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Abstract

This article combines an orientation to credit risk modeling with an introduction to affine
Markov processes, which are particularly useful for financial modeling. We emphasize corpo-
rate credit risk and the pricing of credit derivatives. Applications of affine processes that are
mentioned include survival analysis, dynamic term-structure models, and option pricing with
stochastic volatility and jumps. The default-risk applications include default correlation, par-
ticularly in first-to-default settings. The reader is assumed to have some background in finan-
cial modeling and stochastic calculus.
© 2005 Elsevier B.V. All rights reserved.

JEL classification: G12; G33; C41

Keywords: Credit risk; Affine processes; Default correlation; First to default

1. Introduction

This is a written version of the Cattedra Galileana lectures, presented in 2002 at
the Scuola Normale in Pisa. The objective is to combine an orientation to credit-risk
modeling (emphasizing the valuation of corporate debt and credit derivatives) with
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Normale Superiore, who were generously represented by Mr. Carlo Gulminelli.
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an introduction to the analytical tractability and richness of affine state processes.
This is not a general survey of either topic, but rather is designed to introduce
researchers with some background in mathematics to a useful set of modeling tech-
niques and an interesting set of applications.

Appendix A contains a brief overview of structural credit risk models, based on
default caused by an insufficiency of assets relative to liabilities, including the classic
Black—Scholes—Merton model of corporate debt pricing as well as a standard struc-
tural model, proposed by Fisher et al. (1989) and solved by Leland (1994), for which
default occurs when the issuer’s assets reach a level so small that the issuer finds it
optimal to declare bankruptcy. The alternative, and our main objective, is to treat
default by a “reduced-form” approach, that is, at an exogenously specified intensity
process. As a special tractable case, we often suppose that the default intensity and
interest rate processes are linear with respect to an “affine” Markov state process.

Section 2 begins with the notion of default intensity, and the related calculation of
survival probabilities in doubly-stochastic settings. The underlying mathematical
foundations are found in Appendix E. Section 3 introduces the notion of affine pro-
cesses, the main source of example calculations for the remainder. Technical founda-
tions for affine processes are found in Appendix C. Section 4 explains the notion of
risk-neutral probabilities, and provides the change of probability measure associated
with a given change of default intensity (a version of Girsanov’s Theorem). Technical
details for this are found in Appendix E.

By Section 5, we see the basic model for pricing defaultable debt in a setting with
stochastic interest rates and stochastic risk-neutral default intensities, but assuming
no recovery at default. The following section extends the pricing models to handle
default recovery under alternative parameterizations. Section 7 introduces multi-
entity default modeling with correlation. Section 8 turns to applications such as de-
fault swaps, credit guarantees, irrevocable lines of credit, and ratings-based step-up
bonds. Appendix F provides some directions for further reading.

2. Intensity-based modeling of default

This section introduces a model for a default time as a stopping time t with a gi-
ven intensity process, as defined below. From the joint behavior of the default time,
interest-rates, the promised payment of the security, and the model of recovery at
default, as well as risk premia, one can characterize the stochastic behavior of the
term structure of yields on defaultable bonds.

In applications, default intensities may be allowed to depend on observable variables
that are linked with the likelihood of default, such as debt-to-equity ratios, volatility
measures, other accounting measures of indebtedness, market equity prices, bond yield
spreads, industry performance measures, and macroeconomic variables related to the
business cycle, as in Duffie and Wang (2003). This dependence could, but in practice
does not usually, arise endogenously from a model of the ability or incentives of the firm
to make payments on its debt. Because the approach presented here does not depend on
the specific setting of a firm, it has also been applied to the valuation of defaultable sov-
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ereign debt, as in Duffie et al. (2003b) and Pages (2000). (For more on sovereign debt
valuation, see Gibson and Sundaresan (1999) and Merrick (1999).)

We fix a complete probability space (2, 7, P) and a filtration {¥, : ¢t = 0} of sub-
g-algebras of % satisfying the usual conditions, which are listed in Appendix B.
Appendix E defines a non-explosive counting process. Such a counting process K re-
cords by time ¢ the number K, of occurrences of events of concern. Appendix E also
defines the notion of a predictable process, which is, intuitively speaking, a process
whose value at any time ¢ depends only on the information in the underlying filtra-
tion {¥, : ¢t = 0} that is available up to, but not including, time .

