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ABSTRACT

This paper primarily demonstrates the existence of Arrow—Debreu equilibria in a
general class of topological vector spaces of commodity bundles. Two conditions
based on production possibilities, preferences, and the topological nature of bounded
sets are shown to substitute, in any locally convex space, for the advantages of the
Euclidean topology. Examples fulfilling these conditions are supplied. The approach
is that of Bewley, demonstrating equilibria on finite-dimensional sub-economies and
establishing a net of these equilibria that converges to an equilibrium on the whole
commodity space. An example of equilibrium with a storage technology is given.
An auxiliary result concerns the price support of efficient allocations.
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dissertation completed in the Engineering—Economic Systems Department at Stan-
ford University. I am grateful for the comments of David Luenberger, David Kreps,
Kenneth Arrow, Donald Brown, Andreu Mas—Colell, William Zame, and a referee.



1. Introduction

This paper addresses the problem of existence of Walrasian equilibria, stated and
solved first for the finite-dimensional case by Arrow and Debreu [1], and generalized
to roughly its ultimate state in the setting of finitely many agents with complete
preference relations by Debreu [6; Chapter 10] in 1962. In departing from a Eu-
clidean setting for this problem, one neither gains at all in tractability nor suffers
inordinately from any failure of geometric insights. In approaching this problem
then, the objective will be to take Debreu’s 1962 assumptions as given, and limit
any additional assumptions to a minimum. As one might expect, the set of con-
ditions stated by Debreu, extended to any locally convex choice space, falls short
on two key topological points: the compactness of feasible allocations in the choice
space and the compactness of the price “simplex” in the dual space. These points
are shown to be surmountable by adding two corresponding topological assumptions
that can be immediately fulfilled in many useful infinite-dimensional choice spaces,
including any of those previously studied in the context of this problem, such as R",
LP spaces, (P spaces, and any of the other conjugate Banach spaces. Other spaces
encompassed in this paper include any of the semi-reflexive spaces or Montel spaces,
for instance C'*° spaces of “smooth” functions (which are not normed spaces).

This is not to say, however, that all previous results are subsumed here. By in-
sightfully posing smoothness conditions on agents’ preferences, Andreu Mas—Colell
[11] overcame these topological barriers by a different approach, as explained shortly.
His work on an exchange economy in conjugate Banach lattices instigated this pa-
per. Zame [18] has extended Mas—Colell’s approach to production economies, but
there is still a gap between the two basic approaches that remains as a challenge to
be filled.

Why study infinite-dimensional spaces ? There are many applications whose
natural setting involves “blends” of commodity characteristics, or uncertain states
of the world governed by non—atomic probability measures, or dynamic models
whose objects of choice are functions of time. Much new work in equilibrium theory
addresses economies whose choice vectors are stochastic processes. In this and many
other settings, agents’ optimal plans can often be succinctly characterized via some
form of control theory in infinite-dimensional function spaces. In short, a theory
for general choice spaces is called for.

In equilibrium analysis one invariably wishes to select candidate price vectors
from some compact convex set not including zero. The unit simplex for R" is just
such a set for Euclidean analysis but its analogue in general dual spaces, for example
positive price vectors of unit norm for normed spaces, need not be satisfactory. If
the positive cone of the choice space has interior, however, the set of positive price
vectors with value one, say, at a particular choice vector in the interior of this cone
forms an appropriate “neo—simplex”. This idea goes back as far as Debreu’s papers
of three decades ago [6; Chapters 5 and 7]. Of course one needn’t limit oneself to the
“original” positive cone of the choice space, particularly if it has no interior. Mas—
Colell, for example, constructs a cone with interior from the properties of agent’s
preferences; no vector in this cone can be split up among agents and subtracted
from any efficient allocation so as to make each agent better off. Thus any efficient
allocation can be supported in a “valuation equilibrium” [6; Ch.5] by a price vector
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with positive values on this cone by virtue of the separating hyperplane theorem.
Such a cone is characterized as a “price block” in Section 3. Mas—Colell’s result
requires fairly weak restrictions on the choice space, but rather strong conditions
on consumption sets — they must be the positive cone of the choice space.

The alternative taken here is to assemble the largest cone, say I', whose elements
must have positive market value in any valuation equilibrium, and then to assume
that T' has interior, fitting into its role as a price block, the pre-requisite for a
neo—simplex. Debreu [6; Ch.10] constructed just such a cone to alleviate the free
disposal assumption. Suppose, for example, that the production set contains a
cone A. Then any valuation equilibrium places negative market values on A, for
otherwise some firm has unbounded profits. Thus —A C I'. Next, suppose D is
a cone, each of whose elements can be re-scaled and then shared among agents
so that, added to their endowments, the resulting allocation Pareto dominates any
feasible allocation. Then any element of D must have a positive market value in any
valuation equilibrium, and D C I'. Further material can be added to I' as discussed
in Section 3, in particular by augmenting the production set. How a production set
might come to contain a cone with interior is also discussed there, with examples
in Section 6. More work is called for on this last point.

The mechanics of demonstrating an equilibrium given a neo—simplex also differ
from those of Mas—Colell, who finds a fixed point in the (utility simplex x price
neo—simplex) space. Since functional utility representations of preferences in gen-
eral choice spaces with production is not guaranteed, the fixed point here is in the
(allocation X price neo—simplex) space. The stated philosophy of extending Eu-
clidean insights to general choice spaces is actually put to work, following Truman
Bewley’s blueprint [4]. If Debreu’s conditions apply to an economy £ with a general
choice space L, then they also apply to each of the “sub—economies” £, induced by
a corresponding net { Fy } of finite-dimensional vector subspaces of L, directed so as
to include any particular vector at some point in the net. Provided only that L is
locally convex, each F\ is equivalent topologically with a Euclidean space, whence
an equilibrium for &£, follows without any additional work. A cluster point of the
resulting net of “sub—equilibria” exists and is an equilibrium for £€. The difficult
competitive analysis, then, takes place in Euclidean space, where it is easy. De-
breu’s rather complicated proof is “boot—strapped” up to a general class of vector
spaces.

The next section merely sets up the basic notation and definitions. The fol-
lowing one develops the notion of “price blocks”. Section 4 has the main result,
showing conditions ensuring the existence of quasi-equilibria with production in a
general class of infinite-dimensional choice spaces. Section 5 shows the existence
of price support for efficient allocations under less stringent conditions than those
adopted for demonstrating equilibria. A simple example showing the new theory
in action appears in Section 6. The final section contains a few general remarks.
The Appendix extends several results on recession cones that Debreu [5] stated for
Euclidean spaces.

