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OVER-THE-COUNTER MARKETS

BY DARRELL DUFFIE, NICOLAE GARLEANU, AND LASSE HEJE PEDERSEN!

We study how intermediation and asset prices in over-the-counter markets are af-
fected by illiquidity associated with search and bargaining. We compute explicitly the
prices at which investors trade with each other, as well as marketmakers’ bid and ask
prices, in a dynamic model with strategic agents. Bid-ask spreads are lower if investors
can more easily find other investors or have easier access to multiple marketmakers.
With a monopolistic marketmaker, bid—ask spreads are higher if investors have eas-
ier access to the marketmaker. We characterize endogenous search and welfare, and
discuss empirical implications.

KEYWORDS: Asset pricing, search frictions, bargaining, marketmaking, welfare,
Walrasian.

IN OVER-THE-COUNTER MARKETS, an investor who wishes to sell must search
for a buyer, incurring opportunity or other costs until one is found. Some over-
the-counter (OTC) markets therefore have intermediaries. Contact with rele-
vant intermediaries, however, is not immediate. Often, intermediaries must be
approached sequentially. Hence, when two counterparties meet, their bilateral
relationship is inherently strategic. Prices are set through a bargaining process
that reflects each investor’s or marketmaker’s alternatives to immediate trade.

These search-and-bargaining features are empirically relevant in many mar-
kets, such as those for mortgage-backed securities, corporate bonds, emerging-
market debt, bank loans, derivatives, and certain equity markets. In real-estate
markets, for example, prices are influenced by imperfect search, the relative
impatience of investors for liquidity, outside options for trade, and the role
and profitability of brokers.

We build a dynamic asset-pricing model that captures these features and
analytically derive the equilibrium allocations, prices negotiated between in-
vestors, as well as marketmakers’ bid and ask prices. We show how these
equilibrium properties depend on investors’ search abilities, marketmaker ac-
cessibility, and bargaining powers. We determine the search intensities that
marketmakers choose, and derive the associated welfare implications of in-
vestment in marketmaking.

Our model of search is a variant of the coconuts model of Diamond (1982).
A continuum of investors contact each other, independently, at some mean

Part of this paper was previously distributed under the title “Valuation in Dynamic Bargain-
ing Markets.” We are grateful for conversations with Yakov Amihud, Helmut Bester, Joseph
Langsam of Morgan Stanley Dean Witter, Richard Lyons, Tano Santos, and Jeff Zwiebel, and
to participants at the NBER Asset Pricing Meeting, the Cowles Foundation Incomplete Markets
and Strategic Games Conference, the Western Finance Association Conference, the CEPR meet-
ing at Gerzensee, University College London, Universite Libre de Bruxelles, Tel Aviv University,
and Universitat Autonoma de Barcelona.

2Qur model differs from Diamond (1982), and the labor literature more generally, by con-
sidering repeated trade of long-lived assets. The monetary search literature (for example,
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rate A, a parameter that reflects search ability. Similarly, marketmakers con-
tact agents at some intensity p that reflects dealer availability. When agents
meet, they bargain over the terms of trade. Gains from trade arise from het-
erogeneous costs or benefits of holding assets. For example, an asset owner can
be anxious to sell because of a liquidity need or because of hedging motives.
Marketmakers are assumed to off-load their inventories in a frictionless inter-
dealer market, trading with investors so as to capture part of the difference
between the interdealer price and investors’ reservation values.

Asset pricing with exogenous trading frictions has been studied by Amihud
and Mendelson (1986), Constantinides (1986), and Vayanos (1998). We en-
dogenize the trading frictions that arise through search and bargaining, and
show their effects on asset prices. In follow-up work, Duffie, Garleanu, and
Pedersen (2003) extend the model developed here to characterize the impact
on asset pricing of search in settings with risk aversion and risk limits, while
Weill (2002) and Vayanos and Wang (2002) consider cross-sectional asset pric-
ing in extensions with multiple assets.

Market frictions have been used to explain the existence and behavior of
marketmakers. Notably, marketmakers’ bid and ask prices have been explained
by inventory considerations (Garman (1976), Amihud and Mendelson (1980),
and Ho and Stoll (1981)) and by adverse selection arising from asymmetric
information (Bagehot (1971), Glosten and Milgrom (1985), and Kyle (1985)).
In contrast, we model marketmakers who have no inventory risk because of the
existence of interdealer markets, and our agents are symmetrically informed.
In our model, bid and ask prices are set in light of investors’ outside options,
which reflect both the accessibility of other marketmakers and investors’ own
abilities to find counterparties.

We show that bid—ask spreads are lower if investors can find each other more
easily.’ The intuition is that improving an investor’s search alternatives forces
marketmakers to give better prices. This result is supported by the experimen-
tal evidence of Lamoureux and Schnitzlein (1997).

An investor also improves his bargaining position relative to a marketmaker
if he can more easily find other marketmakers. Hence, despite the bilateral
nature of bargaining between a marketmaker and an investor, marketmakers
are effectively in competition with each other over order flow, given the option

Kiyotaki and Wright (1993)) also considers long-lived assets, but, with the exception of Trejos
and Wright (1995), it considers exogenous prices. Our model has similarities with that of Trejos
and Wright (1995), but their objectives are different and they do not study marketmaking. See
also Harris (1979).

3We show that our model specializes in a specific way to the standard general-equilibrium
paradigm as bilateral trade becomes increasingly active (under conditions to be described), ex-
tending a chain of results by Rubinstein and Wolinsky (1985), Gale (1987, 1986a, 1986b), and
McLennan and Sonnenschein (1991), in a manner explained later in our paper. Thus, “standard”
asset-pricing theory is not excluded, but rather is found at the end of the spectrum of increasingly
“active” markets.
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of investors to search for better terms. Consistent with this intuition, we prove
that competitive prices and vanishing spreads obtain as marketmakers’ contact
intensities become large, provided that marketmakers do not have all of the
bargaining power.

In summary, if investors are more sophisticated (that is, have better access to
other investors or to marketmakers who do not have total bargaining power),
they receive a tighter bid—ask spread. This implication sets our theory of inter-
mediation apart from information-based models, in which more sophisticated
(that is, better informed) investors receive a wider bid—ask spread.

In an extension with heterogeneous investors in the same OTC market, we
show that more sophisticated investors (those with better access to marketmak-
ers) receive tighter bid—ask spreads because of their improved outside options.
Hence, this result holds both when comparing across markets and when com-
paring across investors in the same market. This sets our theory apart from
inventory-based models, which would not imply differential treatment across
investors.* Furthermore, in the heterogeneous-agents extension, investors with
lower search ability may refrain entirely from trade.

Our result seems consistent with behavior in certain OTC markets, such as
those for interest-rate swaps and foreign exchange, in which asymmetric infor-
mation is limited. Anecdotal evidence suggests that “sales traders” give more
competitive prices to sophisticated investors, perceived to have better outside
options.

We also consider cases in which the marketmaker has total bargaining
power. The bid-ask spread of such a monopolistic marketmaker vanishes as
investors are increasingly able to meet each other quickly, as with the case
of competing marketmakers. In contrast, however, more frequent contact be-
tween investors and a monopolistic marketmaker actually widens spreads, be-
cause of the investors’ poorer outside options. Specifically, an investor’s threat
to find a counterparty himself is less credible if the marketmaker has already
executed most of the efficient trades, making it harder for the investor to find
potential counterparties.

Our results regarding the impact of investors’ searches for each other on
dealer spreads are similar in spirit to those of Gehrig (1993) and Yavas (1996),
who consider monopolistic marketmaking in one-period models.” We show
that dynamics have an important effect on agents’ bargaining positions, and
thus asset prices, bid—ask spreads, and investments in marketmaking capacity.
Rubinstein and Wolinsky (1987) study the complementary effects of market-
maker inventory and consignment agreements in a dynamic search model.

“We note that, when comparing across markets, inventory considerations may have the same
bid-ask implication as our search model, because more frequent meetings between investors and
marketmakers may result in lower inventory costs.

3See also Bhattacharya and Hagerty (1987), who introduce dealers into the Diamond (1982)
model, and Moresi (1991), who considers intermediation in a search model in which buyers and
sellers exit the market after they trade.
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We consider marketmakers’ choices of search intensity and the social effi-
ciency of these choices. A monopolistic marketmaker imposes additional “net-
working losses” on investors because his intermediation renders less valuable
the opportunity of investors to trade directly with each other. A monopolis-
tic marketmaker thus provides more intermediation than is socially efficient.
Competitive marketmakers may provide even more intermediation, because
they do not consider, in their allocation of resources to search, the impact of
their intermediation on the equilibrium allocation of assets among investors.®

1. MODEL

We fix a probability space ({2, F,Pr) and a filtration {F,:¢ > 0} of sub-
o-algebras satisfying the usual conditions, as defined by Protter (1990). The
filtration represents the resolution over time of information commonly avail-
able to agents.