A counting process K has an intensity A if 4 is a predictable non-negative process
satisfying fé Asds < oo almost surely for all #, with the property that a local martin-
gale M, the compensated counting process, is given by

t
M, =K, —/ ) ds. (2.1)
0

Details are found in Appendix E. The accompanying intuition is that, at any time ¢,
the ¥,-conditional probability of an event between ¢ and ¢ + 4 is approximately 4,4,
for small 4. This intuition is justified in the sense of derivatives if A is bounded and
continuous, and under weaker conditions.

A counting process with a deterministic intensity process is a Poisson process. If
the intensity of a Poisson process is some constant o, then the times between events
are independent exponentially distributed times with mean 1/«. A standard reference
on counting processes is Brémaud (1981). Additional sources include Daley and
Vere-Jones (1988) and Karr (1991).

We will say that a stopping time 7 has an intensity /A if 7 is the first event time of a
non-explosive counting process whose intensity process is /.

A stopping time t is non-trivial if P(z € (0,00)) > 0. If a stopping time 7 is non-
trivial and if the filtration {%, : ¢t = 0} is the standard filtration of some Brownian
motion B in R, then t could not have an intensity. We know this from the fact that
if {¥, : t = 0} is the standard filtration of B, then the associated compensated count-
ing process M of (2.1) (indeed, any local martingale) could be represented as a sto-
chastic integral with respect to B, and therefore cannot jump, but M must jump at t.
In order to have an intensity, a stopping time must be totally inaccessible, a property
whose definition (for example, in Meyer (1966)) suggests arrival as a “sudden sur-
prise”’, but there are no such surprises on a Brownian filtration!

As an illustration, we could imagine that the equityholders or managers of a firm
are equipped with some Brownian filtration for purposes of determining their opti-
mal default time 7, as in Appendix A, but that bondholders have imperfect monitor-
ing, and may view t as having an intensity with respect to the bondholders’ own
filtration {¥, : ¢t = 0}, which contains less information than the Brownian filtration.
Duffie and Lando (2001) provide, under conditions, the associated default intensity."

! Elliott et al. (2000) give a new proof of this intensity result, which is generalized by Song (1998) to the
multi-dimensional case. Kusuoka (1999) provides an example of this intensity result that is based on
unobservable drift of assets.
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We say that a stopping time 7 is doubly stochastic with intensity 4 if the underly-
ing counting process whose first jump time is 7 is doubly stochastic with intensity 4,
as defined in Appendix E. The doubly-stochastic property implies that, for any time
t, on the event that the default time 7 is after 7, the probability of survival to a given
future time s is

P> s%)=E {eﬁ Hund

54,} . (2.2)

Property (2.2) is convenient for calculations, because evaluating the expectation in
(2.2) is computationally equivalent to the standard financial calculation of default-free
zero-coupon bond price, treating 1 as a short-term interest-rate process. Indeed, this
analogy is also quite helpful for intuition when extending (2.2) to pricing applications.

It is sufficient for the convenient survival-time formula (2.2) that 4, = A(X,) for
some measurable A : R — [0,00), where X in R? solves a stochastic differential
equation of the form

dX, = u(X,)dr + ¢(X,)dB,, (2.3)

for some (%,)-standard Brownian motion B in RY. Here, u(-) and o(-) are functions
on the state space of X that satisfy enough regularity for (2.3) to have a unique
(strong) solution. With this, the survival probability calculation (2.2) is of the form

X(t)} (2.4)
=f(X(1),1), (2.5)

where, under the usual regularity for the Feynman-Kac approach, f{:) solves the
partial differential equation (PDE)

A (5,1) = file,1) = A)f (. 0) =0, (2.6)
for the generator .o/ of X, given by

Za (& Oalx zzaa 27

and where y(x) = o(x)a(x)’, with the boundary condition

f(x,s)=1. (2.7

Parametric assumptions are often used to get an explicit solution to this PDE, as we
shall see.

More generally, (2.2) follows from assuming that the doubly-stochastic counting
process K whose first jump time is 7 is driven by some filtration {Z, : ¢t = 0}, a con-
cept defined in Appendix E. (Included in the definition is the condition that #, C ¥,,
and that {#, : t > 0} satisfies the usual conditions.) The intuition of the doubly-sto-
chastic assumption is that #, contains enough information to reveal the intensity 4,,
but not enough information to reveal the event times of the counting process K. In
particular, at any current time ¢ and for any future time s, after conditioning on the

P(t > 5|%,) =E [e [} A ))du
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o-algebra ¥,V Z; generated by the events in ¢, U %, K is a Poisson process up to
time s with (conditionally deterministic) time-varying intensity {4, : 0 < z < s}, so the
number K, — K, of arrivals between ¢ and s is therefore conditionally distributed as a
Poisson random variable with parameter f Ay du. (A random variable ¢ has the Pois-
son distribution with parameter f if P(q = k) = e #f*/k! for any non-negative inte-
ger k.) Thus, letting 4 be the event {K; — K, =0} of no arrivals, the law of iterated
expectations implies that, for 7 <,
(gl:| )

P(t>s|9,) =E(149,) =E[E(14|%, Vv F,)|%,]
consistent with (2.2). Appendix E connects the intensity of T with its probability den-
sity function and its hazard rate.

