knowledge, Huang [1985] analyzes this connection. Here we

introduced the concept of a resolution time and explored the relationship between

resolution time and arbitrage–free pricing and differential information. the latter

is introduced in this section. The theorem proved in the Appendix used to demon-

strate Proposition 6.3 is of independent interest. The conditions of Theorem 3 of

Kreps [1981] ensuring the existence of a strictly positive continuous extension of

a linear functional are sometimes hard to verify in applications. It turns out that

separability of the probability space simplifies matters considerably.

7. An example

There are two long–lived securities traded, one risky and one riskless with a zero

interest rate. Agent α observes a Standard Brownian Motion in “real time.” Agent

β knows at time zero the value of the Brownian Motion at time one but cannot ob-

serve its sample paths over time. The two agents are differently informed and there

is no ordering between the two endowed private information structures. Markets are

elementarily complete for both agents and the price system is dynamically fully re-

vealing between them. The risky security price process, although one–dimensional,

symmetrizes an infinite–dimensional assymetry of information. The key is that

agents are able to observe an infinite number or realizations of the risky price pro-

cess.

Formally, there is defined on a separable probability space (Ω,F , P ) a Standard

Brownian Motion, W = {W (t) : t ∈ [0, 1]}. We denote by FW = {FW
t : t ∈ [0, 1]}

the augmented filtration generated by W . The set of trading dates of the economy
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T is taken to be [0, 1]. We take Fα = FW and, for all t ∈ T , Fβ
t = σ{W (1)}, the

tribe generated by W (1). Although consumption occurs only at time 1, knowing

the value of the Brownian Motion at time 1 at the very beginning does not make

agent β better informed. The optimal net trade for agent β, if he or she could

observe W directly, might well be path–dependent.

There are two long–lived securities traded, with payoff structures

d1(ω) = 1Ω(ω),

d2(ω) = 2W (ω, 1)−
∫ 1

0

(
γ +

W (ω, 1)−W (ω, s)

1− s

)
ds,

where γ is a real number. The price system is

S1(ω, t) = 1Ω(ω)

S2(ω, t) =W (ω, 1) +W (ω, t)−
∫ t

0

(
γ +

W (ω, 1)−W (ω, s)

1− s

)
ds.

Corollary 1.1 of Jeulin and Yor [1979] implies that

W (t)+(1−t)W (1) =W (1)+(1−t)
∫ t

0

1

1− s
dS2(s)+

∫ t

0

γ

1− s
ds, t ∈ [0, 1), P−a.s.

Since γ is a constant, {W (t) + (1 − t)W (1) : t ∈ [0, 1)} and {S2(t) : t ∈ [0, 1)}
generate the same augmented filtration, henceforth denoted FS = {FS

t : t ∈ T }.
Corollary 1.1(a) of Jeulin and Yor [1979] implies that

FS
t =

∧
ϵ>0

{
FW

t+ϵ

∨
σ{W (1)}

}
.

Thus FS is right–continuous and finer than either Fα or Fβ . It follows thatHα(S) =

Hβ(S) = FS . That is, the price system is dynamically fully revealing between α

and β.

We next claim that S admits no free lunches. It suffices to demonstrate the

existence of a martingale measure. Let

W(t) =W (t)−
∫ t

0

W (1)−W (s)

1− s
ds, t ∈ T .
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Theorem 1 of Jeulin and Yor [1979] shows that {W(t) : t ∈ T } is a Standard

Brownian Motion with respect to HS under P . We now define ξ = exp{γW(1) −
1
2γ

2}, as well as the measure Q defined by

Q(B) =

∫
B

ξ(ω)P (dω), B ∈ FS
1 .

