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IMPLEMENTING ARROW-DEBREU EQUILIBRIA BY 
CONTINUOUS TRADING OF FEW LONG-LIVED SECURITIES 

BY DARRELL DUFFIE AND CHI-FU HUANG1 

A two-period (O and T) Arrow-Debreu economy is set up with a general model of 
uncertainty. We suppose that an equilibrium exists for this economy. The Arrow-Debreu 
economy is placed in a Radner (dynamic) setting; agents may trade claims at any time 
during [0, T]. Under appropriate conditions it is possible to implement the original 
Arrow-Debreu equilibrium, which may have an infinite-dimensional commodity space, in 
a Radner equilibrium with only a finite number of securities. This is done by opening the 
"right" set of security markets, a set which effectively completes markets for the Radner 
economy. 

1. INTRODUCTION 

FIGURE 1 DEPICTS A SIMPLE event tree information structure. Let's momentarily 
consider an exchange economy with endowments of and preferences for random 
time T consumption, depending on the state w E n chosen by nature from the 
final five nodes of this event tree. A competitive equilibrium will exist under 
standard assumptions (Debreu [5, Chapter 7]), including markets for securities 
whose time T consumption payoff vectors span R5. This entails at least five 
security markets, while intuition suggests that, with the ability to learn information 
and trade during [0, T], only three securities which are always available for 
trading, or long-lived securities [13], might be enough to effectively complete 
markets. This is the maximum number of branches leaving any node in the tree. 
The reasoning is given by Kreps [13] and in alternative more general form later 
in this paper. An early precurser to this work is Arrow [1], which showed the 
spanning effectiveness of financial securities when trade can occur twice in a 
two-period model. 

One major purpose of this paper is to verify this intuition for a very general 
class of information structures, including those which cannot be represented by 
event trees, such as the filtration generated by continuous-time "state-variable" 
stochastic processes. In some cases, where an Arrow-Debreu style equilibrium 
would call for an infinite number of securities, we show how a continuous trading 
Radner [20] equilibrium of plans, prices and price expectations can implement the 
same Arrow-Debreu consumption allocations with only a finite number of long- 
lived securities. It is misleading, of course, to use the number of security markets 
alone as a measure of the efficiency of the market structure; the number of 
transactions which must be performed to achieve a given allocation must also 
be considered. Largely for w ant of a reasonable model to study this tradeoff, we 
have not addressed the issue of the efficiency of market structure. 

A comparison of Event Trees A of Figure 1 and B of Figure 2, which are 
intended to correspond to the same two-period Arrow-Debreu economy, obviates 
the role of the information structure in determining the number of long-lived 

'We would like to thank David Kreps, John Cox, Michael Harrison, and David Luenberger for 
helpful comments. We are also grateful to Larry Jones, Donald Brown, and David Kreps for pointing 
out an error in the earlier version of this paper. That and any remaining errors are our own. 
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FIGURE 1. 

securities required to dynamically "span" the consumption space, or the spanning 
number. We later give this term a more precise meaning. Since all uncertainty is 
resolved at once in Event Tree B, the spanning number is five, instead of three 
for Event Tree A. Intuitively speaking, the maximum number of "dimensions of 
uncertainty" which could be resolved at any one time is the key determining 
property. This vague notion actually takes a precise form as the martingale 
multiplicity of the information structure, defined in the Appendix. A key result 
of this paper is that the spanning number is the martingale multiplicity plus one. 
The "plus one" is no mystery; in addition to spanning uncertainty, agents must 
have the ability to transfer purchasing power across time. 

The notion that certain securities are redundant because their payoffs can be 
replicated by trading other securities over time, yielding arbitrage pricing relation- 
ships among securities, was dramatized in the Black-Scholes [2] option pricing 
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formula.2 Provided the equilibrium price process for one security happens to be 
a geometric Brownian Motion, and for another is a (deterministic) exponential 
of time, then any contingent claim whose payoff depends (measurably) on the 
path taken by the underlying Brownian Motion, such as a call option on the 
risky security, is redundant and priced by arbitrage. This discovery curiously 
preceded its simpler logical antecedents, such as the corresponding results for 
event tree information structures. Only in the past few years have the implications 
of the spanning properties of price processes (e.g., [13]), the connection between 
martingale theory and equilibrium price processes (e.g., [8]), and the mathemati- 
cal machinery for continuous security trading [9] been formalized. 

In all of the above mentioned literature the takeoff point is a given set of 
security price processes, implicitly imbedded in a Radner equilibrium. Our second 
major goal is to begin more primitively with a given Arrow-Debreu equilibrium, 
one in which trading over time is not of concern since markets are complete at 
time zero. From that point we construct the consumption payoffs and price 
processes for a set of long-lived securities in such a way that agents may be 
allocated trading strategies allowing them to consume their original Arrow- 
Debreu allocations within a Radner style equilibrium. In short, we implement a 
given Arrow-Debreu equilibrium by continuous trading of a set of long-lived 
securities which is typically much smaller in number than the dimension of the 
consumption space. Merton [19; p. 666] recently predicted that results such as 
ours would appear. 

The paper unfolds in the following order. First we describe the economy 
(Section 2) and an Arrow- Debreu equilibrium for it (Section 3). Section 4 provides 
a constructive proof of a Radner equilibrium which implements a given Arrow- 
Debreu equilibrium under stated conditions, based on a martingale representation 
technique. Section 5 characterizes the spanning number in terms of martingale 
multiplicity. Section 6 discusses the continuous trading machinery, some gen- 
eralizations, and two examples of the model. Section 7 adds concluding remarks. 

2. THE ECONOMY 

Uncertainty in our economy is modeled as a complete probability space 
(Q7, i, P). The set Q2 constitutes all possible states of the world which could exist 
at a terminal date T> 0. The tribe 9 is the a-algebra of measurable subsets of 
Q, or events, of which agents can make probability assessments based on the 
probability measure P. Events are revealed over time according to a filtration, 
F = {I i, t e [0, T]}, a right-continuous increasing family of sub-tribes of i, where 
'FT= i and go is almost trivial (the tribe generated by Q2 and all of the P-null 
sets). We can interpret this by thinking of i, as the set of all events which could 
occur at or before time t. The assumption that F is increasing, or i, c is for 
s > t, means simply that agents do not forget that an event has occurred once it 

2 Merton [18] is also seminal in this regard. Similar results were obtained by Cox and Ross [3] 
for other models of uncertainty. 
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is revealed. The above descriptions of 90 and J9T means that no information is 
known at time 0, and all uncertainty is resolved at time T. 

Each agent in the economy is characterized by the following properties: (i) a 
known endowment of a perishable consumption good at time zero, (ii) a random, 
that is, state-dependent, endowment of the consumption good at time T, and (iii) 
preferences over consumption pairs (r, x), where r is time zero consumption and 
x is a random variable describing time T consumption, x(w) in state cv e Q2. 