—E[P(K,—K,=0|%,V 7,)|%,] = [ef Aw)du

(2.8)

3. Affine processes

In many financial applications that are based on a state process, such as the solu-
tion X of (2.3), a useful assumption is that the state process X is “affine”. An affine
process X with some state space D C R is a Markov process whose conditional char-
acteristic function is of the form, for any u € R?,

E(eiu-X(t)|X(S)) e? @(t—s,u)+p(t—s,iu)-X (s) (31)

for some coefficients ¢(-,iu) and y(-,iu). We will take the state space D to be of the
standard form R’} x R, for 0 < n < d We say that X is “regular” if the coefficients
o(-,1u) and (-, 1u) of the characteristic function are differentiable and if their deriv-
atives are continuous at 0. This regularity implies that these coefficients satisfy a gen-
eralized Riccati ordinary differential equation (ODE) given in Appendix C. The form
of this ODE in turn implies, roughly speaking, that X must be a jump-diffusion pro-
cess, in that

dX, = p(X,)dt + o(X,)dB, + dJ, (3.2)

for a standard Brownian motion B in RY and a pure-jump process J, such that the
drift u(X,), the “instantaneous” covariance matrix ¢(X;)a(X,)’, and the jump mea-
sure associated with J all have affine dependence on the state X,. Conversely,
jump-diffusions of this form (3.2) are affine processes in the sense of (3.1). A more
careful statement of this result is found in Appendix C.

Simple examples of affine processes used in financial modeling are the Gaussian
Ornstein—Uhlenbeck model, applied to interest rates by Vasicek (1977), and the
Feller (1951) diffusion, applied to interest-rate modeling by Cox et al. (1985). A gen-
eral multivariate class of affine jump-diffusion models was introduced by Duffie
and Kan (1996) for term-structure modeling. Using three-dimensional affine diffu-
sion models, for example, Dai and Singleton (2000) found that both time-varying
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conditional variances and negatively correlated state variables are essential ingredi-
ents to explaining the historical behavior of term structures of US interest rates.

For option pricing, there is a substantial literature building on the particular af-
fine stochastic-volatility model for currency and equity prices proposed by Heston
(1993). Bates (1997), Bakshi et al. (1997), Bakshi and Madan (2000), and Duffie
et al. (2000) brought more general affine models to bear in order to allow for stochas-
tic volatility and jumps, while maintaining and exploiting the simple property (3.1).

A key property related to (3.1) is that, for any affine function A4 : D — R and any
w € R?, subject only to technical conditions reviewed in Duffie et al. (2003a),

E, e} XM x| _ ot pis—nx(0) (3.3)

for coefficients o(-) and f(-) that satisfy generalized Riccati ODEs (with real bound-
ary conditions) of the same type solved by ¢ and y of (3.1), respectively.

In order to get a quick sense of how (3.3) and the associated Riccati equations for
the solution coefficients a(-) and f(-) arise, we consider the special case of an affine
diffusion process X solving the stochastic differential equation (2.3), with state space
D = R, and with p(x) = a + bx and ¢”(x) = cx, for constant coefficients a, b, and c.
(This is the continuous branching process of Feller (1951).) We let A(x) = po + p1Xx,
for constants py and p;, and apply the (Feynman-Kac) PDE (2.6) to the candidate
solution (3.3). After calculating all terms of the PDE and then dividing each term of
the PDE by the common factor f{x, ), we arrive at

/(&) — B e+ BN+ ) 3 B~ py— pyr =, (34
for all z > 0. Collecting terms in x, we have

u(z)x +v(z) =0, (3.5)
where

u(z) = B E) + B + 5B — p, (36)

o(z) = —o/ (@) + B()a — py. (3.7)

Because (3.5) must hold for all x, it must be the case that u(z) = v(z) = 0. (This is
known as “‘separation of variables”.) This leaves the Riccati equations:

