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Abstract

This article combines an orientation to credit risk modeling with an introduction to affine
Markov processes, which are particularly useful for financial modeling. We emphasize corpo-
rate credit risk and the pricing of credit derivatives. Applications of affine processes that are
mentioned include survival analysis, dynamic term-structure models, and option pricing with
stochastic volatility and jumps. The default-risk applications include default correlation, par-
ticularly in first-to-default settings. The reader is assumed to have some background in finan-
cial modeling and stochastic calculus.
� 2005 Elsevier B.V. All rights reserved.
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1. Introduction

This is a written version of the Cattedra Galileana lectures, presented in 2002 at
the Scuola Normale in Pisa. The objective is to combine an orientation to credit-risk
modeling (emphasizing the valuation of corporate debt and credit derivatives) with
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an introduction to the analytical tractability and richness of affine state processes.
This is not a general survey of either topic, but rather is designed to introduce
researchers with some background in mathematics to a useful set of modeling tech-
niques and an interesting set of applications.

Appendix A contains a brief overview of structural credit risk models, based on
default caused by an insufficiency of assets relative to liabilities, including the classic
Black–Scholes–Merton model of corporate debt pricing as well as a standard struc-
tural model, proposed by Fisher et al. (1989) and solved by Leland (1994), for which
default occurs when the issuer�s assets reach a level so small that the issuer finds it
optimal to declare bankruptcy. The alternative, and our main objective, is to treat
default by a ‘‘reduced-form’’ approach, that is, at an exogenously specified intensity
process. As a special tractable case, we often suppose that the default intensity and
interest rate processes are linear with respect to an ‘‘affine’’ Markov state process.

Section 2 begins with the notion of default intensity, and the related calculation of
survival probabilities in doubly-stochastic settings. The underlying mathematical
foundations are found in Appendix E. Section 3 introduces the notion of affine pro-
cesses, the main source of example calculations for the remainder. Technical founda-
tions for affine processes are found in Appendix C. Section 4 explains the notion of
risk-neutral probabilities, and provides the change of probability measure associated
with a given change of default intensity (a version of Girsanov�s Theorem). Technical
details for this are found in Appendix E.

By Section 5, we see the basic model for pricing defaultable debt in a setting with
stochastic interest rates and stochastic risk-neutral default intensities, but assuming
no recovery at default. The following section extends the pricing models to handle
default recovery under alternative parameterizations. Section 7 introduces multi-
entity default modeling with correlation. Section 8 turns to applications such as de-
fault swaps, credit guarantees, irrevocable lines of credit, and ratings-based step-up
bonds. Appendix F provides some directions for further reading.
2. Intensity-based modeling of default

This section introduces a model for a default time as a stopping time s with a gi-
ven intensity process, as defined below. From the joint behavior of the default time,
interest-rates, the promised payment of the security, and the model of recovery at
default, as well as risk premia, one can characterize the stochastic behavior of the
term structure of yields on defaultable bonds.

In applications, default intensities may be allowed to depend on observable variables
that are linked with the likelihood of default, such as debt-to-equity ratios, volatility
measures, other accounting measures of indebtedness, market equity prices, bond yield
spreads, industry performance measures, and macroeconomic variables related to the
business cycle, as in Duffie and Wang (2003). This dependence could, but in practice
does not usually, arise endogenously from amodel of the ability or incentives of the firm
tomake payments on its debt. Because the approach presented here does not depend on
the specific setting of a firm, it has also been applied to the valuation of defaultable sov-
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ereign debt, as in Duffie et al. (2003b) and Pagès (2000). (For more on sovereign debt
valuation, see Gibson and Sundaresan (1999) and Merrick (1999).)

We fix a complete probability space ðX;F;PÞ and a filtration fGt : t P 0g of sub-
r-algebras of F satisfying the usual conditions, which are listed in Appendix B.
Appendix E defines a non-explosive counting process. Such a counting process K re-
cords by time t the number Kt of occurrences of events of concern. Appendix E also
defines the notion of a predictable process, which is, intuitively speaking, a process
whose value at any time t depends only on the information in the underlying filtra-
tion fGt : t P 0g that is available up to, but not including, time t.

A counting process K has an intensity k if k is a predictable non-negative process
satisfying

R t
0
ks ds < 1 almost surely for all t, with the property that a local martin-

gale M, the compensated counting process, is given by

Mt ¼ Kt �
Z t

0

ks ds: ð2:1Þ

Details are found in Appendix E. The accompanying intuition is that, at any time t,
the Gt-conditional probability of an event between t and t + D is approximately ktD,
for small D. This intuition is justified in the sense of derivatives if k is bounded and
continuous, and under weaker conditions.

A counting process with a deterministic intensity process is a Poisson process. If
the intensity of a Poisson process is some constant a, then the times between events
are independent exponentially distributed times with mean 1/a. A standard reference
on counting processes is Brémaud (1981). Additional sources include Daley and
Vere-Jones (1988) and Karr (1991).

We will say that a stopping time s has an intensity k if s is the first event time of a
non-explosive counting process whose intensity process is k.

A stopping time s is non-trivial if Pðs 2 ð0;1ÞÞ > 0. If a stopping time s is non-
trivial and if the filtration fGt : t P 0g is the standard filtration of some Brownian
motion B in Rd , then s could not have an intensity. We know this from the fact that
if fGt : t P 0g is the standard filtration of B, then the associated compensated count-
ing process M of (2.1) (indeed, any local martingale) could be represented as a sto-
chastic integral with respect to B, and therefore cannot jump, but M must jump at s.
In order to have an intensity, a stopping time must be totally inaccessible, a property
whose definition (for example, in Meyer (1966)) suggests arrival as a ‘‘sudden sur-
prise’’, but there are no such surprises on a Brownian filtration!

As an illustration, we could imagine that the equityholders or managers of a firm
are equipped with some Brownian filtration for purposes of determining their opti-
mal default time s, as in Appendix A, but that bondholders have imperfect monitor-
ing, and may view s as having an intensity with respect to the bondholders� own
filtration fGt : t P 0g, which contains less information than the Brownian filtration.
Duffie and Lando (2001) provide, under conditions, the associated default intensity.1
1 Elliott et al. (2000) give a new proof of this intensity result, which is generalized by Song (1998) to the
multi-dimensional case. Kusuoka (1999) provides an example of this intensity result that is based on
unobservable drift of assets.
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We say that a stopping time s is doubly stochastic with intensity k if the underly-
ing counting process whose first jump time is s is doubly stochastic with intensity k,
as defined in Appendix E. The doubly-stochastic property implies that, for any time
t, on the event that the default time s is after t, the probability of survival to a given
future time s is

P ðs > sjGtÞ ¼ E e
�
R s

t
kðuÞdu

� ���Gt

�
: ð2:2Þ

Property (2.2) is convenient for calculations, because evaluating the expectation in
(2.2) is computationally equivalent to the standard financial calculation of default-free
zero-coupon bond price, treating k as a short-term interest-rate process. Indeed, this
analogy is also quite helpful for intuition when extending (2.2) to pricing applications.

It is sufficient for the convenient survival-time formula (2.2) that kt = K(Xt) for
some measurable K : Rd ! ½0;1Þ, where X in Rd solves a stochastic differential
equation of the form

dX t ¼ lðX tÞdt þ rðX tÞdBt; ð2:3Þ
for some ðGtÞ-standard Brownian motion B in Rd . Here, l(Æ) and r(Æ) are functions
on the state space of X that satisfy enough regularity for (2.3) to have a unique
(strong) solution. With this, the survival probability calculation (2.2) is of the form

Pðs > sjGtÞ ¼E e
�
R s

t
KðX ðuÞÞdu

� ���X ðtÞ� ð2:4Þ

¼f ðX ðtÞ; tÞ; ð2:5Þ

where, under the usual regularity for the Feynman–Kac approach, f(Æ) solves the
partial differential equation (PDE)

Af ðx; tÞ � ftðx; tÞ � KðxÞf ðx; tÞ ¼ 0; ð2:6Þ
for the generator A of X, given by

Af ðx; tÞ ¼
X
i

o

oxi
f ðx; tÞliðxÞ þ

1

2

X
i;j

o2

oxi oxj
f ðx; tÞcijðxÞ;

and where c(x) = r(x)r(x) 0, with the boundary condition

f ðx; sÞ ¼ 1: ð2:7Þ

Parametric assumptions are often used to get an explicit solution to this PDE, as we
shall see.

More generally, (2.2) follows from assuming that the doubly-stochastic counting
process K whose first jump time is s is driven by some filtration fFt : t P 0g, a con-
cept defined in Appendix E. (Included in the definition is the condition that Ft � Gt,
and that fFt : t P 0g satisfies the usual conditions.) The intuition of the doubly-sto-
chastic assumption is that Ft contains enough information to reveal the intensity kt,
but not enough information to reveal the event times of the counting process K. In
particular, at any current time t and for any future time s, after conditioning on the



D. Duffie / Journal of Banking & Finance 29 (2005) 2751–2802 2755
r-algebra Gt _Fs generated by the events in Gt [Fs, K is a Poisson process up to
time s with (conditionally deterministic) time-varying intensity {kt : 0 6 t 6 s}, so the
number Ks � Kt of arrivals between t and s is therefore conditionally distributed as a
Poisson random variable with parameter

R s
t ku du. (A random variable q has the Pois-

son distribution with parameter b if Pðq ¼ kÞ ¼ e�bbk=k! for any non-negative inte-
ger k.) Thus, letting A be the event {Ks � Kt = 0} of no arrivals, the law of iterated
expectations implies that, for t < s,

Pðs> sjGtÞ ¼ Eð1AjGtÞ ¼ E½Eð1AjGt _FsÞjGt�

¼ E½PðKs �Kt ¼ 0jGt _FsÞjGt� ¼ E e
R s

t
�kðuÞdu

� ���Gt

�
;

ð2:8Þ

consistent with (2.2). Appendix E connects the intensity of s with its probability den-
sity function and its hazard rate.
3. Affine processes

In many financial applications that are based on a state process, such as the solu-
tion X of (2.3), a useful assumption is that the state process X is ‘‘affine’’. An affine
process X with some state space D � Rd is a Markov process whose conditional char-
acteristic function is of the form, for any u 2 Rd ,

Eðeiu�X ðtÞjX ðsÞÞ ¼ euðt�s;iuÞþwðt�s;iuÞ�X ðsÞ ð3:1Þ
for some coefficients u(Æ, iu) and w(Æ, iu). We will take the state space D to be of the
standard form Rn

þ � Rd�n, for 0 6 n 6 d. We say that X is ‘‘regular’’ if the coefficients
u(Æ, iu) and w(Æ, iu) of the characteristic function are differentiable and if their deriv-
atives are continuous at 0. This regularity implies that these coefficients satisfy a gen-
eralized Riccati ordinary differential equation (ODE) given in Appendix C. The form
of this ODE in turn implies, roughly speaking, that X must be a jump-diffusion pro-
cess, in that

dX t ¼ lðX tÞdt þ rðX tÞdBt þ dJ t ð3:2Þ

for a standard Brownian motion B in Rd and a pure-jump process J, such that the
drift l(Xt), the ‘‘instantaneous’’ covariance matrix r(Xt)r(Xt)

0, and the jump mea-
sure associated with J all have affine dependence on the state Xt. Conversely,
jump-diffusions of this form (3.2) are affine processes in the sense of (3.1). A more
careful statement of this result is found in Appendix C.

Simple examples of affine processes used in financial modeling are the Gaussian
Ornstein–Uhlenbeck model, applied to interest rates by Vasicek (1977), and the
Feller (1951) diffusion, applied to interest-rate modeling by Cox et al. (1985). A gen-
eral multivariate class of affine jump-diffusion models was introduced by Duffie
and Kan (1996) for term-structure modeling. Using three-dimensional affine diffu-
sion models, for example, Dai and Singleton (2000) found that both time-varying
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conditional variances and negatively correlated state variables are essential ingredi-
ents to explaining the historical behavior of term structures of US interest rates.

For option pricing, there is a substantial literature building on the particular af-
fine stochastic-volatility model for currency and equity prices proposed by Heston
(1993). Bates (1997), Bakshi et al. (1997), Bakshi and Madan (2000), and Duffie
et al. (2000) brought more general affine models to bear in order to allow for stochas-
tic volatility and jumps, while maintaining and exploiting the simple property (3.1).

A key property related to (3.1) is that, for any affine function K : D ! R and any
w 2 Rd , subject only to technical conditions reviewed in Duffie et al. (2003a),

Et e
R s

t
�KðX ðuÞÞduþw�X ðsÞ

� �
¼ eaðs�tÞþbðs�tÞ�X ðtÞ ð3:3Þ

for coefficients a(Æ) and b(Æ) that satisfy generalized Riccati ODEs (with real bound-
ary conditions) of the same type solved by u and w of (3.1), respectively.

In order to get a quick sense of how (3.3) and the associated Riccati equations for
the solution coefficients a(Æ) and b(Æ) arise, we consider the special case of an affine
diffusion process X solving the stochastic differential equation (2.3), with state space
D ¼ Rþ, and with l(x) = a + bx and r2(x) = cx, for constant coefficients a, b, and c.
(This is the continuous branching process of Feller (1951).) We let K(x) = q0 + q1x,
for constants q0 and q1, and apply the (Feynman–Kac) PDE (2.6) to the candidate
solution (3.3). After calculating all terms of the PDE and then dividing each term of
the PDE by the common factor f(x, t), we arrive at

�a0ðzÞ � b0ðzÞxþ bðzÞðaþ bxÞ þ 1

2
bðzÞ2c2x� q0 � q1x ¼ 0; ð3:4Þ

for all z P 0. Collecting terms in x, we have

uðzÞxþ vðzÞ ¼ 0; ð3:5Þ
where

uðzÞ ¼ �b0ðzÞ þ bðzÞbþ 1

2
bðzÞ2c2 � q1 ð3:6Þ

vðzÞ ¼ �a0ðzÞ þ bðzÞa� q0: ð3:7Þ
Because (3.5) must hold for all x, it must be the case that u(z) = v(z) = 0. (This is
known as ‘‘separation of variables’’.) This leaves the Riccati equations:

b0ðzÞ ¼ bðzÞbþ 1

2
bðzÞ2c2 � q1; ð3:8Þ

a0ðzÞ ¼ bðzÞa� q0; ð3:9Þ
with the boundary conditions a(0) = 0 and b(0) = w, from the boundary condition
f(x, s) = w for all x. The explicit solutions for a(z) and b(z), developed by Cox
et al. (1985) for bond pricing (that is, for w = 0), is repeated in Appendix D, in
the context a slightly more general model with jumps.
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The calculation (3.3) arises in many financial applications, some of which will be
reviewed momentarily. An obvious example is discounted expected cash flow (with
discount rate K(Xt)), as well as the survival-probability calculation (2.2) for an affine
state process X and a default intensity K(Xt), taking w = 0 in (3.3).

3.1. Examples of affine processes

An affine diffusion is a solution X of the stochastic differential equation of the
form (2.3) for which both l(x) and r(x)r(x) 0 are affine in x. This class includes
the Gaussian (Ornstein–Uhlenbeck) case, for which r(x) is constant (used by Vasicek
(1977) to model interest rates), as well as the Feller (1951) diffusion model, used by
Cox et al. (1985) to model interest rates. These two examples are one-dimensional;
that is, d = 1. For the case in which X is a Feller diffusion, we can write

dX t ¼ jð�x� X tÞdt þ c
ffiffiffiffiffi
X t

p
dBt; ð3:10Þ

for constant positive parameters2 c, j, and �x. The parameter �x is called a ‘‘long-run
mean’’, and the parameter j is called the mean-reversion rate. Indeed for (3.10), the
mean of Xt converges from any initial condition to �x at the rate j as t goes to 1. The
Feller diffusion, originally conceived as a continuous branching process in order to
model randomly fluctating population sizes, has become popularized in finance as
the ‘‘Cox–Ingersoll–Ross’’ (CIR) process.