We will only consider consumption claims with finite variance. The consump- 
tion space is thus formalized as V = R x L2(P), where L2(P) is the space of 
(equivalence classes) of square-integrable random-variables on (Q2, i, P), with 
the usual product topology on V given by the Euclidean and L2 norms. 

The agents, finite in number, are indexed by i = 1, . . ., I. The preferences of 
agent i are modeled as a complete transitive binary relation, or preference order, 

on Vi c V, the ith agent's consumption set. 
The whole economy can then be summarized in the usual way by the collection 

e = (Vi, Vi, > i;i=1 ) 

where vi = (x,, xi) E Vi is the ith agent's endowment. It is not important for this 
paper whether or not one assumes positive consumption or endowments. 

3. ARROW-DEBREU EQUILIBRIUM 

An Arrow-Debreu equilibrium for F is a nonzero linear (price) functional 
4': V-> R and a set of allocations (v* e Vi; i = 1, ... , I) satisfying, for all i, 

t(v*)> t(Vi) 

(3.1) v >iv X 4(v)> I(v*) Vve Vi, 
l l 

L Vi = L vi. 
i=l i=i 

We will assume that at least one agent i has strictly monotonic preferences. 
Specifically, if v e Vi and v' : v (in the obvious product order on V), then v' e Vi 
and v' > i v provided v $ v'. This ensures that in equilibrium If is a strictly positive 
linear functional. Since V is a Hilbert lattice [21], this then implies that If is a 
continuous linear functional on V, which can therefore be represented by some 
element (a, 6) of V itself in the form: 

4'(r, x) = ar+ { x(&o)6(&o) dP(&o) V(r, x) e V. 

Without loss of generality we can normalize IF by a constant so that the positive 
random variable 6 has unit expectation, in order to construct the probability 
measure Q on (12, i) by the relation 

Q(B) = T 1B(J)6(Wj) dP(&o) VB e i. 
B 
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Equivalently, 6 is the Radon-Nikodym derivative dQ/dP. This leaves the simple 
representation 

(3.2) 4F(r,x)=ar+E*(x) V(r,x)e V, 

where E* denotes expectation under Q. Thus the equilibrium price of any random 
consumption claim x e L2(P) is simply its expected consumption payoff under 
Q. For this reason we call Q an equilibrium price measure. 

For tractability we will want any random variable which has finite variance 
under P to have finite variance under_Q, and vice versa. A necessary and sufficient 
condition is that P and Q are uniformly absolutely continuous, denoted Q- P 
(Halmos [7, p. 100]), or equivalently, that the Radon-Nikodym derivative dQ/dP 
is bounded above and below away from zero. Sufficient conditions for this can 
be given when preferences can be represented by von-Neumann-Morgenstern 
utility functions, in terms of bounds on marginal utility for time T consumption. 
We do not pursue this here since we are taking 6 as a primitive, rather than 
deriving it from preferences.3 

A second regularity condition which comes into play is the separability4 of J 

under P. This assumption should not be viewed as too restrictive. One can, for 
example, construct Brownian Motion on a separable probability space. Given 
Q P it is then easy to show the separability of 9 under Q by making use of 
the upper essential bound on dQ/dP. 

Since uniform absolute continuity of two measures implies their equivalence 
(that is, they give probability zero to the same events), we can use the symbol 
a.s. for "almost surely" indiscriminately in this paper. 

4. RADNER EQUILIBRIUM 

A long-lived security is a consumption claim (to some element of L2(P)) 
available for trade throughout [0, T]. A price process for a long-lived security is 
a semimartingale' on our given probability space adapted to the given information 
structure F. In general the number of units of a long-lived security which are 
held by an agent over time defines some stochastic process 0. We will say 0 is 
an admissible trading process for a long-lived security with price process S if it 
meets the following regularity conditions: 

(i) predictability, defined in the Appendix and denoted 0 e 83?; 
(ii) square-integrability, or 0 e 4[S] L { E s?? E(fT 42 d[S],) < oo}, where [S] 

denotes the quadratic variation process for S (Jacod [11]); and 

3 Work subsequent to this paper shows extremely general continuity assumptions which yield these 
bounds [6]. 

4 A tribe 9 is said to be separable under P if there exists a countable number of elements B1, B2, . . . 
in 9 such that, for any B e F and E > 0 there exists B,, in the sequence with P{BAB,I < E, where A 
denotes symmetric difference. 

5 See Jacod [11], for example, for the definition of a semimartingale. This is not at all a severe 
restriction on price processes if one is to obtain a meaningful model of gains and losses from security 
trades. 
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(iii) the gains process J 0 dS is well defined as a stochastic integral. We will 
be dealing with price processes in this paper for which square-integrability (ii) 
is sufficient for this condition. Memin [16] gives a full set of sufficient conditions 
in the general case. 

The stochastic integral J' 0(s) dS(s) is a model of the gains or losses realized 
up to and including time t by trading a security with price process S using the 
trading process 0. Interpreted as a Stieltjes integral this model is obvious, but 
the integral is generally well defined only as a stochastic integral. This model, 
formalized by Harrison and Pliska [9], is discussed further in Section 6, as are 
the other regularity conditions on 0. 

Taking S = (S1,..., SN), N - oo, as the set of all long-lived security price 
processes, any corresponding set of admissible trading processes 0 = (01,..., ON) 

must also meet the accounting identity: 

t 

(4.1) 0(t)TS(t)= 0(O)TS(O)+{ 0(s)T dS(s) Vte[O, T] a.s., 
0 

meaning that the current value of a portfolio must be its initial value plus any 
gains or losses incurred from trading. The symbol T denotes the obvious shorthand 
notation for summation from I to N. We'll adopt the notation @(S) for the space 
of trading strategies 0 = (01, . . ., ON) meeting the regularity conditions (i)-(ii)- 
(iii) for each long-lived security and satisfying the "self-financing"restriction (4.1). 

A Radner equilibrium for $ is comprised of: 
(1) a set of long-lived securities claiming d = (d1, . . ., dN), d" c L2(P), 1 - n S 

N - o, with corresponding price processes S = (S1, .. ., SN); 
(2) a set of trading strategies O' e @ (S), one for each agent i = 1, . . ., I; and 
(3) a price a E R+ for time zero consumption; 

all of these satisfying: 
(4) budget constrained optimality: for each agent i, 

( xi- 0'T (d) Xi +0i(T)Td) 

is >i-maximal in the budget set: 

{(ri)- ,xi + 0(T)T d)E Vi: 0 E @(S) 

and 
(5) market clearing: 

O'(t)=O bVt E [O, T]. 
i=l 

The space of square-integrable martingales under Q, denoted ftQ; its multi- 
plicity, denoted M(A2); and a corresponding orthogonal 2-basis of martingales, 
m = (min,..., IMN), where N = M(X2Q) S oo; are all defined in the Appendix. The 
central concept is that any of the martingales associated with the given information 
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structure can be represented as the sum of M(.dQ) stochastic integrals against 
the fixed 2-basis of martingales m, in the manner given by the following theorem. 
This result is a direct consequence of the definition of martingale multiplicity. 
The content of the result lies with specific examples in which martingale multi- 
plicity is characterized. Details, beyond those in the Appendix, may be found in 
the fourth chapter of Jacod [11]. Kunita and Watanabe [14] as well as Davis 
and Varaiya [4] also include the essentials. 

