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ABSTRACT

This paperexaminesthe role of productionandstock marketsin a continuous—time

stochasticeconomy. The results include sufficient conditions for the existenceof general

equilibria: spot price processesand securityprice processesunder which there exist pref-

erencemaximalconsumptionandportfolio choicesfor agentsand sharevaluemaximizing

productionchoicesfor firms that clear marketsfor commoditiesandsecuritiesat all dates

andstates.Specific stochasticgrowth andstochasticinput—outputproductiontechnologies

satisfyingthe statedproductionconditionsareillustrated. We also study traditionalissues

concerningthe financial andproductionpolicy of the firm.
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1. Introduction

This paperexaminesthe role of productionin acontinuous—timestochasticeconomy. We

take ageneralequilibrium approach,demonstratingprice processesfor securitiesandspot

commoditiesat which individuals’ optimal consumptionandsecuritytradingstrategiesand

firms’ share—value—maximizingproductionstrategiesclear marketsat all dates.

The overall choicespacefor the economyis the set of consumptionprocessesadapted

to the availableinformation. Although this spaceis typically infinite—dimensionala finite

numberof securities,with continuoustradingpossibilities,allows anyconsumptionprocess

to be financedby somesecuritytrading strategy.In developingthe role of productionin a

stochasticeconomy,we choseto modelinformationasgeneratedby diffusion state—variables,

this being particularly well suited to our purposesand allowing us to draw aconnection

with earlierwork on stochasticequilibria with production. Cox, Ingersoll,andRoss[7,8], for

example,provided necessaryconditions for a single—agentstochasticproduction—exchange

equilibrium satisfyingcertain“smoothness”conditions. Breeden[4] hasdonerelatedwork.

Merton [20] hasthe seminal model of necessa.ryconditionson continuous—timestochastic

equilibria. One of the goals hereis to actually demonstratean equilibrium in a multi—

agentproduction—exchangeeconomywith the same“diffusion” information structure.The

othermajorgoalis to incorporateandillustratestochasticextensionsof classicalproduction

models within equilibrium.

We beginin the nextsectionby layingout the primitives of an economythat fits within

ourgeneralscopefor demonstratingstochasticequilibria. In Section3 weprovidean equilib-

rium existencetheoremfor an economywith generalproductiontechnologies.Section4 ex-

aminesthe productionandfinancial policiesof the firm, reconfirmingthe Modigliani—Miller

lilvariance Principle as well as unanimousshareholdersupport for sharevalue maximiza-

tion by firms. Section5 studiesparticularclassesof productiontechnologies.The principal

exampleshereare : (i) production functions modeledas operatorsthat map production

input stochasticprocessesto productionoutput stochasticprocesses,and (ii) capitalstock

accumulation,in the frameworkof stochasticgrowth modelssuchas that modeledby Cox,

Ingersoll,andRoss[7,8].
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2. The Economy

Uncertainty

For simplicity we choosea. finite time—interval [0, 1]. Basic uncertaintyis represented

by acompleteprobability space(fl, T,P). Here ~l representsthe setof statesof the world,

and.T denotesthe tribe (or, in somevocabularies,u—algebra)distinguishingthe events,or

subsetsof fI that canbe assignedaprobability. A referenceprobabilitymeasureP is given.

Agents neednot agreeon probability assessmentsstatedby F, but must haveboundson

their disagreements.More precisely,given a finite set I = {1, . . . , I} of agents,eachagent

i E I must haveaprobability measureP~on (~,.F) uniformly equivalent’ with respectto

the referencemeasureP.

Information Structure

Agentsreceiveidentica.l informationrepresentedby a filtration F = {.T~: t E [0, 1]} of

sub—tribesof .T = 1,. The sub—tribeJ~,for anytime tin [0,1], representstheset of events

revealedby all informationreceived up to and including time t. In particular, if A E .T~

thenone will know at time I whetheror not A “happens.” The collection (rh, T, F,F) of

primitives is afiltered probability space,andis the fixed referencepoint for all probabilistic

statementsunlessotherwiseindicated.

Although weneednot restrictourselvesto aparticularfiltration in orderto demonstrate

equilibria, we will do so for purposesof concretenessand for easeof comparisonwith the

literature. We supposetha.t B = (B’,.. . , BN)T is an N—dimensionalStandardBrownian

Motion defined on (~,~,F). An N—dimensionalstate—variableprocessZ is specified by

the Ito integralequation:

rt
Z(t) = Z(0) + / jt(Z(s), s)ds+ / u(Z(s),s)dB(s) Vt E [0, 1] a.s., (2.1)

Jo Jo

where Z(0) E ~N, and where a : x [0, 1] ‘. ~NxN and j~: x [0, 1] ; are

continuousandsatisfy: for someconstantK, all tin [0, 1], andall y and ~ in ~

IIL(y,t)—,t)I~KIy--~I,Ia(y,t)—u(~,t)l�KIy—~I,
~ Two measuresP andQ on (~,.T)are uniformlyequivalentprovidedthereexiststrictly

positive scalarsIC and~ suchthat KP(B) < Q(B) ~ KP(B) for all eventsB in F.
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and

~(y,t) 2 ~ K(1+ y 2), u(y,t) 12 < K(1+ y 12),

referredto henceforthas a Lipschitzcondition and agrowth condition, respectively.2 We

assumethat a(y,t) is nonsingularfor eachy and t. Theorem9.3.1 of Arnold [1] ensures

that (2.1) hasaunique(strong)solution Z that is adiffusion process.

The agents’ commonly endowedinformation structureis the augmentedfiltration F

= {F~ : I E [0, 1]} generated3by Z. By the assumptionthat a(y,I) is continuousand

nonsingular,F is in fact the augmentedfiltration FB generatedby theunderlyingBrownian

Motion (1-TarrisonandKreps [12]). In interpretation,agentsobserveastateprocessZ whose

evolutionover time dependsuponB (is adaptedto F8).4 ObservingZ providesagentswith

the sameinformationthat would be obtainedby observingB directly.

Spot CommoditiesandAgents

Th~.~potcommodityspaceis ~ for someintegernumber .e 2 1 of different com-

modities. An ~—va1uedstochasticprocessc = {c(t) : t ~ [0, 1]} representingconsumption

choicesat eachtime t mustbe chosenon the basisof availableinformation.We thusimpose

the restriction that c : ~l x [0, 1] —~ IR~is predictable,meaningmeasurablewith respectto

the tribe 7) on fh x [0, 1] generatedby left—continuous5adaptedprocesses.This may be

interpretedas requiringthat the consumptionchoicec(t) at anytime I mustbe basedonly

on information obtainedby observingthe behaviorof Z from time zero to time I.

In order to exploit continuity assumptions,we alsorequireaconsumptionprocessc to

he sq uare—integrahle,satisfying

Ti
B / c(t)Tc(t)dt < oo. (2.2)

Jo
2 We write a 12 = tr(aaT), whereT denotestransposeandtr denotestrace.

~ The filtration Fz = {F~: t e [0, 1]} is generatedby Z if F~is the smallestsub-tribe
of F with, respectto which Z(s) is measurablefor all s in [0, t]. Thefiltration is augmented
by replacing~ with the tribe F~generatedby F~and all zero probability subsetsof the
completetribe F.