Beyond the Gaussian case, any Ornstein–Uhlenbeck process, whether driven by a
Brownian motion (as for the Vasicek model) or by a more general Lévy process, as in
Sato (1999), is affine. Moreover, any continuous-branching process with immigra-
tion (CBI process), including multi-type extensions of the Feller process, is affine.
(See Kawazu and Watanabe (1971).) Conversely, as stated in Appendix C, an affine
process in Rd

þ is a CBI process.
A special example of (3.2) is the ‘‘basic affine process’’, with state space D ¼ Rþ,

satisfying

dX t ¼ jð�x� X tÞdt þ c
ffiffiffiffiffi
X t

p
dBt þ dJ t; ð3:11Þ

where J is a compound Poisson process,3 independent of B, with exponential jump
sizes. The Poisson arrival intensity k of jumps and the mean c of the jump sizes com-
pletes the list ðj;�x; c; k; cÞ of parameters of a basic affine process. Special cases of the
basic affine model include the model with no diffusion (c = 0) and the diffusion of
Feller (1951) (for k ¼ 0). The basic affine process is especially tractable, in that the
coefficients a(t) and b(t) of (3.3) are known explicitly, and recorded in Appendix
D.4. The coefficients u(t, iu) and w(t, iu) of the characteristic function (3.1) are of
the same form, albeit complex.

A simple class of multivariate affine processes is obtained by letting
Xt = (X1t, . . . ,Xdt), for independent affine coordinate processes X1, . . . ,Xd. The
2 The solution X of (3.10) will never reach zero from a strictly positive initial condition if j�x > c2=2,
which is sometimes called the ‘‘Feller condition’’.
3 A compound Poisson process has jumps at iid exponential event times, with iid jump sizes.
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independence assumption implies that we can break the calculation (3.3) down as a
product of terms of the same form as (3.3), but for the one-dimensional coordinate
processes. This is the basis of the ‘‘multi-factor CIR model’’, often used to model
interest rates, as in Chen and Scott (1995).

An important two-dimensional affine model was used by Heston (1993) to model
option prices in settings with stochastic volatility. Here, one supposes that the under-
lying price process U of an asset satisfies

dUt ¼ Utðc0 þ c1V tÞdt þ Ut

ffiffiffiffiffi
V t

p
dB1t; ð3:12Þ

where c0 and c1 are constants and V is a stochastic-volatility process, which is a
Feller diffusion satisfying

dV t ¼ jð�v� V tÞdt þ c
ffiffiffiffiffi
V t

p
dZt; ð3:13Þ

for constant coefficients j, �v, and c, where Z ¼ qB1 þ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� q2

p
B2 is a standard

Brownian motion that is constructed as a linear combination of independent stan-
dard Brownian motions B1 and B2. The correlation coefficient q generates what is
known as ‘‘volatility asymmetry’’, and is usually measured to be negative for major
market stock indices. Option implied-volatility ‘‘smile curves’’ are, roughly speaking,
rotated clockwise into ‘‘smirks’’ as q becomes negative. Letting Y = logU, a calcu-
lation based on Itô�s Formula (see Appendix B) yields

dY t ¼ c0 þ c1 �
1

2
V t

� �� �
dt þ

ffiffiffiffiffi
V t

p
dB1t; ð3:14Þ

which implies that the two-dimensional process X = (V,Y) is affine, with state space
D ¼ Rþ � R. By virtue of the explicit characteristic function of logUt, this leads to a
simple method for pricing options, as explained in Section 8. Extensions allowing for
jumps have also been useful for the statistical analysis of stock returns from time-
series data on underlying asset returns and of option prices, as in Bates (1996)
and Pan (2002).4
4. Risk-neutral probability and intensity

Basic to the theory of the market valuation of financial securities are ‘‘risk-neutral
probabilities’’, artificially chosen probabilities under which the price of any security
is the expectation of the discounted cash flow of the security, as will be made more
precise shortly.

We will assume the existence of a short-rate process, a progressively measurable
process r with the property that

R t
0
jrðuÞjdu < 1 for all t, and such that, for any times

s and t > s, an investment of one unit of account (say, one Euro) at any time s, rein-
vested continually in short-term lending until any time t after s, will yield a market
4 Among analyses of option pricing for the case of affine state variables are Bates (1997), Bakshi et al.
(1997), Bakshi and Madan (2000), Duffie et al. (2000), and Scott (1997).
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value of e
R t

s
rðuÞdu

. When we say ‘‘under Q’’, for an equivalent5 probability measureQ,
we mean with respect to the probability space ðX;F;QÞ and the same given filtration
fGt : t P 0g.

For the purpose of market valuation, we fix some equivalent martingale measure
Q, based on discounting at the short rate r. This means that, as of any time t, for any
stopping time T and bounded GT -measurable random variable F, a security paying F

at T has a modeled price, on the event {T > t}, of EQ
t ½e
R T

t
�rðuÞduF �, where, for conve-

nience, we write EQ
t for expectation under Q, given Gt. Uniqueness of an equivalent

martingale measure would be unexpected in a setting of default risk. an equivalent
martingale measure.

Harrison and Kreps (1979) showed that the existence of an equivalent martingale
measure is equivalent (up to technical conditions) to the absence of arbitrage. Del-
baen and Schachermayer (1999) gave definitive technical definitions and conditions
for this result. There may be more than one equivalent martingale measure, however,
and for modeling purposes, one would work under one such measure. Common de-
vices for estimating an equivalent martingale measure include statistical analysis of
historical price data, or the modeling of market equilibrium. If markets are complete,
meaning roughly that any contingent cash flow can be replicated by trading the
available securities, the equivalent martingale measure is unique (in a certain techni-
cal sense), and can be deduced from the price processes of the available securities.
For further treatment, see, for example, Duffie (2001).

A risk-neutral intensity process for a default time s is an intensity process kQ for
the default time s, under Q. We also call kQ the Q-intensity of s. Artzner and
Delbaen (1995) gave us the following convenient result.

Proposition. Suppose that a non-explosive counting process K has a P-intensity

process, and that Q is any probability measure equivalent to P. Then K has a Q-

intensity process.

The ratio kQ=k (for k strictly positive) represents a risk premium for uncertainty
associated with the timing of default, in the sense of the following version of Girsa-
nov�s Theorem, which provides conditions suitable for calculating the change of
probability measure associated with a change of intensity, by analogy with the
‘‘change in drift’’ of a Brownian motion. Suppose K is a non-explosive counting pro-
cess with intensity k, and that u is a strictly positive predictable process such that, for

some fixed time horizon T,
R T
0 usks ds is finite almost surely. A local martingale n is

then well defined by

nt ¼ exp

Z t

0

ð1� usÞks ds
� � Y

fi:T ðiÞ6tg
uT ðiÞ; t 6 T : ð4:1Þ
5 A probability measure Q is equivalent to P if P and Q assign zero probabilities to the same events in
Gt, for each t.
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Girsanov�s Theorem. Suppose the local martingale n is actually a martingale. Then an

equivalent probability measure Q is defined by dQ
dP ¼ nðT Þ. Restricted to the time

interval [0,T], the counting process K has Q-intensity ku.

A proof may be found in Brémaud (1981). Care must be taken with assumptions,
for the convenient doubly-stochastic property need not be preserved with a change to
an equivalent probability measure. Kusuoka (1999) gives examples of this failure.
Appendix E gives sufficient conditions for the martingale property of n, and for K
to be doubly stochastic under both P and Q.

Under certain conditions on the filtration fGt : t P 0g outlined in Appendix E,
the martingale representation property applies, and for any equivalent probability
measure Q, one can obtain the associated Q-intensity of K from the martingale rep-
resentation of the associated density process.
5. Zero-recovery bond pricing

We consider the valuation of a security that pays F1{s>s} at a given time s > 0,
where F is a Gs-measurable bounded random variable. As 1{s>s} is the random var-
iable that is 1 in the event of no default by s and zero otherwise, we may view F as the
contractually promised payment of a security with the property that, in the event of
default before the contractual maturity date s, there is no payment (that is, zero de-
fault recovery). The case of a defaultable zero-coupon bond is treated by letting
F = 1. In the next section, we will consider non-zero recovery at default.

From the definition of Q as an equivalent martingale measure, the price St of this
security at any time t < s is given by

St ¼ EQ
t e

�
R s

t
rðuÞdu

1fs>sgF
� �

: ð5:1Þ

From (5.1) and the fact that s is a stopping time, St must be zero for all tP s. The
following result is based on Lando (1994). (See, also, Duffie et al. (1996) and Lando
(1998).)

Theorem 1. Suppose that F, r, and kQ are bounded and that, under Q, s is doubly
stochastic driven by a filtration fFt : t P 0g, with intensity process kQ. Suppose,

moreover, that r is ðFtÞ-adapted and F is Fs-measurable. Fix any t < s. Then, for

t P s, we have St = 0, and for t < s,

St ¼ EQ
t e

�
R s

t
ðrðuÞþkQðuÞÞduF

� �
: ð5:2Þ

The idea of (5.2) is that discounting for default that occurs at an intensity is analo-
gous to discounting at the short rate r.
Proof. From (5.1), the law of iterated expectations, and the assumption that r is
ðFtÞ-adapted and F is Fs-measurable,
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St ¼ EQ EQ e
�
R s

t
rðuÞdu

1fs>sgF
� ���Fs _ Gt

�����Gt

� �

¼ EQ e
�
R s

t
rðuÞduFEQ 1fs>sg

��Fs _ Gt

� �� ���Gt

�
:

The result then follows from the implication of double stochasticity that, on the

event {s > t}, we have Qðs > sjFs _ GtÞ ¼ e
R s

t
�kQðuÞdu

. h

As a special case, suppose the driving filtration fFt : t P 0g is that generated by a
process X that is affine under Q, with state space D. It is then natural to allow depen-
dence of kQ, r, and F on the state process X in the sense that

kQt ¼ KðX t�Þ; rt ¼ qðX tÞ; F ¼ eu�X ðsÞ; ð5:3Þ
where K and q are real-valued affine functions on D, and u 2 Rd . We have already
adopted the convention that an intensity process is predictable, and have therefore
defined kQt to depend in (5.3) on the left limit Xt�, rather than Xt itself, because X

need not itself be a predictable process. For the calculation (5.2), however, this
makes no difference, because �K(Xt�)dt = �K(Xt)dt, given that X(x, t�) = X(x, t)
for almost every t.

With (5.2) and (5.3), we can apply the basic property (3.3) of affine processes, so
that for t < s, under mild regularity,

St ¼ eaðs�tÞþbðs�tÞ�X ðtÞ

for coefficients a(Æ) and b(Æ) satisfying the integro-differential equation associated
with (5.2), namely

Aeaðs�tÞþbðs�tÞ�x

eaðs�tÞþbðs�tÞ�x � a0ðs� tÞ � b0ðs� tÞ � x� qðxÞ � KðxÞ ¼ 0; ð5:4Þ

where A is the generator (under Q) of X, with the boundary condition
ea(0)+b(0)Æx = 1. This in turn implies, by the same separation-of-variables argument
used in the simple example of Section 3, an associated generalized Riccati ODE
for a(Æ) and b(Æ), with boundary condition a(0) = 0 and bð0Þ ¼ 0 2 Rd . Solution of
the ODE is explicit in certain cases, and otherwise can be computed routinely, say
by a Runge–Kutta method.

A sufficient regularity condition for this solution is that X is a regular affine pro-
cess and that the short-rate process r is non-negative. (See Duffie et al. (2003a) for
details.)
6. Pricing with recovery at default

The next step is to consider the recovery of some random payoff W at the default
time s, if default occurs before the maturity date s of the security. We adopt the
assumptions of Theorem 1, and add the assumption that W = ws, where w is a
bounded predictable process that is also adapted to the driving filtration
fFt : t P 0g.
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At any time t before default, the market value of the default recovery is by the
definition of the equivalent martingale measure Q,

J t ¼ EQ e
�
R s

t
rðuÞdu

1fs6sgws

� ���Gt

�
: ð6:1Þ

The assumption that s is doubly-stochastic implies that it has a probability density
under Q, at any time u in [t, s], conditional on Gt _Fs, on the event that s > t, of

qðt; uÞ ¼ e
�
R u

t
kQðzÞdzkQu :

(For details, see Appendix E.) Thus, using the same iterated-expectations argument
of the proof of Theorem 1, we have, on the event that s > t,

J t ¼ EQ EQ e
�
R s

t
rðzÞdz

1fs6sgws

� ���Fs _ Gt

� �����Gt

�

¼ EQ

Z s

t
e
�
R u

t
rðzÞdzqðt; uÞwu du

����Gt

� �
¼
Z s

t
Uðt; uÞdu;

using Fubini�s Theorem, where

Uðt; uÞ ¼ EQ
t e

�
R u

t
ðkQðzÞþrðzÞÞdzkQu wu

� �
: ð6:2Þ

We summarize the main defaultable valuation result as follows.

Theorem 2. Consider a security that pays F at s if s > s, and otherwise pays ws at s.
Suppose that w, F, kQ, and r are bounded. Suppose that s is doubly stochastic under Q

driven by a filtration fFt : t P 0g with the property that r and w are ðFtÞ-adapted and

F is Fs-measurable. Then, for tP s, we have St = 0, and for t < s,

St ¼ EQ
t e

�
R s

t
ðrðuÞþkQðuÞÞduF

� �
þ
Z s

t
Uðt; uÞdu: ð6:3Þ
6.1. Unpredictable default recovery

Schönbucher (1998) extends to the case of a default recovery W that is not of the
form ws for some predictable process w, but rather allows the recovery to be revealed
just at the default time s. We now allow this, taking however a different construction.
We let T be the stopping time min(s, s), and let Ŵ ¼ EQðW 1fs<sgjGT�Þ. From6 Della-
cherie and Meyer (1978, Theorem IV.67(b)), there is a ðGtÞ-predictable process w sat-
isfying wðT Þ ¼ Ŵ . Then, for t < s, by the law of iterated expectations, the market
value of default recovery is
6 The definition of GT� is also given in Dellacherie and Meyer (1978). Please note that there is a
typographical error in Dellacherie and Meyer (1978, Theorem IV.67(b)), in that the second sentence
should read: ‘‘Conversely, if Y is an F0

T�-measurable . . .’’ rather than ‘‘Conversely, if Y is an F0
T -

measurable . . .’’, as can be verified from the proof, or, for example, from their Remark 68(b).
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J t ¼ EQ
t e

�
R T

t
rðuÞduW 1fs<sg

� �
ð6:4Þ

¼ EQ
t e

�
R T

t
rðuÞduŴ

� �
ð6:5Þ

¼ EQ
t e

�
R T

t
rðuÞduwðT Þ

� �
ð6:6Þ

¼ EQ
t

Z s

t
e
�
R u

t
½rðzÞþkQðzÞ�dzkQðuÞwðuÞdu

� �
; ð6:7Þ

and we are back in the setting of Theorem 2. Intuitively speaking, w(u) is the risk-
neutral expected recovery given the information available in the filtration
fGt : t P 0g up until, but not including, time u, and given that default will occur
in ‘‘the next instant’’, at time u.