THEOREM 4.1: ForanyX E X thereexists 0 = (f1,..., ON), where o, E LQ[mn] 
for all n, such that 

, 

Xt =O(S)T dm(s) VtrE[O,T] a.s. 
0 

We should remark that when Q P, the spaces L 2[mn] and L2[ mn] are identical 
because of the bounds implied on dQ/ dP. We also use the fact that a martingale 
under Q is a semimartingale under P given the equivalence of P and Q. Thus 
any element of A21 is a valid price process. This can be checked in Jacod [11, 
Chapter 7], along with the existence of I On dmn as a stochastic integral under P 
whenever On E LP[Mn] 

Now we have the main result. 

THEOREM 4.2: Suppose (1', v*, i = 1, .. ., I) is an Arrow-Debreu equilibrium 
for W, where without loss of generality It has the representation (a, Q) given by 
relation (3.2). Provided Q P and 9 is separable under P, there is a Radner 
equilibrium for F achieving the Arrow-Debreu equilibrium allocations. 

PROOF: The proof takes four steps: 
(1) Specify a set of long-lived securities. 
(2) Announce a price for time zero consumption and price processes for the 

long-lived securities. 
(3) Allocate a trading strategy to each agent which generates that agent's 

Arrow-Debreu allocation and which, collectively, clears markets. 
(4) Prove that no agent has any incentive to deviate from the allocated trading 

strategy. 

STEP 1: Select the following elements of L2(P) as the claims of the available 
long-lived securities: 

do= 1, 

dn = M n( T), I-, n-, N = M(X2Q 

where 1Q is the random variable whose value is identically 1 (the indicator 
function on Q), and m = (mi,..., MN) is an orthogonal 2-basis for AQ . Since 
Q P, the final values of the martingales, mn ( T), are elements of L2(P). 
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STEP 2: For O n <N let Sn(t), the price of dn at time t, be announced as 
E*[dnl it]. In other words, each long-lived security's current price is the condi- 
tional expectation under Q of its consumption value. For convenience we actually 
take RCLL6 versions of these price processes. There is obviously some forethought 
here, for the result is SO 1 and Sn = mn, 1 - n - N, implying that the last N price 
processes are themselves an orthogonal 2-basis for t2, suggesting their ability 
to "span" (in the sense of Theorem 4.1) all consumption claims not actually 
available for trading. The first security serves as a "store-of-value", since its price 
is constant. We also announce the positive scalar a given in the statement of the 
theorem as the price of time zero consumption. 

STEP 3: For any agent i, for 1 a is I -1, let ei = x* - Xi. Then the process 

(4.2) Xi(t)= E*(eiI St)-E*(ei), te [O, T], 

is an element of t2 , given Q P, which can be reconstructed via Theorem 4.1 as 
N ft 

(4-3) Xi (t)= On (s) dSn (s), V t c[ , T] a.s., 
n=1 O 

for some O6c E L2 [Sn], 1 n - N. 

In order to meet the accounting restriction (4.1), we set the following trading 
process for the "store-of-value" security: 

N ft 

(4.4) 0'(t) =E*(ei)+ E o(s) dS,(s)-On (t)Sn(t), te_[O,T]. 
n=1 O 

Of course | 00 dSo =0 since SO 1. A technical argument showing O' E -O? is given 
as Appendix Lemma A.1, which then implies O e E4[SO]. 

Substituting (4.4) into (4.3), noting that mn (0) = 0 Vn, we then have 
t 

(4.5) Oi(t)TS(t) = Oi(O)TS(O)+ Oi(s)T dS(s) Vt E [0, T], a.s., 
0 

confirming (4.1). This yields the final requirement for claiming the trading strategy 
is admissible, or 0 = (Os ..., O'N) E @(S). Evaluating (4.5) at times T and 0, 
using the definitions of ei and Xi yields: 

Oi(T)Td +xi= 
A 

(T)TS(T)+xi=x* a.s. 

and 

Oi(O)TS(O) = E (x'~ - xi) = VI(0, x*~)- VI(0, xi) A r- r:' )a, 

the last line making use of the budget constraint on the Arrow-Debreu allocation 
for agent i. Thus by adopting the trading strategy O0, and faced with the time-zero 
consumption price of a, agent i can consume precisely (r*, x*) = v*. 

The above construction applies for agents 1 through I - 1. For the last agent, 
agent I, let 0' =-jii 0'. By the Kunita-Watanabe inequality [14], @(S) is a 

6 An RCLL process is one whose sample paths are right continuous with left limits almost surely. 
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linear space, so 6' e @(S). Market clearing is obviously met by construction. To 
complete this step it remains to show that 0' generates the consumption allocation 
(r*, x) = v*, but this is immediate from the linearity of stochastic integrals and 
market clearing in the Arrow-Debreu equilibrium. 

STEP 4: We proceed by contradiction. Suppose some agent j can obtain a 
strictly preferred allocation (r, x) >j (r*, x4) by adopting a different trading 
strategy 0 e @(S). Then the Arrow-Debreu price of (r, x) must be strictly higher 
than that of (r*, x*), or 

ar+ E*(x) > ar*+ E*(x*). 

Substituting the Radner budget constraint for r and x, 

arjp _ (O)TS(O) + E* + 0(0)TS(O) + f 0(t)T dS(t)] > ar*+E*(x*), 

or 

(4.6) a- + E*($) > ar* + E*(x*). 

The last line uses the fact that E*[JT 0(t)T dS(t)] = 0 since J 0T dS is a Q- 
martingale for any 0 e @(S), from the fact that f 4 dSn E A2( VE E L2[S ] [11, 
Chapter 4]. But (4.6) contradicts the Arrow-Debreu budget-constrained optimal- 
ity of (r*, x4). This establishes the theorem. Q.E.D. 

Of course, under the standard weak conditions ensuring that an Arrow-Debreu 
equilibrium allocation is Pareto optimal, the resulting Radner equilibrium alloca- 
tion of this theorem is also Pareto optimal as it implements the Arrow-Debreu 
allocation. 

5. THE SPANNING NUMBER OF RADNER EQUILIBRIA 

The key idea of the last proof is that an appropriately selected and priced set 
of long-lived securities "spans" the entire final period consumption space in the 
sense that any x e L2(P) can be represented in the form 

. 