Two kinds of agents, investors and marketmakers, consume a single nonstor-
able consumption good that is used as a numeraire. All agents are risk-neutral
and infinitely lived, with time preferences determined by a constant discount
rate r > 0. Marketmakers hold no inventory and maximize profits.

Investors have access to a risk-free bank account with interest rate » and to
an OTC market for a “consol,” meaning an asset paying dividends at the con-
stant rate of 1 unit of consumption per year. (Duffie, Garleanu, and Pedersen
(2003) consider extensions with risky securities and risk-averse investors.) The
consol can be traded only when an investor finds another investor or a mar-
ketmaker, according to a random search model described below. The bank
account can also be viewed as a liquid security that can be traded instantly.
We require that the value W, of an investor’s bank account be bounded below,
ruling out Ponzi schemes.

A fraction s of investors are initially endowed with 1 unit of the asset. In-
vestors can hold at most 1 unit of the asset and cannot short-sell. Because
agents have linear utility, we can restrict attention to equilibria in which, at any
given time and state of the world, an investor holds either 0 or 1 unit of the
asset.

An investor is characterized by whether he owns the asset or not, and by an
intrinsic type that is “high” or “low.” A low-type investor, when owning the
asset, has a holding cost of & per time unit; a high-type investor has no such
holding cost. There are multiple interpretations of the investor types. For in-
stance, a low-type investor may have (i) low liquidity (that is, a need for cash),

6Studying endogenous search in labor markets, Mortensen (1982) and Hosios (1990) find that
agents may choose inefficient search levels because they do not internalize the gains from trade
realized by future trading partners. Moen (1997) shows that search markets can be efficient under
certain conditions.
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(ii) high financing costs, (iii) hedging reasons to sell,” (iv) a relative tax dis-
advantage,® or (v) a lower personal use of the asset. Any investor’s intrinsic
type switches from low to high with intensity A, and switches back with inten-
sity A,. For any pair of investors, their intrinsic-type processes are assumed to
be independent.

The full set of investor types is 7 = {ho, hn,lo,In}, where the letters
“h” and “I” designate the investor’s intrinsic liquidity state, as above, and “0”
and “n” indicate whether the investor owns the asset or not, respectively.

We suppose that there is a “continuum” (a nonatomic finite-measure space)
of investors and we let u,(¢) denote the fraction at time ¢ of investors of type
o € T. Because the fractions of each type of investor add to 1 at any time ¢,

(1) o () + i (1) + o (1) + pa (1) = 1.

Because the total fraction of investors owning an asset is s,

(2) Mo (1) + i (2) = 5.

A pair of investors can negotiate a trade of the consol whenever they meet,
for a mutually agreeable number of units of current consumption. (The de-
termination of the terms of trade is to be addressed later.) Investors meet,
however, only at random times, in a manner idealized as independent random
search, as follows. At the successive event times of a Poisson process with some
intensity parameter A, an investor contacts another agent, chosen from the en-
tire population “at random,” meaning with a uniform distribution across the
investor population. An investor therefore contacts an investor from a given
set D of investors that contains a fraction up of the total population with the
mean intensity Aup. The total rate at which a group C of independently search-
ing investors of mass ¢ contacts group D investors is almost surely pucAwp.
Because group D investors contact C investors at the same total rate, the total
meeting rate between the two groups is almost surely 2Aucpp. This assumes
that searches are independent in a sense appropriate for an application of the
exact law of large numbers for random search and matching among a contin-
uum of agents; Duffie and Sun (2004) provide an exact discrete-time theorem
and proof.” Random switches in intrinsic types are assumed to be independent
of the agent matching processes.

"Duffie, Gérleanu, and Pedersen (2003) explore this interpretation in an extension with risk
aversion.

8Dai and Rydgqvist (2003) provide a tax example with potential search effects.

9The assumed almost sure meeting rate of 2Aucup is the limit meeting rate of an associated
discrete-time finite-agent random search model. Ferland and Giroux (2002) prove a more gen-
eral version of this assertion rigorously. Here is a sketch of the proof in our setting. Suppose that
market (n, A) has n agents, for whom, given any pair (i, j) of distinct agents, agent i contacts
agent j over a discrete-time period of length A with probability p(n, A) = 1 — e=4¥/" (the prob-
ability of an arrival of a Poisson process with intensity A/#n). Suppose that the indicator 1,; of
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There is a unit mass of independent nonatomic marketmakers. Marketmak-
ers are also found through search, implying that an investor must bargain with
marketmakers sequentially as they are found. An investor meets a market-
maker with a fixed intensity, p, which can be interpreted as the sum of the
intensity of investors’ search for marketmakers and marketmakers’ search for
investors.! When an investor meets a marketmaker, they bargain over the
terms of trade as described in the next section. Marketmakers have access to
an immediately accessible interdealer market on which they unload their posi-
tions, so that they have no inventory at any time.

The OTC markets without marketmakers are treated by the special case of
our model with p =0.

2. DYNAMIC SEARCH EQUILIBRIUM WITH COMPETING MARKETMAKERS

In this section, we explicitly compute the allocations and prices that form a
dynamic search-and-bargaining equilibrium. In particular, we compute prices
negotiated directly between investors, marketmakers’ bid and ask prices, and
the interdealer price.

In equilibrium, low-type asset owners want to sell and high-type nonowners
want to buy. When two such agents meet, they bargain over the price. Similarly,
when investors meet a marketmaker, they bargain over the price. An investor’s
bargaining position depends on his outside option, which in turn depends on
the availability of other counterparties, both now and in the future, and a mar-
ketmaker’s bargaining position depends on the interdealer price. In deriving
the equilibrium, we rely on the insight from bargaining theory that trade hap-

successful contact of j by i is independent across all distinct pairs (i, j) of distinct agents. The
mean rate of contact per unit of time of a specific investor with other investors in the (n, A)
market is E(A™! Z#i 1;;) = A~'(n— 1) p(n, A), which converges to A, as in our continuous-time
model, as (n, A) — (400, 0). The per capita total rate of contact per unit of time by a subset
C(n) C {1, ..., n} that contains a fraction uc of the total population with a disjoint subset D(n)
that contains a fraction wp of the population is

S(n,A):nLA( Z 1+ Z ]li,f),

ieC(n),jeD(n) ieD(n),jeC(n)

which has mean (nAd)~'2p(n, A)|C(n)| - |D(n)|, which converges to 2Apcup as (n,4) —
(+00, 0). By the weak law of large numbers (Theorem 6.2 of Billingsley (1986)), S(n, A) con-
verges in probability as (n, A) — (400, 0) to its expectation, 2Aucup, given that S(n, A) is the
sum of a divergent number of independent variables whose total variance is shrinking to zero.
One caveat is that, in a discrete-time model, an agent can contact more than one other agent at
the same time. In that case, an elimination rule can be used to keep only one-to-one matches, but
since the probability of contacting more than one agent during a period of length A is of the or-
der A%, the meeting rate is as derived above. (The same result holds in the limit even if C(n) and
D(n) are not disjoint, but one must make slight (order 1/n) adjustments to the mean of S(n, A)
for overlap in the two groups.)

10Tt would be equivalent to have a mass k of dealers with contact intensity p/ k, for any k > 0.
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pens instantly."" This allows us to derive a dynamic equilibrium in two steps.
First, we derive the equilibrium masses of the different investor types. Second,
we compute agents’ value functions and transaction prices (taking as given the
masses of the investor types).

Assuming, as discussed in the previous section, that the law of large numbers
applies, the rate of change of the mass w;,(#) of low-type owners is almost
surely

(3) l'.l’lo(t) = _(ZA/“Lhn(t)Mlo(t) + p/“l’m(t)) - )\u/-l’lo(t) + )\dluho(t)a

where w,, (1) = min{w,(¢), wr,(¢)}. The first term in (3) reflects the fact that
agents of type hn contact those of type lo at a total rate of Ay, (#)wu, (), while
agents of type lo contact those of type An at the same total rate Ay, (¢)w, (£).
At both of these types of encounters, the agent of type lo becomes one of
type In. This implies a total rate of reduction of mass due to these encounters of
2A i (8) o (¢). Similarly, investors of type lo meet marketmakers with a total
contact intensity of pu,(#). If w;,(¢) < wu, (), then all of these meetings lead
to trade and the /o agent becomes an /n agent, resulting in a reduction in
of pu,(2). If wy,(¢) > up,(2), then not all these meetings result in trade. This
is because marketmakers buy from /o investors and sell to 4n investors, and,
in equilibrium, the total intensity of selling must equal the intensity of buying.
Marketmakers meet lo investors with total intensity pu,;, and An investors with
total intensity puy,, and, therefore, investors on the “long side” of the market
are rationed. In particular, if w;,(#) > w,,(¢), then lo agents trade with mar-
ketmakers only at the intensity puy,. In equilibrium, this rationing can be the
outcome of bargaining because the marketmaker’s reservation value (that is,
the interdealer price) is equal to the reservation value of the /o investor.