In the affine state-space setting described at the end of the previous section, U(t,u)
can be computed by our usual ‘‘affine’’ methods, provided that w(t) is of the form
ea(t)+b(t)ÆX(t�) for deterministic a(t) and b(t). (In applications, a common assumption
is that w(t) is deterministic, but the evidence favors significant negative correlation,
on average, between default recovery rates and the average rate of default itself; see
Altman et al. (2003).) With recovery and default intensity correlation, it is an exercise
to show that, under technical regularity,

Uðt; uÞ ¼ eaðt;uÞþbðt;uÞ�X ðtÞ½cðt; uÞ þ Cðt; uÞ � X ðtÞ�; ð6:8Þ

for readily computed deterministic coefficients a, b, c, and C. (For this ‘‘extended af-
fine’’ calculation, see Duffie et al. (2000).) This leaves the numerical task of comput-
ing

R s
t Uðt; uÞdu, say by quadrature.

For the price of a typical defaultable bond promising periodic coupons followed
by its principal at maturity, one may sum the prices of the coupons and of the prin-
cipal, treating each of these payments as though it were a separate zero-coupon
bond. An often-used assumption, although one that need not apply in practice, is
that there is no default recovery for coupons, and that all bonds of the same seniority
(priority in default) have the same recovery of principal, regardless of maturity. In
any case, convenient parametric assumptions, based for example on an affine driving
process X, lead to straightforward computation of a term structure of defaultable
bond yields that may be applied in practical situations.
6.2. Option-embedded corporate bonds

For the case of defaultable bonds with embedded American options, the most typ-
ical cases being callable bonds or convertible bonds, the usual resort is valuation by
some numerical implementation of the associated dynamic programming problems
for optimal exercise timing. Acharya and Carpenter (2002) and Berndt (2002) treat
callable defaultable bonds. On the related problem of convertible bond valuation, see
Davis and Lischka (1999), Loshak (1996), Nyborg (1996), and Tsiveriotis and
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Fernandes (1998). On the empirical timing behavior of call and conversion options
on convertible bonds, see Ederington et al. (1997).
6.3. Default-adjusted short rate

In the setting of Theorem 6, a particularly simple pricing representation can be
based on the definition of a predictable process ‘ for the fractional loss in market
value at default, defined by

ð1� ‘sÞðSs�Þ ¼ ws: ð6:9Þ
Manipulation that is left as an exercise shows that, under the conditions of Theorem
2, for t before the default time,

St ¼ EQ
t e

�
R s

t
½rðuÞþ‘ðuÞkQðuÞ�duF

� �
: ð6:10Þ

This valuation model (6.10) is from Duffie et al. (1996), extending Pye (1974), Lit-
terman and Iben (1991), and Duffie and Singleton (1999). This is particularly conve-
nient if we take ‘ as an exogenously given fractional loss process, as it allows for the
application of standard valuation methods, treating the payoff F as default-free, but
accounting for the intensity and severity of default losses through the ‘‘default-
adjusted’’ short-rate process r þ ‘kQ. Naturally, the discount-rate adjustment ‘kQ

is the risk-neutral mean rate of proportional loss in market value due to default. Col-
lin-Dufresne et al. (2002) extend this result to settings in which the doubly-stochastic
assumption fails, by an additional change of measure under which there are almost
surely no jumps.

Notably, the dependence of the bond price on the intensity kQ and fractional loss ‘
at default is only through the product ‘kQ. Thus, for any bounded strictly positive
predictable process h, bounded away from zero, the price process S of (6.10) is
invariant (before default), to a substitution for ‘ and kQ of h‘ and kQ=h, respectively.
For example, doubling kQ and halving ‘ has no effect on the price process before
default.

Suppose, for example, that s is doubly stochastic driven by X, and we take
rt þ ‘tk

Q
t ¼ RðX t�Þ and F = f(Xs), for a Markov state process X. For example, X

could be given as the solution to (2.3), or be an affine process. Then, under typical
Feynman–Kac regularity conditions, we obtain at each time t before default the
bond price St = g(Xt, t), for a solution g of the

Agðx; tÞ � gtðx; tÞ � RðxÞgðx; tÞ ¼ 0; ðx; tÞ 2 D� ½0; sÞ; ð6:11Þ
where A is the generator of X, with boundary condition g(x, s) = f(x).

If the driving process X is affine, if f(x) = euÆx for some u 2 Rd , and if R(x) = a +
b Æ x for some a 2 R and b in Rd ; then we have g(x, t) = ea(s�t)+b(s�t)Æx for a(Æ) and b(Æ)
computed from the generalized Riccati equations associated with (6.11), with bound-
ary conditions a(0) = 0 and b(0) = u. Sufficient regularity is that X is a regular affine
process and that the default-adjusted short rate R(x) is non-negative.



D. Duffie / Journal of Banking & Finance 29 (2005) 2751–2802 2765
There are also interesting cases, for example the pricing of swaps with two-sided
default risk (see Duffie and Huang, 1996), for which kQt or ‘t (or both) are naturally
dependent on the price itself. The PDE (6.11) would then be generalized to one of the
nonlinear form

Agðx; tÞ � Rðx; gðx; tÞÞgðx; tÞ ¼ 0: ð6:12Þ
For empirical work on default-adjusted short rates, see Duffee (1999) and Bakshi
et al. (2001) for applications to corporate bonds, and, for applications to sovereign
debt, Duffie et al. (2003b) and Pagès (2000).
7. Correlated default

Extending, suppose that the default times s1, . . . ,sk of k given names have respec-
tive intensity processes k1, . . . ,kk, and are doubly stochastic, driven by a filtration
fFt : t P 0g, as defined in Appendix E. This means roughly that, conditional on
the information in the driving filtration that determines the respective intensities,
the event times s1, . . . ,sk are independent. In particular, the only source of correla-
tion of the default times is via the correlation of the intensities. Das et al. (2004) pro-
vide a statistical test of this multi-name doubly-stochastic property.

One can see from the definition of an intensity process that, under the doubly-sto-
chastic assumption, the first default time s = min(s1, . . . ,sn) has the intensity
k1(t) + � � � + kk(t). Indeed, the same result applies if we weaken the doubly stochastic
assumption to merely the assumption that si 5 sj, or more precisely that, for any i

and j 5 i, we have Pðsi ¼ sjÞ ¼ 0: For an easy proof, based again on the definition
of intensity, see Duffie (1998b).

More generally, the doubly stochastic assumption makes the computation of the
joint distribution of default times rather simple. Consider the joint survivorship
event {s1 P t(1), . . . ,sk P t(k)}, for deterministic times t(1), . . . , t(k). Without loss
of generality after relabeling, we can suppose that t(1) 6 t(2) 6 � � � 6 t(k). (We can
also allow t(i) = +1.) Then, by the doubly stochastic assumption, for any ‘‘current’’
time t < t(1), on the event that si > t for all i (no defaults ‘‘yet’’), we have

Pðs1 P t1; . . . ; sk P tkjGtÞ ¼ Et e
�
R tðkÞ

t
lðsÞds

� �
; ð7:1Þ

where

lðtÞ ¼
X

fi:tðiÞ>tg
kiðtÞ: ð7:2Þ

Now, in order to place the joint survivorship calculation into a computationally trac-
table setting, we suppose that the driving filtration fFt : t P 0g is that generated by
an affine process X, and that ki(t) = Ki(Xt�), for an affine function Ki(Æ) on the state
space D of X. The state Xt could include industry or economy-wide business-cycle
variables, or market yield-spread information, as well as firm-specific data. In this
case, l(t) = M(Xt�, t), where
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Mðx; tÞ ¼
X

fi:tðiÞ>tg
KiðxÞ: ð7:3Þ

Because Ki(Æ) is affine for each i, so is M(Æ, t) for each t. Thus, beginning our calcu-
lation at time t(k � 1), and working recursively backward using the law of iterated
expectations, we have, at each t(i), a solution of the form

EtðiÞ e
�
R tðiþ1Þ

tðiÞ
MðX ðsÞ;sÞds

eaðiþ1Þþbðiþ1Þ�X ðtðiþ1ÞÞ
� �

¼ eaðiÞþbðiÞ�X ðtðiÞÞ; ð7:4Þ

where the solution coefficients a(i) and b(i) are obtained from the generalized Riccati
equation associated with the discount rate M(Æ, s), a fixed7 affine function for
t(i) 6 s 6 t(i + 1). By taking t(0) = t, we thus have

Pðs1 > t1; . . . ; sk > tkjGtÞ ¼ eað0Þþbð0Þ�X ðtÞ: ð7:5Þ
Related calculations are explored in Duffie (1998b). Applications include portfo-

lio credit risk calculations and collateralized debt obligations (see Duffie and Gâr-
leanu, 2001), credit-linked notes based on the first to default, loans guaranteed by
a defaultable guarantor, and default swaps signed by a defaultable counterparty.
8. Credit derivatives

We end the course with some examples of credit-derivative pricing, beginning with
the most basic and popular, the default swap. We then turn to credit guarantees,
spread options on defaultable bonds, irrevocable lines of credit, and ratings-based
step-up bonds. For more examples and analysis of credit derivatives, see Chen
and Sopranzetti (1999), Cooper and Martin (1996), Davis and Mavroidis (1997),
Duffie (1998b), Duffie and Singleton (2002), Longstaff and Schwartz (1995b),
Pierides (1997), and Schönbucher (2003b).

8.1. Default swaps

The simplest form of credit derivative is a default swap, Also known (redun-
dantly) as a ‘‘credit default swap’’ (CDS), which pays the buyer of protection, at
the default time of a stipulated loan or bond, the difference between its face value
and its recovery value, provided the default occurs before a stated expiration date
T. The buyer of protection makes periodic coupon payments of some amount U

each, until default or T, whichever is first. This is, in effect, an insurance contract
for the event of default.
7 One could also solve in one step with a generalized Riccati equation having time-dependent
coefficients, but in practice one might prefer to use a time-homogeneous affine model for which the
solution coefficients a(i) and b(i) are known explicitly, arguing for the recursive calculation of the joint
survival probability.
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The initial pricing problem is to determine the credit default swap rate (CDS rate)
U, normally expressed at an annualized rate. For example, semi-annual payments at
a rate of U = 0.03 per unit of face value means a CDS rate of 6%. Some discussion
and contractual details are provided in Duffie and Singleton (2002).

Given a short-term interest rate process r and fixing an equivalent martingale
measure Q, the total market value of the protection offered, per unit of face value, is

B ¼ EQ e
�
R minðT ;sÞ

0
rðuÞduð1� W Þ1fs<Tg

� �
; ð8:1Þ

where W is the recovery per unit of face value.
The market value of the coupon payments made by the buyer of protection is

A ¼ U
Xn
i¼1

V ðtiÞ ð8:2Þ

where t1, . . . , tn = T are the coupon dates for the default swap and

V ðtÞ ¼ EQ e
�
R t

0
rðuÞdu

1fs>tg

� �
ð8:3Þ

is the price of a zero-coupon no-recovery bond whose maturity date is t.
For the default-swap contract to be of zero market value to each counterparty, it

must be the case that A = B, and therefore that

U ¼ BPn
i¼1V ðtiÞ

: ð8:4Þ

For example, suppose that we are in the setting of Theorem 2, and that the under-
lying bond has a risk-neutral default intensity process kQ. Then

V ðtÞ ¼ EQ e
�
R t

0
½rðsÞþkQðsÞ�ds

� �
ð8:5Þ

and, based on the same calculations used in Section 6,

B ¼
Z T

0

qðtÞdt; ð8:6Þ

where

qðtÞ ¼ EQ e
�
R t

0
½kQðsÞþrðsÞ�dskQðtÞð1� wðtÞÞ

� �
; ð8:7Þ

and where w(t), is the expected recovery conditional on information available at time
t, assuming that default is about to occur, in the sense defined more carefully in Sec-
tion 6. In practice, w(t) is often taken to be a constant risk-neutral mean recovery
level, although attention is increasingly paid to the empirically relevant case of neg-
ative correlation between recovery and default intensity.

In an affine setting, V(t), q(t), and thus the credit default swap rate U of (8.4) can
be calculated routinely.
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8.2. Credit guarantees

We will suppose that a loan to a defaultable borrower with a default time sB has a
guarantor whose default time is sG. We make the assumption that, in the event of
default by the borrower before the maturity date T of the loan, the guarantor simply
takes over the obligation to pay the notional amount of the loan at the original
maturity date. This is somewhat unrealistic, but simplifies the exposition. The guar-
anteed loan thus defaults, in effect, once both the borrower and guarantor default, if
both do before the loan�s maturity. In practice, the contractual obligation of the
guarantor is normally to pay the full principal on the loan within a short time period
after the borrower defaults. Our modeled price of the guaranteed loan is therefore
conservative, that is, lowered by the assumption that the guarantor may delay paying
the obligation until the original maturity date of the loan.

For any given date t, the event that at least one of the borrower and the guarantor
survive until t is At = {sB > t} [ {sG > t} that at least one survives to t. We have

QðAtÞ ¼ QðfsB > tgÞ þQðfsG > tgÞ �QðfsB > tg \ fsG > tgÞ: ð8:8Þ
We will assume, in order to obtain concrete calculations, a doubly stochastic

model for sB and sG, with respective risk-neutral intensities kB and kG. From (8.8),

QðAtÞ ¼ EQ e
�
R t

0
kBðsÞds

� �
þ EQ e

�
R t

0
kGðsÞds

� �
� EQ e

�
R t

0
½kBðsÞþkGðsÞ�ds

� �
; ð8:9Þ

each term of which can be easily calculated if both intensities, kB and kG, are affine
with respect to a state process X that is affine under Q.

From this, depending on the recovery model and the probabilistic relationship be-
tween interest rates and default times, one has relatively straightforward pricing of
the guaranteed loan. For example, suppose that interest rates are independent under
Q of the default times sB and sG, and assume constant recovery of a fraction w of the

face value of the loan. We let dðtÞ ¼ EQðe�
R t

0
rðuÞduÞ denote the price of a default-free

zero-coupon bond of maturity t, of unit face value. Then the market value of the
guaranteed loan, per unit of face value, is

V ¼ dðT ÞqðT Þ � w
Z T

0

dðtÞq0ðtÞdt; ð8:10Þ

where qðtÞ ¼ QðAtÞ is the risk-neutral probability that at least one of the borrower
and the guarantor survive to t, so that �q 0(t) is the risk-neutral density of the time
of default of the guaranteed loan. In an affine setting, q 0(t) is easily computed, so the
computation of (8.10) is straightforward.

Many variations are possible, including a default recovery from the guarantor dif-
fering from that of the original borrower.

8.3. Spread options

The yield of a zero-coupon bond of unit face value, of price V, and of maturity t is
(�logV)/t. The yield spread of one bond relative to another of a lower yield is simply the
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difference in their yields. The prices of defaultable bonds are often quoted in terms of
their yield spreads relative to some benchmark, such as government bonds. (Swap rates
are often used as a benchmark, but we defer that issue to Duffie and Singleton (2002).)