(5.1) E *[xI t] = O(t)TS(t) = O(O)TS(O) + 0(S)T dS(s) Vt e [O, T] a.s., 

where S = (SO,..., SN) is the set of (N+ 1) security price processes constructed 
in the proof and 0 c 0(S) is an appropriate trading strategy. In particular, 
E*[xI SFT] = x a.s. As examples in the following section will show, this number 
of securities, N+ 1, or the multiplicity of A2 plus one, can be considerably 
smaller than the dimension of L2(P). But is this the "smallest number" which 
will serve this purpose, or the "spanning number" in some sense? To be more 
precise, we will prove the following result, still assuming Q P and the separabil- 
ity of 3 
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PROPOSITION 5.1: Suppose long-lived security prices for F are square-integrable 
martingales under Q, the equilibrium price measurefor W. Then the minimum number 
of long-lived securities which completes markets in the sense of (5.1) is M(J4, )+ 1. 

PROOF: That M(.2) +1 is a sufficient number is given by construction in the 
proof of Theorem 4.2. The remainder of the proof is devoted to showing that at 
least this number is required. 

If M(./2) = oo we are done. Otherwise, suppose S = (SI,... , SK), K < 00, is a 
set of square-integrable Q-martingale security price processes with the representa- 
tion property (5.1). By the definition of multiplicity it follows that K : -W Q) 
It remains to show that K = M(.4) implies a contradiction, which we now 
pursue. 

Let x = k+ 1TS(T) c L2(P), where k is any real constant and 1 is a K- 
dimensional vector of ones. If S has the representation property (5.1) there exists 
some 0 E @(S) satisfying (5.1) for this particular x. Furthermore, since S is a 
vector of Q-martingales, 

t 

(5.2) E*[xI |j = k + 1TS(t) = k+ 1TS(O) + 1T dS(s) Vt c [0, T] a.s. 
0 

Since 0(0)TS(0) = E*(x) = k+ 1TS(0), equating the right hand sides of (5.1) and 
(5.2) yields 

t rt 
0(S)T dS(s) = .1T dS(s) Vt E [0, T] a.s. 

0 o 

Appendix Lemma A.2 then implies 

Q{3 t c [0, T]: 0(t) = 1} > 0. 

Since Q P, the above event also has strictly positive P-probability, and equating 
the second members of (5.1) and (5.2) yields 

P{3 t C [0, T]: 1TS(t) = 1TS(t) + k} > 0, 

an obvious absurdity if k #0 . Q.E.D. 

The reader will likely have raised two points by now. First, having shown that 
the "spanning number" is M(4#2)+1 when long-lived securities are square- 
integrable martingales under Q, what do we know about the spanning number 
in general? From the work of Harrison and Kreps [8], we see that a "viable" 
Radner equilibrium must be of the form of security price processes which are 
martingales under some probability measure. Their framework, somewhat less 
general than ours, was extended in Huang [10] to a setting much like our own. 
Readers may wish to confirm that the same result can be proved in the same 
manner for the present setting. We have chosen to announce prices as martingales 
under Q, rather than some other probability measure, as this follows from the 
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natural selection of a numeraire claiming one unit of consumption in every state, 
the security claiming do in Theorem 4.2. Other numeraires could be chosen; if a 
random numeraire is selected then in equilibrium security prices will be martin- 
gales under some other probability measure, say P, and the spanning number will 
be M(jt2) + 1, if the appropriate regularity conditions are adhered to. Does this 
number differ from M(Al Q)+ 1; that is, can the martingale multiplicity for the 
same information structure change under substitution of probability measures? 
Within the class of equivalent probability measures, those giving zero probability 
to the same events, this seems unlikely. It is certainly not true for event trees. 
We put off a direct assault on this question to a subsequent paper. We will show 
later, however, that if the information is generated by a Standard Brownian 
Motion, then M( 4 ) = Q 

The second point which ought to have been raised is the number of securities 
required to implement an Arrow-Debreu equilibrium in a Radner style model, 
dropping the requirement for complete markets. For example, with only two agents, 
a single security which pays the difference between the endowment and the 
Arrow-Debreu allocation of one of the agents will obviously allow the two to 
trade to equilibrium at time zero. This is not a very robust regime of markets, of 
course. By fixing such agent-specific securities, any perturbation of agents' endow- 
ments or preferences which preserves Arrow-Debreu prices will generally pre- 
clude an efficient Radner equilibrium. Agents will generally be unable to reach 
their perturbed Arrow-Debreu allocations without a new set of long-lived 
securities. A set of long-lived securities which completes markets in the dynamic 
sense of relation (5.1) is constrastingly robust, although the selection still depends 
endogenously on Arrow-Debreu prices. It remains a formidable challenge to 
show how markets can be completed by selecting the claims of long-lived securities 
entirely on the basis of the exogenous information structure F. (As an aside, 
however, this is easily done for event trees. From this proof of the Proposition 
it is apparent that a selection of consumption payoffs for long-lived securities 
can be designed which (generically) completes markets for any Arrow-Debreu 
equilibrium prices.) There are no economic grounds, of course, precluding the 
selection of security markets from being an endogenous part of the equilibrium. 
One would in fact expect this to be the case, an interesting problem for future 
theoretical and empirical research. 

Nothing precludes the fact that some of the martingale price processes in our 
model may take negative values, even if a positive constant (which is innocuous) 
is added. For a "spanning" set of positive price processes, one could split each 
of the original spanning martingales into its positive and negative parts, for a set 
of 2M(AlQ)+ 1 price processes in all. The existence of the required stochastic 
integrals follows easily. 

6. DISCUSSION 

In this section we discuss some definitional issues, generalizations of the model, 
and some specific examples. 
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6.1. The Gains Process and Admissible Trading Strategies 

Why is L2 [S] an appropriate restriction on trading strategies for a security 
with price process S? Why is the stochastic integral I 0 dS, for 0 C L2 [S], then 
the appropriate definition of gains from such a strategy? These are questions 
raised earlier by Harrison and Pliska [9]. 

Following Harrison and Pliska [9], we will say that a predictable trading 
strategy is simple, denoted 0 C A, if there is a partition {O = to, tl, . . ., t,-1, t, = T} 
of [0, T] and bounded random variables {ho,..., h,_-}, where hi is measurable 
with respect to t,i, satisfying 

O(t) = hi, tEC (ti, ti+,]. 