2. The Basic Equilibrium Problem
In this section we briefly cover the notation and definitions for the competitive
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equilibrium problem, largely following Debreu [5]. Let L be a vector (choice) space
over the field of real numbers, with algebraic dual L', the space of linear functionals
on L. We consider the following finite agent economy on L:

E = ((Xi, =4); (Y5); (wi); (045)),

where X; C L are consumption sets, =; are preferences (complete transitive binary
orders) on X;, Y; C L are production sets, w; € L are endowments, and 6;; € [0, 1]
are firm shares, for all i € M = {1,...,m} and all j € N = {1,...,n}. Of course
> iy 0ij = 1forall j € N. As usual, define X = 71", X;, V =77 | V;, and

w =" w;. An allocation is an (m + n)-tuple, (z,y) € L™*™, where

r=(T1,...,xm), x; € X; VieM
and

y:(yla'-wyn)?yjey} VJEN
An allocation (z,y) is feasible if >/ x; = w + 3°7_, y;. An allocation (z,y) is
supported by p € L' if p # 0,

zr;ix; = p-z>p-x; VzeX; Vie M,
and
p-y=zp-z Vz€Y; VjeEN,

where p - z denotes p evaluated at z € L. If p supports a feasible allocation (x,y),
then (x,y,p) is a valuation equilibrium [6;Ch.5]. An allocation (z,y) is budget—
constrained under p € L’ if

DX Sp-[wi—l—ZOijyj] Vie M. (2.1)
j=1

For convenience, a budget—constrained valuation equilibrium is termed a com-
pensated equilibrium, after an effectively equivalent concept in Arrow and Hahn
[2;p.108]. If (z,y) is a feasible allocation that is budget—constrained under p € L',
then (z,y,p) is a quasi-equilibrium [6;Ch.10] provided for each i € M,

Ze=ix; = p-z>p-x; VieEM (2.2)

or
p-z>p-x; VzeX,, (2.3)

where >; denotes the strict preference ordering induced by =;. An equilibrium is a
quasi—equilibrium for which (2.2) holds for all i € M.

Remark 2.1 The two concepts: compensated equilibrium and quasi—equilibriumijj

are similar but independent; neither implies the other. Their close relationship can

4



be deduced easily from Debreu’s analysis [5; 4.9(1)—(2)]. One can see, for instance,
that although Mas—Colell [11] defines a “quasi—equilibrium” to be what is termed
a compensated equilibrium above, the two concepts are equivalent under his pref-
erence assumptions. The proof is not immediate, but is simple enough and left to
the reader.

A feasible allocation (z,y) is weakly efficient if there is no other feasible alloca-
tion (z,y") satisfying o >=; x; Vi € M. A feasible allocation is efficient if there is
no other feasible allocation (2',y’) satisfying « »=; ; Vi € M, with some k € M
such that z} > .

If L is given a linear topology!, the topological dual of L, denoted L*, is
the subset of L’ whose elements are continuous. We will limit our search for an
equilibrium price functional to L* because of its convenient topological properties.

3. Price Blocks

This section illustrates how certain properties of the Euclidean positive cone (or
orthant) that facilitate competitive analysis in R™ can be recovered under the right
conditions in general vector choice spaces with the following substitute for a positive
cone. Throughout the remainder, some linear topology on L is assumed. A convex
cone? I' C L is a price block for £ provided it has interior and any price supported
weakly efficient allocation can be supported by an element of I'°, the polar® of
I' If T is a price block for £, we can limit our search for an equilibrium price
vector to I'°. This explains the term “price block”: the hyperplanes supporting I'
are blocked from intersecting an entire neighborhood contained by I', and thus from
being “too steep” in any direction. In fact, since price vectors are subject to division
by a strictly positive scalar without economic effect, we can restrict our search even
further to I'y = {p €T°: p-y = —1}, where ¢ is an interior point of I'. In Euclidean
space space the “neo—simplex” FZ is a compact convex set, and substitutes for the
classical price simplex A"™!' = {p e R? : Y, , p; = 1}. Later we will exploit the
fact that the compactness of I‘Z extends, in an appropriate topology, to any locally

convex space?. Then any net in I'> has a non-zero cluster point, which, with the

LA topological vector space is a vector space that is also a topological space
whose points are closed sets, and for which vector addition and scalar multiplication
are continuous functions. A topology 7 on a vector space L is linear if (L,7) is a
topological vector space. It will always be implicit here that these are vector spaces
over the scalar field of real numbers. This definition, due to Walter Rudin [§],
ensures for convenience that any topological vector space is a Hausdorff space. A
topological space is Hausdorff, or separated, or 15, if every pair of distinct points
have corresponding disjoint neighborhoods.

2 A subset C of a vector space is a cone provided aC = C for any scalar a > 0.

3 The polar of any subset A C L is the dual set A° = {p € L*: p-2 <1Vz e A}
If Aisacone, A°={peL*: p-z2<0Vze A}

4 A locally convex space is a topological vector space with a neighborhood base
of absolutely convex sets, that is, in which each open set contains a convex open
set. Any vector space can be given a locally convex topology.
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right construction of the net, will turn out to be an equilibrium price vector. This
same idea is used in Florenzano [7] and Mas—Colell [11], where L is a Banach space
and £ is an exchange economy. Florenzano assumes that L is also ordered®, and
that its disposal cone has interior, thereby serving as a price block. Mas—Colell
gives smoothness conditions on agents’ preferences, called “properness”, ensuring
the existence of a price block, provided L is a Banach lattice® and additionally that
each agent’s consumption set is the positive cone. Mas—Colell’s results are easily
extended to locally convex vector lattices, by the following extension of properness.
A preference relation = on a subset X of a topological vector space L is v—proper,
for some non—zero vector v € L, if there is a zero neighborhood N with the property:
for any x € X, z € L, and scalar a > 0 such that x — av 4+ z € X, the relationship
T — av + z = x implies that z is not an element of aN. The intuition is that
one cannot compensate a v—proper agent for a loss of v by any vector that is “too
small”. For an exchange economy, this ensures that the set of vectors that can be
shared among agents and added to any efficient allocation so as to yield a Pareto
improvement is disjoint from a cone that includes as an interior point the sum
across agents of the “properness” vectors v [11; Prop. VII|. The resulting quasi-
equilibrium existence theorem is stated in Section 4.3.