~ A process{X(t) : t E [0, 1]) is adaptedto a filtration F = {F~: I ~ [0, 1]} if X(t) is
measurablewith respectto F~for all t E [0, 1].

~ An ada.ptedprocessis left—continuousif its samplepathsare left continuousalmost
surely. By Chung andWilliams [6], the predictableandoptional tribes correspondingto
the filtration generatedby anyHunt processsuchas Brownian Motion arethe sametribe.
Thus we are consistentwith the consumptionspaceof optional processesusedin related
papers[9].
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Thus the consumptionspaceis L~ xf1L2(f~x~0,1],P,v), whereii is theproductmeasure

generatedby P andLebesguemeasure.We henceforthabbreviatex~1L~(f~x [0, 1],P,s’),

for anyq ~ [1, oo) andanyintegern > 1, as L~.In summary,L~consistsof any~R~—valued

square—integrablepredictableprocess.As usual,weidentify anytwo consumptionprocesses

that are equalalmost everywhereon Il x [0, 1] (with respect to the product measure ii).

The set of positiveconsumptionprocessesis the positive cone(L~)+ of L~.

A spotpriceprocessis given by some~‘ = (~b1,.. . ,~)e L~,where~‘(w,t) is the unit

priceof the l—th commodityin statew E Il at time t.

Eachagenti El = {1,2, . . .,I} hasanon—zeroendowmente~e (Lfl+ andapreference

relation6
~j on (L~)+.An exampleof apreferencerelation is given by the time—additive

von NeumannMorgensternform of utility representation~~E(J~0Tu(c(t),t)dt),” but that is

vastly morerestrictivethanneededfor the existenceof equilibria.

Capital Assets,FinancialAssets,andTrading Strategies

A set J = {1,. . ., J} of firms is given, characterizedby a production set Yj C L~

for each j E J. Any y ~ Yj representsa feasible net production processfor firm j.

For example, the productionset Yj could be that representedby a production output

function f~: (L~)+—~ (L~)+mappingproductioninputs to productionoutputs,a class of

technologiesstudiedin Section5.

A security is identified with an RCLL integrable7 processD defining its cumulative

dividends. In other words, securityD is a claim to cumulativedividendsD(t) up to any

time I. If, for example,oneshareof D is boughtat time s andsold at alater time I, a total

of D(t) — D(s) is receivedduring the interim as dividends. The lump sum dividend paid

at time I, if any, is thejump ~D(t) D(t) — D(t_). [By our convention,~D(0) = 0.] As

in Arrow’s original modelof 1953, dividends are denominatedwith respectto anumeraire

that neednot be any particularoneof the £ commodities. One might think in termsof

“dollars,” althoughthis is not amonetaryeconomy.

6 For our purposes,apreferencerelation >- on asubsetX of L~is merely abinary order

on X. We interpret x >- y, for anyx andl~in X, as “x is at leastas good asy”. We do not
require that >- be completeor transitive, althoughthis would automaticallybe the caseif
~ is representedby autility function it : X —* R, meaningu(x) � u(y) wheneverx ~ y.

An adaptedprocessD is integrahle if I D(t) I has finite expectationfor all I, and
RCLL if its samplepathsare right—continuouswith left limits almostsurely. The left limit
of an RCLL processD at time I is D(t_) lim31jD(.s).
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Given aspot priceprocessui’, anyelementx of L~definesasecurityD~1~by

= f ~(
8

)T~(
8

)~
8

, t E [0,1] a.s.

(By the Cauchy-Schwarzinequality,D~is integrable.)Eachfirm j E J hasonesecurityD~

outstanding,called commonstock,of the form D~= ~ whereyj E Y~is theproduction

processchosenby firm j. In other words,firm j at time I sells its net output at the rate

y~(t)on the spot market a.t prices~(t), andpays all of the proceedsas dividendsat the

rate ~,(t)Ty~(t), yielding the cumulativedividend processf ~,(t)Tyj(t)dt. We could also

allow firm j to issue,buy, or sell securities,for exampledebt financing, in order to adjust

its dividend stream. The nature of the equilibrium we are about to demonstrateleaves

all shareholdersindifferent to such schemes,a Modigliani—Miller style invarianceprinciple

developedin Section4. Thus we leave the financial policies of firms out of the nuodel for

thepresent.

Commonstocksare capital assets,or claims to net salesof commodity productionin

strictly positivesupply. A financia.l asset,on theotherhand, is asecurityin zeronet supply.

In addition to capital assets,an economyincludessomenumberK — J of financial assets,

definedby cumulativedividend processesD.~+l,.. . , DK.

Eachagenti E I is initially endowedwith someshare�~�0 of the commonstock D~

of eachfirm j E .J. Agent i’s initial endowmentc~of anyfinancial assetj > J is zero. By

convention,~ = 1 for all j E J. We denote(ci,. . . , �~‘)by q.

EachsecurityD~is assigneda. price processS~for its ex—dividendmarketvalue. That

is, Si(t) is the random variable for the market value at time t of a claim to all future

dividendsto be paid by securityD~. [Since S~is ex—dividend,Si(1) = 0 almost surely,

barringarbitrage.]A gain operatoris alinear operatorII on the spaceof dividendprocesses

into the spaceof ItO processes,whicharereviewedin AppendixA. UnderII, for anydividend

processD, the gain G = 11(D) is the processdefining the cumulativemarketvalue earned

by holdingoneshareof D, including both capitalgainanddividend gain. That is, 11(D) =

D + S,where S is the price processfor D.

Agents takeas given avectorD = (D’,. . . , DK)T of K securities,aspotpriceprocess

~,andagain operator11. Let G denotethe corresponding~1~—valuedgainprocessfor the
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securities. As an Ito process,C hasthe stochasticdifferential form

dG(t) = dV(t) + a(t)dB(t), t E [0, 1], (2.3)

where V is an ~K_valued boundedvariation processand a is an K x N matrix—valued

predictableprocess,as describedin moredetail in Appendix A. Agents tradesecuritiesby

holdingportfolios prescribedby an —valued predictableprocess0 = (01,.. . ,
9

K), where

9i(w, I) is the numberof units of the j—th securityheld in statew E ~ at time I E [0, 1].

For regularity we demandthat

p1J I0(t)”~’ I IdV~c(t)I< 00 a.s., 1 < k < K, (2.4)
0

and that ci
B I I0(t)a(t)12 cit < 00, (2.5)

Jo
ensuringthe existenceof the stochasticintegral f OdG. The total gain of strategy0 is

this integral f OdG, representingthe sum of the cumulativedividend gain JOdD and the

cumulativecapital gain f OdS, if both integralsexist. The set of ~“—valued predictable

processes9 satisfying(2.4) and (2.5) is the (linear) spaceO~G] of trading strategies.