A simple trading strategy 0, roughly speaking, is one which is piecewise constant 
and for which 0(t) can be determined by information available up to, but not 
including, time t. The latter restriction is the basic content of predictability. This 
is not an unreasonable abstraction of "real" trading strategies. The gains process 
J 0 dS, for 0 C A, is furthermore defined path by path as a Stieltjes integral. That 
is, the gains at time ti are 

tj i-l 

O0(s) dS(s) = i 0(tj)[S(tj+3) - S(tj)], 
o j=o 

simply the sum of profits and losses realized at discrete points in time. 
We will give the space AQ the norm 

M 1 t,02 = [E*([M]T)]l 2 Vm E 
g2 

and give L2 [S] the semi-norm 

|| II| L2p3=[ E (J02( t) d [S],)t 

PROPOSITION 6.1: For every trading strategy 0e L2[S] there exists a sequence 
(0) of simple trading strategies converging to 0 in L2 [S] (in the given semi-norm). 
For any such sequence, the corresponding gains processes J on dS converge to I 0 dS 
in 2 in the given norm. 

PROOF: This is the way Ito originally extended the definition of stochastic 
integrals. His theorem uses the fact that A is dense in LQ[S] and shows that 
0J 0 dS, 0 C A, extends uniquely to an isometry of LQ[S] in At . These facts 
can be checked, for instance, in Jacod [11, Chapter 4]. Since dQ/dP is assumed 
to be bounded above and below away from zero, the semi-norms I* Lp[s] and 

* II L2[s] are equivalent, and the result is proved. Q.E.D. 

Interpreting this result: for any admissible strategy 0 E @(S) there is a sequence 
of simple trading strategies converging (as agents are able to trade more and 
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more frequently) to 0, with the corresponding gains processes converging to that 
generated by 0. The sequence of simple trading strategies can also be chosen to 
be self-financing (4.1) by using the same construction shown in the proof of 
Theorem 4.2 for the "store-of-value" strategy. A store-of-value security, one 
whose price is identically one for instance, is again called for. The minimal 
requirements for a "store-of-value" security price process have not been fully 
explored. 

In what way have we limited agents by restricting them to L [S] trading 
strategies? It is known, for instance, that by removing this constraint the so-called 
'suicide" and "doubling" strategies may become feasible, as discussed by Har- 
rison and Pliska [9] and Kreps [12]. A suicide strategy makes nothing out of 
something almost surely, which no one would want to do anyway. A doubling 
strategy, however, generates a "free lunch," which shouldn't happen in equili- 
brium. More precisely, an equilibrium can't happen if doubling strategies are 
allowed. There are no doubling strategies in L2 [S] since these strategies only 
generate martingales (under Q). There is also some comfort in knowing that, 
since L2 [S] is a complete space, there is no sequence of simple or even general 
L2 [S] strategies which converges to a doubling strategy in the sense of Proposition 
6.1. 

6.2. Some Generalizations 

There is of course no difficulty in having heterogeneous probability assessments, 
provided all agents' subjective probability measures on (Q2, i) are uniformly 
absolutely continuous. This preserves the topologies on the consumption and 
strategy spaces across agents. 

As a second generalization we could allow the consumption space to be 
R x Lq(P) for any q E [1, oo), relaxing from q = 2. The allowable trading strategies 
should be generalized to L q[S], as defined by Jacod [11, (4.59)], since there is 
then no guarantee of an orthogonal q-basis for R2. It is a straightforward task 
to carry out all of the proofs in this paper under both of these generalizations. 
All interesting models of uncertainty we are aware of, however, are for q = 2. 

It is also easy, but cumbersome, to extend our results to an economy with 
production and with a finite number of different consumption goods. 

6.3. Example: Economies on Event Trees 

If the information structure F is such that i, contains only a finite number of 
events at each time t, then it can be represented in the form of an event tree, as 
in Figure 1. 

For finite horizon problems, the terminal nodes of the tree can be treated as 
the elements of Q2. They are equal in number with the contingent claims forming 
a complete regime of Arrow-Debreu "simple securities." Yet, as the following 
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proposition demonstrates, a complete markets Radner equilibrium can be estab- 
lished with far fewer securities, except in degenerate cases. Since integrability is 
not a consideration when Q2 is finite, we characterize martingale multiplicity 
directly in terms of the "finite" filtration F, limiting consideration to probability 
measures under which each co E 12 has strictly positive probability. 

PROPOSITION 6.2: The multiplicity of a finite filtration F, under any of a set of 
equivalent probability measures, is the maximum number of branches leaving any 
node of the corresponding event tree, minus one. 

The proof, given in the Appendix, presents an algorithm for constructing an 
orthogonal martingale basis. Just as in Section 4, a complete markets Radner 
equilibrium can be constructed from any given Arrow-Debreu equilibrium pro- 
vided there are markets for long-lived securities paying the terminal values of 
such a Q-martingale basis in time T consumption, and one store-of-value security 
paying one unit of consumption at time T in each state co 12. 

By drawing simple examples of event trees, however, it soon becomes apparent 
that many other choices for the spanning securities will work. This is consistent 
with Kreps [13]. His Proposition 2 effectively states that a necessary and sufficient 
condition for a complete markets Radner economy is that at any node of the 
event tree the following condition is met: The dimension of the span of the 
vectors of "branch-contingent" prices of the available long-lived securities must 
be the number of branches leaving that node. Kreps goes on to state that the 
number of long-lived securities required for implementing an Arrow-Debreu 
equilibrium in this manner must be at least K, the maximum number of branches 
leaving any node, consistent with our "spanning number" (the martingale multi- 
plicity plus one), as demonstrated by the previous proposition. Kreps also obtains 
the genericity result: except for a "sparse" set of long-lived securities, a set of 
measure zero in a sense given in the Kreps article, any selection of K or more 
long-lived security price processes admits a complete markets Radner economy. 
(The economy needn't be in equilibrium of course.) This result seems exceedingly 
difficult to extend to a general continuous-time model. 

One should beware of taking the "limit by compression" of finite filtrations 
and expecting the spanning number to be preserved. For example, we have seen 
statements in the finance literature to the following effect: "In the Black-Scholes 
option pricing model it is to be expected that continuous trading on two securities 
can replicate any claim since Brownian Motion is the limit of a normalized 
sequence of coin-toss random walks, each of which has only two outcomes at 
any toss." If this logic is correct it hides some unexplained reasoning. For example, 
two simultaneous independent coin-toss random walks generate a martingale 
space of multiplicity three (four branches at each node, minus one), whereas the 
corresponding Brownian Motion limits (Williams [22, Chapter 1]) generate a 
martingale space of multiplicity two. Somehow one dimension of "local uncer- 
tainty" is lost in the limiting procedure. 
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6.4. A Brownian Motion Example 

This subsection illustrates an infinite dimensional consumption space whose 
economy (under regularity conditions) has a complete markets Radner equili- 
brium including only two securities! 

Suppose uncertainty is characterized, and information is revealed, by a Stan- 
dard Brownian Motion, W. To be precise, each c C Q corresponds to a particular 
sample path chosen for W from the continuous functions on [0, T], denoted 
C[O, T], according to the Wiener probability measure P on i, the completed 
Borel tribe on C[O, T]. The probability space, then, is the completed Wiener 
triple (f2, i, P) and the filtration is the family F = {1,, t C [0, T]}, where 9, is 
the completion of the Borel tribe on C[O, t]. For conciseness, we'll call (f2, F, P) 
the completed filtered Wiener triple. More details on this construction are given 
in the first chapter of Williams [22]. 