One can also obtain a price block, perhaps, on the production side of the
economy. Suppose some fixed “large” input vector y! € L can be converted in
production to any output vector y© € N, where N is some sufficiently small neigh-
borhood of zero. That is, suppose y© — y! € Y for all y© € N, and further-
more that this production technology has constant returns to scale, implying that
I = {ay® —yl);y® € N; @ > 0} C Y. Section 6 contains an example of such
a technology. Clearly T" is a convex cone, and thus a price block. For if p € L’
supports any allocation, then p-y < 0 for all y € I', for otherwise profits would be
unbounded, and thus p € I'°.

Of course the existence of a price block contained by Y need not arise from
such a restrictive technology. The weakest condition on Y ensuring that it con-
tains a price block is that its recession cone’, denoted A(Y), has interior. This
follows from the characterization of A(Y) as the largest convex cone contained by
Y, which is valid if Y is convex and includes zero, but these are standard competi-
tive assumptions. The assumption of free disposal, or Ly C =Y, of course satisfies
the required assumption if L has interior, which is true for example in Euclidean
space (Figure 2), and ¢°° or L°°(u) spaces, an observation made as early as 1953

> A vector space L is partially ordered by a convex cone C by writing z > vy
whenever z —y € C. In this case C' is called the positive cone of L and denoted L .

6 An ordered vector space is a lattice (or Riesz space) provided the infimum of
any two vectors under the ordering exists. See Schaefer [15]. For example, spaces
of differentiable functions are not generally lattices. A locally convex vector lattice
is a lattice that is a locally convex space in which the lattice decomposition x + z
is continuous. A Banach lattice is a locally convex vector lattice whose topology is
given by a complete norm. Illustrative examples are the L9(u) spaces, 1 < g < oo.

" The recession cone of a convex set B C L, denoted A(B), is the set {z € L :
{z} + B C B}. This is elaborated in the appendix.
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by Debreu [6;Ch.5].
Of course, it may be that A(Y’) has no interior, but even so, all is not lost! Fol-
lowing McKenzie [12,13] and Debreu [6;Ch.10], define an augmented production set

to be any subset Y of L containing Y and generating the same feasible allocations:
Hw}+Y)NX =({wl+Y)NX.

For purposes of demonstrating an equilibrium, one can assume temporarily that the
production set is Y. Any resulting equilibrium must also be an equilibrium for the
economy whose production possibilities are given by the smaller production set Y.
The trick, of course, is that one may be able to place enough potential production
choices in Y to ensure that A(Y) has interior. General conditions under which such
an augmentation can be successful have not been studied.

There is yet a further weakening of the conditions ensuring the existence of a

price block, again following related work by McKenzie and Debreu. First, let X;
denote the projection of the set of feasible allocations (z,y) € L™ into the i—th

co—ordinate subspace. That is, X; is the set of feasible allocations for agent i. Next,
let D be the smallest cone (that is, the intersection of all cones) in L containing the
preference generated set

D={z€L: z=>" zi; zi tw; =; T Vo, € X;, Vie M.

The set D is effectively the set of vectors that can be shared somehow among
agents to strictly Pareto dominate any feasible allocation. For example, if L is an
ordered vector space and preferences are strictly monotonic® then Ly C D. Roughly
speaking, the production set Y can also be augmented by —D without changing
the set of potential equilibria, a claim formalized by Debreu [6;Ch.10]. Thus the
convex cone A(Y) — D is also a price block provided it has interior, a much weaker
condition than int(A(Y)) # (.

If L is a locally convex vector lattice and X; = L, for all 4, still further
weakening may be possible following the tack taken by Mas—Colell. A successful
combination of the two approaches has yet to be demonstrated, however.

4. Existence of Quasi-equilibria

In this section we prove existence of quasi-equilibria with production in any locally
convex choice space, under stated conditions. The approach is that of Bewley
[4], establishing quasi-equilibria on a net of finite-dimensional subspaces of the
choice space. These quasi-equilibria converge to a quasi-equilibrium on the whole
space. The basic assumptions are those of Debreu [6;Ch.10], which is among the
most general treatments of equilibrium existence for finite-dimensional competitive
economies, plus two assumptions that meet our needs in the infinite—dimensional
case.

8 Let W be a subset of an ordered vector space L such that W + L, = W. A
preference relation > on W is monotonic provided w € W implies z > w for all
z > w, and strictly monotonic if z > w for all z > w with z — w # 0.
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4.1. Preliminaries

The assumptions from Debreu’s 1962 article [6;Ch.10] are listed below with mi-
nor alterations. The conditions stated as (a.1) and (d.2) are equivalent in locally
compact spaces such as Euclidean spaces to the conditions Debreu actually stated:
AX)N—-AX) = {0} and A(X)NA(Y) = {0}, and imply them in general, as
proved in the Appendix. The non—satiation assumption (b.1) of Debreu is strength-
ened to local non—satiation here. We take some linear topology 7 for the choice
space L, hopefully natural to the economic setting. For conciseness the following
nine assumptions are collectively referred to as the Debreu conditions:

(a.1) X N(—X) is bounded®;
for every 1 € M:

(a.2) X; is closed and convex;

(b.1) Ya; € X; and any neighborhood N of x; there exists «, € N such that
XL - x4

(b.2) Vx, € X;, the sets {x; € X; : x; =; x}} and {x; € X; : x, =; x;} are
closed;

(b.3) for every x; in X; the set {z; € X; : x; =; x}} is convex;

(c.1) {w}+Y)NX #0;

(c.2) there is a closed convex augmented total production set Y such that
{wi} +AY)-D)(Xi # 0 Vie M;

for every j € N:
(d.1)0 €Y, ; and
(d.2) X (Y + {w}) is bounded.

We will need to add an additional topological assumption akin to the “Closed-
ness Hypothesis” assumed by Mas-Colell [11]. The intent is to ensure that the set of
feasible allocations, which is bounded under the Debreu conditions, can be captured
in some compact set. This substitutes for the Heine-Borel property!® of R™.

Capturing Hypothesis: There exists some linear topology T on L such that 7—
bounded subsets of L are relatively T -compact and the following sets are T -closed:

(i)Y,

(ii) X; VYie M, and

9 A set in a locally convex space is bounded if absorbed by every zero neighbor-
hood. A set A absorbs a set B in a real vector space if there is some scalar o > 0
such that B C SA for all 8 > «a.