We will consider the price of an option to put (that is, to sell) at a given time t a
defaultable zero-coupon bond at a given spread �s relative to a benchmark yield Y(t).
The remaining maturity of the bond at time t is m. This option therefore has a payoff
at time t of

Z ¼ e�ðY ðtÞþ�sÞm � e�ðY ðtÞþSðtÞÞm	 
þ
; ð8:11Þ

where S(t) is the spread of the defaultable bond at time t. For simplicity, we will sup-
pose that a contractual ‘‘knockout’’ provision prevents exercise of the option in the
event that default occurs before the exercise date t. A slightly more complicated re-
sult arises if the option can be exercised even after the default of the underlying
bond. We will also suppose for convenience that the benchmark yield Y(t) is the
default-free yield of the same time m to maturity. The market value of this spread
option is therefore

V ¼ EQ e
�
R t

0
rðuÞdu

1fs>tgZ
� �

: ð8:12Þ

We will consider a setting with a constant fractional loss ‘ of market value at de-
fault, as in Section 6.3, so that the defaultable bond has a price at time t, on the event
that s > t, of

e�ðY ðtÞþSðtÞÞm ¼ EQ
t e

�
R tþm

t
RðuÞdu

� �
; ð8:13Þ

where RðuÞ ¼ rðuÞ þ ‘kQðuÞ is the default-adjusted short rate.
In order to simplify the calculations, we will suppose that s is doubly stochastic

driven by a state process X that is affine under Q, with a risk-neutral intensity
kQt ¼ a0 þ a1 � X t�. We also suppose that the default-free short-rate process r is affine
with respect to X, so that rt = c0 + c1 Æ Xt, and the default-free reference yield to
maturity m is of thus of the form Y(t) = h0 + h1 Æ X(t).

The default adjusted short rate is Rt = q0 + q1 Æ Xt, for q0 = c0 + ‘a0 and
q1 = c1 + ‘a1, so we have a defaultable yield spread, in the event of survival to t,
of the form S(t) = n0 + n1 Æ X(t). The option payoff, in the event of no default by
t, is thus of the form

Z ¼ ec0þc1�X ðtÞ � e f0þf1�X ðtÞ
	 


1fd�X6yg; ð8:14Þ

where

f0 ¼ ðh0 þ n0Þm;
f1 ¼ ðh1 þ n1Þm;
c0 ¼ ðh0 þ �sÞm;
c1 ¼ h1m;

d ¼ f1 � c1;

y ¼ c0 � f0:
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From (8.12) and the doubly-stochastic assumption, we therefore have
V(t) = V0(t) + V1(t), where

V 0ðtÞ ¼ EQ e
�
R t

0
½f0þf1�X ðtÞ�du

ec0þc1�X ðtÞ1fd�X6yg

� �
ð8:15Þ

¼ Gt;f;c;dðyÞ; ð8:16Þ

V 1ðtÞ ¼ EQ e
�
R t

0
½f0þf1�X ðtÞ�du

ef0þf1�X ðtÞ1fd�X6yg

� �
ð8:17Þ

¼ Gt;f;f ;dðyÞ; ð8:18Þ

where f0 = c0 + a0, f1 = c1 + a1, and

Gt;f;c;dðyÞ ¼ EQ e
�
R t

0
f0þf1�X ðtÞec0þc1�X ðtÞ1fd�X ðtÞ6yg

� �
: ð8:19Þ

Using the approach of Stein and Stein (1991) and Heston (1993) for option pricing,
Gt,f,c,d(Æ) can be calculated by inverting its Fourier Transform Ĝt;f;c;dð�Þ, which is
defined by

Ĝt;f;c;dðzÞ ¼
Z

R

eizydGt;f;c;dðyÞ ¼ EQ e
�
R t

0
f0þf1�X ðtÞec0þðc1þizdÞ�X ðtÞ

� �
;

using Fubini�s Theorem.
That is, under regularity, we can apply the Lévy Inversion Formula,

Gt;f;c;dðyÞ ¼
Ĝt;f;c;dð0Þ

2
� 1

p

Z 1

0

Im Ĝt;f;c;dðzÞe�izy
� �

z
dz;

where Im(w) denotes the imaginary part of any complex number w.
The affine model is convenient, for it provides an easily computed solution of the

Fourier transform of the form

Ĝt;f;c;dðzÞ ¼ eâðt;zÞþb̂ðt;zÞ�X ð0Þ; ð8:20Þ
where we have indicated explicitly the dependence on z of the boundary condition of
the generalized Riccati equations for âðt; zÞ and b̂ðt; zÞ.

In practice, one might chooses a parameterization of X for which â and b̂ are ex-
plicit (for example multivariate versions of the basic affine model), or one may solve
the generalized Riccati equations by a numerical method, such as Runge–Kutta.
8.4. Irrevocable lines of credit

Banks often provide a credit facility under which a borrower is offered the option
to enter into short-term loans for up to a given notional amount N, until a given time
T, all at a contractually fixed spread. The short-term loans are of some term m. That
is, at any time t among the potential borrowing dates m, 2m, 3m, . . . ,T, the borrower
may enter into a loan maturing at time t + m, of maximum size N, at a fixed spread �s
over the current reference yield Y(t) for m-period loans.
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Such a credit facility may be viewed as a portfolio of defaultable put options sold
to the borrower on the borrower�s own debt. The borrower is usually charged a fee,
however, for the unused portion of the credit facility, say F per unit of unused
notional.

Our objective is to calculate the market value to the borrower of the credit facility,
including the effect of any fees paid. We will ignore the fact that use of the credit
facility may either signal or affect the borrower�s credit quality. This endogeneity
is not easily treated directly by the option pricing method that we will use. Instead,
we will assume the same doubly-stochastic affine model of default given in the pre-
vious application to defaultable bond options. We will also assume that the bank is
default free. (Otherwise, access to the facility would be somewhat less valuable.) We
also ignore legal and other institutional impediments to the use of facility that can be
important in practice, and that often lead to only partial use of the facility, despite
the fact that in our model setting the facility is either fully utilized by the borrower at
a point in time, or not used at all.

For each unit of notional, the option to use the facility at time t actually means
the option to sell, at a price equal to 1, a bond promising to pay the bank
eðY ðtÞþ�sÞm at time t + m. The market value of this obligation at time t, assuming that
the borrower has survived to time t, is therefore

e�ðY ðtÞþSðtÞÞmeðY ðtÞþ�sÞm ¼ eð�s�SðtÞÞm;

recalling that S(t) is the borrower�s spread on loans at time t maturing at time t + m.
If surviving to time t, the value of the option to the borrower, per unit of notional,

reflecting also the benefit of the reduction in the fee F per unit of unused credit, is, in
the affine setting of the previous treatment of defaultable debt options,

HðtÞ ¼ 1þ F � eð�s�SðtÞÞm	 
þ ¼ 1þ F � eh0þh1�X ðtÞ	 

1g�X ðtÞ6v; ð8:21Þ

where h0 ¼ ð�s� n0Þm, h1 = �mn1, g = �mn1, and v ¼ logð1þ F Þ þ n0 � �s. Here, we
used our previous spread calculation, S(t) = n0 + n1 Æ X(t).

The optionality value of the credit facility for the portion of the period beginning
at time t is

UðtÞ ¼ EQ e
�
R t

0
rðsÞdsHðtÞ1fs>tg

� �
¼ EQ e

�
R t

0
½rðsÞþkQðsÞ�dsHðtÞ

� �

¼ EQ e
�
R t

0
½f0þf1�X ðsÞ�ds

1þ F � eh0þh1�X ðtÞ	 

1fg�X ðtÞ6vg

� �
¼ ð1þ F ÞGt;f;0;gðvÞ � Gt;f;h;gðvÞ:

We can therefore calculate U(t) by the Fourier inversion method of the previous
application to defaultable debt options.

The fee F is paid at time t only when the borrower has not defaulted by t, and only
when the borrower is not drawing on the facility at t. We have already accounted in
our calculation of U(t) for the benefit of not paying the fee when the facility is used,
so the total market value of the facility to the borrower is
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V ðF Þ ¼
XT=m
i¼1

UðmiÞ � F eaðmiÞþbðmiÞ�X ð0Þ; ð8:22Þ

where a(Æ) and b(Æ) solve the generalized Riccati equation associated with the sur-
vival-contingent discount

EQ e
�
R t

0
½f0þf1�X ðsÞ�ds

� �
¼ eaðtÞþbðtÞ�X ð0Þ: ð8:23Þ

If the credit facility is priced on a stand-alone zero-profit basis, the associated fee
F would be set to solve the equation V(F) = 0. In practice, the fee is not necessarily
set in this fashion. On May 3, 2002, for example, The Financial Times indicated con-
cern by banks over their pricing policy on credit facilities, and indicated fees on un-
drawn lines had recently been ranging from roughly 9 basis points for A-rated firms
to roughly 20 basis points for BBB-rated firms. Banks are also, apparently, begin-
ning to build some protection against the optionality in the exercise of these lines,
by using fees (F) or spreads ð�sÞ that depend on the fraction of the line that is drawn.

8.5. Ratings-based step-up bonds

Most publicly traded debt, and much privately issued debt, is assigned a credit
rating, essentially a credit quality score, by one or more of the major credit rating
agencies. For example, the standard letter credit ratings for Moodys are Aaa, Aa,
A, Baa, Ba, B, and D (for default). There are 3 refined ratings for each letter rating,
as in Ba1, Ba2, and Ba3. The term ‘‘investment grade’’ means ‘‘rated Aaa, Aa, A, or
Baa’’. For Moodys, speculative-grade ratings are those below Baa. For Standard
and Poors, whose letter ratings are AAA, AA, A, BBB, BB, B, C, and D, ‘‘specula-
tive-grade’’ means below BBB.

It has become increasingly common for bond issuers to link the size of the coupon
rate on their debt with their credit rating, offering a higher coupon rate at lower rat-
ings, perhaps in an attempt to appeal to investors based on some degree of hedging
against a decline in credit quality. This embedded derivative is called a ‘‘ratings-
based step-up’’. For example, The Financial Times reported on April 9, 2002, that
a notional amount of approximately 120 billion Euros of such ratings-based step-
up bonds had been issued by telecommunications firms, one of which, a 25-
billion-Euro Deutsche Telekom bond, would begin paying at extra 50 basis points
(0.5%) in interest per year with the downgrade by Standard and Poors of Deutsche
Telekom debt from A� to BBB + on April 8, 2002, following8 a similar downgrade
by Moodys.

There is a potentially adverse effect of such a step-up feature, however, for a
downgrade brings with it an additional interest expense, which, depending on the
capital structure and cash flow of the issuer, may actually reduce the total market
8 Most ratings-based step-ups occur with a stipulated reduction in rating by any of the major ratings
agencies, but this particular bond required a downgrade by both Moodys and Standard and Poors before
the step-up provision could occur.
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value of the debt, and even bring on further ratings downgrades, higher coupon
rates, and so on. Manso et al. (2003) characterize this effect, and demonstrate the
inefficiency of step-up debt relative to straight debt. We ignore this feedback effect
in our calculation of the pricing of ratings-based step-up bonds.

We simplify the pricing problem by considering the common case in which the
only ratings changes that cause a change in coupon rate are into and out of the
investment-grade ratings categories. That is, we assume that the coupon rate is cA
whenever the issuer�s rating is investment grade, and that the speculative-grade cou-
pon rate is cB > cA.

Our pricing model is the same doubly-stochastic model used in earlier applica-
tions. In order to treat ratings transitions risk, we will assume that the risk-neutral
default intensity kQt is higher for speculative grade ratings than for investment grade
ratings. This is natural. In practice, however, the maximum yield spread associated
with investment grade fluctuates with uncertainty over time. There is moreover a
momentum effect in ratings, measured by Lando and Skødeberg (2000), that we
do not capture by mapping ratings to intervals of risk-neutral default intensity. In
order to maintain tractability, we will suppose that the issuer has an investment-
grade rating whenever kQt P Ht, and is otherwise of speculative grade, where
H(t) = h0 + h1 Æ X(t�). It would be equivalent for purposes of tractability, since yield
spreads are affine in X(t) in this setting, to suppose that the maximal level of invest-
ment-grade straight-debt yield spreads at a given maturity is affine with respect to
X(t).

We will use, for simplicity, a model with zero recovery of coupons at default, and
recovery of a given risk-neutral expected fraction w of principal at default.

The coupon paid at coupon date t, in the event of survival to that date, is

cðtÞ ¼ cA þ ðcB � cAÞ1fkQðtÞPHðtÞg ¼ cA þ ðcB � cAÞ1fh�X ðt�Þ6ug; ð8:24Þ

where h = h1 � a1 and u = a0 � h0. The initial market value of this coupon is

F ðtÞ ¼ EQ e
�
R t

0
rðsÞdscðtÞ1fs>tg

� �
¼ EQ e

�
R t

0
½rðsÞþkQðsÞ�dscðtÞ

� �

¼ EQ e
�
R t

0
½f0þf1�X ðsÞ�ds½cA þ ðcB � cAÞ1fh�X ðt�Þ6ug�

� �
;

¼ cAeaðtÞþbðtÞ�X ð0Þ þ ðcB � cAÞGt;f;0;hðuÞ;

where eaðtÞþbðtÞ�X ð0Þ ¼ EQ e
�
R t

0
½f0þf1�X ðsÞ�

ds
� �

. Calculation of Gt,f,0,h(u) is by the Fourier

inversion method used previously.

For principal payment date T and coupon dates t1, t2, . . . , tn = T, the initial price
of the ratings-based step-up bond, under our assumptions, is then

V 0 ¼ eaðT ÞþbðT Þ�X ð0Þ þ
Z T

0

Uð0; tÞdt þ
Xn
i¼1

F ðtiÞ; ð8:25Þ

where U(0, t) is the market-value density for the recovery of principal, calculated in
an affine setting as in (6.8).
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Appendix A. Structural models of default

This appendix, which draws from Chapter 11 of Duffie (2001), reviews the most
basic classes of structural models of default risk, which are built on a direct model
of survival based on the sufficiency of assets to meet liabilities.

For this appendix, we let B be a standard Brownian motion in Rd on a complete
probability space ðX;F;PÞ, and we fix the standard filtration fFt : t P 0g of B.
A.1. The Black–Scholes–Merton model

For the Black–Scholes–Merton model, based on Black and Scholes (1973) and
Merton (1974), we may think of equity and debt as derivatives with respect to the
total market value of the firm, and priced accordingly. In the literature, considerable
attention has been paid to market imperfections and to control that may be exercised
by holders of equity and debt, as well as managers. With these market imperfections,
the theory becomes more complex and less like a derivative valuation model.

With the classic Black–Scholes–Merton model of corporate debt and equity val-
uation, one supposes that the firm�s future cash flows have a total market value at
time t given by At, where A is a geometric Brownian motion, satisfying

dAt ¼ uAtdt þ rAtdBt;

for constants u and r > 0, and where we have taken d = 1 as the dimension of the
underlying Brownian motion B. One sometimes refers to At as the assets of the firm.
We will suppose for simplicity that the firm produces no cash flows before a given
time T. In order to justify this valuation of the firm, one could assume there are other
securities available for trade that create the effect of complete markets, namely that,
within the technical limitations of the theory, any future cash flows can be generated
as the dividends of a trading strategy with respect to the available securities. There is
then a unique price at which those cash flows would trade without allowing an
arbitrage.

We take it that the original owners of the firm have chosen a capital structure con-
sisting of pure equity and of debt in the form of a single zero-coupon bond maturing
at time T, of face value L. In the event that the total value AT of the firm at maturity
is less than the contractual payment L due on the debt, the firm defaults, giving its
future cash flows, worth AT, to debtholders. That is, debtholders receive min(L,AT)
at T. Equityholders receive the residual max(AT � L, 0). We suppose for simplicity
that there are no other distributions (such as dividends) to debt or equity. We will
shortly confirm the natural conjecture that the market value of equity is given by
the Black–Scholes option-pricing formula, treating the firm�s asset value as the price
of the underlying security.