Optimal Consumptionand Trading Strategies

GivensecuritiesD = (D’,.. . , DK)T, again operator11, andaspot priceprocess~‘, a

consumptionprocessc is financedby a trading strategy9 if

O(t)~S(t)+ AD(t)] = 0(0)8(0)+ j 9(s)dG(s)— j ~(s)Tc(s)ds, Vt E [0,11 a.s., (2.6)

whereG=(11(Dl),...,11(DK))T andS=(81,...,SK)T = G—D, and if

9(T)~S(T)+ z\D(T)] = 0. (2.7)

The left—hand—sideof (2.6) is the cum—dividend marketvalue of the strategy0 at time I;

on the right is theinitial marketvalueof 0, plus the cumulativecapitalanddividendsgains

from security tradeup to and including time t, less the cumulativespot marketcost of c.

Given (D, H, ~&),apair (c, 0) E (L~)~x 0(G) is abudgetfeasibleplan for agenti if 0(0) =

andif 0 financesthe net tradec — e~.A budgetfeasibleplan (c, 0) is optimal for agenti if
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thereis no budgetfeasibleplan (c’, 0’) such that c’ >.-~c. The equality constraintiii (2.7) is

without loss of generalitygiven locally non—satiatedpreferences.

ShareValue Maximizing Production Choices

Given a spot price process~ and a gain operator 11, a production choice y E Y3
generatesthe shareprice processS~ 11(D~~,)— Dyui, for firm j. Given a production

choice y E Yj andastoppingtime T, a production plan z is a continuation of y at T if

z(t) = y(t) for all I ~ T almost surely. The set of continuationsof y E 1”3 at T is denoted

Yj(T,y). Given(~,11), a productionplan y E Yj is sharevaluemaximizingfor firm j if

thereis no stoppingtime T with P(T < 1) > 0 andcontinuationz E Yj(T,y) such that

S~~,(T)> S~,1~(T)almost surely. In other words, y is optima.! in this senseif it impossible

at any time to revise the firm’s productionplan in a consistentmannerand improve the

firm’s current shareprice with non—zeroprobability. We should remarkthat, as the firm’s

cumulativedividend processis continuous,the curn and ex dividend values of the firm are

equivalent. We would otherwisenaturally describemarketvalue maximizationin termsof

the cum—dividendvalue.

We definethe conditionalexpectationgain operator H by ~(D)~ = E~D(1)!F~],under

which the current marketvalue 5(t) of a. security D is the current conditional expected

value of its total future dividends,or 8(1) = E~D(1) — D(t)J.Ft]. This gain operatoris one

of a largetime—additiveclasswith the property that maximizinginitial sharepriceimplies

share—value—maximizationin the abovesense.

PRoPosITIoN2.1. Given aspot priceprocess~band the conditional expectationgain op-

eratorII, aproductionplan y~jE Yj is share—value—maximizingfor firm j if and only if, for

all y E Y~,
p

1

B J ~ç1.’(t)T~yj(t)— y(t)]clt � 0.
0

PRooF: The only if assertionis trivial, taking the stoppingtime T = 0. For the reverse

implication, supposethereexists astoppingtimeT with P(T < 1) > 0, andacontinuation

y E Y~(T,y~)such that S~~(T)>S~111,(T)almost surely,or equivalently,that

1 rc1 1
E / ~(s)Ty(s)dsIFT! > Eli ~b(s)Tyj(s)dsIFTI a.s.

JT J UT J
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Sincey is acontinuationof yj atT, we have

pTJ u/)(t)~y(t)dt = j ~/(t)Ty~(t)dt
0 0

Taking the expectationof the sum of the two previousexpressionsinplies that

r ri 1
B [J ~&(t)T~y(t)— Yi(t)]dtj > 0,

0

acontradiction. U

StochasticEquilibrium

A stochasticproduction—exchangeeconomy,in summary,is a collection:

= ~ e~,ej); ~ . ., DK); (b); i E l,j E J). (2.8)

A collection (11,~,(y~),(ci, O~),jE ~7, i E I), is an equilibrium for g if 11 is againoperator

and ~‘ is a spot price process such that:

(i) given (v’, 11), for all jiii 3 theproductionchoiceyj E Yj is sharevaluemaximizing,

(ii) given (11, (D1,. . . , D’~),~),where D~= ~ 1 <j ~ J, for all i in I the plan

(ci, 0~)is optimal for agent i, and

(iii) markets clear: ~ — e~= ~ ~ = 1, 1 ~ j � J; and ~9~? = 0,

J+ 1 <j ~ K.

3. Existence of Stochastic Equilibria

Ourprocedurewill be: first demonstrateastaticcompletemarketsequilibrium; thendemon-

strateastochasticequilibrium by construction,“implementing” thestatic equilibrium allo-

cationsby dynamictradingon security andspot markets.

Regularity Conditions

Recentadvancesby Zame [31], Mas—Colell [19], andRichard[31] in the theoryof static

(Arrow—Debreu)productioneconomiesprovide weakconditionson productiontechnologies

that are particularly well—suited to the choice spaceat hand. Not yet having had the
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opportunity to incorporateRichard’svery recentextensionof Mas—Colell’s work, we will

employ Zame’s production conditions. The genesisfor this recentspateof work is an early

pure—exchangeversion of Mas—Colell’s paper.

For topological conditions,we will sometimesusethe norm II Ii on L~defined(using

Cauchy—Schwarz)by

IIeIIi=E [j’~Icitldt].

[This is theproductV (v)—norm.] Continuity in thisnormis morerestrictivethancontinuity

in the usualnorm II 12 definedby

/ r 1 1\h/’2

II c 112 = (B f c(t)Tc(t)dt
\ Lo

We desirean equilibrium spot price process to be boundedfor technicalconvenience,how-

ever, and so work with the finer Ik topology.

The appendix reviews Zame’sstronglyboundedmarginal efficiencycondition on pro-

duction sets. We examinespecific technologiesthat exhibit stronglyboundedmarginaleffi-

ciency in a latersection.An appropriatecondition on preferencesover infinite—dimensional

spaceswas developedby Mas—Colell [19] andextendedby Yannelis andZame [30] to pref-

erencerelationsthat neednot be completeor transitive. A consumptionchoicev E (Lfl+

is extremelydesirablefor a preference relation >- on (L~)+ if thereis ascalar~ > 0 with

the following property. For any c E (L~)~,if z E L~and ct E (0, 1) satisfy z ~ c + av

and I! z Iii < aS, then c+ av — z >- c. Interpreting,the choicev is such a good direction

to move in that one can compensatefor the loss of z by gaining a’v, provided z Ii is

small enough.For completetransitivepreferences,this is identicalto Mas—Colell’s uniform

properness8condition. For a restrictive example, if >- is representedby the time—additive

form E~j’~u(c~)dt]whereit is concaveandmonotonicwith afinite right—derivativeat zero,

thenv(w,I) (1, 1,. . ., 1) e ~ is extremelydesirablefor ~.

8 If the preferencerelation >- is representedby aconcavecontinuousmonotonicutility

function that can be extendedto a II • ~,—neighborhoodof (L~)+while preservingthese
properties,then >- hasextremelydesirablechoices,or in Mas—Colell’ssense,is “uniformly
proper”. SeeRichard[26] andRichardandZame [28]. For our purposes,we will sometimes
place additionalconditionson extremelydesirablechoices,so theseresultsneednot always
apply.
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The totalproduction setfor our economy is Y = ~ Y3 anyelementof Y is afeasible

addition to endowmentsin forming aggregateconsumption. The aggregateendowmentis
I

e = e2.
Production Conditions. The productionsetsYi,. . . , Yj are II II2—closed, convex,

includezero,anddemonstratestrongly boundedmarginalproductionefficiency. The setof

feasible production choices Y fl ((L~)~— {e}) is II I2—bounded.