10 A topological vector space has the Heine-Borel property if each of its closed
bounded subsets is compact.



Remark 4.1 A sufficient condition for the Capturing Hypothesis is that L is
a semi-reflexive!! space. A space is semi-reflexive if and only if its bounded sets are
relatively weak!? compact [15;p.144]. Thus the weak topology would be our choice
for 7. It is a particularly nice choice since the closure of a convex set is the same for
all locally convex topologies on L consistent with its duality [15;p.130], including
the weak topology. Then requiring the above sets (i)-(ii)-(iii) to be 7-closed would
be superfluous, since they are all closed and convex in the original topology 7
under the Debreu conditions. With Banach spaces, we can widen the class that is
amenable to the Capturing Hypothesis from reflexive Banach spaces by including
any conjugate'® Banach space, using Alaoglu’s Theorem to place a topology on L
in which the unit ball is compact, the weak-star'* topology. In that case, denoting
the pre-dual of L by V', the minimum closedness restriction on the above sets would
be Mackey!®>—(L, V') closed, since that is the finest topology consistent with a given
duality. If the Banach space is reflexive, the Capturing Hypothesis is then entirely
superfluous. Examples of reflexive Banach spaces are LI(u), 1 < g < oo (even if u
is not o-finite). As an aside, the Dixmier-Goldberg-Ruston Theorem [8;23A] states
necessary and sufficient condition for a Banach space to be a conjugate space or
isomorphic to one. Of course any Montel'® space meets the Capturing Hypothesis
in its “own original” topology by definition. Example Montel spaces are various
types of spaces of infinitely differentiable functions and Schwarz distribution spaces
[15]. Obviously any Euclidean space is a Montel space. This ends the remark.

We need a preliminary lemma to show that the Debreu conditions, which ensure
that the feasible consumption and total production sets are compact in a Euclidean
space, do roughly the same job here. Define G C L™*! by

m

G={zec L™ w+zm1 :ZZ’}

=1

Then any feasible allocation (z,y) € L™*", where yr = Z?Zl yj, satisfies (x,yr) €

G. Whenever the Capturing Hypothesis is in effect, we will use 7% to denote the
implied T-product topology on L¥, for any positive integer k.

11 A locally convex space L is semi-reflexive if L = (L*)*. A number of alternative
characterizations are given by Schaefer [15;p.144]. A reflexive space is a barrelled
(e.g. normed) semi-reflexive space.

12 For any duality (L, L*) the weak topology on L, denoted o—(L, L*), is defined
as the weakest topology preserving the duality.

13~ A vector space is a conjugate space if it is dual to some other vector space.

M 1f L = V*, for some other space V, the weak—star topology on L is the o—(L, V')
topology.

15 For a duality (E, E*), the Mackey topology is that of uniform convergence on
the set of all absolutely convex o—(FE*, EY) compact subsets of E*. This is the finest
topology on FE that is consistent with the duality (E, E*).

16 A Montel space is a topological vector space with the Heine-Borel property,
that is, in which any closed bounded subset is compact.
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LEMMA 4.1. Suppose £ is an economy on a locally convex choice space L. If £
satisfies Debreu conditions (a.1), (a.2), (c.2), and (d.2), as well as the Captur-
ing Hypothesis, then the set of feasible consumption—total production allocations,

17, Xi x Y = (T2, Xi x Y)(G, is compact in T™F1.

PROOF: To show that G is T™%!-closed, suppose, for some net directed by (A, >),
that 2* — z € L™ (in 7™+, where 2* € G VA € A. Then

m

—Zm—|—1 E Z — UV =2Zm4+1 — E Ziy

=1

from the continuity of addition in (L, 7). But v* € {—w}, a closed compact set in
any linear topology, for all A € A, so v € {—w}, implying z € G.

The product of closed sets is closed in the product topology. Since G is 7™ 11-
closed and the intersection of closed sets is closed, it suffices to show that the

projections of this product set Xl, e Xm and Y are each bounded. For then
each would be 7T-closed and therefore ’T—compact under the Capturing Hypothesis.

By condition (d.2), Y, the feasible total productlon set and X, the feasible total
consumption set, are bounded. Suppose X, is not bounded for some k € M. T hen,

since X is bounded, X}, ((— Z:Zé  Xi) must be unbounded, which contradicts (a.1).
|

4.2. The Main Theorem

Although the following theorem is stated for an extremely large class of topological
vector spaces, the Capturing Hypothesis places a significant restriction on this class,
or alternatively, on smoothness properties of agents’ preferences and consumption
sets. The proof is along the lines of Bewley [4; Theorem 1], starting with quasi-
equilibria on finite-dimensional subspaces of L and extending along a net. The
statement includes Debreu’s theorem [6;Ch.10] as a special case. Let D denote the
smallest cone containing the preference generated set

ﬁ:{zeL:z+wi>ixi Va; € X;, Vi e M}.

THEOREM 4.1. Suppose £ is an economy on a locally convex choice space L that
satisties the Debreu Conditions and Capturing Hypothesis. If L is finite-dimensional

or the augmented production set Y can be chosen so that A(Y) — D has interior,
then £ has a quasi—equilibrium.

PROOF: By Lemma 4.1, for each agent 7, X, is T—compact. Thus, given the Cap-
turing Hypothesis, X; has a maximal element for >~i, which implies by condition
(b.1) that there exists v; € X; such that v; =; z for all z € X;.

Let w+y € ({w}+Y) X (condition (c.1)), where gy = 3>°7_, 4;, §; € Y; Vj €
N, and let &; = w; + > 7, 0i;5; Vi € M. Next, by condition (c.2), let

€ (fw}+AY)-D)(\X; VieM.
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Let F be the set of finite dimensional subspaces of L containing the vectors:
Wi, Ty Biyvi, Vi€ M;y; Vj€ N;and g € int[A(Y) — D). For any F € F, let £F

be the economy
Xi(\F.=0); (V5 () F)s (wi); (65)), (4.1)

where E,LF is the preference ordering induced on XiF = X;F by =;. Let Dp
denote the cone generated by preferences in £F', defined analogously to the cone D
for £, and note that D (| F C Dp. Take the augmented total production set for £F
to be Y = Y[ F. One can quickly verify that each of the Debreu [6;Ch.10,p.136]

conditions holds for £F', making use of Appendix Lemma A.5. Since the topology

induced on any finite-dimensional subspace of a locally convex space is Euclidean,
Debreu’s 1962 theorem applies and £ has a quasi-equilibrium (2%, y¥', pf'), where