BE) = B+ 3B~ . (38

o« (z) = B(z)a — po, (3.9)

with the boundary conditions «(0) =0 and $(0) = w, from the boundary condition
fix,s) =w for all x. The explicit solutions for «(z) and f(z), developed by Cox
et al. (1985) for bond pricing (that is, for w =0), is repeated in Appendix D, in
the context a slightly more general model with jumps.
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The calculation (3.3) arises in many financial applications, some of which will be
reviewed momentarily. An obvious example is discounted expected cash flow (with
discount rate A(X,)), as well as the survival-probability calculation (2.2) for an affine
state process X and a default intensity A(X,), taking w =0 in (3.3).

3.1. Examples of affine processes

An affine diffusion is a solution X of the stochastic differential equation of the
form (2.3) for which both u(x) and o(x)o(x)’ are affine in x. This class includes
the Gaussian (Ornstein—Uhlenbeck) case, for which a(x) is constant (used by Vasicek
(1977) to model interest rates), as well as the Feller (1951) diffusion model, used by
Cox et al. (1985) to model interest rates. These two examples are one-dimensional;
that is, d = 1. For the case in which X is a Feller diffusion, we can write

dX, = k(x — X,)dt + ¢y/X,dB,, (3.10)

for constant positive parameters® ¢, k, and x. The parameter ¥ is called a “long-run
mean”’, and the parameter « is called the mean-reversion rate. Indeed for (3.10), the
mean of X, converges from any initial condition to X at the rate x as ¢ goes to co. The
Feller diffusion, originally conceived as a continuous branching process in order to
model randomly fluctating population sizes, has become popularized in finance as
the “Cox—Ingersoll-Ross’’ (CIR) process.

Beyond the Gaussian case, any Ornstein—Uhlenbeck process, whether driven by a
Brownian motion (as for the Vasicek model) or by a more general Lévy process, as in
Sato (1999), is affine. Moreover, any continuous-branching process with immigra-
tion (CBI process), including multi-type extensions of the Feller process, is affine.
(See Kawazu and Watanabe (1971).) Conversely, as stated in Appendix C, an affine
process in R? is a CBI process.

A special example of (3.2) is the “basic affine process”, with state space D = R,
satisfying

dX, = k(x — X,)dt + ¢/ X, dB, + dJ,, (3.11)

where J is a compound Poisson process,’ independent of B, with exponential jump
sizes. The Poisson arrival intensity A of jumps and the mean 7y of the jump sizes com-
pletes the list (k, X, c, 4,7) of parameters of a basic affine process. Special cases of the
basic affine model include the model with no diffusion (¢ = 0) and the diffusion of
Feller (1951) (for 4 = 0). The basic affine process is especially tractable, in that the
coefficients «(z) and f(¢) of (3.3) are known explicitly, and recorded in Appendix
D.4. The coefficients ¢(t,iu) and (z,iu) of the characteristic function (3.1) are of
the same form, albeit complex.

A simple class of multivariate affine processes is obtained by letting
X,=(X1s ...,X4), for independent affine coordinate processes Xi,...,X; The

2 The solution X of (3.10) will never reach zero from a strictly positive initial condition if xx > ¢2/2,
which is sometimes called the “Feller condition™.
3 A compound Poisson process has jumps at iid exponential event times, with iid jump sizes.
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independence assumption implies that we can break the calculation (3.3) down as a
product of terms of the same form as (3.3), but for the one-dimensional coordinate
processes. This is the basis of the “multi-factor CIR model”, often used to model
interest rates, as in Chen and Scott (1995).

An important two-dimensional affine model was used by Heston (1993) to model
option prices in settings with stochastic volatility. Here, one supposes that the under-
lying price process U of an asset satisfies

dU, = U,(yy + 1 V.)dt + U,\/V,dBy,, (3.12)

where yy and y; are constants and V is a stochastic-volatility process, which is a
Feller diffusion satisfying

AV, = k(0 — V,)dt + e\/V,dZ,, (3.13)

for constant coefficients x, 7, and ¢, where Z = pB; + /1 — p*B, is a standard
Brownian motion that is constructed as a linear combination of independent stan-
dard Brownian motions B; and B,. The correlation coefficient p generates what is
known as ‘““volatility asymmetry”’, and is usually measured to be negative for major
market stock indices. Option implied-volatility “smile curves’ are, roughly speaking,
rotated clockwise into ““smirks’™ as p becomes negative. Letting Y =log U, a calcu-
lation based on It6’s Formula (see Appendix B) yields