Bond and equity investors have already paid the original owners of the firm for
their respective securities. The absence of well-behaved arbitrage implies that at,
any time t < T, the total of the market values St of equity and Yt of debt must be
the market value At of the assets. This is one of the main points made by Modigliani
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and Miller (1958), in their demonstration of the irrelevance of capital structure in
perfect markets.

Markets are complete given riskless borrowing or lending at a constant rate r and
given access to a self-financing trading strategy whose value process is A. (See, for
example, Duffie (2001, Chapter 6).) This implies that there is at most one equivalent
martingale measure.

Letting BQ
t ¼ Bt þ gt, where g = (u � r)/r, we have

dAt ¼ rAtdt þ rAtdBQ
t :

Girsanov�s Theorem states that BQ is a standard Brownian motion under the equiv-
alent probability measure Q defined by

dQ

dP
¼ e�gBðT Þ�g2T=2:

By Itô�s Formula, {e�rtAt : t 2 [0,T]} is a Q-martingale. It follows that, after dis-
counting by e�rt, Q is the equivalent martingale measure. As Q is unique in this re-
gard, we have the unique price process S of equity in the absence of well-behaved
arbitrage (see, for example, Duffie, 2001, Chapter 6), given by

St ¼ EQ
t e�rðT�tÞ maxðAT � L; 0Þ
� �

:

Thus, the equity price St is computed by the Black–Scholes option-pricing formula,
treating At as the underlying asset price, r as the volatility coefficient, the face value
L of debt as the strike price, and T � t as the time remaining to exercise. The market
value of debt at time t is the residual, At � St.

When the original owners of the firm sold the debt with face value L and the equi-
ty, they realized a total initial market value of S0 + Y0 = A0, which does not depend
on the chosen face value L of debt. This is again an aspect of the Modigliani–Miller
Theorem. The same irrelevance of capital structure for the total valuation of the firm
applies much more generally, and has nothing to do with geometric Brownian
motion, nor with the specific nature of debt and equity. With market imperfections,
however, the design of the capital structure can be important in this regard.

Fixing the current value At of the assets, the market value St of equity is increas-
ing in the asset volatility parameter r, due to the usual Jensen effect in the Black–
Scholes formula. Thus, equity owners, were they to be given the opportunity to make
a switch to a ‘‘riskier technology’’, one with a larger asset volatility parameter, would
increase their market valuation by doing so, at the expense of bondholders, provided
the total initial market value of the firm is not reduced too much by the switch. This
is a simple example of what is sometimes called ‘‘asset substitution’’.

Given the time value of the option embedded in equity, bondholders would prefer
to advance the maturity date of the debt; equityholders would prefer to extend it.

Equityholders (or managers acting as their agents) typically hold the power to
make decisions on behalf of the firm, subject to legal and contractual restrictions
such as debt covenants. This is natural in light of equity�s position as the residual
claim on the firm�s cash flows.
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Geske (1977) used compound option modeling so as to extend to debt at various
maturities.

A.2. First-passage models of default

A ‘‘first-passage’’ model of default is one for which the default time is the first
time that the market value of the assets of the issuer have reached a sufficiently
low level. Black and Cox (1976) developed the idea of first-passage-based default
timing, but used an exogenous default boundary. We shift now to a slightly more
elaborate setting for the valuation of debt and equity, and consider the endogenous
timing of default, using an approach formulated by Fisher et al. (1989) and solved
and extended by Leland (1994), and subsequently, by others.

We take as given an equivalent martingale measure Q. (In this infinite-horizon
setting, by an equivalent martingale measure, we require only that, for each finite
t, Q and P equivalent when restricted to Ft.)

The resources of a given firm are assumed to consist of cash flows at the rate dt for
each time t. We suppose that d is an adapted process with

R t
0
jdsjds < 1 almost surely

for all t. The market value of the assets of the firm at time t is defined as the market
value At of the future cash flows. That is

At ¼ EQ
t

Z 1

t
e�rðs�tÞds ds

� �
: ðA:1Þ

We assume that At is well defined and finite for all t. The martingale representation
theorem, which also applies under Q for the Brownian motion BQ, then implies that

dAt ¼ ðrAt � dtÞdt þ rtdBQ
t ; ðA:2Þ

where r is an adapted Rd-valued process such that
R T
0
rt � rt dt < 1 for all T 2 [0,1),

and where BQ is the standard Brownian motion in Rd under Q obtained from B and
Girsanov�s Theorem.

We suppose that the original owners of the firm chose its capital structure to con-
sist of a single bond as its debt, and pure equity, defined in detail below. The bond
and equity investors have already paid the original owners for these securities. Before
we consider the effects of market imperfections, the total of the market values of
equity and debt must be the market value A of the assets, which is a given process,
so the design of the capital structure is again irrelevant from the viewpoint of max-
imizing the total value received by the original owners of the firm.

For simplicity, we suppose that the bond promises to pay coupons at a constant
total rate c, continually in time, until default. This sort of bond is sometimes called a
consol. Equityholders receive the residual cash flow in the form of dividends at the
rate dt � c at time t, until default. At default, the firm�s future cash flows are assigned
to debtholders.

The equityholders� dividend rate, dt � c, may have negative outcomes. It is com-
monly stipulated, however, that equity claimants have limited liability, meaning that
they should not experience negative cash flows. One can arrange for limited liability
by dilution of equity. That is, so long as the market value of equity remains strictly
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positive, newly issued equity can be sold into the market so as to continually finance
the negative portion (c � dt)

+ of the residual cash flow. (Alternatively, the firm could
issue debt, or other forms of securities, to finance itself.) When the price of equity
reaches zero, and the financing of the firm through equity dilution is no longer pos-
sible, the firm is in any case in default, as we shall see. While dilution increases the
quantity of shares outstanding, it does not alter the total market value of all shares,
and so is a relatively simple modeling device. Moreover, dilution is irrelevant to indi-
vidual shareholders, who would in any case be in a position to avoid negative cash
flows by selling their own shares as necessary to finance the negative portion of their
dividends, with the same effect as if the firm had diluted their shares for this purpose.
We are ignoring here any frictional costs of equity issuance or trading. This is an-
other aspect of the Modigliani–Miller theory, the irrelevance of dividend policy.

Equityholders are assumed to have the contractual right to declare default at any
stopping time T, at which time equityholders give up to debtholders the rights to all
future cash flows, a contractual arrangement termed strict priority, or sometimes
absolute priority. We assume that equityholders are not permitted to delay liquida-
tion after the value A of the firm reaches 0, so we ignore the possibility that AT < 0.
We could also consider the option of equityholders to change the firm�s production
technology, or to call in the debt for some price.

The bond contract conveys to debtholders, under a protective covenant, the right
to force liquidation at any stopping time s at which the asset value As is as low or
lower than some stipulated level, which we take for now to be the face value L of
the debt. Debtholders would receive As at such a time s; equityholders would receive
nothing.

Assuming that A0 > L, we first consider the total coupon payment rate c that
would be chosen at time 0 in order that the initial market value of the bond is its face
value L. Such a bond is said to be ‘‘at par’’, and the corresponding coupon rate per
unit of face value, c/L, is the par yield. If bondholders rationally enforce their pro-
tective covenant, we claim that the par yield must be the riskless rate r. We also claim
that, until default, the bond paying coupons at the total rate c = rL is always priced
at its face value L, and that equity is always priced at the residual value, A � L. Fi-
nally, equityholders have no strict preference to declare default on a par-coupon
bond before s(L) = inf{t : At 6 L}, which is the first time allowed for in the protec-
tive covenant, and bondholders rationally force liquidation at s(L).

If the total coupon rate c is strictly less than the par rate rL, then equityholders
never gain by exercising the right to declare default (or, if they have it, the right
to call the debt at its face value) at any stopping time T with AT P L, because the
market value at time T of the future cash flows to the bond is strictly less than L

if liquidation occurs at a stopping time U > T with AU 6 L. Avoiding liquidation
at T would therefore leave a market value for equity that is strictly greater than
AT � L. With c < rL, bondholders would liquidate at the first time s(L) allowed
for in their protective covenant, for by doing so they receive L at s(L) for a bond
that, if left alive, would be worth less than L. In summary, with c < rL, the bond
is liquidated at s(L), and trades at a ‘‘discount’’ price at any time t before liquidation,
given by
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Y t ¼ EQ
t

Z sðLÞ

t
e�rðs�tÞcdsþ e�rðsðLÞ�tÞL

� �
ðA:3Þ

¼ c
r
þ EQ

t e�rðsðLÞ�tÞ� �
L� c

r

� �
< L: ðA:4Þ
A.3. Example: Brownian dividend growth

As an example, suppose the cash-flow rate process d is a geometric Brownian mo-
tion under Q, in that

ddt ¼ ldtdt þ rdtdBQ
t ;

for constants l and r, where BQ is a standard Brownian motion under Q. We assume
throughout that l < r, so that, from (A.1), A is finite and

dAt ¼ lAtdt þ rAtdBQ
t :

We calculate that dt = (r � l)At.
For any given constant K 2 (0,A0), the market value of a security that claims one

unit of account at the hitting time s(K) = inf{t : At 6 K} is, at any time t < s(K),

EQ
t e�rðsðKÞ�tÞ� �

¼ At

K

� ��c

; ðA:5Þ

where

c ¼ mþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ 2rr2

p

r2
; ðA:6Þ

and where m = l � r2/2. One can verify (A.5) as an exercise, applying Itô�s Formula.
Let us consider for simplicity the case in which bondholders have no protective cov-

enant. Then equityholders declare default at a stopping time that solves the maximum
equity valuation problem

wðA0Þ � sup
T2T

EQ

Z T

0

e�rtðdt � cÞdt
� �

; ðA:7Þ

where T is the set of stopping times.
We naturally conjecture that the maximization problem (A.7) is solved by a hit-

ting time of the form s(AB) = inf{t : At 6 AB}, for some default-triggering level AB

of assets, to be determined. Given this conjecture, we further conjecture from Itô�s
Formula that the function w : (0,1)! [0,1) defined by (A.7) solves the ODE

AwðxÞ � rwðxÞ þ ðr � lÞx� c ¼ 0; x > AB; ðA:8Þ

where

AwðxÞ ¼ w0ðxÞlxþ 1

2
w00ðxÞr2x2; ðA:9Þ
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with the absolute-priority boundary condition

wðxÞ ¼ 0; x 6 AB: ðA:10Þ
Finally, we conjecture the smooth-pasting condition

w0ðABÞ ¼ 0; ðA:11Þ
based on (A.10) and continuity of the first derivative w 0(Æ) at AB. Although not an
obvious requirement for optimality, the smooth-pasting condition, sometimes called
the high-order-contact condition, has proven to be a fruitful method by which to
conjecture solutions, as follows.

If we are correct in conjecturing that the optimal default time is of the form
s(AB) = inf{t : At 6 AB}, then, given an initial asset level A0 = x > AB, the value of
equity must be

wðxÞ ¼ x� AB
x
AB

� ��c

� c
r

1� x
AB

� ��c� �
: ðA:12Þ

This conjectured value of equity is merely the market value x of the total future cash
flows of the firm, less a deduction equal to the market value of the debtholders� claim
toAB at the default time s(AB) using (A.5), less another deduction equal to the market
value of coupon payments to bondholders before default. The market value of those
coupon payments is easily computed as the present value c/r of coupons paid at the
rate c from time 0 to time +1, less the present value of coupons paid at the rate c
from the default time s(AB) until +1, again using (A.5). In order to complete our
conjecture, we apply the smooth-pasting condition w 0(AB) = 0 to this functional form
(A.12), and by calculation obtain the conjectured default triggering asset level as

AB ¼ bc; ðA:13Þ
where

b ¼ c
rð1þ cÞ : ðA:14Þ

We are ready to state and verify Leland�s pricing result.

Proposition 1. The default-timing problem (A.7) is solved by inf{t: At 6 bc}. The

associated initial market value w(A0) of equity is W(A0,c), where

W ðx; cÞ ¼ 0; x 6 bc; ðA:15Þ
and

W ðx; cÞ ¼ x� bc
x
bc

� ��c

� c
r

1� x
bc

� ��c� �
; x P bc: ðA:16Þ

The initial value of debt is A0 �W(A0,c).

The following proof, a verification of Leland�s solution, is adapted from Duffie
and Lando (2001).

Proof. First, it may be checked by calculation that W(Æ,c) satisfies the differential
equation (A.8) and the smooth-pasting condition (A.11). Itô�s Formula applies to C2
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(twice continuously differentiable) functions. In our case, although W(Æ,c) need not
be C2, it is convex, is C1, and is C2 except at bc, where Wx(bc,c) = 0. Under these
conditions, we obtain the result, as though from a standard application of Itô�s
Formula,9

W ðAs; cÞ ¼ W ðA0; cÞ þ
Z s

0

AW ðAt; cÞdt þ
Z s

0

W xðAt; cÞrAtdBQ
t ; ðA:17Þ

where

AW ðx; cÞ ¼ W xðx; cÞlxþ
1

2
W xxðx; cÞr2x2; ðA:18Þ

except at x = bc, where we may replace ‘‘Wxx(bc,c)’’ with zero.
For each time t, let

qt ¼ e�rtW ðAt; cÞ þ
Z t

0

e�rsððr � lÞAs � cÞds:

From Itô�s Formula,

dqt ¼ e�rtf ðAtÞdt þ e�rtW xðAt; cÞrAtdBQ
t ; ðA:19Þ

where

f ðxÞ ¼ AW ðx; cÞ � rW ðx; cÞ þ ðr � lÞx� c:

Because Wx is bounded, the last term of (A.19) defines a Q-martingale. For x 6 bc,
we have both W(x,c) = 0 and (r � l)x � c 6 0, so f(x) 6 0. For x > bc, we have
(A.8), and therefore f(x) = 0. The drift of q is therefore never positive, and for any
stopping time T we have q0 P EQðqT Þ, or equivalently,

W ðA0; cÞ P EQ

Z T

0

e�rsðds � cÞdsþ e�rTW ðAT ; cÞ
� �

: ðA:20Þ

For the particular stopping time s(bc), we have

W ðA0; cÞ ¼ EQ

Z sðbcÞ

0

e�rsðds � cÞds
� �

; ðA:21Þ

using the boundary condition (A.15) and the fact that f(x) = 0 for x > bc. So, for any
stopping time T,

W ðA0; cÞ ¼ EQ

Z sðbcÞ

0

e�rsðds � cÞds
� �

P EQ

Z T

0

e�rsðds � cÞdsþ e�rTW ðAT ; cÞ
� �

P EQ

Z T

0

e�rsðds � cÞds
� �

; ðA:22Þ
9 We use a version of Itô�s Formula that can be applied to a real-valued function that is C1 and is C2

except at a point, as, for example, in Karatzas and Shreve (1988, p. 219).
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using the non-negativity of W for the last inequality. This implies the optimality of
the stopping time s(bc) and verification of the proposed solution W(A0,c) of
(A.7). h

This model was further elaborated to treat taxes in Leland (1994), coupon debt of
finite maturity in Leland and Toft (1996), endogenous calling of debt and recapital-
ization in Leland (1998) and Uhrig-Homburg (1998), and incomplete observation of
the firm�s capital structure by bond investors, with default intensity, in Duffie and
Lando (2001). Yu (2005) provides empirical support for incomplete observation of
the capital structure. Alternative approaches to default recovery are considered by
Anderson and Sundaresan (1996), Anderson et al. (1995); Fan and Sundaresan
(2000); Mella-Barral (1999); and Mella-Barral and Perraudin (1997).