To construct a complete markets Radner equilibrium from a given Arrow- 
Debreu equilibrium, as in Section 4, we need an orthogonal 2-basis for I4, 
where Q is an equilibrium price measure for the Arrow-Debreu economy. In 
this case we can actually show that a particular Standard Brownian Motion on 
(f2, F, Q) is just such a 2-basis! 

It is a well known result (e.g. [14]) that the underlying Brownian Motion W 
is a 2-basis for AH. Assuming Q P, the process 

Z(t) = E dp it tz[O, T], dP j 

is a square-integrable martingale on (Q, F, P), with E[Z(T)] = 1. Then, by 
Theorem 4.1, there exists some p C Lp[ W] giving the representation: 

rt 
Z(t) = 1 + p(s) dW(s) Vt C [O, T] a.s. 

0 

It follows from Ito's Lemma that, defining the process -q(t) = p(t)/Z(t), we have 
the alternative representation: 

Z(t)=exp{{ qr(s) dW(s)-2{ 712(s) ds} VtE[O, T] a.s. 

From this, the new process 

(6.1) W*(t)= W(t)-J n(s) ds, tE[O, T], 
0 

defines a Standard Brownian Motion on (f2, F, Q) by Girsanov's Fundamental 
Theorem (Lipster and Shiryayev [15, p. 232]). It remains to show that W* is 
itself a 2-basis for A(, but this is immediate from Theorem 5.18 of Liptser and 
Shiryayev [15], using the uniform absolute continuity of P and Q. This construc- 
tion is summarized as follows. 
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PROPOSITION 6.3: Suppose W is the Standard Brownian Motion underlying the 
filtered Wiener triple (Q, F, P) and Q P. Then W* defined by (6.1) is a Standard 
Brownian Motion under Q which is a 2-basis for .i 2. In particular, M(AO2) = 

M(ft)=1. 

By a slightly more subtle argument, we could have reached the same conclusion 
under the weaker assumption that P and Q are merely equivalent, but Q P is 
needed for other reasons in Theorem 4.1. 

In short, by marketing just two long-lived securities, one paying W*(T) in 
time T consumption, the other paying one unit of time T consumption with 
certainty, and announcing their price processes as W*(t) and 1 (for all t), a 
complete markets Radner equilibrium is achieved. 

This example can be extended to filtrations generated by vector diffusion 
processes. Under well known conditions (e.g. [8]) a vector diffusion generates 
the same filtration as the underlying vector of independent Brownian Motions. 
An orthogonal 2-basis for A(2 is then simply these Brownian Motions themselves 
[14]. By generalizing the result quoted from Lipster and Shiryayev [15, Theorem 
5.18], one can then demonstrate a vector of equally many Brownian Motions 
under Q which form a martingale basis for 2 in the sense of Theorem 4.1. 
Since the manipulations are rather involved, and because the results raise some 
provocative issues concerning the "inter-temporal capital asset pricing models" 
(e.g., [17]) which are also based on diffusion uncertainty, we put off this develop- 
ment to a subsequent paper. It is also known that the filtration generated by a 
Poisson process corresponds to a martingale multiplicity of one [11]. 

7. CONCLUDING REMARKS 

We are working on several extensions and improvements suggested by the 
results of this paper. 

The first major step will be to demonstrate the existence of continuous trading 
Radner equilibria "from scratch," that is, taking endowments and preferences 
as agent primitives and proving the existence of an equilibrium such as that 
demonstrated in Theorem 4.2. In particular, the existence of an Arrow-Debreu 
equilibrium and the condition Q P must be proven from exogenous assump- 
tions, rather than assumed. A full-blown Radner economy is also being examined, 
one with consumption occurring over time rather than at the two points 0 
and T. 

The Brownian Motion example of Section 6.4, as suggested there, is being 
extended to the case in which uncertainty and information are characterized by 
a vector of diffusion "state-variable" processes. This will allow us to tie in with, 
and provide a critical evaluation of, the inter-temporal capital asset pricing models 
popular in the financial economics literature. 

We left off in Section 5 by characterizing the spanning number in terms of 
(endogenous) Arrow-Debreu prices through the equilibrium price measure Q. 
Our next efforts will be directed at showing that, subject to regularity conditions, 
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martingale multiplicity is invariant under substitution of equivalent probability 
measures. In that case the spanning number can be stated to be the exogenously 
given number, M(vft) +1. 

Stanford University 
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APPENDIX 

MARTINGALE MULTIPLICITY 

What follows is a heavily condensed treatment, taken mainly from the fourth chapter of Jacod [11]. 
A square-integrable martingale on the filtered probability space (Q, F, P) is an F-adapted7 process 

X = {X,; t E [0, T]} with the properties: (i) E[X( t)2] < o for all t E [0, T], and (ii) E[X( t) I 9J = X(s) 
a.s. for all t ?' s. 

We will also assume without loss of generality for this paper that each martingale is an RCLL 
process. The first property (i) is square-integrability, the second (ii) is martingale, meaning roughly 
that the expected future value of X given current information is always the current value of X. 

The space of square-integrable martingales on (Q, F, P) which are null at zero (or X(O) =0) is 
denoted M2. The spaces 2 and L2(P) are in one to one correspondence via the relationship, 
between some X E 2 and x e 2(P): 

X( t) =E[x19Jt, t E[O, T], 

where all RCLL versions of the conditional expectation process are indistinguishable and therefore 
identified. 

An F-adapted process is termed predictable if it is measurable with respect to the tribe 9? on 
Q? x [0, T] generated by the left-continuous F-adapted processes. At an intuitive level, 0 is a predictable 
process if the value of 0(t) can be determined from information available up to, but not including, 
time t, for each t c [0, T]. 

Two martingales X and Y are said to be orthogonal if the product XY is a martingale. From this 
point we'll assume that 9 is a separable tribe under P. In that case the path breaking work of Kunita 
and Watanabe [14] shows the existence of an orthogonal 2-basis for 42, defined as a minimal set 
of mutually orthogonal elements of .2 with the representation property stated in Theorem 4.1. By 

minimal," we mean that no fewer elements of X2 have this property. The number of elements of 
a 2-basis, whether countably infinite or some positive integer, is called the multiplicity of .X 2, denoted 
M(,g2 

The following lemma makes a technical argument used in the proof of Theorem 4.2. 

LEMMA A.1: Suppose the process X is defined by 

N 

X (t) = E, On(s) dSn(s)-On(t)Sn(t) , t[0, T], 
n=1 O 

where J on dSn is the stochastic integral of a predictable process 0On with respect to a semi-martingale Sn, 
for 1 S n S N < o. Then X is predictable. 