1
dy, = (yo + (yl — EV,))dwr \/V.dBy,, (3.14)

which implies that the two-dimensional process X = (V, Y) is affine, with state space
D = R, x R. By virtue of the explicit characteristic function of log U,, this leads to a
simple method for pricing options, as explained in Section 8. Extensions allowing for
jumps have also been useful for the statistical analysis of stock returns from time-
series data on underlying asset returns and of option prices, as in Bates (1996)
and Pan (2002).*

4. Risk-neutral probability and intensity

Basic to the theory of the market valuation of financial securities are “risk-neutral
probabilities”, artificially chosen probabilities under which the price of any security
is the expectation of the discounted cash flow of the security, as will be made more
precise shortly.

We will assume the existence of a short-rate process, a progressively measurable
process r with the property that fol |r(u)|du < oo for all ¢, and such that, for any times
s and 7> s, an investment of one unit of account (say, one Euro) at any time s, rein-
vested continually in short-term lending until any time ¢ after s, will yield a market

4 Among analyses of option pricing for the case of affine state variables are Bates (1997), Bakshi et al.
(1997), Bakshi and Madan (2000), Duffie et al. (2000), and Scott (1997).
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value of efa "4 When we say “under Q”, for an equivalent® probability measure Q,
we mean with respect to the probability space (2, %, Q) and the same given filtration
{9,:t = 0}.

For the purpose of market valuation, we fix some equivalent martingale measure
Q, based on discounting at the short rate . This means that, as of any time ¢, for any
stopping time 7" and bounded ¥r-measurable random variable F, a security paying F

r
at T has a modeled price, on the event {T > 1}, of EY [eﬂ —rldu ], where, for conve-
nience, we write EZ for expectation under Q, given %,. Uniqueness of an equivalent
martingale measure would be unexpected in a setting of default risk. an equivalent
martingale measure.

Harrison and Kreps (1979) showed that the existence of an equivalent martingale
measure is equivalent (up to technical conditions) to the absence of arbitrage. Del-
baen and Schachermayer (1999) gave definitive technical definitions and conditions
for this result. There may be more than one equivalent martingale measure, however,
and for modeling purposes, one would work under one such measure. Common de-
vices for estimating an equivalent martingale measure include statistical analysis of
historical price data, or the modeling of market equilibrium. If markets are complete,
meaning roughly that any contingent cash flow can be replicated by trading the
available securities, the equivalent martingale measure is unique (in a certain techni-
cal sense), and can be deduced from the price processes of the available securities.
For further treatment, see, for example, Duffie (2001).

A risk-neutral intensity process for a default time 7 is an intensity process 2“ for
the default time 7, under @. We also call A% the Q-intensity of 7. Artzner and
Delbaen (1995) gave us the following convenient result.

Proposition. Suppose that a non-explosive counting process K has a P-intensity
process, and that Q is any probability measure equivalent to P. Then K has a Q-
intensity process.

The ratio 4“// (for A strictly positive) represents a risk premium for uncertainty
associated with the timing of default, in the sense of the following version of Girsa-
nov’s Theorem, which provides conditions suitable for calculating the change of
probability measure associated with a change of intensity, by analogy with the
“change in drift” of a Brownian motion. Suppose K is a non-explosive counting pro-
cess with intensity /, and that ¢ is a strictly positive predictable process such that, for

some fixed time horizon T, fOT ¢,sds is finite almost surely. A local martingale & is
then well defined by

é,zexp(/o (1—(/)5)15(15> II ¢r. t<T (4.1)

{i-7(0)<r}

5 A probability measure @ is equivalent to P if > and @ assign zero probabilities to the same events in
%,, for each 1.
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Girsanov’s Theorem. Suppose the local martingale & is actually a martingale. Then an
equivalent probability measure Q is defined by %: E(T). Restricted to the time
interval [0, T], the counting process K has Q-intensity L.

A proof may be found in Brémaud (1981). Care must be taken with assumptions,
for the convenient doubly-stochastic property need not be preserved with a change to
an equivalent probability measure. Kusuoka (1999) gives examples of this failure.
Appendix E gives sufficient conditions for the martingale property of &, and for K
to be doubly stochastic under both P and Q.

Under certain conditions on the filtration {%, : t = 0} outlined in Appendix E,
the martingale representation property applies, and for any equivalent probability
measure (D, one can obtain the associated Q-intensity of K from the martingale rep-
resentation of the associated density process.