(z¥,y") € F™*" and p" € F*. Let yr =37, ) -

Let © denote the cone A(Y) — D. Since p¥ € F* is by Debreu’s constructive
proof a non-zero element of the polar of the cone O = A(Yy) —Dp [6;Ch.10,p.122],
and 7 is interior to this cone in the topology induced on F, we have p - § < 0.
Since O F C O, we also have p!" € (O F)°. Without loss of generality, let
p!" -9 = —1. Under the ordering induced on L by the cone (—©), the conditions of
the Krein-Rutman Theorem [15;p.227] are satisfied and p’ has a continuous linear
extension to all of L, which we also denote by p’ € L*. Furthermore, since (—©)

serves the role of the ¢ posmve cone” in the Krein-Rutman Theorem, p € ©°. Since
9 € int(0), we know 3 € (N +{g}) C O, where N is some closed absolutely convex
zero-neighborhood whose polar ° is weak-star compact by the Alaoglu-Bourbaki

Theorem [8;p.70]. Since pf' -2 < 0 Vz € (N +{9}) and p!" - § = —1, we have
pf'eN° VFeF.

By the preceding lemma the consumption allocation z and total production
allocation (2%, yl’) are elements of a fixed 7™ !-compact subset of L™+1" for all
F € F. The set F is directed by inclusion so that the triples (xF sy opf), F e F
can be placed in a net directed by this inclusion. Thus there is a convergent (in
Tm+ x o(L*, L)) subnet (z*,ys,p*) directed by A € (A, >), with limit (z,yr, p).
Since —1 = p*-§ — p- 9§, we know p # 0. Of course, given Lemma 4.1, the limit is a
feasible consumption and total production allocation, with z; in X; for each : € M
and y7 in Y. Then there exists y; € Y; for each j € N such that yr = Z?Zl Vi

and (z,y) € L™™™ is a feasible allocation. We will show that (x,y,p) satisfies
the remaining properties of a quasi-equilibrium. Here the proof follows the end of
Bewley’s proof closely.

First we claim that, for any feasible production allocation () and any =’ »; x;,
that

pea’ >p-|wit+ Y 00 ] (4.2)

Let F'(A) denote the subspace corresponding to the element A of the net. By the
definition of the net, the definition of equilibrium on the subspaces, and by the

11



Capturing Hypothesis, there exists A’ € A such that, for all A > X, the vectors
', 91,...,Un are in F(\) and

proal > phat =pt (@i Y 05y3) 2 0t (Wit Y 0i50)-
j=1 Jj=1

Since {p*} converges weakly, we have (4.2). Now suppose ¥’ =; ;. By the local
non-satiation assumption (b.1), for any neighborhood A of z’ there exists z” in N/
such that 2 =; 2', implying p - 2" > p - [w; + 3°7_, 05;9;] by (4.2). Since N is
arbitrary, (4.2) applies to any z’ =; x;. In particular, we have

prxi >p-fw +Zez’jyj]
j=1

for each agent i. Since >, z; —w; =, y; and >, 0;; = 1 for each j, we then have
p-xi =p-|wi + 3,0y for all i. The conclusion of the previous paragraph thus

yields
z=ix; = p-z>p-xr; VzeX;,, VielM. (4.3)

For any firm j € N and any z € Y}, we can apply (4.2) to 2’ = x; for each
i and g = yi for k # j, y; = z. This shows that p- 2z < p-y;, implying that
y; maximizes market value for each firm j. Combining this with (4.3) shows that
(x,y,p) is a compensated equilibrium.

For a quasi-equilibrium it remains to show that one of (2.2) or (2.3) must hold.
Suppose (2.3) does not hold and z € X; is such that p- z < p-x;. Now suppose
' € X; satisfies p- 2’ = p-x; and 2’ >; x;. Then, for any a € [0,1) we know
x® = ax’ + (1 — a)z satisfies p - % < p - x;. But by continuity of preferences (b.2)
there exists « € [0,1) such that z >, x;, a contradiction of (4.3). Thus (2.2) must
hold. W

For technical reasons, this theorem assumes that the cone A(Y)— D has interior,

rather than non-empty interior for the cone A(Y) — D that contains it. Nothing
in the spirit of things, however, prevents one from adopting the weaker assumption
that A(Y) — D has interior, at least under additional regularity conditions, such as
those of the following proposition. These additional conditions are effectively null
for exchange economies.

PROPOSITION 4.1. Suppose £ is an economy on a locally convex choice space sat-
isfying the Debreu conditions and Capturing Hypothesis. If the augmented pro-
duction set Y can be chosen so that A(Y) — D has interior, then £ has a quasi-
equilibrium under the additional conditions: X N (Y — D + {w}) is bounded and Y
is closed and convex.

PROOF: Let C be any closed convex cone with interior contained by A(Y') — D and

let © = A(Y)+C. Let € denote the economy identical to £ except that Y; is replace
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by ffj =Y, +0 for all j € N. Let the augmented production set for & be its own
total production set Y + ©. By the previous theorem, € has a quasi-equilibrium
(z,y,p). The total production vector yr = Zj y; is of the form y* + 3" — 0, where
vy €Y,y —-6€0,y e AY),and § € D.

Since yr maximizes profits on Y + O relative to p, so do y* on Y, (v — d) on
o, gmd y on A(Y). Since © and A(Y) are cones, p-y =p- (y — &) = 0, implying
p-0=0

As § € D, it has the form § = A}, (2} —w;) for some scalar A > 0 and x >; X;
(the feasible set X; refers to the original economy &), for all i € M. By Debreu’s
Lemma 7 [5; Chapter 10|, «} >; z; for all i € M. Along the lines of Debreu [5; pp.
143-144] there are two cases to check.

Case 1: For some k € M, p-xy, > inf{p-2;2 € Xi}. Thenp-> . x) > p-(w+yr),
implying p - >, (z; — w;) > p-yr > 0. But then p- ¢ = 0 implies A = 0, or § = 0.
Thus yr = y* +y' € Y + A(Y), implying yr € Y. Let v/ = (¢,,...,7.), y; €Y,
be any production allocation such that ) j y; =yr. Since p-yr >p-zforallz €Y
and and p-y; > p-z for all z € Y for all j € N, we have p-y; = p-y}, and (z,y’,p)
is a quasi—equilibrium for £.