Longstaff and Schwartz (1995a) developed a similar first-passage defaultable bond
pricing model with stochastic default-free interest rates. (See also Nielsen et al.
(1993) and Collin-Dufresne and Goldstein (2001).) Zhou (2000) bases pricing on first
passage of a jump-diffusion.
Appendix B. Itô�s formula

This appendix states Itô�s Formula, allowing for jumps, and including some back-
ground properties of semimartingales. A standard source is Protter (2004). We first
establish some preliminary definitions. We fix a complete probability space ðX;F;PÞ
and a filtration fGt : t P 0g satisfying the usual conditions:

• For all t, Gt contains all of the null sets of F.
• For all t, Gt ¼ \s>tGs, a property called right-continuity.

A function Z : ½0;1Þ ! R is left-continuous if, for all t, we have Zt = lims"tZs; the
process has left limits if Zt� = lims"tZs exists; and finally the process is right-contin-
uous if Zt = lims#tZs. The jump DZ of Z at time t is DZt = Zt � Zt�. The class of
processes that are right-continuous with left limits is called RCLL, or sometimes
‘‘cadlag’’, for ‘‘continué à, limité à gauche’’.

Under the usual conditions, we can without loss of generality for our applications
assume that a martingale has sample paths that are almost surely right-continuous
with left limits. See, for example, Protter (2004, p. 8). This is sometimes taken as a
defining property of martingales, for example by Jacod and Shiryaev (1987).

Lemma 1. Suppose Q is equivalent to P, with density process n. Then an adapted

process Y that is right-continuous with left limits is aQ-martingale if and only if nY is a

P-martingale.

A process X is a finite-variation process if X = U � V, where U and V are right-
continuous increasing adapted processes with left limits. For example, X is finite-
variation if X t ¼

R t
0
ds ds, where d is an adapted process such that the integral exists.

The next lemma is a variant of Itô�s Formula.
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Lemma 2. Suppose X is a finite-variation process and f : R ! R is continuously

differentiable. Then

f ðX tÞ ¼ f ðX 0Þ þ
Z t

0þ
f 0ðX s�ÞdX s þ

X
0<s6t

½f ðX sÞ � f ðX s�Þ � f 0ðX s�ÞDX s�:

Like our next version of Itô�s Formula, this can be found, for example, in Protter
(2004, p. 71).

A semimartingale is a process of the form V + M, where V is a finite-variation
process and M is a local martingale.

Lemma 3. Suppose X and Y are semimartingales and at least one of them is a finite-

variation process. Let Z = XY. Then Z is a semimartingale and

dZt ¼ X t�dY t þ Y t�dX t þ DX tDY t: ðB:1Þ
We now extend the last two lemmas. From this point, B denotes a standard

Brownian motion in Rd .
Lemma 4. Suppose X = M + A, where A is a finite-variation process in Rd and

Mt ¼
R t
0 ru dBu is in Rd , where B is a standard Brownian motion in Rd and r is an Rd�d

progressively-measurable adapted process with
R t
0 krsk

2ds < 1 almost surely for all t.

Suppose f : Rd ! R is twice continuously differentiable. Then

f ðX tÞ ¼ f ðX 0Þ þ
Z t

0þ
rf ðX s�ÞdX s þ

1

2

X
i;j

Z t

0

o2ijf ðX sÞðrsr
T
s Þij ds

þ
X
0<s6t

½f ðX sÞ � f ðX s�Þ � rf ðX s�ÞDX s�;

where DX(t) = X(t) � X(t�) is the jump of X at t and

ðrf ðxÞÞi ¼
of ðxÞ
oxi

; o
2
ijf ðxÞ ¼

o2f ðxÞ
oxi oxj

:

Lemma 5. Suppose dXt = dAt + rtdBt and dYt = dCt + vtdBt, where B is a standard

Brownian motion in Rd , and where A and C are finite-variation processes, and r and

v are progressively measurable processes in Rd such that
R t
0 rs � rs ds and

R t
0 vs � vs ds

are finite almost surely for all t. Let Z = XY. Then Z is a semimartingale and

dZt ¼ X t�dY t þ Y t�dX t þ DX tDY t þ rt � vt dt: ðB:2Þ
Appendix C. Foundations of affine processes

This appendix, based on Duffie et al. (2003a), characterizes regular affine pro-
cesses, a class of time-homogeneous Markov processes that has arisen from a large
and growing range of useful applications in finance. Given a state space of the form
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D ¼ Rm
þ � Rn for integers m P 0 and n P 0, the key ‘‘affine’’ property, to be defined

precisely in what follows, is roughly that the characteristic exponent (the logarithm
of the characteristic function) of the transition distribution pt(x, Æ) of such a process
is affine with respect to the initial state x 2 D. The coefficients defining this affine
relationship are the solutions of a family of ordinary differential equations (ODEs)
that are the essence of the tractability of regular affine processes. We review these
ODEs, ‘‘generalized Riccati equations’’, and state the precise set of admissible
parameters for which there exists a unique associated regular affine process.

The class of regular affine processes include the entire class of continuous-state
branching processes with immigration (CBI) (for example, Kawazu and Watanabe,
1971), as well as the class of processes of the Ornstein–Uhlenbeck (OU) type (for
example, Sato, 1999). Roughly speaking, the regular affine processes with state space
Rm

þ are CBI, and those with state space Rn are of OU type. For any regular affine
process X = (Y,Z) in Rm

þ � Rn, the first component Y is necessarily a CBI process.
Any CBI or OU process is infinitely decomposable, as is apparent from the exponen-
tial-affine form of the characteristic function of its transition distribution. A regular
(to be defined below) Markov process with state space D is infinitely decomposable if
and only if it is a regular affine process. Regular affine processes are also semimar-
tingales, a crucial property in most financial applications because the standard model
of the financial gain generated by trading a security is a stochastic integral with
respect to the underlying price process.

We will restrict our attention to the case of time-homogeneous conservative pro-
cesses (no killing) throughout. For the case that allows for killing, see Duffie et al.
(2003a). For the case of time-inhomogeneous affine processes, see Filipović (in press).

The remainder of the appendix is organized as follows. In Section C.2, we provide
the definition of a regular affine process X (Definitions C.1 and C.3) and the main
characterization result of affine processes. Three other equivalent characterizations
of regular affine processes are then reviewed: (i) in terms of the generator (Theorem
C.5), (ii) in terms of the semimartingale characteristics (Theorem C.8), and (iii) in
terms of the infinite decomposability (Theorem C.10). Proofs of these results are
found in Duffie et al. (2003a).

C.1. Basic notation

For background and notation we refer to Jacod and Shiryaev (1987) and Revuz
and Yor (1994). Let k 2 N. For a and b in Ck, we write ha, bi :¼ a1b1 + � � � + akbk
(notice that this is not the scalar product on Ck). We let Semk be the convex cone
of symmetric positive semi-definite k · k matrices.

If U is an open set or the closure of an open set in Ck, we write U for the closure,
U0 for the interior, and oU ¼ U n U 0 for the boundary.

We use the following notation for function spaces:

• C(U) is the space of complex-valued continuous functions f on U.
• bU is the Banach space of bounded complex-valued Borel-measurable functions f
on U.
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• Cb(U) is the Banach space C(U) \ bU.
• Ck(U) is the space of k times differentiable functions f on U0 such that all partial
derivatives of f up to order k belong to C(U).

• Ck
cðUÞ is the space of f 2 Ck(U) with compact support.

• C1ðUÞ ¼
T

k2NC
kðUÞ and C1

c ðUÞ ¼
T

k2NC
k
cðUÞ.

C.2. Definition and characterization

We consider a conservative time-homogeneous Markov process with state space
D ¼ Rm

þ � Rn and semigroup (Pt) acting on bD,

P tf ðxÞ ¼
Z
D
f ðnÞptðx; dnÞ:

According to the product structure of D we shall write x = (y,z) or n = (g,f) for a
point in D. We assume that d ¼ mþ n 2 N. Here, m or n may be zero.

We let ðX ; ðPxÞx2DÞ ¼ ððY ; ZÞ; ðPxÞx2DÞ denote the canonical realization of (Pt) de-
fined on ðX;F0; ðF0

t ÞÞ, where X is the set of mappings x : Rþ ! D and
Xt(w) = (Yt(x), Zt(x)) = x(t). The filtration ðF0

t Þ is generated by X, and F0 ¼W
t2Rþ

F0
t . For every x 2 D, Px is a probability measure on ðX;F0Þ such that

Px½X 0 ¼ x� ¼ 1 and the Markov property holds, in that, for all s and t in Rþ, and
for all f 2 bD,

Ex½f ðX tþsÞjF0
t � ¼ P sf ðX tÞ ¼ EX t ½f ðX sÞ�; Px � a:s:; ðC:1Þ

where Ex denotes the expectation with respect to Px.
For u ¼ ðv;wÞ 2 Cm � Cn; we write �u :¼ ð�v; iwÞ 2 Cm � Cn and let the function

fu 2 C(D) be given by

fuðxÞ :¼ eh�u;xi ¼ e�hv;yiþihw;zi; x ¼ ðy; zÞ 2 D:

Notice that fu 2 Cb(D) if and only if u 2 U :¼ Cm
þ � Rn. By dominated convergence,

Ptfu(x) is continuous in u 2 U, for every ðt; xÞ 2 Rþ � D.
Observe that, with a slight abuse of notation,

oU 3 u 7!P tfuðxÞ
is the characteristic function of the measure pt(x, Æ), that is, the characteristic func-
tion of Xt with respect to Px.

Definition C.1. The Markov process ðX ; ðPxÞx2DÞ, and (Pt), is called affine if,
for every t 2 Rþ, the characteristic exponent of pt(x, Æ) has affine dependence on x.
That is, if for every ðt; uÞ 2 Rþ � oU there exist uðt; uÞ 2 C and wðt; uÞ ¼
ðwYðt; uÞ;wZðt; uÞÞ 2 Cm � Cn such that

P tfuðxÞ ¼ e�uðt;uÞþh�wðt;uÞ;xi ðC:2Þ
¼ e�uðt;uÞ�hwYðt;uÞ;yiþihwZðt;uÞ;zi; x ¼ ðy; zÞ 2 D: ðC:3Þ
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Because Ptfu is in bD for all ðt; uÞ 2 Rþ �U, we infer from (C.2) that, a fortiori
uðt; uÞ 2 Cþ and wðt; uÞ ¼ ðwYðt; uÞ;wZðt; uÞÞ 2 U for all ðt; uÞ 2 Rþ � oU.

We note that w(t,u) is uniquely specified by (C.2), but that Imu(t,u) is determined
only up to multiples of 2p. Nevertheless, by definition we have Ptfu(0) 5 0 for all
ðt; uÞ 2 Rþ � oU. Since oU is simply connected, Ptfu(0) admits a unique representa-
tion of the form (C.2)—and we shall use the symbol u(t,u) in this sense from now on—
such that u(t, Æ) is continuous on oU and u(t, 0) = 0.

Definition C.2. The Markov process ðX ; ðPxÞx2DÞ, and (Pt), is stochastically contin-
uous if ps(x, Æ) ! pt(x, Æ) weakly on D, for s! t, for every ðt; xÞ 2 Rþ � D.

If ðX ; ðPxÞx2DÞ is affine then, by the continuity theorem of Lévy, ðX ; ðPxÞx2DÞ is sto-
chastically continuous if and only if u(t,u) and w(t,u) from (C.2) are continuous in
t 2 Rþ, for every u 2 oU.

Definition C.3. The Markov process ðX ; ðPxÞx2DÞ, and (Pt), is called regular if it is
stochastically continuous and the right-hand derivative

~AfuðxÞ :¼ o
þ
t P tfuðxÞjt¼0

exists, for all ðx; uÞ 2 D�U, and is continuous at u = 0, for all x 2 D.
We call ðX ; ðPxÞx2DÞ and (Pt), regular affine if both regular and affine.

If there is no ambiguity, we shall write indifferently X or (Y,Z) for the Markov
process ðX ; ðPxÞx2DÞ, and say that X is affine, stochastically continuous, regular, or
regular affine if ðX ; ðPxÞx2DÞ shares the respective property.

In order to state the main characterization results, we require certain notation and
terminology. We denote by {e1, . . . , ed} the standard basis in Rd , and write
I :¼ f1; . . . ;mg andJ :¼ fmþ 1; . . . ; dg. We define the continuous truncation func-
tion v ¼ ðv1; . . . ; vdÞ : Rd ! ½�1; 1�d by

vkðnÞ ¼
0; nk ¼ 0;
1 ^ jnkj
jnkj

nk; otherwise:

8<
: ðC:4Þ

Let a = (aij) be a d · d-matrix, b = (b1, . . . ,bd) a d-tuple and I,J � {1, . . . ,d}. Then we
write aT for the transpose of a, and aIJ :¼ (aij)i2I,j2J and bI :¼ (bi)i2I. Examples are
vI(n) = (vk(n))k2I or rI :¼ ðoxk Þk2I . Accordingly, we have wYðt; uÞ ¼ wIðt; uÞ and
wZðt; uÞ ¼ wJðt; uÞ (since these mappings play a distinguished role we introduced
the former, ‘‘coordinate-free’’ notation). We also write 1 :¼ (1, . . . , 1) without speci-
fying the dimension whenever there is no ambiguity. For i 2 I we define
IðiÞ :¼ I n fig and JðiÞ :¼ fig [J, and let Id(i) denote the m · m-matrix given by
Id(i)kl = dikdkl, where dkl is the Kronecker Delta (dkl equals 1 if k = l and 0 otherwise).

Definition C.4. The parameters (a,a,b,b,m,l) are called admissible if

• a 2 Semd with aII ¼ 0 (hence aIJ ¼ 0 and aJI ¼ 0).
• a = (a1, . . . ,am) with ai 2 Semd and ai;II ¼ ai;iiIdðiÞ, for all i 2 I.



2786 D. Duffie / Journal of Banking & Finance 29 (2005) 2751–2802
• b 2 D.
• b 2 Rd�d such that bIJ ¼ 0 and biIðiÞ 2 Rm�1

þ , for all i 2 I. (Hence, bII has non-
negative off-diagonal elements).

• m is a Borel measure on D n {0} satisfyingZ
Dnf0g

hvIðnÞ; 1i þ kvJðnÞk
2

� �
mðdnÞ < 1:

• l = (l1, . . . ,lm), where every li is a Borel measure on D n {0} satisfyingR
Dnf0g hvIðiÞðnÞ; 1i þ kvJðiÞðnÞk

2
� �

liðdnÞ < 1:

Now we have the main characterization results from Duffie et al. (2003a). First,
we state an analytic characterization result for regular affine processes.