Finally, the term A,u;,(¢) in (3) reflects the migration of owners from low
to high intrinsic types, and the last term A,u,,(¢) reflects owners’ change from
high to low intrinsic types.

The rate of change of the other investor-type masses are

4) Foin (1) = — (22X son () i (£) + P (1)) + Auptan (1) — Aapnn (1),
(5) l'."/w(t) = (2/\:u4m(t)/-1/lo(t) + P,U«m(t)) + )\u/-'(/lo(t) - /\d:u“ho(t)y
(6) /;"ln(t) = (2)\:uhn(t)/“'vlo(t) + P,U«m(t)) - /\uMln(t) + )\d/vthn(t)~

As in (3), the first terms reflect the result of trade and the last two terms are
the result of intrinsic-type changes.

"In general, bargaining leads to instant trade when agents do not have asymmetric informa-
tion. Otherwise there can be strategic delay. In our model, it does not matter whether agents
have private information about their own type, for it is common knowledge that a gain from
trade arises only between agents of types /o and An.
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In most of the paper we focus on stationary equilibria, that is, equilibria in
which the masses are constant. In our welfare analysis, however, it is more
natural to take the initial masses as given and, therefore, we develop some
results with any initial mass distribution. The following proposition asserts the
existence, uniqueness, and stability of the steady state.

PROPOSITION 1: There exists a unique constant steady-state solution to
(1)—(6). From any initial condition (0) € [0, 1]* that satisfies (1) and (2), the
unique solution u(t) to (3)—(6) converges to the steady state as t — oo.

A particular agent’s type process {o(¢):—00 < t < 400} is, in steady state,
a four-state Markov chain with state space 7 and with constant switching inten-
sities determined in the obvious way'? by the steady-state population masses u
and the intensities A, A,, and A,. The unique stationary distribution of any
agent’s type process coincides with the cross-sectional distribution w of types
characterized® in Proposition 1.

With these equilibrium masses, we will determine the price P, negotiated di-
rectly between lo and An investors, the “bid” price B, at which investors sell to
marketmakers, the “ask” price A4, at which investors buy from marketmakers,
and the interdealer price. For this, we use dynamic programming, by first com-
puting an investor’s utility at time ¢ for remaining lifetime consumption. For
a particular agent this “value function” depends, naturally, only on the agent’s
current type o (t) € 7, the current wealth W, in his bank account, and time.
More specifically, the value function is

(7 UW,, o(t),t) =supEt/ e " dC,
c.o 0

8) subjectto dW,=rW,dt —dC, + 0,(1 — 61,,0(1y=1)) dt — P, de,,

where E, denotes F,-conditional expectation, C is a cumulative consumption
process, 0, € {0, 1} is a feasible asset holding process, o’ is the type process
induced by 6, and at the time ¢ of a trading opportunity, P, € {P,, A,, B,} is the

2For example, the transition intensity from state lo to state ho is A, the transition intensity
from state lo to state /n is 2Au;,, and so on, for the 4 x 3 switching intensities.

3This is a result of the law of large numbers, in the form of Theorem C of Sun (2000), which
provides the construction of our probability space ({2, F, Pr) and agent space [0, 1], with an ap-
propriate o-algebra making (2 x [0, 1] into what Sun calls a “rich space,” with the properties
that: (i) for each individual agent in [0, 1], the agent’s type process is indeed a Markov chain in 7
with the specified generator, (ii) the unconditional probability distribution of the agents’ type is
always the steady-state distribution u on 7 given by Proposition 1, (iii) agents’ type transitions
are almost everywhere pairwise independent, and (iv) the cross-sectional distribution of types is
also given by w, almost surely, at each time ¢.
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trade price, which depends on the type of counterparty. From (7) and (8) the
value function is linear in wealth, in that U(W,, o (¢), t) = W, + V., (), where!*

9 V(1) = sup E, D01 — 8190011 ds — e 75O P. d0, |.
0 p {0 (s)=lo}
0 t

As shown in the Appendix, the value functions satisfy the Hamilton—Jacobi-
Bellman (HJB) equations

(10) I/10 =rI/lo - /\u(I/ho - I/la) - 2/\Mhn(P+ I/ln - I/lo)
_p(B+I/ln - V;o) - (1 - 8)7
I}ln = rI/ln - )\u(l/hn - I/ln);

I)Iw:rl/ho _/\d(I/lo_I/ho) - 1a

V;m = rI/hn - )\d(I/ln - I/hn) - 2)\I~Lho(Vho - V;m - P)
- p(I/ho - I/lm - A),

suppressing the time argument ¢, which implies that an /o investor benefits
from a sale at any price greater than V}, — Vj, and that an /4n investor benefits
from a purchase at any price smaller than V), — V},,. Bargaining between the
investors leads to a price between these two values. Specifically, Nash (1950)
bargaining with a seller bargaining power of g € [0, 1] yields

(11) P=Wo=Vi)A=q)+ Vio = Vin)g.

This is also the outcome of the simultaneous-offer bargaining game described
in Kreps (1990) and of the alternating-offer bargaining game described in
Duffie, Garleanu, and Pedersen (2003).5

Similarly, the bid and ask prices are determined through a bargaining en-
counter between investors and marketmakers in which a marketmaker’s out-
side option is to trade in the interdealer market at a price of M. Marketmakers
have a fraction, z € [0, 1], of the bargaining power when facing an investor.
Hence, a marketmaker buys from an investor at the bid price B, and sells at
the ask price A4, determined by

(12) A:(Vho_[/hn)z_l_M(l_Z)’
(13)  B=b—Viz+M(1 - 2).

YIf limy_ o0 E,[e7" max{Py, A,, B;}] =0, V is well defined. We restrict attention to such prices.

SDuffie, Garleanu, and Pedersen (2003) describe an alternating-offer bargaining procedure
that yields a bargaining power that, in the limit as the time between offers approaches zero, is
equal to the probability of making an offer. Our qualitative results do not, however, depend on
zero time between offers. For example, the results in Section 4 concerning A — oo hold for an
arbitrary delay between offers.
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As discussed above, in equilibrium, marketmakers and those investors on
the long side of the market must be indifferent to trading. Hence, if w;, < wu,,
marketmakers meet more potential buyers than sellers. The interdealer price,
M, is therefore equal to the ask price A and equal to any buyer’s reservation
value V},, — V},,. Similarly, if @, > uu,, then M = B =V, — V},. For the knife-
edge case of Mio = Mpn> let M = Q(V}m - I/hn) + (1 - é)(%o - V;n), for some
constant g that is arbitrarily chosen from [0, 1], and fixed for the remainder.

In steady state, it is easy to see which side of the market is rationed because
the steady-state fraction of high-type agents is A, (A, + A,) ™!, so we have

u

Ad + Au'

Mo + (S — pgo) =

Hence, w, < w, in steady state if and only if the following condition is satis-
fied.

CONDITION 1: It holds that s < A, /(A, + Ag).

An equilibrium is defined as a process (P, A, B, u, V') such that (i) the sys-
tem w of investor masses solves (1)—(6), (ii) the transaction prices (P, A, B)
are those in (11)—(13), and (iii) V" solves the HIB equations (9) and (10) and
Vie = Vin < Vio — Vi, As there is a continuum of agents, no agent has the abil-
ity to influence mass dynamics with an off-equilibrium-path trading strategy.
These three conditions therefore ensure individual-agent optimality of the as-
sociated equilibrium trading strategies, as well as consistency between the mass
dynamics assumed by agents and those arising from the equilibrium trading
strategies. We derive the equilibrium explicitly. For brevity, we report only the
prices under Condition 1; the complementary case is treated in the Appendix.

THEOREM 2: For any given initial mass distribution 1.(0), there exists an equi-
librium. There is a unique steady-state equilibrium. Under Condition 1, the ask,
bid, and interinvestor prices are

(14) A 13 Ad+ 22, (1 — )
roorr4+ A+ 20w (1—q) + Ay + 2 g + p(1 —2)°
1 & Ag + 2 g, (1 —

(15) B=1_2 zr + Mg + 2Am,(1 — g) ’
ro rr4+As+22 (1 —¢q) + Ay + 20,9 + p(1 — 2)
1 & 1-— Mg+ 22y, (1 —

(16) p_Ll_o (1= q@r + Mg+ 22 (1 — q)

roorr+ A+ 22m,(1—q) + Ay + 2 g + p(1 —z)

These explicit prices are intuitive. Each price is the present value, 1/r, of
dividends, reduced by an illiquidity discount. All of these prices decrease in
the bargaining power z of the marketmaker, because a higher z makes trading
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more costly for investors. The prices increase, however, in the ease of meeting
a marketmaker (p) and in the ease of finding another investor (1), provided
that p and A are large enough. The effect of increasing search intensities is
discussed in Section 4.