PROOF: For any left-limits process Z, let Z(t-) denote the left limit of Z at t c [0, T], and denote 
the "jump" of Z at t by AZ(t) = Z(t) - Z(t-), where we have used the convention that Z(O-) = Z(O). 
Then we can write 

N ft- 

X (t) = E 0.e (S) dSn (S) -en ( t)Sn ( t) + en ( t) ASn ( t) 
n=l 

7A stochastic process X = {X,; t e [0, T]} is adapted to a filtration F ={; t E [0, T]} if Xt is 
measurable with respect to , for all t E [0, T]. 
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since 

A (i On(s) dSn(s)) = On(t) ASn(t) 

by the definition of a stochastic integral. Then, using 

on ( WS. ( t) = On ( t)[S. (t- + AS. (0t), 

we have 

N 

X(t) = , J on (s) dSn (s)-On (t)Sn (t) t E [, T]- 
n=1 o 

Since o On dSn and Sn(-) are left-continuous processes, and therefore predictable, and On(t) is 
predictable, we know X is predictable because sums and products of measurable functions are 
measurable. Q.E.D. 

For any two elements X and Y of .2, let (X, Y) denote the unique predictable process with the 
property that XY-(X, Y) is a martingale and (X, Y)o=O. 

LEMMA A.2: Suppose (mi, M.N) constitute a finite set of elements of At-2 with the representation 
property given in the statement of Theorem 4.1, where N = M(Q4). If On and On are elements of 
L,[mA], for 1 S n S N, satisfying (with the obvious shorthand) 

(a.) OT dm = f T dm Vt e [0, T] a.s., 

then 

Q{ 3t E [O, T]: O(t) = ?p(t)} > O. 

PROOF: Jacod [11] shows the existence of a predictable positive semi-definite N x N matrix valued 
process c and an increasing predictable process C with the property, for any an and 83n in L2 mM], 
1 n S N, 

(a.2) (J aT dm, |83 dm) = a(s)Tc(s)f3(s) dC(s) Vt E [0, T] a.s. 

The process C also defines a Doleans measure (also denoted C) on (Q x[O, T], i??) according to 

C(B) = $|O|]1B(W, s) dC(w, s) dQ(w) VB E. 
n 0,T] 

By (4.43) of Jacod [11], the matrix process c reaches full rank, and is thus positive definite, on some 
set B* c 3 of strictly positive C-measure. But, by (a.1) and (a.2), 

(a.3) [0(wj, s) - k(wj, s)]Tc(wJ, s)[O(wj, s) - k(wJ, s)] dC(w, s) = 0 Vt E [0, T] a.s. 

Ignoring without loss of generality the Q-null set on which (a.3) does not hold, this implies that 
O(w, t) = k(w, t) for all time points of increase of C on B*, which have strictly positive Q-probability 
since the projection of B* on Q must have strictly positive Q-measure for B* to have strictly positive 
C-measure. Q.E.D. 

PROOF OF PROPOSITION 6.2-MULTIPLICITY OF AN EVENT TREE: Let N denote the maximum 
number of branches leaving any node of the event tree, minus one. The proposition will be proved 
by constructing an orthogonal martingale basis on this filtration consisting of the N processes 
mIn, . ., mN. 

Any martingale on a finite filtration is characterized entirely by its right-continuous jumps at each 
node in the corresponding event tree. Denote the jump of mi at a generic node with L departing 
branches by the vector 5j = 

Oi.l 
8 jL). That is, 8, E RL represents the random variable which takes 
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the real number 8j, if branch I is the realized event at this node. Let p = (pi, PL) E RL denote the 
vector of conditional branching probabilities at this node. 

The processes ml,..., m, are then mutually orthogonal martingales if they satisfy the following 
two conditions at each node: 

(i) 
pTSj 

= 0, j = 1. N (zero mean jumps, the martingale property), and 
(ii) 8j I[p]k = 0, Vj ? k, where [p] denotes the diagonal matrix whose Ith diagonal element is p, 

(mutually uncorrelated jumps, implying mutually orthogonal martingales). 
We construct the processes m, m . ., MN by designing their jumps at each node of the event tree, 

in any order, taking mj (0) =0 Vj. At a given node (with L branches), it is simple to choose nonzero 
vectors 8,,. . ., AL-1 in R L satisfying 

(a.4) Aj [ p]6j = , 1 -<j ---L -1, 

where 4J is the j x L matrix whose first row is a vector of ones and whose kth row is, for k ? 2, 8k-. 
This cannot be done for j > L since aL[p]112 is a full rank L x L matrix (its rows are nonzero and 
mutually orthogonal). Instead, let AL,.- . , SN each be zero vectors. One can quickly verify that this 
construction meets the conditions (i)-(ii) for m,., mN to be mutually orthogonal martingales. 
They are nontrivial since there is at least one node with N+ I branches, by definition of N. They 
form a basis (in the sense of Theorem 4.1) for all martingales since at each node the subspace 
{SE RL: 5Tp = 0} has linearly independent spanning vectors 8,. . ., SL-1. That is, the jump of any 
given martingale at this node is a linear combination of the jumps of the first L - 1 martingales of 
the set {ml,. , mN}. At least N martingales are needed for a martingale basis since at some node 
this subspace has dimension N, by definition of N. Q.E.D. 

EXAMPLE: A MARKOV CHAIN: As a himple example, consider a finite state-space Markov chain 
information structure. Transition probabilities are given by the matrix 

I7= (7r,,,,s) I -<a -<n ; I -< 83<n ; 

where Ira,3 denotes the one-step transition probability from state a to state f8. Let iia denote the ath 
row of H and 87a E R' denote the vector of jumps of the process m1 at any node corresponding to 
state a, for 1 'jI n -i. We will assume at least one row of H has no zero elements. Then the 
multiplicity of the space of martingales on this Markov chain is n - 1, and the processes m . , 
form an orthogonal martingale basis provided, for a 1,..., 

7aT5a = 0, 1 j > n-1, 

and 

aT[ ]8aa=0, j54k, 

corresponding to conditions (i)-(ii) above, and 87 $ 0 for all a and all j. 
If, for instance, 

/0.3 0.3 0.4 

n 
= 0.3 0.3 0.41, 

0.3 0.3 0.4 

then the two martingales ml and m2 are an orthogonal martingale basis, where, at any node, m, 
jumps +2 if state 1 follows, jumps +2 if state 2 follows, and jumps -3 if state 3 follows, or 8, = (2, 2, -3); 
and similarly m2 is characterized by jumps 82 = (1, -1, 0). To be even more explicit, if state 2 occurs 
at time 1, state 3 at time 2, and the chain terminates at time 2.5, the sample path for m, is 

mI(t)=0, 0--t<1, 

, J0=_, 1 +t<2 

REFERENCES 

[1] ARROW, K.: "Le role des valeurs boursieres pour la repartition la meillure des risques," 
Econometrie, 40(1952), 41-48; translated in Review of Economic Studies, 31(1964), 91-96. 