Theorem C.5. Suppose X is regular affine. Then X is a Feller process. Let A be its

infinitesimal generator. Then C1
c ðDÞ is a core of A, C2

cðDÞ � DðAÞ, and there exist

admissible parameters (a,a, b,b,m,l) such that, for f 2 C2
cðDÞ,

Af ðxÞ ¼
Xd
k;l¼1

akl þ haI;kl; yið Þ o
2f ðxÞ
oxkoxl

þ bþ bx;rf ðxÞh i

þ
Z
Dnf0g

Gf 0ðx; nÞmðdnÞ þ
Xm
i¼1

Z
Dnf0g

Gf iðx; nÞyiliðdnÞ; ðC:5Þ

where

Gf 0ðx; nÞ ¼ f ðxþ nÞ � f ðxÞ � rJf ðxÞ; vJðnÞ

 �

;

Gf iðx; nÞ ¼ f ðxþ nÞ � f ðxÞ � hrJðiÞf ðxÞ; vJðiÞðnÞi:

Moreover, (C.2) holds for all ðt; uÞ 2 Rþ �U where u(t,u) and w(t, u) solve the gener-
alized Riccati equations,

uðt; uÞ ¼
Z t

0

F ðwðs; uÞÞds; ðC:6Þ

otw
Yðt; uÞ ¼ RY wYðt; uÞ; ebZtw

� �
; wYð0; uÞ ¼ v; ðC:7Þ

wZðt; uÞ ¼ eb
Ztw; ðC:8Þ

with

F ðuÞ ¼ �ha�u; �ui � hb; �ui �
Z
Dnf0g

eh�u;ni � 1� �uJ; vJðnÞ

 �	 


mðdnÞ; ðC:9Þ

RY
i ðuÞ ¼ �hai�u; �ui � bY

i ; �u

 �

�
Z
Dnf0g

ðeh�u;ni � 1� h�uJðiÞ; vJðiÞðnÞiÞliðdnÞ; ðC:10Þ
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for i 2 I, and

bY
i ¼ bT	 


if1;...;dg 2 Rd ; i 2 I; ðC:11Þ

bZ ¼ bT	 

JJ

2 Rn�n: ðC:12Þ

Conversely, let (a,a, b,b,m,l) be admissible parameters. Then there exists a unique,

regular affine semigroup (Pt) with infinitesimal generator (C.5), and (C.2) holds for all
ðt; uÞ 2 Rþ �U where u(t, u) and w(t, u) are given by (C.6)–(C.8).

Eq. (C.8) states that wZ(t,u) depends only on (t,w). Hence, for w = 0, we infer
from (C.2) that the characteristic function of Yt with respect to Px,

P tfðv;0ÞðxÞ ¼
Z
D
e�hv;giptðx; dnÞ ¼ e�uðt;v;0Þ�hwYðt;v;0Þ;yi; v 2 iRm;

depends only on y. We obtain the following.

Corollary C.6. Let X = (Y,Z) be regular affine. Then ðY ; ðPðy;zÞÞy2Rm
þ
Þ is a regular

affine Markov process with state space Rm
þ, and does not depend on z 2 Rn.

Theorem C.5 generalizes and unifies two well studied classes of stochastic pro-
cesses. For the notion of a CBI process we refer to Watanabe (1969), Kawazu and
Watanabe (1971) and Shiga and Watanabe (1973). For the notion of an OU type

process see Sato (1999, Definition 17.2).

Corollary C.7. Let X = (Y,Z) be regular affine. Then ðY ; ðPðy;zÞÞy2Rm
þ
Þ is a CBI

process, for every z 2 Rn. If m = 0, then X is an OU-type process. Conversely, every

CBI and OU type process is a regular affine Markov process.

Motivated by Theorem C.5, we give in this paragraph a summary of some classi-
cal results for Feller processes. For proofs, we refer to Revuz and Yor (1994, Chap-
ter III.2). Let X be regular affine and hence, by Theorem C.5, a Feller process. Since
we deal with an entire family of probability measures, ðPxÞx2D, we use the convention
that ‘‘a.s.’’ means ‘‘Px-a.s. for all x 2 D’’. Then X admits a cadlag modification, and
from now on we shall only consider cadlag versions of a regular affine process X, still
denoted by X.

We write FðxÞ for the completion of F0 with respect to Px and ðFðxÞ
t Þ for the fil-

tration obtained by adding to each F0
t all Px-nullsets in FðxÞ. Define

Ft :¼
\
x2D

FðxÞ
t ; F :¼

\
x2D

FðxÞ:

Then the filtrations ðFðxÞ
t Þ and ðFtÞ are right-continuous, and X is still a Markov

process with respect to ðFtÞ. That is, (C.1) holds for F0
t replaced by Ft, for all

x 2 D.
By convention, we call X a semimartingale if X is a semimartingale on

ðX;F; ðFtÞ;PxÞ, for every x 2 D. For the definition of the characteristics of a semi-
martingale with refer to Jacod and Shiryaev (1987, Section II.2). We emphasize that
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the characteristics below are associated with the truncation function v, defined in
(C.4).

Let X 0 be a D-valued stochastic process defined on some probability space
ðX0;F0;P0Þ. Then P0 � X 0�1

denotes the law of X 0, that is, the image of P0 by the map-
ping x0 7!X 0

ð�Þðx0Þ : ðX0;F0Þ ! ðX;F0Þ.
The following is a characterization result for regular affine processes in the class of

semimartingales.

Theorem C.8. Let X be regular affine and (a,a, b,b,m,l) the related admissible

parameters. Then X is a semimartingale and admits the characteristics (B,C,m),
where

Bt ¼
Z t

0

~bþ ~bX s

� �
ds; ðC:13Þ

Ct ¼ 2

Z t

0

aþ
Xm
i¼1

aiY i
s

 !
ds; ðC:14Þ

mðdt; dnÞ ¼ mðdnÞ þ
Xm
i¼1

Y i
tliðdnÞ

 !
dt; ðC:15Þ

for every Px, where b~ 2 D and ~b 2 Rd�d are given by

~b ¼ bþ
Z
Dnf0g

vIðnÞ; 0ð ÞmðdnÞ; ðC:16Þ

~bkl ¼ bkl þ 1� dklð Þ
Z
Dnf0g

vkðnÞllðdnÞ; if l 2 I; ðC:17Þ

¼ bkl; if l 2 J; for 1 6 k 6 d: ðC:18Þ

Moreover, let X 0 = (Y 0,Z 0) be a D-valued semimartingale defined on some filtered

probability space ðX0;F0; ðF0
tÞ;P0Þ with P0½X 0

0 ¼ x� ¼ 1. Suppose that X 0 admits the

characteristics (B 0,C 0,m 0), given by (C.13)–(C.15) where X is replaced by X 0. Then

P0 � X 0�1 ¼ Px.

A third way of characterizing regular affine processes, generalizes Shiga and
Watanabe (1973), as follows. Let P and Q be two probability measures on
ðX;F0Þ. We write P �Q for the image of P�Q by the measurable mapping
ðx;x0Þ7!xþ x0 : ðX� X;F0 	F0Þ ! ðX;F0Þ. Let PRM be the set of all families
ðP0

xÞx2D of probability measures on ðX;F0Þ such that ðX ; ðP0
xÞx2DÞ is a regular Mar-

kov process with P0
x½X 0 ¼ x� ¼ 1, for all x 2 D.
Definition C.9. We call ðPxÞx2D infinitely decomposable if, for every k 2 N, there
exists ðPðkÞ

x Þx2D 2 PRM such that

Pxð1Þþ���þxðkÞ ¼ P
ðkÞ
xð1Þ

� � � � � PðkÞ
xðkÞ

; for all xð1Þ; . . . ; xðkÞ 2 D: ðC:19Þ
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Theorem C.10. The Markov process ðX ; ðPxÞx2DÞ is regular affine if and only if

ðPxÞx2D is infinitely decomposable.

Without going much into detail, we remark that in (C.5) we can distinguish the
three ‘‘building blocks’’ of any jump-diffusion process, the diffusion matrix A(x) =
a + y1a1 + � � � + ymam, the drift B(x) = b + bx, and the Lévy measure (the compensa-
tor of the jumps)M(x, dn) = m(dn) + y1l1(dn) + � � � + ymlm(dn). An informal defini-
tion of an affine process could consist of the requirement that A(x), B(x), and
M(x, dn) have affine dependence on x. (See, for example, Duffie et al. (2000).) The
particular kind of this affine dependence in the present setup is implied in part by
the geometry of the state space D.
Appendix D. Toolbox for affine processes

This appendix contains some ‘‘tools’’ for affine processes that are implications of
the preceding basic results.
D.1. Statistical estimation of affine models

For a given (regular) affine process X with state space D � Rd , we reconsider the
conditional characteristic function u of XT given Xt, defined from (3.1) by

Uðu;X t; t; T Þ ¼ E eiu�XT jX t

	 

ðD:1Þ

for real u in Rd . Because knowledge of U is equivalent to knowledge of the joint con-
ditional transition distribution function of X, this result is useful in estimation and
all other applications involving the transition densities of affine processes.

For instance, Singleton (2001) exploits knowledge of U to derive maximum like-
lihood estimators for the coefficients of an affine process, based on the conditional
density f(ÆjXt) of Xt+1 given Xt, obtained by Fourier inversion of u as

f ðX tþ1jX tÞ ¼
1

ð2pÞN
Z
RN

e�iu�X tþ1Uðu;X t; t; t þ 1Þdu: ðD:2Þ

Das (1998) exploits (D.2) for special case of an affine process to compute method-of-
moments estimators of a model of interest rates.

Method-of-moments estimators can also be constructed directly in terms of the
conditional characteristic function. From the definition of U,

E½eiu�X tþ1 � Uðu;X t; t; t þ 1ÞjX t� ¼ 0; ðD:3Þ
so any measurable function of Xt is orthogonal to the innovation ðeiu�X tþ1�
Uðu;X t; t; t þ 1ÞÞ. Singleton (2001) uses this fact, together with the known functional
form of U, to construct generalized method-of-moments estimators of the parameters
governing affine processes and, more generally, the parameters of asset pricing models
in which the state process is affine. These estimators are computationally tractable
and, in some cases, achieve the same asymptotic efficiency as the maximum likelihood
estimator. Jiang and Knight (2001) and Chacko and Viceira (1999) propose related,
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characteristic-function-based estimators of the stochastic volatility model of asset re-
turns in which the instantaneous variance process is a Feller diffusion.

D.2. Laplace transforms and moments

First, for a one-dimensional affine process, we consider the Laplace transform
u(Æ), whenever well-defined at some number u by

uðuÞ ¼ Et e
�uX ðsÞ	 


: ðD:4Þ
We sometimes call u(Æ) the moment-generating function of X(s), for it has the con-
venient property that, if its successive derivatives

u0ð0Þ;u00ð0Þ;u000ð0Þ; . . . ;uðmÞð0Þ
up to some order m are well defined, then they provide us with the respective
moments

uðkÞð0Þ ¼ Et½X ðsÞk�:
From (3.3), we know that u(u) = ea(t) + b(t)X(t), for coefficients a(t) and b(t) ob-

tained from the generalized Riccati equation for X. We can calculate the dependence
of a(t) and b(t) on the boundary condition b(s) = u, writing a(t,u) and b(t,u) to show
this dependence explicitly. Then we have, by the chain rule for differentiation,

u0ð0Þ ¼ eaðt;0Þþbðt;0ÞX ð0Þ½auðt; 0Þ þ buðt; 0ÞX ð0Þ�;
where bu denotes the partial derivative of b with respect to its boundary condition u.
Successively higher-order derivatives can be computed by repeated differentiation.
Pan (2002) provides an efficient recursive algorithm for higher-order moments, even
in certain multivariate cases.

For the multivariate case, the transform at u 2 Rd is defined by

uðuÞ ¼ Eðe�u�X ðtÞÞ ¼ eaðt;uÞþbðt;uÞ�X ð0Þ; ðD:5Þ
and provides covariance and other cross-moments, again by differentiation.

Having an explicit term structure of such moments as variances, covariances,
skewness, kurtosis, and so on, as the time horizon s varies, allows one to analytically
calibrate models to data, or to formulate models in light of empirical regularities, as
shown by Das and Sundaram (1999). For example, method-of-moments statistical
estimation in a time-series setting can also be based on the conditional moment-gen-
erating function (D.4).

Gregory and Laurent (2003) extend the transform to a generating function de-
signed to simplify the calculation of the distribution function of the number of de-
faults from a portfolio of defaultable bonds.
D.3. Inversion of the transform

The probability distribution of a random variable Z can be recovered from its
characteristic function W(Æ) by the Lévy inversion formula, according to which
(under technical regularity conditions),
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PðZ 6 zÞ ¼ Wð0Þ
2

� 1

p

Z 1

0

Im WðuÞe�iuy½ �
u

du; ðD:6Þ

where Im(c) denotes the imaginary part of any complex number c. It is sufficient, for
example, that �jW(u)jdu < + 1.

The integral in (D.6) is typically calculated by a numerical method such as quad-
rature, which is rapid.

For affine processes, in a few cases, such as the Ornstein–Uhlenbeck (Gaussian)
model and the Feller diffusion (non-central v2), the probability transition distribu-
tion is known explicitly.

D.4. Solution for the basic affine model

This section summarizes some results from Duffie and Gârleanu (2001) for the
solutions b and a for the basic affine model X of (3.11).

These generalized Riccati equations reduce in this special case to the form

dbðtÞ
dt

¼ nbðtÞ þ 1

2
pbðtÞ2 þ q; ðD:7Þ

daðtÞ
dt

¼ mbðtÞ þ ‘
�lbðtÞ

1� �lbðtÞ ðD:8Þ

for some constant coefficients n, p, q, m, ‘, and �l, with boundary conditions a(s) = u
and b(s) = v. We may take complex boundary conditions u and v, for example in or-
der to recover the characteristic function u(h) = Ex(e

ihX(s)), by taking q = 0, u = 0,
and v = ih for real h.

More generally, the expectation

Ex e
R s

0
qX ðzÞdzþvþuX ðsÞ

� �
¼ eaðsÞþbðsÞx ðD:9Þ

has explicit solutions for a(s) and b(s) given below. For example, the discount

E e
�
R t

0
X ðsÞds

� �
¼ eaðtÞþbðtÞX ð0Þ is obtained by taking u = v = 0, n = �j, p = r2,

q = �1, and m = jh. In general, solutions are given by

bðsÞ ¼ 1þ a1eb1s

c1 þ d1eb1s
; ðD:10Þ

aðsÞ ¼ vþ mða1c1 � d1Þ
b1c1d1

log
c1 þ d1e

b1s

c1 þ d1

þ m
c1
s

þ ‘ða2c2 � d2Þ
b

log
c2 þ d2e

b2s

þ ‘

c
� ‘

� �
s; ðD:11Þ
2c2d2 c2 þ d2 2
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where

c1 ¼
�nþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2 � 2pq

p
2q

;

d1 ¼ ð1� c1uÞ
nþ puþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðnþ puÞ2 � pðpu2 þ 2nuþ 2qÞ

q
2nuþ pu2 þ 2q

;

a1 ¼ ðd1 þ c1Þu� 1;

b1 ¼
d1ðnþ 2qc1Þ þ a1ðnc1 þ pÞ

a1c1 � d1

;

a2 ¼
d1

c1
;

b2 ¼ b1;

c2 ¼ 1� �l
c1
;

d2 ¼
d1 � �la1

c1
:

Appendix E. Doubly stochastic counting processes

This appendix, based on Appendix I of Duffie (2001), reviews the basic theory of
intensity-based models of counting processes. Brémaud (1981) is a standard source.
We emphasize the doubly-stochastic setting, because of its tractability.

All properties below are with respect to a probability space ðX;F;PÞ and a given
filtration fGt : t P 0g satisfying the usual conditions (Appendix B) unless otherwise
indicated. We sometimes use the usual shorthand, as in ‘‘ðFtÞ-adapted’’, to specify a
property with respect to some alternative filtration fFt : t P 0g.

A process Y is predictable if Y : X� ½0;1Þ ! R is measurable with respect to the
r-algebra on X · [0,1) generated by the set of all left-continuous adapted processes.
The idea is that one can ‘‘foretell’’ Yt based on all of the information available up to,
but not including, time t. Of course, any left-continuous adapted process is predict-
able, as is, in particular, any continuous process.