From Theorem 2, the bid-ask spread 4 — B is increasing in the market-
maker’s bargaining power z. The bid—ask spread is decreasing in A, since a
high A means that an investor can easily find a counterparty himself, which im-
proves his bargaining position. The bid—ask spread is also decreasing in p, pro-
vided z < 1 and p is sufficiently large. A higher p implies that an investor can
quickly find another marketmaker, and this “sequential competition” improves
his bargaining position. If z = 1, however, then the bid-ask spread is increas-
ing in p. The case of z =1 is perhaps best interpreted as that of a monopolistic
marketmaker, as discussed in the next section. These comparative-statics re-
sults can be derived from the price equations (14)—(16) and from (A.2), which
characterizes the steady-state investor masses.

3. MONOPOLISTIC MARKETMAKING

We assume here that investors can trade with the monopolistic marketmaker
only when they meet one of the marketmaker’s nonatomic “dealers.” There
is a unit mass of such dealers who contact potential investors randomly and
pairwise independently, letting p be the intensity with which a dealer contacts a
given agent. Dealers instantly balance their positions with their marketmaking
firm, which, on the whole, holds no inventory.

With these assumptions, the equilibrium is computed as in Section 2. The
masses are determined by (3)—(6) and the prices are given by Theorem 2.

It might seem surprising that a single monopolistic marketmaker is equiva-
lent for pricing purposes to many “competing” nonatomic marketmakers. The
result follows from the fact that a search economy is inherently uncompetitive,
in that each time agents meet, a bilateral bargaining relationship obtains. With
many nonatomic marketmakers, however, it is natural to assume that z < 1,
while a monopolistic marketmaker could be assumed to have all of the bar-
gaining power (z = 1). In practice, monopolists could develop dominant bar-
gaining power by building a reputation for being “tough,” or by being larger
and wealthier than small investors."°

For these reasons, the label “monopolistic” serves to separate the case z =1
from the case z < 1. The distinction between monopolistic and competitive
marketmakers is clarified when search intensities are endogenized in Section 7.

A monopolistic marketmaker quotes an ask price 4 and a bid price B that
are, respectively, a buyer’s and a seller’s reservation value. Hence, in equilib-
rium, B< P < A.

61n our model, a marketmaker’s profit is not affected by any one infinitesimal trade. Further,
Board and Zwiebel (2003) show that if agents bid resources for the right to make an offer, one
agent much richer than another endogenously receives the entire bargaining power.
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4. FAST SEARCH LEADS TO COMPETITIVE PRICES?

A competitive Walrasian equilibrium is characterized by a single price
process at which agents may buy and sell instantly, such that supply equals de-
mand in each state and at every point in time. A Walrasian allocation is efficient
and all assets are held by agents of high type, if there are enough such agents,'”
which is the case in steady state if s < A,/(A, + Ay). In this case, the unique
Walras equilibrium has agent masses

a7 w,=s
* )\“
lU‘hn - AM +Ad >
my, =0,
. M
/‘Lln - )\u—i‘)\d,
and price

< 1
(18) P*:E,[/ e"“")ds:|=;,
t

which may be viewed as the reservation value of holding the asset forever for a
hypothetical investor who is always of high type.

In the case that s > A, /(A, + A;), the masses are determined similarly, and
since the marginal investor has low liquidity, the Walrasian price is the reser-
vation value of holding the asset indefinitely for a hypothetical agent who is
permanently of low type (thatis, P* = (1—38)/r). If s = A, /(A, + Ay), then any
price P* between 1/r and (1 — 6)/r is a Walrasian equilibrium.

Faster search by either investors or marketmakers leads in the limit to the
efficient allocations u* of the Walrasian market. The following theorem further
determines the circumstances under which prices approach the competitive
Walrasian prices, P*.

THEOREM 3: Let (A%, p*, u*, B*, A%, P*) be a sequence of stationary equilib-
ria.

1. Fast Investors. If A¥ — oo, (p*) is any sequence, and 0 < q < 1, then
w* — w*, and B*, A*, and P* converge to a Walrasian price P*.

2. Fast Competing Marketmakers. If p* — oo, (A¥) is any sequence, and
z < 1,then u* — w*, and B*, A*, and P* converge to a Walrasian price P*.

The quantity of such agents can be thought, for instance, as the capacity for taking a certain
kind of risk.
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3. Fast Monopolistic Marketmaker. If A* = A is constant, p* — oo is an in-
creasing sequence, and z = 1, then u* — w* and the bid-ask spread, A* — B*, is
increasing.

Part 1 shows that prices become competitive and that the bid-ask spread ap-
proaches zero as investors find each other more quickly, regardless of the na-
ture of intermediation. In other words, the availability to investors of a search
alternative forces marketmakers to offer relatively competitive prices, consis-
tent with the evidence of Lamoureux and Schnitzlein (1997).'8

Part 2 shows that fast intermediation by competing marketmakers also leads
to competitive prices and vanishing bid—ask spreads. This may seem surprising,
given that an investor trades with the first encountered marketmaker, and this
marketmaker could have almost all bargaining power (z close to 1). As p in-
creases, however, the investor’s outside option when bargaining with a market-
maker improves, because he can more easily meet another marketmaker, and
this sequential competition ultimately results in competitive prices.

Part 3 shows that fast intermediation by a monopolistic marketmaker does
not lead to competitive prices. In fact, the bid-ask spread widens as inter-
mediation by marketmakers increases. This is because an investor’s potential
“threat” to search for a direct trade with another investor becomes increas-
ingly less persuasive, since the mass of investors with whom there are gains
from trade is shrinking.

Contrary to our result, Rubinstein and Wolinsky (1985) find that their bar-
gaining equilibrium (without intermediaries) does not converge to the compet-
itive equilibrium as trading frictions approach zero. Gale (1987) argues that
this failure is due to the fact that the total mass of agents entering their econ-
omy is infinite, which makes the competitive equilibrium of the total economy
undefined. Gale (1987) shows that if the total mass of agents is finite, then
the economy (which is not stationary) is Walrasian in the limit. He suggests
that, when considering stationary economies, one should compare the bargain-
ing prices to those of a “flow equilibrium” rather than a “stock equilibrium.”
Our model has a natural determination of steady-state masses, even though no
agent enters the economy. This is accomplished by considering agents whose
types change over time.!” We are able to reconcile a steady-state economy with
convergence to Walrasian outcomes in both a flow and stock sense, both for

8This result holds, under certain conditions, even if the monopolistic marketmaker can be
approached instantly (p = +00). In this case, for any finite A, a/l trades are done using the mar-
ketmaker, but as the investors’ outside options improve, even a monopolistic marketmaker needs
to quote competitive prices.

YGale (1986a, 1986b) and McLennan and Sonnenschein (1991) show that a bargaining game
implements Walrasian outcomes in the limiting case with no frictions (that is, no discounting) in
much richer settings for preferences and goods. See also Binmore and Herrero (1988).
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allocations and for prices, and by increasing both investor search and market-
maker search.?’

5. NUMERICAL EXAMPLE

We illustrate some of the search effects on asset pricing and marketmaking
with a numerical example. Figure 1 shows the marketmakers’ bid (B) and ask
(A) prices as well as the interinvestor price (P). These prices are plotted as
functions of the intensity, p, of meeting dealers. The top panel deals with the
case of competing marketmakers with bargaining power z = 0.8, whereas the
bottom panel treats a monopolistic marketmaker (z = 1). The parameters that
underlie these graphs are as follows. First, A, = 0.1 and A, = 1, which implies
that an agent is of high liquidity type 91% of the time. An investor finds other
investors on average every two weeks, that is, A = 26, and selling investors
have bargaining power ¢ = 0.5. The supply is s = 0.8 and the interest rate is
r=0.05.

Since allocations become more efficient as p increases, for both the competi-
tive and monopolistic cases, all prices increase with p. Interestingly, in the case
of competing marketmakers (z = 0.8), the bid-ask spread decreases to zero
and the prices increase to the Walrasian price 1/7 = 20. In the case of a monop-
olist marketmaker (z = 1), on the other hand, the bid—-ask spread is increasing
in p and, due to this spread, the prices are bounded away from 1/r = 20.