1356 DARRELL DUFFIE AND CHI-FU HUANG 

[2] BLACK, F., AND M. SCHOLES: "The Pricing of Options and Corporate Liabilities," Journal of 
Political Economy, 81(1973), 637-654. 

[3] Cox, J., AND S. Ross: "The Valuation of Options for Alternative Stochastic Processes," Journal 
of Financial Economics, 3(1976), 145-166. 

[4] DAVIS, M. H., AND P. VARAIYA: "The Multiplicity of an Increasing Family of o-Fields," The 
Annals of Probability, 2(1974), 958-963. 

[5] DEBREU, G.: Theory of Value. Cowles Foundation Monograph 17. New Haven: Yale University 
Press, 1959. 

[6] DUFFIE, J. D.: "Advances in General Equilibrium Theory," Ph.D. Dissertation, Stanford 
University, 1984. 

[7] HALMOS, P.: Measure Theory. Princeton: Van Nostrand, 1950. 
[8] HARRISON, J., AND D. KREPS: "Martingales and Arbitrage in Multiperiod Securities Markets," 

Journal of Economic Theory, 20(1979), 381-408. 
[9] HARRISON, J., AND S. PLISKA: "Martingales and Stochastic Integrals in the Theory of Con- 

tinuous Trading," Stochastic Processes and Their Applications, 11(1981), 215-260. 
[10] HUANG, C.: "Information Structure and Equilibrium Asset Prices," Journal of Economic Theory, 

35(1985), 33-71. 
[11] JACOD, J.; Calcul Stochastique et Problemes de Martingales, Lecture Notes in Mathematics, No. 

714. Berlin: Springer-Verlag, 1979. 
[12] KREPS, D.: "Three Essays on Capital Markets," Technical Report 298, Institute for Mathematical 

Studies in The Social Sciences, Stanford University, 1979. 
[13] : "Multiperiod Securities and the Efficient Allocation of Risk: A Comment on the 

Black-Scholes Option Pricing Model," The Economics of Uncertainty and Information, ed. by 
J. McCall. Chicago: University of Chicago Press, 1982. 

[14] KUNITA, H., AND S. WATANABE: "On Square-Integrable Martingales," Nagoya Mathematics 
Journal, 30(1967), 209-245. 

[15] LIPTSER, R., AND A. SHIRYAYEV: Statistics of Random Processes I: General Theory. New York: 
Springer-Verlag, 1977. 

[16] MEMIN, JEAN: "Espaces de semi Martingales et Changement de Probabilit6," Zeitschrift fur 
Wahrscheinlichkeitstheorie, 52(1980), 9-39. 

[17] MERTON, R.: "An Intertemporal Capital Asset Pricing Model," Econometrica, 41(1973), 867- 
888. 

[18] : "The Theory of Rational Option Pricing," Bell Journal of Economics and Management 
Science, 4(1973), 141-183. 

[19] : "On the Microeconomic Theory of Investment Under Uncertainty," in Handbook of 
Mathematical Economics, VoL. II, ed. by K. Arrow and M. Intriligator. Amsterdam: North- 
Holland Publishing Company, 1982. 

[20] RADNER, R.: "Existence of Equilibrium of Plans, Prices and Price Expectations in a Sequence 
of Markets," Econometrica, 40(1972), 289-303. 

[21] SCHAEFER, H. H.: Banach Lattices and Positive Operators. New York: Springer-Verlag, 1974. 
[22] WILLIAMS, D.: Diffusions, Markov Processes, and Martingales, Vol. 1. New York: Wiley, 1979. 


	Article Contents
	p. 1337
	p. 1338
	p. 1339
	p. 1340
	p. 1341
	p. 1342
	p. 1343
	p. 1344
	p. 1345
	p. 1346
	p. 1347
	p. 1348
	p. 1349
	p. 1350
	p. 1351
	p. 1352
	p. 1353
	p. 1354
	p. 1355
	p. 1356

	Issue Table of Contents
	Econometrica, Vol. 53, No. 6 (Nov., 1985), pp. 1255-1528+i-vi
	Volume Information [pp.  i - vi]
	Front Matter
	The Econometrics of Nonlinear Budget Sets [pp.  1255 - 1282]
	Strong Core Theorems with Nonconvex Preferences [pp.  1283 - 1294]
	An Axiomatization of Harsanyi's Nontransferable Utility Solution [pp.  1295 - 1313]
	Continuous Auctions and Insider Trading [pp.  1315 - 1335]
	Implementing Arrow-Debreu Equilibria by Continuous Trading of Few Long-Lived Securities [pp.  1337 - 1356]
	The First-Order Approach to Principal-Agent Problems [pp.  1357 - 1367]
	General Equilibrium when Some Firms Follow Special Pricing Rules [pp.  1369 - 1393]
	The Variability of Aggregate Demand with (S, s) Inventory Policies [pp.  1395 - 1409]
	Conditions for the Existence of a Balance Growth Solution for the Leontief Dynamic Input-Output Model [pp.  1411 - 1419]
	The Global Properties of the Minflex Laurent, Generalized Leontief, and Translog Flexible Functional Forms [pp.  1421 - 1437]
	Notes and Comments
	Poverty Measurement: A Decomposition of the Normalization Axiom [pp.  1439 - 1443]
	Nontransferable Utility Games and Markets: Some Examples and the Harsanyi Solution [pp.  1445 - 1450]
	The Structure of Intertemporal Preferences under Uncertainty and Time Consistent Plans [pp.  1451 - 1458]
	A Complementary Approach to the Strong and Weak Axioms of Revealed Preference [pp.  1459 - 1463]
	Formulating Wald Tests of Nonlinear Restrictions [pp.  1465 - 1468]
	A Note About Models for Selectivity Bias [pp.  1469 - 1474]
	Resistant Estimation for Simultaneous-Equations Models Using Weighted Instrumental Variables [pp.  1475 - 1488]

	Call for Papers: 1986 North American Summer Meeting of the Econometric Society [pp.  1489 - 1490]
	1987 Australasian Meetings of the Econometric Society: Preliminary Announcement [p.  1490]
	Accepted Manuscripts [p.  1491]
	1986 Australasian Meeting of the Econometric Society: Announcement and Call for Papers [p.  1492]
	European Meeting of the Econometric Society, Budapest 1986: Announcement and Call for Papers [pp.  1492 - 1493]
	Announcement and Call for Papers: North American Winter Meeting of the Econometric Society [p.  1493]
	News Notes [pp.  1495 - 1496]
	Erratum
	Asset Bubbles and Overlapping Generations [p.  1497]

	Asset Bubbles and Overlapping Generations [pp.  1499 - 1528]
	Submission of Manuscripts to Econometrica
	Back Matter