AgentConditions. Thepreferencerelations~j, i E I, arestrictly increasing9,convex,10

II li—continuous,11andhavean extremelydesirablechoicev~E (L~)+suchthat v~~ e.

The conditionon extremelydesirablechoicesis implied, for example,by strictly increasing

uniformly proper preferences and an assumption that ~ e~is strictly positive almost

everywhere. With production of intermediate goods, for example,we would prefer not to

make the strictly positive aggregate endowment assumption. Aside from bounded marginal

production efficiency, the other regularity conditions are fairly standard.

Static Equilibria

Underlying our stochasticeconomyis the static (Arrow—Debreu)economy

= (((L~)+,~ (cfl; (}~);i E I,j E

A (static) equilibrium for E~is a collection (ci, . . . ,c1,y,,. . ., yj, ~) where (ci,..., ci) is

a consumptionallocation, (y,,. .. , yj) is a productionallocation, and q~is a linear price

functional on L~,such that

>~cj—ej=>yj (3.1)

~ ~(e~+ ~ c~y~),i E I, (3.2)

z >~-~c~==z~- q~(z)> q~(cj) Vz E (L~)~,i El, (3.3)

çb(z)<cb(y3) VzEYj, jEJ. (3.4)

~ A preferencerelation ~ is strictly increasingif c + y >~-~c for all c andy E (L~)+with

10 A preference relation >- on a subsetX of avectorspaceis convexprovided ax + (1 —

a)z >- w wheneverx >- w andz >- w, for anyx, z, andw in X andany a in [0,1].
‘~ A preference relation >- 011 (L~)+is II li—continuous provided the graph of >- is a

relatively II li—open set. This canbe weakened;seefor example,Zame [31].
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Thesearethe usual conditions: feasibility (3.1), budgetfeasibility (3.2),optimality (3.3),

andmaximizationof production value (3.4).

THEOREM 3.1 (EXISTENCE OF STATIC EQuILIBRIA). Providedthe ProductionConditions

and Agent Conditionsare satisfied, the economyEs has astatic equilibrium. Moreover,

an equilibrium price functional ç~can be representedby astrictly positive12 boundedspot

price process~bas

~(x) = B [f ~(t)Tx(t)dt], x E L~. (3.5)

The proof maybe found in Appendix B.

Dynamic Spanning

In order to implementa static equilibrium as a stochasticequilibrium, we will make

useof the theory of martingalegenerators.As the detailshavebeenextensivelydeveloped

ill the exchange case, we will be brief. A vector m = (m’,. . . , mH) of ItO integrals

in(t) = in(0) +f &(s)dB(s),

where~ is an H x N—matrix valuedpredictableprocess,is amartingalegeneratorprovided

any square—integrablemartingale’3M has arepresentationof the form

M(t) = M(0) + f 9(s)dm(s) Vt E [0,1],a.s., (3.6)

where0 is an ~~valued predictableprocessessatisfyingB [i 10(t)d(t)I2 dl] <00. Forex-

ample,theunderlyingBrownianMotion B = (B’,. . . , BN)T is itself amartingalegenerator

(Kunita andWatanabe[17]). More generally,we have:

LEMMA 3.1. Supposern is vector martingale of the form m(t) = m(0) + f~(s)dB(s),

Vt E [0, 1] almost surely, where& is an H x N matrix—valuedpredictable processwith

12 An element~bof L~is strictly positive if v{(w,t) E 1lx [0,1]: &(w,t) >> 0} = 1.
13 A martingale is an integrableadaptedprocessM satisfying E~M(t) I F3] = M(s)

whenever0 <s < I < 1. Onthe Brownianfiltration wecanassumewithout loss of generality
that all martingaleshavecontinuoussamplepaths.A martingaleM is square—integrahleif
E~M(1)2}< 00.
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rank(&(t)) = Nv — a.e., and wheref~tr(&(t)d(t)T)dt < ooa.s.Then m is a martingale

genem-at or.

This result is containedin amoregeneralform in Chapter4 of Jacod[16]; for concreteness

aproofis given in Appendix A.

A securityD is a riskless bond if D(t) = 0, t E [0, 1) and D(1) = 1. A vector D =

(D’,. . . , D’~)~of securitiesis fundamentalif D’~is a riskless bond and if thereexists a

martingalegeneratorm = (m1, . . .,m”~) such that, for all tin [0,1], -

E~D”(lHFj] =m~’(t), 1<k<K—1.

Given avector D of securitiesandagain operatorH, marketsare dynamicallycompleteif,

given anyspotpriceprocess~b,everyc E L~is financed~bysometrading strategy0 E O~G].

PROPOSITION 3.1. If D is a fundamentalvector of securities and II is the conditional

expectationgain operator, thenmarketsaredynamicallycomplete.

A proofandpartia.l conversemaybe found in Duffie [1985].

StochasticEquilibria

Under the conditionalexpectationgain operatorII, the initial investmentrequiredto

financeaconsumptionplan is merelythe total expectedspot marketcostof theplan.

PROPOSITION 3.2. Given the conditional expectationgain operator~~,any vectorofsecu-

rities D, and any spotprice process~b,if 0 is a. trading strategyfinancing a consumption

processc, then
ui

9(0)8(0)= B J ~l~(t)Tc(t)dt
0

PROOF: The proofis immediatefrom (2.6)—(2.7)andfrom thefact that the gain G=

is amartingale,implying that f OdG is a martingalefor anytrading strategy0 E O~G]. U

HarrisonandKreps [12] indicatethat,barringarbitrage,anygainoperatoris aconditional

expectationoperatorunder somenumeraireandprobability measure.[For extensions,see

Huang [15].] We havethe luxury hereof picking the probability measureP andnumerairein

advance.Of course,if pricesaredenominatedwith respectto oneof the £ commodities,then

thisform of nominally risk—neutralpricing is only possiblein equilibrium with arisk—neutral
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agent. With any equilibrium satisfyingregularityconditions,however,one can normalize

prices relativeto oneof the securitiesandconstructanewprobability measureunderwhich

nominally risk—neutral pricing applies. This doesnot require a fundamental“spanning”

set of securitiessuch asconstructedin the following theorem,which statessufficient rather

thannecessaryconditionsfor astochasticequlibrium.

THEOREM 3.2 (EXISTENCE OF STOCHASTIC EQUILIBRIA). Supposethat

5s = (((L~)+,~j, e~);(efl; (~);i E I,j E

satisfiesthe Production Conditionsand the AgentConditions. Then there exist financial

assets(D~1,... , D’~)such that the stochasticproduction—exchangeeconomy

((~j, e~,q); ~ . . , DK); (1~);i E I,j E

has astochasticequilibrium. Moreover, the equilibrium allocation is Pareto optimal if ~

is completeand transitivefor all i E I.