The intuition for this difference is as follows. When the dealers’ contact in-
tensities increase, they execute more trades. Investors then find it more diffi-
cult to contact other investors with whom to trade. If dealers have all of the
bargaining power, this leads to wider spreads. If dealers do not have all of the
bargaining power, however, then higher marketmaker intensity leads to a nar-
rowing of the spread, because an investor has an improved threat of waiting to
trade with the next encountered marketmaker.

6. HETEROGENEOUS INVESTORS

So far, we have assumed that investors are homogeneous with respect to the
speed with which they find counterparties. In certain OTC markets, however,
some investors are more sophisticated than others, in the sense that they have
faster and easier access to counterparties. To capture this effect, we assume
that there are two different investor classes: “sophisticated,” of total mass u’,
and “unsophisticated,” of mass 1 — u*. We assume that sophisticated investors
meet marketmakers with an intensity p*, while unsophisticated investors meet

2Qther important differences between our framework and that of Rubinstein and Wolin-
sky (1985) are that we accommodate repeated trade and we diminish search frictions explicitly
through A rather than implicitly through the discount rate. See Bester (1988, 1989) for the im-
portance of diminishing search frictions directly.



OVERTHE-COUNTER MARKETS 1829

Prices

182} -

18 5 'l |?

10 10 p 10 10

Monopolistic Dealer, z = 1
P . .
198l -
196 -
194} =TT o
. _________-——

- e E—
w07 T e ]
Ejl - - // _ - -

'.c;'l 8r - - ,/J/ - T
f - -
[al L e
18| N |
. -~ // -
- - - -
1BEF < < -
- -:,,// - -
- -
b 5 -~
1w .
-
-
18.2F E
‘3 'l 1
10° 10 p 10° 10t

FIGURE 1.—The solid line shows the price P for trades between investors; the dashed lines
show the bid (B) and ask (A) prices applied by marketmakers. The prices are functions of the
intensity (p) with which an investor meets a dealer, which is plotted on a logarithmic scale. The
bargaining power z of the marketmaker is 0.8 in the top panel and 1 in the bottom panel.
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marketmakers at intensity p“, where p* < p°. We assume here that investors
cannot trade directly with each other, that is, A = 0. If this assumption is re-
laxed and investors are able to find each other (possibly with type-dependent
speeds), then the nature of the equilibrium that we will describe would change
for certain parameters. In particular, sophisticated investors would, under cer-
tain conditions, profit from executing as many trades as possible and would
start acting like marketmakers. This interesting effect is beyond the scope of
this paper; we focus on how marketmakers react to differences in investor so-
phistication.

An investor’s type is observable to marketmakers, who have bargaining
power z < 1. When a sophisticated investor meets a marketmaker, the out-
come of their bargaining is a bid price of B* or an ask price of 4. An un-
sophisticated investor takes more time to locate a marketmaker, resulting in
higher expected holding costs and a poorer bargaining position. Hence, unso-
phisticated investors receive different bid and ask prices, which we denote by
B* and A", respectively.

When the supply of shares is so low that sophisticated investors are
“marginal” buyers, then all unsophisticated investors optimally stay out of the
market, that is, they never buy. Similarly, when the asset supply is large, so-
phisticated investors are marginal sellers, and unsophisticated investors hold
the asset, never selling. With an intermediate supply, all investors trade, but
unsophisticated investors trade at a larger spread. The following theorem char-
acterizes the most important properties of the equilibrium with heterogeneous
investors; a full characterization is in the Appendix.

THEOREM 4: In equilibrium, unsophisticated investors do not trade if s <
WA/ A+ A)ors >1— u (Ag/ (A, + Ag)). Otherwise, all investors trade and
marketmakers quote a larger bid—-ask spread to unsophisticated investors than to
sophisticated investors. That is, A" — B* > A* — B°. In particular, an agent who
meets a marketmaker with intensity p faces a bid—ask of

z6

(19 A-B= .
r+A+ A+ p(1-2)

7. ENDOGENOUS SEARCH AND WELFARE

Here, we investigate the search intensities that marketmakers would op-
timally choose in the two cases considered above: a single monopolistic
marketmaker and nonatomic competing marketmakers. We illustrate how
marketmakers’ choices of search intensities depend on (i) a marketmaker’s
personal influence on the equilibrium allocations of assets and (ii) a market-
maker’s bargaining power. We take investors’ search intensity A as given, and
assume that the meeting intensity p between investors and marketmakers is
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determined solely by marketmakers’ technology choice. Considering the inter-
actions that arise if both investors and intermediaries choose search intensities
would be an interesting issue for future research.”!

Because the marketmakers’ search intensities, collectively, affect the mas-
ses u of investor types, it is natural to take as given the initial masses, wu(0), of
investors, rather than to compare based on the different steady-state masses
that correspond to different choices of search intensities. Hence, in this sec-
tion, we are not relying on a steady-state analysis.

We assume that a marketmaker chooses one search intensity and abides by
it. This assumption is convenient and can be motivated by interpreting the
search intensity as based on a technology that is difficult to change. A full dy-
namic analysis of the optimal control of marketmaking intensities with small
switching costs would be interesting, but seems difficult. We merely assume
that marketmakers choose p so as to maximize the present value, using their
discount rate r, of future marketmaking spreads, net of the rate I'(p) of tech-
nology costs, where I":[0, co) — [0, co) is assumed for technical convenience
to be continuously differentiable, strictly convex, with I'(0) =0, I''(0) =0, and
lim,_ . I'"(p) = oo.

The marketmaker’s trading profit, per unit of time, is the product of the
volume of trade, pu,,, and the bid-ask spread, 4 — B. Hence, a monopolistic
marketmaker who searches with an intensity of p has an initial valuation of

I'(p)

7

(20) ™ (p) = E[/ pm(t, p)(A(L, p) — B(t, p))e™ dt} -
0

where w,, = min{w,,, us,} and where we are using the obvious notation to in-
dicate dependence of the solution on p and ¢.

Any one nonatomic marketmaker does not influence the equilibrium masses
of investors and, therefore, values his profits at

o0 r
7(p) =PE[/ M (1) (A(E) —B(t))e”dt] - %-
0

An equilibrium intensity, p€, for nonatomic marketmakers is a solution to the
first-order condition

(1)  I'(pH= rE[/w mn(t, p) (A(t, p©) — B(t, p©))e™" dt}-
0

The following theorem characterizes equilibrium search intensities in the case
of “patient” marketmakers.

2Related to this, Pagano (1989) considers a one-period model in which investors choose be-
tween searching for a counterparty and trading on a centralized market.
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THEOREM 5: There exists a marketmaking intensity p™ that maximizes ™ (p).
There exists ¥ > 0 such that, for all r < r and for each z € [0, 1], a unique num-
ber p€(z) solves the optimal search intensity condition (21). Moreover, p©(0) =
p€(2) is increasing in z, and p© (1) is larger than any solution, p™, to the monop-
olist’s problem.*

In addition to providing the existence of equilibrium search intensities, this
result establishes that (i) competing marketmakers provide more marketmak-
ing services if they can capture a higher proportion of the gains from trade and
(ii) competing marketmakers with full bargaining power provide more market-
making services than a monopolistic marketmaker, since they do not internal-
ize the consequences of their search on the masses of investor types.

To consider the welfare implications of marketmaking in our search econ-
omy, we adopt as a notion of “social welfare” the sum of the utilities of in-
vestors and marketmakers. This can be interpreted as the total investor utility
in the case in which the marketmaker profits are redistributed to investors, for
instance, through asset holdings. With our form of linear preferences, maximiz-
ing social welfare is a meaningful concept in that it is equivalent to requiring
that utilities cannot be Pareto improved by changing allocations and by mak-
ing initial consumption transfers.” By “investor welfare,” we mean the total
of investors’ utilities, assuming that marketmakers’ profits are not redistrib-
uted to investors. We take “marketmaker welfare” to be the total valuation of
marketmaking profits, net of the cost of intermediation.

In our risk-neutral framework, welfare losses are easily quantified. The total
“social loss” is the cost I'(p) of intermediation plus the present value of the
stream 6, (1), t > 0, of dividends wasted through misallocation. At a given
marketmaking intensity p, this leaves the social welfare

w'(p)=E / (S—SMzo(t))e"’dt} (p)

Investor welfare is, similarly,

w'(p)=E / (s — (2, p)
0

— pin(t, p)(A(L, p) — B(t, p)))e—rt d[:|

and the marketmakers’ welfare is

% r
w"(p) =E[/ pum(t, p)(A(t, p) — B(t, p))e™ dt] - g
0

221f the monopolist’s bargaining power is z < 1, it still holds that p©(z) > p (z).
ZThis “utilitarian” social welfare function can be justified by considering the utility of an agent
“behind the veil of ignorance,” not knowing what type of agent he will become.