5. Zero-recovery bond pricing

We consider the valuation of a security that pays Fl .. at a given time s> 0,
where F is a %;-measurable bounded random variable. As 1.~ is the random var-
iable that is 1 in the event of no default by s and zero otherwise, we may view F as the
contractually promised payment of a security with the property that, in the event of
default before the contractual maturity date s, there is no payment (that is, zero de-
fault recovery). The case of a defaultable zero-coupon bond is treated by letting
F=1. In the next section, we will consider non-zero recovery at default.

From the definition of @ as an equivalent martingale measure, the price S, of this
security at any time ¢z < s is given by

S, =E°® [e J; ’<">d“1{T>S}F} . (5.1)

From (5.1) and the fact that 7 is a stopping time, S, must be zero for all # > 7. The
following result is based on Lando (1994). (See, also, Duffie et al. (1996) and Lando
(1998).)

Theorem 1. Suppose that F, r, and 42 are bounded and that, under Q, 7 is doubly
stochastic driven by a filtration {F,:t = 0}, with intensity process 8. Suppose,
moreover, that r is (F,)-adapted and F is F ;-measurable. Fix any t <s. Then, for
t = 1, we have S;= 0, and for t <,

S, = E? [e_ . <’(“>+"Q(”))d”F} . (5.2)

The idea of (5.2) is that discounting for default that occurs at an intensity is analo-
gous to discounting at the short rate r.

Proof. From (5.1), the law of iterated expectations, and the assumption that r is
(7,)-adapted and F is F ;-measurable,
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)

The result then follows from the implication of double stochasticity that, on the
i
event {1t > t}, we have @(T > S‘fs V. g[) _ ej; —4 (u)du. 0

S, = E9 (E@ [e J r<“)d”1{T>S}F’?S v 44

_go (e Jiroapgery 7 v 9]

As a special case, suppose the driving filtration {&, : r > 0} is that generated by a
process X that is affine under Q, with state space D. It is then natural to allow depen-
dence of A%, r, and F on the state process X in the sense that

W=AX,), r=pkX,), F=e~*0 (5.3)

where A and p are real-valued affine functions on D, and u € R?. We have already
adopted the convention that an intensity process is predictable, and have therefore
defined /1? to depend in (5.3) on the left limit X,_, rather than X, itself, because X
need not itself be a predictable process. For the calculation (5.2), however, this
makes no difference, because [A(X,_)dr = JA(X,)dr, given that X(w,1—) = X(w,?)
for almost every ¢.

With (5.2) and (5.3), we can apply the basic property (3.3) of affine processes, so
that for ¢ <, under mild regularity,

S[ _ eoc(sft)Jrﬂ(sft) X (1)

for coefficients «(-) and f(-) satisfying the integro-differential equation associated
with (5.2), namely

!/Q/eoc(sft)Jrﬁ(sft)-x }
Wfa’(sft)fﬂ(sft)'xfp(x)f/l(x):0, (5.4)
where .o/ is the generator (under @) of X, with the boundary condition
e OFAOx — 1 This in turn implies, by the same separation-of-variables argument
used in the simple example of Section 3, an associated generalized Riccati ODE
for «(-) and f(-), with boundary condition «(0) =0 and (0) = 0 € R. Solution of
the ODE is explicit in certain cases, and otherwise can be computed routinely, say
by a Runge-Kutta method.

A sufficient regularity condition for this solution is that X is a regular affine pro-
cess and that the short-rate process r is non-negative. (See Duffie et al. (2003a) for
details.)

6. Pricing with recovery at default

The next step is to consider the recovery of some random payoff W at the default
time 7, if default occurs before the maturity date s of the security. We adopt the
assumptions of Theorem 1, and add the assumption that W =w,, where w is a
bounded predictable process that is also adapted to the driving filtration
{F,:t = 0}.
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At any time ¢ before default, the market value of the default recovery is by the
definition of the equivalent martingale measure Q,

4 | (6.1)

J, = E® e ). r(u)dul{rgs}wf

The assumption that 7 is doubly-stochastic implies that it has a probability density
under Q, at any time u in [¢,s], conditional on %, V %, on the event that 7 > ¢, of

L)
q(t,u) = e ) (150

(For details, see Appendix E.) Thus, using the same iterated-expectations argument
of the proof of Theorem 1, we have, on the event that 7> ¢,

J, = E°® (E@ [ef, O g g,)

g,) - /l (1, u)du,

®(t,u) = E° {e Jiee <Z>+’<Z>>du;@wu] . (6.2)

ﬁs\/%}

= EY (/ e J: O (¢, u)yw, du
t

using Fubini’s Theorem, where

We summarize the main defaultable valuation result as follows.