PROOF: By Theorem3.1, thereexists a staticequilibrium (ci,. . . ,cI, Yi,. . . , yj, ~) for E5,

wherethe price functional ~ ca.n be representedas in (3.5) by astrictly positivebounded

spot price process ~b.We take this spot priceprocess~band the Arrow—Debreuproduction

plans (yj), generatingthe comnuonsharesD~= ~ 1 ~ j ~ J. We take the conditional

expectationgainoperator~, defining again processG~for the commonshareof eachfirm

j. Since~bis bounded,Ci is a square—integrablemartingale,andis thusrepresentedby an

i~—valuedpredictableprocess&~with B [f &~(t)&~(t)Tdt] <00 by

G~(t)= f &~(s)dB(s), t E [0,1], a.s.

Let ~1idenotethe J x N matrix—valuedprocesswith j—th row &~,j = 1,2,. . ., J. Let J

satisfy rank(~,(t))>Y v — a.e. andv{rank(iji(l)) = 1) > 0. Let K = N — J + J + 1.

We define financial securities DJ+i, . . . , DK as follows. Let D” be a riskless bond. For

J+1~j~K—1,let

Di(t) = j &~(s)dB(s), t E [0,1],

where{&J+i, . . . ,&K_1} are~ predictableprocessessuchthat theNx(K—1) ma-

trix process&T = (&~,. . . , &~_~)hasrank N v-a.e.14 andsatisfiesB {i~tr(&(t)&(t)T)dt]

14 A measurableselectionargumentof the Aumannvariety maybe usedhere. See,for

example,Hildenbrand[13], p. 54.
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< 00. By Lemma3.1, D is a fundamentalvector of securities. By Proposition3.2, there

exists for eachagenti E I a tradingstrategyO~E O~G] financingthe net tradec~— e~.We

takea trading stra.tegy9~E O~G] with this property for eachagenti E {1,. . . , I — 1}. Let
I i—i . . .

01 = ~_, q — ~ 0~.Since O~G] is a linear space,0~E O~G]. It is theneasily verified,
using marketclearing in the static economyE5, that (c1,O~)is a budget feasibleplan for

I. For all i in I, (c~,0~)is an optimal plangiven (H,D1,. . . ,D”,’~)by argumentsgiven in

Duffie [1985]. By Proposition2.1, y~is sharevalue maximizingfor eachfirm j in J, given

(iT, -~b).By constructionwe havemarketclearing. Paretooptimality follows undercomplete

transitivepreferencesby astandardargument. I

This proofgives us stocha.sticequilibrium with the minimumnumberof financialsecu-

rities requiredfor dynamicallycompletemarkets.Thesefinancial securitiesareendogenous,

dependingon the particular static Arrow—Debreu equilibrium chosenfor implementation.

Of course,one hasthe existenceof stochasticequilibrium for a largeclassof exogenously
—J+1 —K—ispecifiedfinancial securities.For example,we could fix (D ,. . . , D ) = B andchoose

to be a risklessbond.

THEOREM 3.3. If E = ((~j,e~,�~);(D~~’. . . ,~“); (~);i E I,j E J) satisfiesthe Agent

conditionsand the ProductionConditions, then E hasstochasticequilibria..

The proof is a simplification of the proof of Theorem 3.2, using the fact that B is itself

a martingale generator. In this case, since financial markets are dynamically spanning in

their own right, thereis no particular hedgingor spanningrole for capitalmarkets.

4. The Production and Financial Policies of the Firm

This sectionreconfirms in a continuous—timesetting two well known dictumson the pol—

icy of the firm. First, positiveshareholdersunanimouslysupport aproductionplan that

maximizesthe valueof the firm, provided marketsarecomplete,or in this setting,provided

marketsare dynamically complete. Second,the value of the firm is independentof any

issuanceof debtby the firm, the Modigliani—Miller [21] PropositionI. For the former impli-

cation, supposey andz arecandidateproductionplansfor firm j with respectiveshareprice

processesS~and S~,with S~~,(0)> S~~(0).Then, given dynamically completemarkets

andthe conditionalexpectationgain operatorIT, if (c, 0) is budgetfeasiblegiven z (fixing

all other constrainingdata),if e~> 0, andif >~-~ is locally non—satiated,thenthereexists a
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budget feasible plan (c’, 0’) given y (holding otherda.ta.fixed) suchthat c’ >.-~c. Thusagent

i strictly prefers the production plan y with the larger marketvalue. This hardly warrants

further formalization or attention.

For the Modigliani—Miller result in acontinuous—timesetting,we could treatthe finan-

cial policy of the firm merely by allowing the firm to tradesecuritiesin its own right. We

precludea firm trading its own shares,and the simultaneoustradingof securitiesby other

firms, in order to ensurethat securitypriceprocessesarewell defined. (For the generalcase,

see Duffie andShafer[11].) Given avectorgain processC, aiiy tra.dingstrategy0 E O~G]

for firm j, with 0(0) = 0, addsthe dividend processf OdG to the original dividend process

D~of firm j. Under the conditional expectationgain operator IT, the new shareprice of

the firm at time zero is B~Di(1) + j~OdG], but since C is a martingale,this is merely the

original share price B~Di(1)]. Barring arbitrage, the gain operator is always conditional

expecta.tion under a probability measure with respect to which the gain process C is a

martingale [12,15]. Thus the financial policy of the firm hasno effect on its initial share

price. This hasnothing to do with dynamically complete markets,requiring only that the

gain operator be taken as given by firms. Furthermore, by the reasoning of the previous

paragraph,if marketsaredynamicallycomplete,shareholdersareindifferent to thefinancial

policy of the firm.

More traditionally, we can study the Modigliani—Miller InvariancePrinciple by mod-

eling the issuanceof a defaulta.bledebt securityD~by a firm j whose productionplan

generatesthe dividend processD~.Under agiven gain operatorII, let S~= H(D2) — D~

denote the price process for .~i. By “defaultable”, we mean that debtholdersrecognize

that, if and when the marketvalue of ~i exceedsthe marketvalue of D~,debtholders

forego the claim to J~iand receiveinsteadthe total dividendsD~generatedby saleof the

firm’s output. In otherwords, the firm is placedin receivership. More formally, consider

the stopping time

T = inf {t E [0, 1]: ~i(t) + i~~~’(2)� S.~(t)+ L~Di(t)}.

[For generality,we allow the dividendsto havejumps.] Thenthe effectivedebtsecurityof
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firm j is the securityD~definedby

= ~~(-t), t < T,

= ~i(T_) + Di(t) — W(T_), t � T.

The equityof firm j is the security Ci = D~— D3 paying the residualdividends. SinceH

is linear,the total value of the firm, that is, the valueof the claim to C~+ D-’ is the same

asthe valueof Di. In traditional language,the total value of afirm is independentof the

firm’s debt—equitymix. In dynamically completemarkets,shareholdersare indifferent to

the issuanceof debt, as reasonedabove. Of course,the spanof incompletemarketscan

generallybe changedby the issuanceof debt, andshareholdersmay not be indifferent to

debtpolicy in incompletemarkets.

5. Production Technologies

We now illustrate productiontechnologiessatisfyingour productionconditions. We first

examinea classof stochastic growth models of capital accumulation, including the model

usedby Cox, Ingersoll, andRoss[7,8]. A secondclassof technologiesto be studiedincludes

linear and non—linearstochasticinput—outputmodels.