OVERTHE-COUNTER MARKETS 1833

We consider first the case of monopolistic marketmaking. We let p™ be the
level of intermediation optimally chosen by the marketmaker and let p° be
the socially optimal level of intermediation. The relationship between the mo-
nopolistic marketmaker’s chosen level p* of intensity and the socially optimal
intensity p® is characterized in the following theorem.

THEOREM 6: Let z = 1. (i) If investors cannot meet directly, that is, A = 0,
then the investor welfare w'(p) is independent of p and a monopolistic market-
maker provides the socially optimal level p® of intermediation; that is, pM = pS.
(ii) If A > 0, then provided q is 0 or 1, w'(p) decreases in p and the monopolistic
marketmaker overinvests in intermediation; that is, pM > p5.

The point of this result is that if investors cannot search, then their utilities
do not depend on the level of intermediation because the monopolist extracts
all gains from trade. In this case, because the monopolist gets all social benefits
from providing intermediation and bears all of the costs, he chooses the socially
optimal level of intermediation.

If, on the other hand, investors can trade directly with each other, then the
marketmaker may exploit the opportunity to invest in additional search for
trades so as to reduce the opportunities of investors to trade directly with each
other. Therefore, investor welfare decreases with p. Consequently, the market-
maker’s marginal benefit from intermediation is larger than the social benefit,
so there is too much intermediation.?

We now turn to the case of nonatomic (competing) marketmakers. We saw
above that the equilibrium level of intermediation of a nonatomic market-
maker depends critically on its bargaining power. With no bargaining power,
such a marketmaker provides no intermediation. With complete bargaining
power, they search more than a monopolistic marketmaker would.

A government may sometimes be able to affect intermediaries’ mar-
ket power, for instance through the enforcement of regulation (DeMarzo,
Fishman, and Hagerty (2000)). Hence, we consider the following questions:
How much marketmaker market power is socially optimal? How much mar-
ket power would the intermediaries choose to have? Would investors prefer
that marketmakers have some market power? These questions are answered
in the following theorem, in which we let z/, z5%, and z" denote the market-
maker bargaining power that would be chosen by, respectively, the investors,
a social-welfare maximizing planner, and marketmakers.

THEOREM 7: It holds that z' > 0. There is some ¥ > 0 such that, provided
r<r,wehave z < z5<z™ =1.

2If 0 < g < 1, then increasing p has the additional effect of changing the relative strength of
investors’ bargaining positions with the marketmaker, because it changes their outside options,
which complicates the calculations.
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Investors in our model would prefer to enter a market in which nonatomic
marketmakers have some market power z’ > 0, because this gives marketmak-
ers an incentive to provide intermediation. The efficient level of intermedia-
tion is achieved with even higher marketmakers, power z5 > z/. Marketmakers
themselves prefer to have full bargaining power.

8. EMPIRICAL IMPLICATIONS

This paper lays out a theory of asset pricing and marketmaking based on
search and bargaining. We show how search-based inefficiencies affect prices
through equilibrium allocations and through the effect of search on agents’
bargaining positions, that is, their outside options based on their ability to trade
with other investors or marketmakers.

Consider, for example, the OTC market for interest-rate swaps, which, ac-
cording to the British Bankers Association has open positions totalling roughly
$100 trillion dollars. Customers rarely have material private information about
the current level of the underlying interest rates, so standard information-
based explanations of bid-ask spreads are not compelling in this market. In-
stead, a “sales trader” sets spreads based on a customer’s (perceived) outside
option and would rarely fear that the customer has superior information about
the underlying interest rates. The customer’s outside option depends on how
easily he can find a counterparty himself (proxied by A in our model), and
how easily he can access other banks (proxied by p in our model). To trade
OTC derivatives with a bank, one needs, among other things, an account and
a credit clearance. Smaller investors often have an account with only one or a
few banks, lowering their search options. Hence, a testable implication of our
search framework is that smaller investors, typically those with fewer search
options, receive less favorable prices. We note that these investors are less
likely to be informed, so traditional information-based models of spreads (for
example, Glosten and Milgrom (1985)), applied to this market, would have
the opposite prediction. Consistent with our results, Schultz (2001) finds that
bid-ask spreads are larger for smaller trades and for smaller (institutional) in-
vestors in the market for corporate bonds. Furthermore, Green, Hollifield, and
Schurhoff (2004) and Harris and Piwowar (2004) find that bid—ask spreads are
larger for smaller trades and for more complex instruments in the market for
municipal bonds.

The model that we present here can also be viewed as one of imperfect
competition, for example, in specialist-based equity markets. In particular, the
model shows that even a monopolistic marketmaker may have a tight bid—ask
spread if investors can easily trade directly with each other (that is, have a
high A). This resembles situations at the New York Stock Exchange (NYSE) in
which, despite a single specialist for each stock, floor brokers can find and trade
among themselves, and outside brokers can find each other and trade “around”
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the specialist with limit orders. However, on Nasdaq, a “phone market” with
several dealers for each stock, it can be difficult for investors to find each other
directly. Before the reforms of 1994, 1995, and 1997, it was difficult for in-
vestors to compete with Nasdaq marketmakers through limit orders.” This
may help explain why spreads were higher on Nasdaq than on NYSE (Huang
and Stoll (1996)). Consistent with this view, Barclay, Christie, Harris, Kandel,
and Schultz (1999) find that the “Securities and Exchange Commission began
implementing reforms that would permit the public to compete directly with
Nasdaq dealers by submitting binding limit orders. ... Our results indicate that
quoted and effective spreads fell dramatically.”

The competition faced by marketmakers from direct trade between investors
can perhaps be gauged by the participation rate of marketmakers, that is, the
fraction of trades that are intermediated by a marketmaker. Our model sug-
gests that, with equal marketmaker availability and stock characteristics, stocks
with higher participation rates are characterized by lower search intensity ()
and, hence, higher bid—ask spreads. On Nasdaq, the participation rate was
once large relative to the NYSE, whose participation rate was between 18.8%
and 24.2% in the 1990s (New York Stock Exchange (2001)). At that time, the
NYSE may well have covered stocks whose investors had higher direct contact
rates (1) than those covered, on average, by Nasdagq.

Our modeled counterparty search times can proxy, in practice, also for de-
lays necessary for counterparties to verify one another’s credit standing, and
to arrange for trade authorization and financing or for the time necessary to
familiarize an investor with a product type or contractual terms. Even in an
OTC market as liquid as that of U.S. Treasuries, delays necessary to contact
suitable counterparties are frequently responsible for meaningful price effects,
for example, as documented by Krishnamurthy (2002). Duffie, Garleanu, and
Pedersen (2003) provide additional discussion of the empirical relevance of
search for asset pricing behavior.
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APPENDIX: PROOFS

PROOF OF PROPOSITION 1: Start by letting

B /\u + /\d’

y

and assume that y > s. The case y < s can be treated analogously. Setting the
right-hand side of (3) to zero and substituting all components of u other than
W, in terms of wy, from (1) and (2) and from wy, + w, = Ag(Ag+A,) '=1—y,
we obtain the quadratic equation

(A-l) Q(/-Llo) = 07

where
(A2) Q) =2Ax"+ (2A(y — ) + p+ Ay + Ag) X — Ays.

It is immediate that Q has a negative root (since Q(0) < 0) and has a root in
the interval (0, 1) (since Q(1) > 0).

Since u, is the largest and positive root of a quadratic with positive leading
coefficient and with a negative root, to show that w;,, < n for some 5 > 0, it
suffices to show that Q(n) > 0. Thus, so that w,, > 0 (for, clearly, w,, < 1), it
is sufficient that Q(s) > 0, which is true, since

Q(s) = 28" + (A, +2A(y — 5) + p)s.
Similarly, w;,, > 0if Q(1 — y) > 0, which holds because
Q1 —y) =221 = y)* + Ay — )+ p)(1 = y) + Ay (1 — ).

Finally, since w;,, =y — s + s, it is immediate that u;, > 0.

We present a sketch of a proof of the claim that from any admissible initial
condition w(0), the system converges to the steady state w.