A counting process N, also known as a point process, is defined via an increasing
sequence {T0,T1, . . .} of random variables valued in [0,1], with T0 = 0 and with
Tn < Tn+1 whenever Tn < 1, according to

Nt ¼ n; t 2 ½T n; T nþ1Þ; ðE:1Þ
where we define Nt = +1 if tP limnTn. We may treat Tn as the nth jump time of N,
and Nt as the number of jumps that have occurred up to and including time t. The
counting process is non-explosive if limTn = +1 almost surely.

Definitions of ‘‘intensity’’ vary slightly from place to place. One may refer to Sec-
tion II.3 of Brémaud (1981), in particular Theorems T8 and T9, to compare other
definitions of intensity with the following. Let k be a non-negative predictable
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process such that, for all t, we have
R t
0
ks ds < 1 almost surely. Then a non-explosive

adapted counting process N has k as its intensity if fNt �
R t
0
ks ds : t P 0g is a local

martingale.
From Brémaud�s Theorem T12, without an important loss of generality for our

purposes, we can require an intensity to be predictable, as above, and we can treat
an intensity as essentially unique, in that: If k and ~k are both intensities for N, as
defined above, thenZ 1

0

jks � ~ksjksds ¼ 0 a:s: ðE:2Þ

We note that if k is strictly positive, then (E.2) implies that k ¼ ~k almost everywhere.
We can get rid of the annoying ‘‘localness’’ of the above local-martingale charac-

terization of intensity under the following technical condition, which can be verified
from Theorems T8 and T9 of Brémaud (1981).

Proposition 1. Suppose N is an adapted counting process and k is a non-negative

predictable process such that, for all t, Eð
R t
0 ks dsÞ < 1. Then the following are

equivalent:

(i) N is non-explosive and k is the intensity of N.
(ii) fNt �

R t
0
ks ds : t P 0g is a martingale.
Proposition 2. Suppose N is a non-explosive adapted counting process with intensity k,
with

R t
0
ks ds < 1 almost surely for all t. Let M be defined by Mt ¼ Nt �

R t
0
ks ds: Then,

for any predictable process H such that
R t
0
jHsjks ds is finite almost surely for all t,

a local martingale Y is well defined by

Y t ¼
Z t

0

Hs dMs ¼
Z t

0

Hs dNs �
Z t

0

Hsks ds:

If, moreover, E
R t
0 jHsjks ds

� �
< 1, then Y is a martingale.

In order to define a Poisson process, we first recall that a random variable K with
outcomes {0,1,2, . . .} has the Poisson distribution with parameter b if

PðK ¼ kÞ ¼ e�b b
k

k!
;

noting that 0! = 1. A Poisson process is an adapted non-explosive counting process
N with deterministic intensity k such that

R t
0
ks ds is finite almost surely for all t, with

the property that, for all t and s > t, conditional on Gt, the random variable Ns � Nt

has the Poisson distribution with parameter
R s
t ku du. (See Brémaud (1981, p. 22).)

We recall that fGt : t 2 ½0; T �g is the augmented filtration of a process Y valued in
some Euclidean space if, for all t, Gt is the completion of r({Ys : 0 6 s 6 t}).

SupposeN is a non-explosive counting process with intensity k, and fFt : t P 0g is a
filtration satisfying the usual conditions, with Ft � Gt. We say that N is doubly
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stochastic, driven by fFt : t P 0g, if k is ðFtÞ-predictable and if, for all t and s > t, con-
ditional on the r-algebraGt _Fs generated byGt [Fs,Ns � Nt has the Poisson distri-
bution with parameter

R s
t ku du. For conditions under which a filtration fFt : t P 0g

generated by a Markov process X satisfies the usual conditions, see Chung (1982, The-
orem 4, p. 61). We can extend to the multi-type counting process N = (N(1), . . . ,N(k))
that is doubly stochastic driven by fFt : t P 0g with intensity k = (k1, . . . ,kk). The
same definition applies to each coordinate counting process N(i), and moreover, ‘‘con-
ditional on’’ the driving filtration fFt : t P 0g the coordinate processes N(1), . . . ,N(k)

are independent. That is, conditional on the r-algebra Gt _Fs generated by
Gt [Fs; ffN ðiÞ

u � N ðiÞ
t : t 6 u 6 sg : 1 6 i 6 kg are independent.

It is to be emphasized that the filtration fGt : t P 0g has been fixed in advance for
purposes of the above definitions. In applications involving doubly stochastic pro-
cesses, it is often the case that one constructs the underlying filtration fGt : t P 0g
as follows. First, one has a filtration fFt : t P 0g satisfying the usual conditions,
and an ðFtÞ-predictable process k such that

R t
0
ks ds < 1 almost surely for all t.

We then let Z1,Z2, . . . be independent standard exponential random variables (that
is, with PðZi > zÞ ¼ e�z) that, for all t, are independent of Ft. We let T0 = 0 and, for
n P 1, we let Tn be defined recursively by

T n ¼ inf t P T n�1 :

Z t

T n�1

ku du ¼ Zn

� �
: ðE:3Þ

Now, we can define N by (E.1). (This construction can also be used for Monte Carlo
simulation of the jump times of N.) Finally, for each t, we let Gt be the r-algebra gen-
erated by Ft and {Ns: 0 6 s 6 t}. By this construction, relative to the filtration
fGt : t P 0g, N is a non-explosive counting process with intensity k that is doubly
stochastic driven by fFt : t P 0g. The construction for the multi-type case is the
obvious extension by which the set of exponential random variables triggering arriv-
als for the respective types are independent. In examples, fFt : t P 0g is usually the
filtration generated by a Markov state process.

Next, we review the martingale representation theorem in this setting, restricting
attention to a fixed time interval [0,T]. We say that a local martingale M =
(M(1), . . . ,M(k)) in Rk has the martingale representation property if, for any martin-
gale Y, there exist predictable processes H(1), . . . ,H(k) such that the stochastic inte-
gral �H(i)dM(i) is well defined for each i and

Y t ¼ Y 0 þ
Xk
i¼1

Z t

0

H ðiÞ
s dM ðiÞ

s ; a:s: t 2 ½0; T �:

The following representation result is from Brémaud (1981).

Proposition 3. Suppose that N = (N(1), . . . ,N(k)), where N(i) is a non-explosive

counting process that has the intensity k(i) relative to the augmented filtration

fGt : t 2 ½0; T �g of N. Let M ðiÞ
t ¼ N ðiÞ

t �
R t
0 k

ðiÞ
s ds. Then M = (M(1), . . . ,M(k)) has the

martingale representation property for fGt : t 2 ½0; T �g.
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Proposition 4. For a given probability space, let N = (N(1), . . . ,N(k)), where N(i) is a

Poisson process with intensity k(i) relative to the augmented filtration generated by N

itself. Let B be a standard Brownian motion in Rd , independent of N, and let

fGt : t P 0g be the augmented filtration generated by (B, N). Then N(i) has the ðGtÞ-
intensity k(i), a ðGtÞ-martingale M(i) is defined by M ðiÞ

t ¼ N ðiÞ
t �

R t
0 k

ðiÞ
s ds, and

(B(1), . . . ,B(d),M(1), . . . ,M(k)) has the martingale representation property for

fGt : t P 0g.

We can also extend this result as follows. We can let N(i) be doubly stochastic dri-
ven by the standard filtration of a standard Brownian motion B in Rd . For the aug-
mented filtration generated by (B,N), defining M(i) as the compensated counting
process of N(i), (B(1), . . . ,B(d),M(1), . . . ,M(k)) has the martingale representation
property. For details and technical conditions, see, for example, Kusuoka (1999).
For more on martingale representation, see Jacod and Shiryaev (1987).

Next, we turn to Girsanov�s Theorem. Suppose N is a non-explosive counting pro-
cess with intensity k, and u is a strictly positive predictable process such that, for
some fixed time horizon T,

R T
0 usks ds is finite almost surely. A local martingale n

is then well defined by

nt ¼ exp

Z t

0

ð1� usÞks ds
� � Y

fi:T ðiÞ6tg
uT ðiÞ; t 6 T ; ðE:4Þ

where T(i) denotes the ith jump time of K.

Proposition 5. Suppose that the local martingale n is a martingale. For this, it suffices

that k is bounded and deterministic and that u is bounded. Then an equivalent

probability measure Q is defined by letting dQ
dP ¼ nðT Þ. Restricted to the time interval

[0,T], under the probability measure Q, N is a non-explosive counting process with

intensity ku.

The proof is essentially the same as that found in Brémaud (1981, p. 168), making
use of Lemma 1 and Lemma 2 of Appendix B.

By an extra measurability condition, we can specify a change of probability mea-
sure associated with a given change of intensity, under which the doubly stochastic
property is preserved.

Proposition 6. Suppose N is doubly stochastic driven by fFt : t P 0g with intensity k,
where Gt is the completion of Ft _ rðfNs : 0 6 s 6 tgÞ. For a fixed time T > 0, let u be

an ðFtÞ-predictable process with
R T
0 utkt dt < 1 almost surely. Let n be defined by

(E.4), and suppose that n is a martingale. (For this, it suffices that k and u are

bounded.) Let Q be the probability measure with dQ
dP ¼ nT . Then, restricted to the time

interval [0,T], under the probability measure Q and with respect to the filtration

fGt : 0 6 t 6 T g, N is doubly stochastic driven by fFt : t 2 ½0; T �g, with intensity ku.

For a proof, we note that, underQ, N is, by Proposition 5, a non-explosive count-
ing process with ðGtÞ-intensity ku, which is ðFtÞ-predictable. Further, n is a P-mar-
tingale with respect to the filtration fHt : t 2 ½0; T �g defined by letting Ht be the
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completion of rðfNs : s 6 tgÞ _FT . (To verify the stated sufficient condition for
martingality, we can apply the argument of Brémaud (1981, p. 168), the doubly sto-
chastic property under P, and the law of iterated expectations.) Now, we can use the
characterization (1.8), page 22, of Brémaud (1981) and apply Itô�s Formula to see
that, under Q with respect to fHt : t 2 ½0; T �g, the counting process N is doubly sto-
chastic, driven by fFt : t P 0g, with intensity ku. Finally, the result follows by not-
ing that, whenever s > t, we have

QðNs � Nt ¼ kjGt _FsÞ ¼ QðNs � Nt ¼ kjrðfNu : 0 6 u 6 tgÞ _FsÞ
¼ QðNs � Nt ¼ kjHtÞ;

using the definition of Gt, and the fact that Ft � Fs.
Finally, we calculate, under some regularity conditions, the density and hazard

rate of a doubly stochastic stopping time s with intensity k, driven by some filtration.
Letting p(t) = P(s > t) define the survival function p : [0,1) ! [0,1], the density of

the stopping time s is p(t) = �p 0(t), if it exists, and the hazard function
h : [0,1)! [0,1) is defined by

hðtÞ ¼ pðtÞ
pðtÞ ¼ � d

dt
log pðtÞ;

so that we can then write

pðtÞ ¼ e
�
R t

0
hðuÞdu

:

One can similarly define the Gt-conditional density and hazard rate.

Now, because pðtÞ ¼ Eðe�
R t

0
kðuÞduÞ, if differentiation through this expectation is

justified, then we would have the natural result that

p0ðtÞ ¼ E �e
�
R t

0
kðuÞdukðtÞ

� �
; ðE:5Þ

from which p(t) and h(t) would be defined as above. Grandell (1976, pp. 106–107),
has shown that (E.5) is correct provided that:

(i) There is a constant C such that, for all t, Eðk2t Þ < C.
(ii) For any � > 0 and almost every time t,

lim
d!0

Pðjkðt þ dÞ � kðtÞj P �Þ ¼ 0:

These properties are satisfied in many typical models.
Appendix F. Further reading

The use of intensity-based defaultable bond pricing models was instigated by
Artzner and Delbaen (1990, 1992, 1995), Lando (1994, 1998), and Jarrow and Turn-
bull (1995). For additional work in this vein, see Berndt et al. (2003), Bielecki and
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Rutkowski (2002), Cooper and Mello (1991, 1992), Das and Sundaram (1999), Das
and Tufano (1995), Davydov et al. (1999), Duffie (1998a), Duffie and Huang (1996),
Duffie and Singleton (1999), Elliott et al. (2000), Hull and White (1992, 1995), Jar-
row and Yu (2001), Jarrow et al. (2005), Jeanblanc and Rutkowski (1999), Madan
and Unal (1998), and Nielsen and Ronn (1995).

Monographs devoted to the subject of credit risk modeling include those of Arva-
nitis and Gregory (2001), Bielecki and Rutkowski (2002), Bluhm et al. (2003), Duffie
and Singleton (2002), Lando (2004), and Schönbucher (2003a).

Intensity-based debt pricing models based on stochastic transition among credit
ratings were developed by Arvantis et al. (1999), Jarrow et al. (1997), Kijima and
Komoribayashi (1998), Kijima (1998), and Lando (1998).

Corporate bond pricing under Gaussian interest rates was explored by Décamps
and Rochet (1997) and Shimko et al. (1993). On the impact of illiquidity on defaul-
table debt prices, see Ericsson and Renault (1999).

Models of, and empirical work on, default correlation include those of Collin-
Dufresne et al. (2004), Das et al. (2004), Davis and Lo (1999, 2000), Duffie and Gâr-
leanu (2001), Finger (2000), Schönbucher (2003b), Schönbucher and Schubert
(2001), and Yu (2002).
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Schönbucher, P.J. 2003b. Information-driven default contagion. Working Paper, Department of

Mathematics, ETH Zurich.
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Université d�Evry, France.

Stein, E., Stein, J., 1991. Stock price distributions with stochastic volatility: An analytic approach. Review
of Financial Studies 4, 725–752.

Tsiveriotis, K., Fernandes, C., 1998. Valuing convertible bonds with credit risk. Journal of Fixed Income
8, 95–102.



2802 D. Duffie / Journal of Banking & Finance 29 (2005) 2751–2802
Uhrig-Homburg, M., 1998. Endogenous bankruptcy when issuance is costly. Working Paper, Department
of Finance, University of Mannheim.

Vasicek, O., 1977. An equilibrium characterization of the term structure. Journal of Financial Economics
5, 177–188.

Watanabe, S., 1969. On two dimensional Markov processes with branching property. Transactions of the
American Mathematical Society 136, 447–466.

Yu, F., 2002. Default correlation in reduced-form models. Working Paper, University of California,
Irvine.

Yu, F., 2005. Accounting transparency and the term structure of credit spreads. Journal of Financial
Economics 75, 53–84.

Zhou, C.-S. 2000. A jump-diffusion approach to modeling credit risk and valuing defaultable securities.
Working Paper, Federal Reserve Board, Washington, DC.


	Credit risk modeling with affine processes
	Introduction
	Intensity-based modeling of default
	Affine processes
	Examples of affine processes

	Risk-neutral probability and intensity
	Zero-recovery bond pricing
	Pricing with recovery at default
	Unpredictable default recovery
	Option-embedded corporate bonds
	Default-adjusted short rate

	Correlated default
	Credit derivatives
	Default swaps
	Credit guarantees
	Spread options
	Irrevocable lines of credit
	Ratings-based step-up bonds

	Structural models of default
	The Black ndash Scholes ndash Merton model
	First-passage models of default
	Example: Brownian dividend growth

	It ocirc  rsquo s formula
	Foundations of affine processes
	Basic notation
	Definition and characterization

	Toolbox for affine processes
	Statistical estimation of affine models
	Laplace transforms and moments
	Inversion of the transform
	Solution for the basic affine model

	Doubly stochastic counting processes
	Further reading
	References