StochasticGrowth Models of Capital Accumulation

First we outline asimplemodel of capitalaccumulationin astochasticeconomy.Later

we guaranteethe existenceof equilibria embeddingsuch a technology. For simplicity, the

consumptionspacehereis L~thereis asingle commodity.An initial capital stockis given

by a scalar~t � 0. The growth rate of capital is given exogenouslyby a real—valuedIto

processX of the form

rt
X~= J m(.s)ds+ J v(s)dB3, t E [0,1],

0 0

wherem is a real—valuedpredictableprocessand v is an i~~~~valuedpredictableprocess.

A capitalstockprocessis apositive ItO processK solving astochasticintegral equationof

the form

= i~+ J K3dX3— J c3d.s, t E [0,11, (5.1)
0 0
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wherec = {cj : I E [0, 1]) is apositive real—valuedpredictableprocessfor consumptionout

of capitalstock,or depletion. Suppose,for example,thatX is the solutionto the stochastic

differentialequation

dX, = ~u(Xt,t)dt+ o~(X,,t)dBt, I E [0,1], (5.2)

for adrift function ji : ~ x [0, 1] —* i1~and adiffusion coefficient cr : i1~x [0, 1] —÷ IJ~~’~that

aremeasurableandsatisfy aLipschitz andagrowth condition. Then(5.1) is of the familiar

stochasticdifferential form:

dK, = [K,1u(X,,t) — c,]dt + Kta(X,,t)dB,, (5.3)

which may be recognized as the Cox—Ingersoll—Rossgrowth model. Under weak regularity

conditions on X andc, a.n application of Ito’s Lemmaguarantees the existence of a unique

solution K to (5.1) a.s

K, = ~ — eX~f e~c8ds, I E [0,11, (5.4)

where X is the ItO process given by

= X, — ~f v(s)Tv(s)ds, t E [0,1].

A feasibledepletion ra.te is any positivepredictableprocessc with the property that the

right—hand—sideof (5.4) is well defined andpositive. If c is positiveand K is well—defined

by (5.4),however,thenK is positive if andonly if

1~
/ e’c,dt < i~t a.s. (5.5)

Jo

Regularityconditionson the rateof returnprocessX and the depletionratec arerequired

to suit our needs;the following conditionsareunnecessarilyrestrictive.

PItOPSITION 5.1. Supposetheprocesse’ is square—integrableandadepletionprocess

c mustsatisfy II c 112 ~ ~ for somescalar /3. Then (5.4) is the uniquesolution to (5.1) for

the capital stockprocessK, and the resulting setoffeasibledepletions

1 —

yd = {c E (L~)~:11 c 112< /3; j e’ctdt < ~ a.s.}
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satisfiestheProduction Conditions.

PROOF: As claimed,(5.4) solves(5.1) by an applicationof Ito’s Lemma.Wemust showthat

yd is II 112—closed,convex, includeszero,demonstratesstrongly II Ili—bounded marginal

production efficiency, andthat yd n ((L~)~— {e}) is II I12—boundedfor any e E (L~)~.

Except for the closednessof yd, the proofis by simple inspection.For closedness,we note

that the operatorf : —* L1(f2,F, F) given by f(c) = f
0

T e’c,dt is well—defined and

continuousby the Cauchy—Schwarzinequality. Thus,if {c~}is asequencein yd converging

in L, thenf(lim c~)= lim f(c~)< Ic a.s. Of course,II lim{c~} 112 </3 and lim{c~} E (L~)~,

since II 112 is II 112—continuousand (L~)~is II 112—closed. Thus yd is II 112—closed. U

If there is a maximum depletionrate,thenof coursethe setof feasibledepletionsis bounded

in norm. It will be notedthat the capital stock depletiontechnologyis not assumedto be

reversible. Thatis, we requireanyfeasibledepletionpracessto be positive;onecannotplace

endowmentsinto the capitalstock. We makethis assumptionmainly in order to guarantee

strongly boundedmarginalproductionefficiency, for if yd C (Lfl+ then the Appendix B

conditions (b.l)—(b.4) aretrivially satisfiedby b = 0 and~ = y. Of course,if thereareno

endowments,or e = 0, then the positivedepletionassumptionis without loss of generality,

but theassumedexistenceof an extremelydesirablechoicelessthane is then impossible.15

As acorollary tothe lastpropositionandTheorem3.3, wehavethe following conditions

for equilibrium in astochasticgrowth economy.

PROPOSITIoN 5.2. If S = ((~j, e~,ci); (DJ+i,. . . , DK); yd); j E I,j E J) is a stochastic

production exchangeeconomysuch that (D~i,.. . , D’~)is a fundamentalvectorofsecuri-

ties and (>—~,e~),i E I, satisfiesthe AgentConditions, thenS hasstochasticequilibria.

It is trivial to generalizeto manyspot goodsandcorrespondingcapital accumulation—

depletiontechnologiesof asimilar nature. Sinceeachcorrespondingproductionset retains

the properties: closed,convex,bounded,positive, andincluding zero, the total production

set inherits these properties and the Production Conditions apply.

In the above formulation, the current rate of growth of the capital stock depends

entirely on current consumptionandproductivity. For a model with productivity lags,

~ If onewishes to bar endowments,the choice spaceL~could be replacedby 1R1
x

where~ indicatesthe spaceof initial capital stocks.Individualsratherthanfirms could be
allocatedtheinitial capitalstock ic aspartof their endowment.Theabsenceof endowments
in L~is thennot aproblem.
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goodsin process,and so on, we can generalizeto the caseof a capital stock processK

solving astochasticVolterraequationof the form

Pt
K, = J f(t,s,K(.))dX3 — J c3ds, I E [0,1],

0 0

whereK(.) : —+ C(~0,1]) denotesthe samplepathfunction for K andf : [0, 1] x [0, 1] x~ x

C(~0,1]) —~ ~ is sufficiently well behaved.For sufficentconditionsandmanygeneralizations,

seeProtter[22] andRaoandTsokos[24].

Extendingto an infinite horizonmodelis also quite simple. This requiresno changein

the current conditions for a staticequilibrium. That is, Theorem3.1 appliesas statedto

the spaceof ~—valuedpredictableprocesseson ~i x [0, oo) under thenaturalnorm defined

by

lIe I~= [Er e_~tc~ctdt],

where a is a strictly positive scala.r “discount.” This allows us to include, for example,

a non—zeroconstantconsumptionprocess. In order to extenda static equilibrium to a

stochasticequilibrium, we would replacecondition (2.7) by:

0(t)T~S(t)+~D(t)]� £ [J e~ti~ctdtIFt] I ~ [0,00).

The proofof astochasticequilibrium thengoes throughwith only notationalchanges.

Stochastic Input—Output Technologies

Continuingto outline examplesof productiontechnologiesthat fit within our frame-

work for demonstratingequilibria, we turn to a neoclassicalmodel of afunction mapping

productioninputs to productionoutputs. For simplicity, we take two spot goodsto be

called “labor” and “corn” and treat labor as aproductioninput and corn as aproduction

output. This caneasilybe generalized,althoughonemayrun into difficulties in guarantee-

ing boundedmarginalefficiency of productionif the samegood can be usedas both input

andoutput.