Case 2: Suppose, on the other hand, p-x; = minp - X; for all i € M. In this
case p-» ,x; = minp- X and p-yr = maxp- (Y —©) = supp - Y. Thus the
hyperplane H generated by p separates X and {w} + Y. Let (Z,y) be any feasible
allocation for £. Since >, & =w+ >, y; € H, we know p- >, &; = minp - X and
P'Zj =maxp - Y. This implies that p-&; =p-z; foralli € M and p-9; =p-y;
for all j € N. Thus (Z,9,p) is a quasi—equilibrium for £. R

Remark 4.2:  Variations on these conditions will work. For example, any
convex cone generated by a bounded subset of D can be substituted for D in the
interior condition of Theorem 4.1. The proof that a quasi—equilibrium exists is
straightforward.

Remark 4.3:  The non—empty interior conditions of Theorem 4.1 and Proposi-
tion 4.1 can be weakened to non-empty Mackey—interior, since the Mackey topology
is consistent with the given duality. No changes in the proofs are necessary. This
weakening is not important in many applications since the original topology is often
given by a metric, in which case it coincides with the Mackey topology [15].

Remark 4.4:  The (weak) convexity of preferences assumption (b.3) might be
strengthened to convexity:

(b.3") If 2’ >; x then for all a € (0,1), ax'+ (1 —a)x =; .
Then the other hypotheses of Theorem 4.1 also ensure the existence of compensated
equilibria. In fact, the compensated and quasi— equilibrium concepts are equivalent
under these strengthened assumptions. See the proofs of Debreu [5; 4.9(1)—(2)]
that also apply here. For future reference the yet stronger assumption of strong
convexity of preferences is stated:

(b.3") If ' =; x and 2’ # x, then for all a € (0,1), oz’ + (1 — o)z =; z.
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Under continuous preferences, the implications (b.3”) = (b.3") = (b.3) are standard
facts [5].

Remark 4.5: Tt will be noted that we did not actually use the property that
the sets {x € X; : z =; x} are closed for each z in X;, for each agent i. In fact, we
used only the property that such sets are lineally closed!”. Thus the assumption of
continuous preferences can be relaxed correspondingly.

There are many ways to argue that a quasi—equilibrium is in fact an equilibrium.
Zame [18] has given several of these arguments, which are generally based on the
nature of the choice space.

4.3. Proper Preferences and Quasi—equilibria

As promised, an easy extension of Mas—Colell’s Theorem of quasi—equilibrium ex-
istence based on proper preferences is stated below for reference.

THEOREM 4.2. Suppose & is an exchange economy on a locally convex vector lattice
L, the Capturing Hypothesis applies, and for all 1 € M:

(i) Xi = L+,

(ii) w; € Ly, and

(iii) »=; Is monotonic, continuous (b.2), convex (b.3"), and v;—proper for some
v; € L+.
Then £ has both compensated equilibria and quasi—equilibria.

As remarked earlier, compensated equilibria and quasi—equilibria are the same

under these assumptions. For simplicity, convex preferences (b.3’) are assumed here,
rather than Mas—Colell’s weaker assumption of weak convexity (b.3) plus strict
monotonicity in the direction of v; and w. Mas—Colell assumed that w # 0, but
of course if w = 0 the trivially zero allocation and any non-zero p € L’ form an
equilibrium in that case.
PROOF: Theorem 4.2 is proved by Mas-Colell [11], with two minor changes. The
Alaoglu—Bourbaki Theorem on the weak—star compactness of polars of a zero—
neighborhood is substituted for Alaoglu’s Theorem on the weak—star compactness
of the unit ball of a conjugate Banach space. The continuity of the price functional
p generating the separating hyperplane in Proposition VII is ensured by direct
application of the separating hyperplane theorem [8], which guarantees that the
separating hyperplane is closed, or that p is continuous. The continuity of positive
linear functionals on Banach lattices need not be invoked. M

Remark 4.6: There are many ways to argue that a quasi—equilibrium is in
fact an equilibrium. Zame [18] has given several of these arguments, which depend
critically on the nature of the choice space and the pattern of agents’ endowments.
For brevity, we will merely record that if (z,y,p) is a quasi-equilibrium, then it is
also an equilibrium provided

p-x; #inf{p-z:z¢€ X;} Vie M. (4.2)

17 A subset S of a vector space is lineally closed if  is in S whenever {az + (1 —
a)z;a €[0,1)} € S for zin S.
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For if (4.2) applies then the following four conditions constitute a contradiction
under the assumptions of Theorem 4.1: (i) z; € X;, (ii) p- &; < p - x4, (iil) 2 =; =4,
and (iv) p-z = p-x;. That is, by assumption (b.2), for some o € (0,1), we have
az + (1 — a)z;, but then p- (az + (1 — a)Z;) < p- x;, contrary to the support
properties of p.

5. Price Support of Efficient Allocations

This section addresses the existence of a price vector supporting an efficient alloca-
tion. The conditions are considerably weaker than those of the quasi—equilibrium
existence theorem. The proposition is topology—free, applying an algebraic form of
the separating hyperplane theorem, relying on a non-empty intrinsic core!® con-
dition rather than a non—empty interior condition. The non—empty core condition
is weaker than non—empty interior and in any case is topology—free. The further
weakening to non—empty intrinsic core will mainly be of value for economies on a

proper subspace of the choice space.

PROPOSITION 5.1. If (z,y) € L™*™ is an efficient allocation for an economy £ then
(x,y) can be supported by some p € L' under the following conditions:

(i) X*=>" {z€X,:2z>; x;} Is convex,
(ii) Y is convex,
(iii) for some k € M, there exists vy, € L such that

T+ oy =k @, Vae (0,1) Vah e{ze Xp:z =, a),

(iv) Z = X* —Y — {w} has non—empty intrinsic core or L is finite-dimensional.
PROOF: First, 0 is not in the intrinsic core of Z since (x, y) is efficient, for otherwise,

for some a € (0, 1), we would have —awy, € Z, implying the existence of a feasible
allocation:

% * * * * * m—+n
(xl,...,xkfl,xk+avk7xk;+1a-"7mm?y)GL ’

where 27 =; x; Vi € M. But x} + avy =, x), = o), which would imply that
(x,y) is not efficient.

Thus Z and {0}, both being convex, can be separated in the linear hull H of
Z by a hyperplane generated by a non—zero linear functional p € H' [8;p.15], which
can be extended to p € L' [8;p.3]. Thatis, p-2>0 Vz e Z.