Theorem 2. Consider a security that pays F at s if © > s, and otherwise pays w, at .
Suppose that w, F, )2, and r are bounded. Suppose that t is doubly stochastic under Q
driven by a filtration {F, : t = 0} with the property that r and w are (F ,)-adapted and
F is & ¢-measurable. Then, for t > t, we have S; =0, and for t <71,

S, = E;Q |:e f; (r(1¢)+/'\@(u))duF:| i / ®(z,u)du. (6.3)
t

6.1. Unpredictable default recovery

Schonbucher (1998) extends to the case of a default recovery W that is not of the
form w, for some predictable process w, but rather allows the recovery to be revealed
just at the default time 7. We now allow this, taking however a different construction.
We let T be the stopping time min(z,s), and let W= E@(W1{1<S}|€4r,). From® Della-
cherie and Meyer (1978, Theorem 1V.67(b)), there is a (¥,)-predictable process w sat-
isfying w(T) = W. Then, for t <1, by the law of iterated expectations, the market
value of default recovery is

® The definition of %;_ is also given in Dellacheric and Meyer (1978). Please note that there is a
typographical error in Dellacherie and Meyer (1978, Theorem IV.67(b)), in that the second sentence
should read: “Conversely, if Y is an ﬁgf—measurable...” rather than “Conversely, if Y is an f'(}—
measurable ...”, as can be verified from the proof, or, for example, from their Remark 68(b).
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J, = E° (e S} v Wl{m}) (6.4)
_ EO (e J oo W) (6.5)
— E© (e fzr’(“)d“w(r)> (6.6)
_ E;@( T [t e s (u)w(u)du>, (6.7)
,

and we are back in the setting of Theorem 2. Intuitively speaking, w(u) is the risk-
neutral expected recovery given the information available in the filtration
{%,:t = 0} up until, but not including, time u, and given that default will occur
in “the next instant”, at time u.

In the affine state-space setting described at the end of the previous section, @(¢,u)
can be computed by our usual “affine” methods, provided that w(z) is of the form
PO XU=) for deterministic a(7) and b(¢). (In applications, a common assumption
is that w(t) is deterministic, but the evidence favors significant negative correlation,
on average, between default recovery rates and the average rate of default itself; see
Altman et al. (2003).) With recovery and default intensity correlation, it is an exercise
to show that, under technical regularity,

O(t,u) = et IHPCXO (1 u) + C(t,u) - X (1)], (6.8)

for readily computed deterministic coefficients «, 5, ¢, and C. (For this “extended af-
fine” calculation, see Duffie et al. (2000).) This leaves the numerical task of comput-
ing [} @(¢t,u)du, say by quadrature.

For the price of a typical defaultable bond promising periodic coupons followed
by its principal at maturity, one may sum the prices of the coupons and of the prin-
cipal, treating each of these payments as though it were a separate zero-coupon
bond. An often-used assumption, although one that need not apply in practice, is
that there is no default recovery for coupons, and that all bonds of the same seniority
(priority in default) have the same recovery of principal, regardless of maturity. In
any case, convenient parametric assumptions, based for example on an affine driving
process X, lead to straightforward computation of a term structure of defaultable
bond yields that may be applied in practical situations.

6.2. Option-embedded corporate bonds

For the case of defaultable bonds with embedded American options, the most typ-
ical cases being callable bonds or convertible bonds, the usual resort is valuation by
some numerical implementation of the associated dynamic programming problems
for optimal exercise timing. Acharya and Carpenter (2002) and Berndt (2002) treat
callable defaultable bonds. On the related problem of convertible bond valuation, see
Davis and Lischka (1999), Loshak (1996), Nyborg (1996), and Tsiveriotis and
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Fernandes (1998). On the empirical timing behavior of call and conversion options
on convertible bonds, see Ederington et al. (1997).