Because of the two restrictions (1) and (2), the system is reduced to
two equations, which can be thought of as equations in the unknowns
i (1) and w,(t), where w,(t) = w,(t) + i, (¢). The equation for w,(¢) does
not depend on w,,(#), and admits the simple solution

Ad

1) = O e—()\d+)tt¢)t+
M (1) = i (0) RYED W)

(1 _ e_()\d"')\u)t)'

Define the function

G(w, x) = —2Ax% — (Au + A+ 201 —s—w) + p)x
4+ pmax{0, s +w — 1} + Ays



OVERTHE-COUNTER MARKETS 1837

and note that u,, satisfies

Puo (1) = G (pi(1), o (1))

The claim is proved by the following steps:

1. Choose t, high enough that s + u,(¢#) — 1 does not change sign for # > #,.

2. Show that u,, () stays in (0, 1) for all ¢ by verifying that G(w, 0) > 0 and
G(w,1) <0.

3. Choose #, (> 1) high enough that w,(¢) changes by at most an arbitrarily
chosen ¢ > 0 for ¢ > 1,.

4. Note that, for any value wu;, (%) € (0, 1), the equation

(A3) (1) = G(w, x(1))

with boundary condition x(%) = w, (%) admits a solution that converges ex-
ponentially, as ¢+ — oo, to a positive quantity that can be written as (—b +
v/b*+ c), where b and c are affine functions of w. The convergence is uni-
form in w, (%).

5. Finally, using a comparison theorem (for instance, see Birkhoff and Rota
(1969, p. 25)), w,(t) is bounded by the solutions to (A.3) that correspond to
w taking the highest and lowest values of w,(¢) for ¢ > ¢, (these are, of course,
wi(ty) and lim,_, o, u;(2)). By virtue of the previous step, for high enough ¢, these
solutions are within O(¢) of the steady-state solution p,. Q.E.D.

PROOF OF THEOREM 2: To calculate V, and P, we consider a particular
agent and a particular time ¢, let 7, denote the next (stopping) time at which
that agent’s intrinsic type changes, let 7; denote the next (stopping) time at

which another investor with gain from trade is met, let 7,, denote the next time
a marketmaker is met, and let 7 = min{r,, 7;, 7,,}. Then,

(A4) I/;o = Et |:/ e_’(”_t)(l — 6) du + e—r(r;—t)[/h()]]_(T[:T}
t

+e "W+ P)jpry + e OV, + B)]l(T"’=T]:| ’
I/ln = Et[e_r(Tl_t)I/hn]a
Tl
Vie=E, [/ e du+ e*(“‘%}
t

Vin=E/[e" " " Viliyyer) + € Vig = P) gz,
+ efr(rmft)(Vho _ A)l(fmzf)]’

where E, denotes expectation conditional on the information available at
time ¢. Differentiating both sides of (A.4) with respect to ¢, we get (10).
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In steady state, ¥, = 0 and hence (10) implies the following equations for
the value functions and prices:

A5 Vie=
( ) : r+AM+2Al'Lhn+p
Aan
V= 2
r+ A,
AdVie +1
V= u,
I"+)\d
V., — ()\dI/In + (2)\/-1/10 + p)I/ho - 2A/~'L10P - PA)
hn — .

r4+Ag+2Am +p

(We note that agents on the “long side” of the market are rationed when they
interact with the marketmaker and, therefore, their trading intensity with the
marketmaker is less than p. This does not affect (A.5), however, because the
price is the reservation value.) Define AV, =V}, — V}, and AV, =V}, — V},, to be
the reservation values. With this notation, the prices are determined by

(A6) P=AVi(1—-q)+AV,q,

A=AV,z+M( - 2),
B=AViz+M(1-2),

/\u
AV, ifs</\ T
M= u d

AV, ifs> —%—,
Ayt Ay

and M € [AV, AV, ]if s = A, /(A + Ay). Let

ha=Aa+ 22w, (1 — @) + (1 —q)p(1 - 2),
lpu = Au +2/\/-Lhnq+ []P(l - Z),

where

Ay
=1, if s < ,
u + /\d

/\u
gl=0, ifs > ,
/\u + /\d

Ay

€[0,1], ifs=

/\u + /\d
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With this notation, we see that appropriate linear combinations of (A.5)—(A.6)

yield
r+d, =, AV, | _|1-6
—a Ty [[AV] [ 1]

Consequently,

AV _ 171 0 1 r+ ¢y
(A [AVJ o [1] rr Yt b [ z ]
which leads to the price formula stated by the theorem. Note also that
AV, < AV,

Finally, we need to verify that any agent prefers, at any time, given all infor-
mation, to play the proposed equilibrium trading strategy, assuming that other
agents do. It is enough to show that an agent agrees to trade at the candidate
equilibrium prices when contacted by an investor with whom there are poten-
tial gains from trade.

The Bellman principle for an agent of type /o in contact with an agent of type
hn is

P+Vy

> Et |:./ e—r(u—t)(l _ 5) du + e—r(r[-t)[/ho:u_m:ﬂ
t
+ e_r(Ti_t)(I/ln + P)]]-(Ti:T} + e_r(Tm_t)(I/ln + B):[L{Tm_T}i| ’

where 7 = min{r,, 7;, 7,,}. This inequality follows from that fact that AV}, > P >
AV}, which means that selling the asset, consuming the price, and attaining the
candidate value of a nonowner with low valuation, dominates (at least weakly)
the value of keeping the asset, consuming its dividends, and collecting the dis-
counted expected candidate value achieved at the next time 7, of a trading
opportunity or at the next time 7, of a change to a low discount rate, whichever
comes first. There is a like Bellman inequality for an agent of type An.

Now, to verify the sufficiency of the Bellman equations for individual opti-
mality, consider any initial agent type o (0) and any feasible trading strategy 6,
an adapted process whose value is 1 whenever the agent owns the asset and
0 whenever the agent does not own the asset. The associated type process o
and a wealth process of W =0 (which can be assumed without loss of general-
ity) determine a cumulative consumption process C? that satisfies

(A8)  dC’=6,(1— 6104 dt—Pdb,.
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Following the usual verification argument for stochastic control, for any fu-
ture meeting time 7", m € N, we have

m

Vo) = E[/ e dCf} +E[e™™"Vyo0m)]-
0

(This assumes without loss of generality that a potential trading contact does
not occur at time 0.) Letting m go to oo, we have V,, > U(C?). Because
V) = U(C*), where C* is the consumption process associated with the candi-
date equilibrium strategy, we have shown optimality. Q.E.D.

PROOF OF THEOREM 3: The convergence of the masses u to u* is easily
seen using (A.1), whether A or p tends to infinity. Let us concentrate on the
prices.

1. If s < Ay/(Ay + Ay), then we see using (A.1) that Auy, tends to infin-
ity with A, while Au,, is bounded. Hence, (A.7) shows that both Al and AV,
tend to r~!, provided that ¢ > 0. If s > A,/(A, + Ay4), Awy, tends to infinity
with A, while Ay, is bounded. Hence, AV, and AV, tend to r~'(1 — §), pro-
vided that g < 1. If s = A,,/(A, + Ay), then Ay, = Ay, tends to infinity with A,
and AV and AV, tend to r~1(1 — 8(1 — g)). In each case, the reservation values
converge to the same value, which is a Walrasian price.

2. Equation (A.7) shows that both A}; and AV, tend to the Walrasian price
r~'(1—68(1—§)) as p approaches infinity.

3. When z =1, A¥ — B* increases with p because A —B=8(r+ ¢, + h4) !
and both ¢, and s, decrease, since w;, and u,, do. QO.E.D.

PROOF OF THEOREM 4: Let the value function of a sophisticated type-o
investor be ¥ and let the value function of an unsophisticated type-o investor
be V. These value functions and the prices (A4°, B°, A%, B*) are computed as in
(A.5) and (A.6), with the modification that the interdealer price M is different.
For any fixed interdealer price M, an agent who meets the marketmaker with
intensity p, and who sells as a lo type and buys as an hn type (i.e., with A}] <
M < AV,) has value functions determined by

Vio(r +Ag) =1+ AV,

Vin(r + Aa + p) = AV + p(Vio — [2AV, + (1 — 2)M]),

Vio(r + A) = AVins

Vo(r+ A+ p)=1=84 AV + p(Vin + [2AV + (1 — 2)M]).
The system reduces to

AV, (r4+ A+ p(1—2)) =14+ AAV 4+ p(1 — 2)M,

AVr+ A +p(1—2)=1—-8+NAV, +p(1 —2)M,
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which implies that
AV _1+pd-—2)M[1
A9 =—
(&) [AVJ r+pl-2z) [1
8 1
r+pl—2)r4+ A, +As+p(1—2)

8 |:r+)\d+p(1—z)i|
Y :

Hence, this agent faces a bid-ask spread of

z8

zZ(AV, — AV)) = .
A=A = T+ p(=2)

We show below, for each case, that M is given by

AVS if s—”’
w, ifs<pu Y
Ay Ay
AV, if pf <s§< —,
(A10) M= Ayt Ag Aut g
' B Ay A
AV, if <s<l-w—2_,
AutAg Ayt Aa
. Ad
AVP, ifl—pu’ .
1> 1 I /\u +Ad <SS

CASE (a): Consider first the case of s < w*A,/(A, 4+ Ay). The claim is that it is
an equilibrium that the unsophisticated investors own no assets. Assuming this
to be true, the market has only sophisticated investors, the interdealer price is
M = AV}, and the buyers are rationed.