To see that p supports (x,y), suppose z}, = xj for any k € M. Since Y ;" | x; €
(Y +{w}) and (z} + >, 44 2:) € X*, we have z) —xy € Z, so p-zj, > p-xp. This is
true for all £ € M. By a similar argument, p-y; <p-y; ‘v’y; €Y;, VjeN. n

18 The core of a subset W of a vector space L consists of all points w € W such
that, for each z # w there exists 2z’ € (w, z) such that the interval [w, 2’] is contained
by W. The intrinsic core of W is the core of W relative to the affine hull of W.
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Remark 5.1: Any weakly efficient allocation can be supported under the same
hypothesis provided condition (iii) in the statement of the proposition is strength-
ened to apply to all © € M. The proof is almost identical, so omitted.

Remark 5.2: This proposition remains true when condition (iv) in its statement
is weakened to:

(iv') There exists a convex cone I' C L such that T'(1Z = 0 and (Z —T') has
intrinsic core, or L is finite-dimensional.

The proof is almost identical to the one given, using the fact that p-2 >0 Vz €
(Z —T') implies p € I'° since I is a cone.

For a continuous supporting price functional, of course, the usual non—empty
interior condition of the Hahn—Banach theorem can be assumed, as in Debreu [6;
Chapter 5]. As in Remark 4.3 we can weaken this by assuming only Mackey interior.
Any positive linear functional on a Banach lattice is continuous [15]. For such
spaces, for example LP spaces, even the algebraic form of the supporting price
functional given by Proposition 5.1 is thus continuous with monotonic preferences
or free disposal, either of which guarantee positivity.

6. Example: A Storage-Release Production Technology

Here we illustrate an economy for which an equilibrium can be demonstrated pre-
cisely thanks to the theory just developed. We pick the choice space L = R X
L?([0,1]), under the product norm topology given by

1

| (s7) o= (2 I Beoy) ™ ¥lsm) € R x L2([0, 1),

The space R is interpreted as initial stocks of a commodity which can be stored
and released for later consumption at a rate given by a square-integrable function
of the unit time interval (an element of L2([0,1])).

Specifically, the storage-release production technology is the production set

Ysr={(s,7r) € L:s+ /01 rT(t)dt < 0},

where T denotes the positive part of the release rate . That is, a feasible “net-
put” is one for which the total amount released is no more than the initial stock.
This makes sense for economies with storable commodities; leisure time is a good
counter—example. One could conceive, as an alternative justification, that there is
an actual input—output technology admitting a similar production of non—storable
commodities.

It is immediate that Ygp is itself a cone (closed under multiplication by positive
scalars) and has interior. The latter property is evident for instance, from the fact
that the ball of radius % centered at (—1,0) is contained by Ysg, as quickly verified

by a few calculations and the Cauchy-Schwarz inequality.'®

19 Suppose || (=1,0) — (s,7) |z< 1/2. Then s < —1/2 and || r ||z2< 1/2, the
latter implying [ | r |< 1/2 (by applying Cauchy—Schwarz with the function signum
[7(-)]), which means (s,r) € Ygg.
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Although free disposal is implicit in the definition of Ygp, that can be avoided
by the following device. Assume strictly monotonic preferences and, temporarily,
add a free disposal firm Yy = —L. Once an equilibrium is demonstrated, the chosen
production from Yj is obviously zero, so the same equilibrium allocations and price
vector are obviously an equilibrium for the economy without Yy. This is essentially
the concept behind the use of the cone D in demonstrating quasi—equilibria.

Now we have the following simple corollaries.

PROPOSITION 6.1. Suppose £ is an economy on L = R x L?([0,1]), Y contains
Ysgr, and the Debreu conditions apply. Then £ has a quasi-equilibrium.

PROOF: Since L is a reflexive Banach space, the Capturing Hypothesis is superfluous
(Remark 4.1). Of course A(Y) contains A(Ysg), so both have interior. Then
Theorem 4.1 applies. B

For the next proposition let w; g denote the projection of w; from L into R, the
amount of initial stored commodity endowed to agent 7. We now have a simple and
complete set of equilibrium conditions for this economy that are easily generalized.

PROPOSITION 6.2. Suppose L = R x L?*([0,1]) and Y = Ysg. Then £ has an
equilibrium under the following conditions, for all i € M :

(1) positive consumption (X; = L),
(2) =, is non—satiated (b.1), continuous (b.2), and weakly convex (b.3), and
(3) storage endowments (w; > 0 and w;r > 0).

PROOF: The Debreu conditions (a.1) and (a.2) are implied by (1); (c.1) and (c.2)
by (1) and (3); and (d.1) and (d.2) by (1) and the definition of Ysg. The remaining
conditions for the statement of Theorem 4.1 are satisfied as in Proposition 6.1.
Finally condition (2.3) can be ruled out by the definition of Ysg, which implies the
existence for each agent of some z; in X; such that z; — w; € int[A(Y) — D]. For
this point, see Debreu [6, page 146]. H

The same approach can be used in a two period setting under uncertainty.
One assumes that there exists some scalar a > 0 such that a fixed large quantity of
deterministic first period input can be converted in some production technology to
any output whose positive part has expected value smaller than «. The assumption
is more onerous in this case, however. The same storage-release idea, perhaps
combined with an actual production input—output technology can be quite plausibly
applied to sequence choice spaces. The first element of an agent’s endowed sequence
vector would represent that agent’s initial “capital stock”.

7. Concluding Remarks

This paper has in part been an exploratory study of the alternative properties
of infinite-dimensional spaces that make equilibrium analysis tractable. We will
review. As explained, a positive cone with interior is very helpful. It makes our
extra assumption that the production set contains a price block even weaker than
free disposal. In this regard, and in the generalization of consumption sets and
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bounding restrictions, this paper generalizes the equilibrium existence theorems
of Bewley [4] and Magill [10] along roughly the same lines that Debreu [6;Ch.10]
generalizes Arrow and Debreu [1].

This interior property aside, the “nicest” commodity spaces seem to be separa-
ble reflexive Banach lattices. Separability (along with the norm topology) “buys”
the existence of utility representations for preferences. In conjunction with the Ba-
nach lattice property, separability also ensures that the positive cone has a quasi-
interior, which makes the formulation of conditions ensuring equilibrium existence
easier (See Zame [18] for details on the definition and importance of quasi-interior).
This latter property is also shared by any of the spaces L4(u)1 < g < oo, separa-
ble or not, (provided the underlying measure space is totally o-finite.) Reflexivity
makes superfluous the Capturing Hypothesis, a substitute for the local compactness
of finite-dimensional spaces that crops up throughout this paper. In general, the
ability to place some topology on the choice space in which feasible allocations are
captured in a compact set seems imperative. The decomposition property of lattices
[15] is important in the construction of a preference based price block [11].