6.3. Default-adjusted short rate

In the setting of Theorem 6, a particularly simple pricing representation can be
based on the definition of a predictable process ¢ for the fractional loss in market
value at default, defined by

(1—£)(S.) = w. (6.9)

Manipulation that is left as an exercise shows that, under the conditions of Theorem
2, for t before the default time,

St _ EP e f, [r(u)+£(u)).@(u)]duF . (610)

This valuation model (6.10) is from Duffie et al. (1996), extending Pye (1974), Lit-
terman and Iben (1991), and Duffie and Singleton (1999). This is particularly conve-
nient if we take ¢ as an exogenously given fractional loss process, as it allows for the
application of standard valuation methods, treating the payoff F as default-free, but
accounting for the intensity and severity of default losses through the “default-
adjusted” short-rate process r + ¢%. Naturally, the discount-rate adjustment ¢.°
is the risk-neutral mean rate of proportional loss in market value due to default. Col-
lin-Dufresne et al. (2002) extend this result to settings in which the doubly-stochastic
assumption fails, by an additional change of measure under which there are almost
surely no jumps.

Notably, the dependence of the bond price on the intensity A% and fractional loss ¢
at default is only through the product ¢4%. Thus, for any bounded strictly positive
predictable process 6, bounded away from zero, the price process S of (6.10) is
invariant (before default), to a substitution for ¢ and A% of 0¢ and 1° /0, respectively.
For example, doubling A% and halving ¢ has no effect on the price process before
default.

Suppose, for example, that t is doubly stochastic driven by X, and we take
7 +€,)tf‘m =R(X,.) and F=f(X,), for a Markov state process X. For example, X
could be given as the solution to (2.3), or be an affine process. Then, under typical
Feynman-Kac regularity conditions, we obtain at each time ¢ before default the
bond price S; = g(X,, 1), for a solution g of the

A1) — g (x,1) = R(¥)g(x,0) = 0, (x,1) €D x [0,5), (6.11)

where .o/ is the generator of X, with boundary condition g(x,s) = f{x).

If the driving process X is affine, if f{x) = e** for some u € R?, and if R(x) =a +
b x for some a € R and b in R?, then we have g(x, 1) = e** = F6=0% for o(-) and B(*)
computed from the generalized Riccati equations associated with (6.11), with bound-
ary conditions ¢(0) = 0 and p(0) = u. Sufficient regularity is that X is a regular affine
process and that the default-adjusted short rate R(x) is non-negative.
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There are also interesting cases, for example the pricing of swaps with two-sided
default risk (see Duffie and Huang, 1996), for which )v;@ or £, (or both) are naturally
dependent on the price itself. The PDE (6.11) would then be generalized to one of the
nonlinear form

Ag(x,t) — R(x,g(x,1))g(x,t) = 0. (6.12)

For empirical work on default-adjusted short rates, see Duffee (1999) and Bakshi
et al. (2001) for applications to corporate bonds, and, for applications to sovereign
debt, Duffie et al. (2003b) and Pages (2000).

7. Correlated default

Extending, suppose that the default times 7y, ..., 7, of k given names have respec-
tive intensity processes 4y, ..., /A, and are doubly stochastic, driven by a filtration
{Z,:t > 0}, as defined in Appendix E. This means roughly that, conditional on
the information in the driving filtration that determines the respective intensities,
the event times 7y, ..., 7, are independent. In particular, the only source of correla-
tion of the default times is via the correlation of the intensities. Das et al. (2004) pro-
vide a statistical test of this multi-name doubly-stochastic property.

One can see from the definition of an intensity process that, under the doubly-sto-
chastic assumption, the first default time 7= min(zy,...,7,) has the intensity
A(t) + -+ - + 24(2). Indeed, the same result applies if we weaken the doubly stochastic
assumption to merely the assumption that 7; # 1;, or more precisely that, for any i
and j # i, we have P(1; = ;) = 0. For an easy proof, based again on the definition
of intensity, see Duffie (1998b).

More generally, the doubly stochastic assumption makes the computation of the
joint distribution of default times rather simple. Consider the joint survivorship
event {t; = #(1),...,7, = t(k)}, for deterministic times #(1), ..., #(k). Without loss
of generality after relabeling, we can suppose that #(1) < #2) < --- < #(k). (We can
also allow #(i) = +o0.) Then, by the doubly stochastic assumption, for any “current”
time 7 < (1), on the event that t; > ¢ for all i (no defaults “yet’’), we have

t(k)
P(ty = t,...,7% = 4|%) :Et<e_j: “<S>d5>, (7.1)
where

woy=3 ). (72)
{izt(i)>1}

Now, in order to place the joint survivorship calculation into a computationally trac-
table setting, we suppose that the driving filtration {#, : ¢ > 0} is that generated by
an affine process X, and that 1(7) = A(X,_), for an affine function A,-) on the state
space D of X. The stat