It remains to be shown that, with this interdealer price, there is no price
at which marketmakers will sell and unsophisticated investors will buy. First,
we note that the optimal response of an investor to the Markov (time-
independent) investment problem can be chosen to be Markov, which means
that one only needs to check the payoffs from Markov strategies that stipulate
the same probability of trade for a given type at any time. The linearity of the
problem further allows one to assume that the trading probability is 1 or 0.
(When indifferent, the choice does not matter, so we may assume a corner
solution.)

There are three possible Markov strategies for the unsophisticated investor
that involve buying: buying as type / and selling as type /, buying as type / and
selling as type 4, and buying and holding (never selling).

If the unsophisticated investor buys as an 4 type and sells as an / type, then
her value function satisfies (A.9), implying that AV} < AV}’ = M since p* < p*.
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The reservation values are even lower if she buys as an / and sells as an # type.
Finally, if the unsophisticated investor buys and never sells, then her value
function is also smaller than M. This is inconsistent with trading with the mar-
ketmaker, meaning that she never buys.

CASE (b): For the case uj < s < u,, the equilibrium is given by an inter-
dealer price of A* = M = AV} = A(p*). This is also the price at which
unsophisticated sn agents buy from the marketmaker, and these agents are
rationed. The sophisticated types hold a total w), = u*A,/(A, + A,) of the sup-
ply, while the unsophisticated types hold the rest. This is clearly an equilibrium
for the unsophisticated types. We must ensure that sophisticated types also be-
have optimally. In particular, we must check that AV;* <M < AV}’. For this, we
use (A.7) and (A.9). We have AV < M if and only if

1+p°(1-2)M
r+p’(1 —2)
3+ M+p(l—2) 1 B
r+ps(1—2) r+A,+A+p(1—2) "
which holds if and only if

b

r+A;+p(1—-2) - Ag
r+Ml+A+p(1—2) T r4+ A+ A+ pi(l—2)]

which holds because p* > p“. Similarly, it can be verified that M < AV}’ using
the same formulae.

CASE (c): The remaining two cases are dual to those just treated. To see this,
take the following new perspective of an agent’s problem: An agent considers
“acquiring” nonownership (that is, selling). The number of shares of nonown-
ership is 1 — s. If an / type acquires nonownership, then he gets a dividend
of —(1 — &) (that is, he gives up a dividend of 1 — 8). If an & type acquires
nonownership, then he gets a dividend of —1. Said differently, he gets a divi-
dend of —(1 — 6) like that of the / type and, additionally, he has a cost of é.
Hence, from this perspective, & and [ types are reversed and the supply of
sharesis 1 —s.

This explains why the equilibria in the latter two cases are mirror images
of the equilibria in the former two cases. In particular, if A,/(A, + Ay) <5 <
1 — w'(Ag/(Ay + Ag)), then both sophisticated and unsophisticated investors
trade, and the unsophisticated / type is rationed.

If 1 — pw*(Ay/(Ay + Ay)) < s, each unsophisticated investor owns a share and
does not trade. (Using the alternative perspective, they are out of the market
for nonownership.) The sophisticated investors hold the remaining (1 — u*)
shares, they trade, and the selling sophisticated investors are rationed. Q.E.D.
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PROOF OF THEOREM 5: There exists a number p" that maximizes (19) since
7™ is continuous and 7™ (p) — —oo as p — oo. We are looking for some

p€ > 0 such that
(ALl T'(p%) =rE / B (P (A(p©) = B(p©))e ™ d.
0

Consider how both the left-hand and right-hand sides depend on p. The left-
hand side is 0 for p = 0, increasing, and tends to infinity as p tends to infinity.
For z =0, A(¢, p) — B(t, p) = 0 everywhere, so the right-hand side is zero, and,
therefore, the unique solution to (A.11) is clearly p¢ = 0. For z > 1, the right-
hand side is strictly positive for p = 0. Furthermore, the steady-state value of
the right-hand side can be seen to be decreasing, using the fact that u,, is de-
creasing in p and using the explicit expression for the spread provided by (A.7).
Furthermore, by continuity and still using (A.7), there is € > 0 and T such that
%;u,m(A —B) < —¢forall t > T and all r. Further, note that ¢ — re~"" is a prob-
ability density function for any » > 0 and that the closer is r to zero, the more
weight is given to high values of ¢ (that is, the more important is the steady-
state value for the integral). Therefore, the right-hand side is also decreasing
in p for any initial condition on w if r is small enough. These results yield the
existence of a unique solution.

To see that p© > p™ when z = 1, consider the first-order conditions that
determine p":

(A12) TI'(p")

=rE / [uma, P (AL, p™) — B(t, p™))
0

J
+ pM@—M(Mm(t, P (A, p") - B(t, pM)))]e‘”dt-

The integral of the first integrand term on the right-hand side of (A.12) is the
same as that of (A.11), and that of the second is negative for small . Hence, the
right-hand side of (A.12) is smaller than the right-hand side of (A.11), implying
that p(1) > pM.

To see that p©(z) is increasing in z, we use the implicit function theorem and

the dominated convergence theorem to compute the derivative of p©(z) with
respect to z as

TE [ um(p€)(A.(p€, 2) — B.(pC, 2))e " dt
I"(p©) = rE [;"(d/dp)pn(p)(A(p€, 2) = B(p€, 2))e~rdt”

If we use the steady-state expressions for u, 4, and B, this expression is seen
to be positive because both the denominator and the numerator are posi-

(A.13)
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tive. Hence, it is also positive with any initial masses if we choose r small
enough. QE.D.

PROOF OF THEOREM 6: (i) The first part of the theorem, that the monop-
olistic marketmaker’s search intensity does not affect investors when they can
not search for each other, follows from (A.5), which shows that investor’s utility
is independent of p.

(i) We want to prove that the investor welfare is decreasing in p, which
directly implies that the marketmaker overinvests in intermediation services.

We introduce the notation AV, =V, — V,,, AV, =V, — V., and ¢ = AV}, —
AV; = AV, — AV, and start by proving a few general facts about the market-
maker spread, ¢.

The dynamics of ¢ are given by the ordinary differential equation (ODE)

(i)l‘ = (r + /\d + )\u + 2)\(1 - Q)Mlo + 2)\q/*'(‘/m)d)t - 8'

Let R=r+ Ay + Ay + 201 — @) o + 2Aqu,- The equation above readily
implies that

(A14) (9¢)t :R% + (ZA(l _ q)aﬂlo(t) +2/\qaﬂvhn(t))¢t
P P dp ap

This can be viewed as an ODE in the function % by treating ¢, as a fixed

function. It can be verified that 0 < % < oo in the limit as ¢ — oo, that
is, in steady state. Furthermore, a simple comparison argument yields that
Ao (1) /dp = A (t)/dp < 0. Hence, the solution to the linear ODE (A.14)

is positive since

J > It Ifn
9o _ _/ R0 (2/\(1 _ 2B gt (”)>¢udu > 0.
p ‘ p p

Consider now the case g = 1, for which, since V,, =V, =0,
Vio(t) = rVio () + Xach, — 1.

Differentiating both sides with respect to p and using arguments as above, we
see that dV},(¢)/dp < 0 since d¢,/dp > 0. Consequently, Vj,(t) =V, (¢) — ¢,
also decreases in p.

If g =0, then (A.5) shows that Vj, and V},, are independent of p. Further-
more,

Vie(£) = Vi (8) 4+ Au( b, — AV, (1)).

As above, we differentiate with respect to p and conclude that V/,(¢) decreases
in p since d¢,/dp > 0 and AV, (¢) is independent of p. Consequently, V;,, () =
Viu(t) — ¢, + AV, (¢) also decreases in p. O.E.D.
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PROOF OF THEOREM 7:
To see that z/ > 0, we note that with p = p©(2),

C

4 :—5E/ di,u,o(t,p)e_”dtdi>0,
0o ap dz

Ew

z=0

where we have used that p©(0) =0, that dp©/dz > 0 at z =0 (see (A.13)), that
A —B=0if z=0, and that for all ¢, dip,u,,o(t, p) <0.

To prove that z/ < z5 < zM =1, it suffices to show that the marketmaker
welfare is increasing in z, which follows from

d M _ d * —rt
s —pE[E/O Mo (a —b)e df]
d
=L ()
rdz
C
= Pripen® o,
r dz

suppressing the arguments ¢ and p from the notation, where we have used twice
the fact that I (p) =rE [, (A — B)e " dt if p = p©(z) and that dp€/dz > 0
(Theorem 5). Q.E.D.
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