Mas—Colell [11] includes a fairly complete list of the literature on equilibria
in infinite-dimensional choice spaces up to the time that this paper first appeared
in 1983. Since then, however, several related papers have appeared. Mas—Colell’s
approach has been extended to general proper binary orders for preferences in a
recent paper by Yannelis and Zame [17]. Jones [9] demonstrated equilibrium with
production in a Banach space roughly along the lines of this paper. Zame [18§]
demonstrated equilibrium with production on a normed vector lattice by following
the basic outline of Mas—Colell forming conditions on the “marginal efficiency” of
production. Again, consumption sets are the positive cone. Although Zame’s pro-
duction conditions are somewhat complicated, they definitely seem less restrictive
that assuming that the recession cone of the production set has interior, at least
when the positive cone of the space itself has no interior. Certainly the current state
of the art is not yet satisfactory in so far as posing simple and generally applicable
conditions for the existence of equilibria in a range of vector spaces.

The original version of this paper includes several supplementary results that
have been left out for brevity. These include sufficient conditions for the conclu-
sions: a quasi—equilibrium is an equilibrium, a valuation equilibrium has an efficient
allocation, an exchange equilibrium has an efficient allocation, there exist efficient
allocations, and an allocation in the core of the allocation game of all replications
of an economy is an equilibrium.

Appendix — Recession Cones in General Spaces

This appendix is devoted to extending certain properties of recession cones
stated by Debreu [5] for Euclidean spaces. Debreu’s definition of recession cone
applies to arbitrary sets in Fuclidean spaces. The definition we give below applies
to convex sets in arbitrary real vector spaces. Beer [3] examines the extension to
non—convex sets, along with a different economic application. The recession cone,
A(X), of a convex subset X of a real vector space Listheset {z € L: {z}+X C X}.
Recession cones are also known as “asymptotic cones” or “characteristic cones”. If
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one follows the convention that a “cone” C' must satisfy C'(|—C = {0} (that is, C
cannot be a nontrivial vector subspace), then recession cones are not actually cones,
but rather “wedges”, sets closed under multiplication by positive scalars. There does
not seem to be a standard reference on recession cones for general vector spaces,
although Holmes [8] has a few results. I have thus collected together the following
properties, which are almost immediate from the definition above.

LEMMA A.l1. Suppose L is a vector space over the field of real numbers.

(i) If X is a convex subset of L, then A(X) is convex.

(ii) If X is a convex subset of L, then A(X + {z}) = A(X) Vz e L.
(iii) If X is a convex subset of L and 0 € X, then A(X) C X.

(iv) If X and Y are convex subsets of L, then A(X) C A(X +Y).

(v) If X;,1=1,...,m are convex subsets of L, then

The following lemma is from Holmes [8;p.34] and Beer [3].
LEMMA A.2. Suppose X is a convex subset of a real vector space L. Then
AX)={z€LlL:z24+azeX VYaeR;, VrelX}

If, in addition, L is a topological vector space in which X is closed, then, for any
re X,
AX)={zel:x4+aze X VYaecR;}

LEMMA A.3. Suppose X is a closed convex subset of a real topological vector space.
Then A(X) is closed.

PROOF: By Lemma A.2, for any x € X,
AX)= () {alX - {z})}.
OCER++

Since this is the intersection of closed sets, A(X) is closed. W

LEMMA A.4. If X is the non-empty intersection of an arbitrary collection of closed
convex subsets {X : A € A} of a real topological vector space, then

AX) = () AXy).
AEA
PROOF: If x € X then z € A(X) if and only if
{r+az:ac Ry} C X\ VAe€A,
which implies z € A(X)) VA€ A, by Lemma A.2. &
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The following lemma shows the connection between the boundedness of the
intersection of two convex sets and the trivial intersection of their recession cones.

LEMMA A.5. Suppose X and Y are closed convex subsets of a real topological
vector space L. If X (Y is bounded then A(X)NA(Y) = {0}. If, furthermore, L
is a locally compact®® then the converse is also true; indeed A(X)[(A(Y) = {0}
then implies that X (Y is compact.

PROOF: From Lemma A.4, the first assertion follows if the recession cone of a
bounded set is {0}; but this is obvious.

For the second assertion, let U be a compact balanced zero neighborhood of
L. From Lemma A.4 the conclusion follows if A(X) = {0} implies X C (aU), for
some positive scalar «, since X would then be a closed subset of a compact set, and
therefore compact. Suppose this is not the case, and define

L, =X[\L\(nU)) # 0  VYneN,

where N is the set of positive integers. Define

¢ = X () L\ int(20).

where 7 is an integer sufficiently large to ensure C' # (). Note that C' is compact.
Let B, = {al, : « € Ry} C. Assume, without loss of generality (Lemma A.1),
that 0 € X. The sequence of sets (B,,)72; must have a non-zero cluster point z € C
since C' is compact. Choose any z € X and any a € R. If we can show z+az € X,
then we are done, since z € A(X) is a contradiction.
Choose 1 €N such that az € int(nU). Let W be any balanced zero-neighborhood.|]

For any scalar v > 0, and any integer n > 7, there exists a scalar 6 > 0 and some
u € yW such that w = §(az +u) € I, C X, with az +u € (nU). This implies that
d > n/n. Now

n LY N (w—x) 48

rt+oaz=r+—-—-—u=r+-—-+—- —u.
o 4] 4]

Since X is convex and since n > n implies § > 1, we know = + (w — z)/d € X. We
can take ¢ so large that x/0 € (yW). Thus x + az € X + (2yW), but since 7 is

arbitrarily small, z + az € X = X, since X is closed. W

I do not know of a larger class of locally convex spaces with the property
that A(X) = {0} implies that X is bounded. Reflexive Banach spaces may be a
suitably general class. For our purposes this is mainly of historical interest, relating
to Debreu’s original assumptions. The latter condition seems more intuitive and
convenient for its purpose in competitive analysis.

20 A topological vector space is locally compact if every point has a compact
neighborhood. An example is Euclidean space.
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