Theorem 6.1 and Lemma 6.5 of Liptser and Shiryayev [1977] ensure that Q is a

probability measure on (Ω,FS
1 ) equivalent to P . It follows from Girsanov’s Theorem

(Liptser and Shiryayev [1977, pp. 225]) that

W∗(t) = W(t)− γt =W (1)−
∫ t

0

(
γ − W (1)−W (s)

1− s

)
ds, t ∈ T ,

is a Standard Brownian Motion adapted to HS under Q. Thus S2 is a HS–

martingale under Q since S2(t) = W∗(t)+W (1). Finally, the fact that markets are

elementarily complete for both agents follows from Corollary 1.1(e) of Jeulin and

Yor [1979].

8. Discussions, generalizations, and concluding remarks

The assumption that the price system has been normalized cannot be taken lightly.

In a Walrasian economy, normalization of prices is economically neutral. In a ratio-

nal expectations economy such a procedure is not economically neutral in general.

The information content of a price system may be altered by changing numeraires.

Our analysis can be generalized in the following direction, however. Take S to be

a vector of F–semimartingales satisfying all the earlier stated regularity conditions

except that they sum to a process bounded away from zero. We can then normalize

the price processes to sum to one, denoting the resulting process S∗, but still allow

agents to have access to the information generated by S. Then the results of this

paper apply to S∗.

The assumption that consumption only occurs at date one is made only for ease

of exposition. Our results are readily extended to an economy whose consumption

space is the space of bounded variation processes, representing agents’ accumulated

net trades, equipped with a norm introduced by Huang and Kreps [1985]. For
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consumption processes as rates of time with a naturally defined norm, we can also

extend to the setting of Duffie [1984].

Other than the sensitivity of information to price normalization referred to

above, the results presented in this paper are robust. No arbitrage is a weak require-

ment to place on a price system. We have demonstrated that this requirement has

pervasive implications. In a common information economy, the connection between

martingales and an arbitrage free price system observed by Harrison and Kreps

[1979] makes a dynamic equilibrium theory possible (Duffie and Huang [1985]). In

a differential information context, no arbitrage is a minimum condition for a rational

expectations equilibrium price system, and requires that a price system be a mar-

tingale under some probability measure. Readers should convince themselves that

putting this paper and Duffie and Huang [1985] together leaves it trivial to prove

the existence of a dynamic rational expectations equilibrium with a fully reveal-

ing price system. Under what general conditions there exists a partially revealing

dynamic rational expectations equilibrium is an open question.

Appendix

Let X be a separable normed space and let K be a convex cone in X with the

origin deleted. Let x1 and x2 be elements of X. We write x1 ≥ x2 if x1 − x2 ∈
K

∪
{0}. A securities markets model is a pair (M,π): a vector subspace M of X

and a linear functional π on M . A free lunch in the securities markets model is a

sequence {(mn, xn) : n = 1, 2, . . .} ⊂ M ×X such that mn ≥ xn xn → k ∈ K, and

lim infnπ(mn) ≤ 0.

Theorem A.1. Suppose that (M,π) admits no free lunches. Then π has an exten-

sion ψ ∈ Ψ where Ψ is the space of strictly positive continuous linear functionals

on X.

proof: From Lemma 5 of Kreps [1981] there exists a collection Γ = {ψk : k ∈ K}
of equicontinuous positive linear functionals on X such that ψk(k) > 0 and ψk is an

extension of π. It follows that Γ is a separable metric space in the relative weak∗

topology (Theorem 5.4.7 of Schaefer [1980]). Let {ψn : n = 1, 2, . . .} be a countable

dense subset of Γ in the relative weak∗ topology and let {λn : n = 1, 2, . . .} be a
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sequence of strictly positive real numbers such that
∑∞

n=1 = 1. Since the convex

hull of {ψn} is also equicontinuous, it is relatively weak∗ compact, implying that

the sequence
∑N

n=1 λnψn converges weak∗ as N → ∞. Let the limit be denoted ψ.

For any k ∈ K there exists n such that | ψn(k) − ψk(k) |≤ ψk(k)/2 > 0, implying

that ψn(k) > 0. Thus ψ(k) > 0.
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