A naturalexampleof our “labor to corn” technologyis given by a stochasticVolterra

kernel:

K:’Tx1~—*R,
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whereI denotesthe setof orderedpairs (t, s) E [0, 1] x [0, 1] with I � .s. We maythink of

K(t, s,w) as the coefficientof productivity of inputsat time s for outputsat time I in state

w E ft For simplicity, we assumethatK is bounded,jointly measurable,and that K(., .s,.)

is predictablefor each s. We canthendefine theoutput functionf : —* L~by f(y) = z

where

z(w,t) = JK(t,s,w)v(w,s)ds, (w,t) E ~ x [0,1].

If K is apositive kernel thenf is a positive16linear operator,andwe canapply Corollary

5.1 (below) to guaranteethat the resultingproductiontechnologysatisfies the Production

Conditions.

For asomewhatmoregeneralmodel, wecould considerthecaseof aproductioninput—

output function,mappingan input processy E (L~)+to an output processz definedby

pt p
t

z(I) = J g(t, s, y(s))ds+ J h(t, s,y(s))dB(s),
0 0

where g : I x fi x ~ -~ ~ andh : I x ~l x ~ aremeasurable,satisfy aLipschitz

and a growth condition in y, and are predictablein I ands respectively. In this case,f

mapsinto L~.Of course,if g and im are linear in y(s), then the input—outputoperatoris

linear. Furthergeneraliztionsare possible.

For the generalcaseof acontinuouslinear operatorH : —~ L~mappingproduction

inputsto productionoutputs,we can simplify the productionchoiceof the firm to amyopic

decision problem as follows. Wehave not provided proofsof the claims in this paragraph,

so they must be treatedas conjecturesfor the purposesof this draft of the paper. [There

is nothing controversial here, in any case.] Let (~l~)denotethe innerproducton L~defined

by
P

1

(xI~)= E J x(t)T~(t)dt
0

under which L~is a Hilbert space. By Proposition2.1 andthe nature of the equilibria

demonstrated by Theorem 3.2, the firm facesthe maximizationproblem:

Max,.,Ev(Hv— vI~’), (5.6)

16 A functiong : —* L~is positiveif g(x) E (L~)~for all x E (L~)~.If g is linear,
then g is boundedor equivalentlycontinuousif sup{l~g(x) II; x E L~II x II < 1} is finite,
where II II denotesthe relevantnorm.
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whereV C L~denotes the feasible input set,generalizingfrom V = (L~)+.Let H* denote

the adjoint [25] of H, definedby (Hx~’çb) = (xIH*~~~)for all x and i~bin L~.It follows that

problem (5.6) is equivalentto

MaXVEV (vl~5*— ~&), (5.7)

where ~L~’~’= H*~,is the adjoint price process.That is, ~,*(t) is the vector of shadowspot

pricesat time t, indicating the effect on the shareprice of the firm at time I of production

inputsat that time, exclusiveof actualspot marketcostsof inputschargedat the rate-4&(t).

If tile feasibleinput set is of the form

V = {v E : v(w,t) ~ Q(w,t) ii —

whereQ : Qx~0,1] 2~is a(Hausdorff)predictablecorrespondence,theny = Hv—ve
is share—value—maximizingif andonly if

v(w,t) E argMax~~~xT~~*(w,t)— i~b(w,t)] v — a.e. (5.8)

In other words,the firm may solvefor the optimalstochasticinvestmentprocessmerely by

solving a simple static finite—dimensionalprofit maximization problem at eachstate and

datebasedon local priceinformation. Of course,this is only useful given a solution to the

adjoint price process. If H is givenby astochastickernelK : I x ~l ~ asabove,then

the adjoint spot price process~ is given by

= E [f K(s, t)T~(s)dslFt], I ~ [0, 1]. (5.9).

We turn to conditionson a general(possibly nonlinear) productionoutput function

f: (Lfl~—~ (L1)+ guaranteeingthat the productionset

yf = {(-c,b) ~ (L~ x (L~)~: b ~ f(c)} C

satisfies the ProductionConditions,where(Li). —(L~)+is the negativecone of (Lfl.

Here,c is aproductioninput (say “labor”); b is aproductionoutputof adifferentcommodity

(say“corn”). We notethatyf admitsfree disposalof theoutput; this ensuresthe convexity

of Yf in the following result.
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PROPOSITION 5.3. Supposef is positive,monotonic,concave,II ji—Frechet differentiable

at zero,and continuous. Then Yf satisfiesthe ProductionConditions.

A proof maybe found in Appendix B.

COROLLARY 5.1. Supposef is a positive II IIi—continuous linear operator. Then yf

satisfiestheProduction Conditions.

PROOF: By assumption,f is positive. By positivity and linearity, f is monotonic. By

linearity, f is concave.Any continuouslinear operatoris Frechetdifferentiable. I

Appendix A. Ito Processes

We define an ItO processto be astochasticprocessX of theform:

X(t) = X(0) + V(t) + j a(s)dB(s), t E [0,1], (a.1)

wherea = (o~,. - , o~V)is an R~~—valuedpredictableprocesssatisfyingf~a(s)a(s)Tds< 00

almost surely, andV is a real—valuedadaptedprocesshaving continuousboundedvariation

samplepaths. The restrictionon a guaranteesthe existenceof J adB as an Ito integral;

seeLiptser andShiryayev[18]. In short,an ItO processis the sum of an Ito integralandan

adaptedprocesshavingcontinuousboundedvariation samplepaths.

Proof of Lemma 3.1

Let M be anysquare—integrablemartingale.SinceB is amartingalegenerator,M has

a representation

M(I) = M(0) + f ?)(S)TdB(S), t E [0, 1],

for some processij = (i~
1

,.. . , i
1

N)~satisfyingB [f~’ii(t)Tii(t)dt} < oo Sinced is of rank

N v-a.e.,there exists an N x H matrix valued processIc suchthat ic(t)~(t)is an N x N

identity matrix.17 Let p = {~(I)=
1

c(t)T
11

(t) : t ~ [0, 1]}. We have
It Ii

M(0) + J ~(s)Tdm(s) = M(0) + J i~(s)Tic(s)~(s)dB(s)

= M(0) + J ~(s)TdB(s) = M(t) Vt ~ [0,1] a.s.

17 When H = N, we simply take ic(t) to be the inverse of &. Since the inverse is a
measurablefunction, Ic is predictable. If H > N, astandardmeasurableselectionargument
providesfor apredictablepseudo—inverseprocess.
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In addition,

p1
.1 1,1

£ J c~(i)T~(t)~(t)T~(t)dtj= B ij(t)Ti~(t)dI <00.
0 0

Hence the assertionfollows.

Appendix B — Strongly Bounded Marginal Production Efficiency

Zame [31] has recently described regularity conditions on productionsetsthat can be

exploited to demonstratethe existenceof Arrow—Debreuequilibria in infinte—dimensional

choice spaces. Here we specializethose conditions to our setting and provide proofs Of

examplespresentedin the body of tile paper.

First we define Zame’scondition. Any productionprocessy E canbe split into its

positivepart y+ = max(y,0)E (L~)+and its negativepart y = niax(—y,0)~ (L~)+so

that y = y+ —y~.A productionallocation is acollection (yi,. . . , yj) of productionprocesses

with Y~E Y~,j ~ ~J. A production allocation (yi,. . . , yj) is positivelydominatedif there

exists anotherproductiona]ioca.tioii (h,.. . , j’j) suchthatL~_~~j — Y~is positiveandnot

zero. The productionsets Y1, . . . , Yj demonstratestrongly boundedmarginal production

efficiencyif thereexistsa. sca.larmarginad efficiencybound‘y > 0 with thefollowing property:

For any production allocation (yi,. . . ,yj) not positively dominated totalling y =

Yi, and any a e (Lfl+ with a < y~,there exists somescalar p > 0, someb E (Lfl+

with b < y+, and some production allocation (vi,. . . ,~j) such that

(y~ b) - (y -pa) = ~Y~i (b.i)

II b Ii ~ ‘y II pa lI~ (b.2)

<y~, j E .7 (b.3)

~ j E.7. (b.4)

The condition appears complicated,but hasa reasonablysimple interpretation. The

processpa representsa reductionin the total production“input” y~.The processb repre-

sentsthe loss in productionthat is sustainedin the switch to anew productionallocation
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(ii,. . . , ~ as indicated by relation (b.1). The constant~yindicatesthat thereis asuffi-

ciently smallp regulatingthe lost input suchthat the lostoutput is controlledin magnitude

by -y II pa Ii . The condition is obviously muchsimpler when thereis a single firm. Zame

providesadditional characterization.Zame doesnot havethe “not positively dominated”

weakeningof strongmarginalproduction efficiency,but doesnot assumestrictly monotone

preferences.

Proof of Theorem 3.1

The choicespaceL~is given the II Ii (productL’(v)) toplogy,andassuchis anormed

vectorlattice. ThusTheorem2 of Zame[31] applieswith minor modificationasfollows. For

Zame’stoplogyI we take the weak II 112 toplogy. Although Zame’sStandardAssumption

(1) calls for (L~ to be II Ili—closed (which it is not), it is the ca.sethat (L~)~is I—

compact,a.nd this is sufficient for Zame’sproof. Zame’sother StandardAssumptions(1)—

(6) aresatisfiedsince: (L~)+is convexandincludese~Vi ~ I (1), ~.j is II 1k—continuous

by assumption(and II 112—continuousby the Ca.uchy—Schwarzinequality) Vi E I (2), ~ is

convex(3), ~j hasa II 1k—extremelydesirablechoiceVi � I by assumption(4), 0 ~ ~ 1

and >~ = 1 Vj E .7 (5), andYj is 112—closed,convex,a.nd includeszero Vi E .7

(6). [Again, Zamecalls for Y~to be II Ili—closed, but it is enoughfor Y1 to be II 112—closed

and convex.]

The conditions(1) through (8) of Zame’sTheorem2 aresatisfiedsince: (L~)+fl Y is

aboundedand closedsubsetof a reflexive Banachspace,and thereforeI—compact(Schae-

fer [29]) (1)—(2); II 112—closed convexsetsareI—closed (Schaefer[29]) and thus >—~ hasa

relatively Ix II 112—opengraph (3); order intervalsin an spaceareweak compact(4);

~ is II 112—closedandconvexandthusI—closed(5); the consumptionset of eachagentis

(L~)~(6); eachagenti ~ I hasa II ~i—extreme1ydesirablechoicev~E [0,>~i~e~](7);and

the productionsetsY1,... ,Yj demonstratestrongly II hi—boundedmarginalefficiency by

assumption(8). Although our versionof strongly boundedmarginal efficiency is slightly

weakerthanZame’s,the assumptionof strictly increasingpreferencesallows oneto apply

Zame’sproofwith only slight modification. [The topology I is Hausdorffandweakerthan

the II ~i—topologyby Cauchy—Schwarz,meetingZame’sstipulationsfor theseconditions.]

Thus, by Zame’s theorem,there exists a quasi—equilibrium(ci,. . . , c1,Yi, . . ., yj, q~)with
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e~)> 0. Thus,~(e~)> 0 for some i. By astandardargurnent~strict monotonicity im-

plies that q~is strictly positive, that4(e~)> 0 for all i, and thusthat the quasi—equilibrium

is in fact anequilibrium. Sinceq~is in the toplogical dualofL~,which is L~’°,the Rieszrep-

resentationtheoremimplies that q5 hasthe indicatedrepresentation(3.5) with ~5bounded.

Since ~ is strictly positive, ~5is strictly positive. This endsthe proof.

Proof of Proposition 5.3

Let C = L~with the usual L2 norm II IIc. Suppose{(—c~,b~)}is a sequencein yf

convergingto (—c, b) E C x C. We must show that b E C~and b ~ f(c) to prove thatyf ~s

II 112—closed,but this follows by the fact that C~is 112—closed,the II li—continuity of f,

and Cauchy—Schwarz.In order to prove convexity,suppose(ci, b1) e yf and (c2,b2) E y~.

Then b1 ~ f(ci) and b2 ~ f(c2) implies b a’b1 + (1 — a)b2 ~ af(ci) + (1 — a)f(c2) ~

f(aci + (1 — a)c2) by concavity of f, so yf is convex. Of course 0 ~ yf~Let e1 denote

the projectionof the aggregateendowmente E L~= C x C into the first (“labor”) factor

space,ande2 the projectionof e into the secondfactor (“corn”) space. Sincef is increasing,

aggregatefeasibleconsumptionis 112—boundedby II (e1,e2 + f(e1)) 112 . Thus the feasible

productionset is II 112—bounded.It remainsto showthat yf demonstratesstrongly .

boundedmarginalefficiencyof production.

Let -y denotethe norm of the II Ik—Frechet derivative of f at zero,and chooseany

not positively dominatedy = (yi, Y2) ~ Y ~ C C. x C~.Let a = (ai, a2) E C~x C~with

a ~ = (yi, 0) as suggested by the definition of strongly bounded marginal efficiency of

production. Then a2 = 0. Let d = f(—yi,—ai) and ~= (~1,~2)= (yi +ai,d). Finally, let

b = (b1,b2) = (O,y2 — d). For p = 1, we have

(y~— b) — (y —pa)= ((0,y2) — (O,y2 — d))— ((—yi,O)—(ai,0)) = (Yi + ai,d) =

verifying (b.1). Next,

II b Ii = II Y2 — d 1k = Il Y2 — f(—yi — ai) II’

II f(—yi) — f(—yi — ai) Iii
hI f(ai) - f(0) II’ � II a~Ii = pa 1k
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by concavity andmonotonicityof f andthe definition of y. This verifies (b.2). Sincey is

not positively dominated, f(—yi) = Y2. Then, sincea1 � 0,

= (0,f(—yi — ai)) � y~= (0,f(—yi)),

and (b.3) is satisfied. Because~l = (—yr — ai,0) ~ = (—yi,O), condition (b.4) is

satisfied. Thus strongly boundedmarginalefficiency of productionis verified, completing

the proof.
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