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This is a survey of multi-factor structure models, concentrating on models in which 
the term structure has a finite-dimensional (Markov diffusion) state-space rep
resentation. The special ‘affine’ case is shown to be tractable.

1. Introduction
Figure 1 shows the term structure of interest rates at a given point in time. 
Stochastic models for fluctuations in term structure over time are commonly used in 
the finance industry for at least the following purposes.

(i) The pricing of fixed-income derivative securities, such as options and 
mortgage-backed securities.

(ii) The analysis of the risk of fixed-income portfolio strategies.
(iii) Managing the interest-rate risk of fixed-income positions.
By ‘fixed income’, we mean assets whose pay-offs depend on the term structure 

itself. In a wide sense, this can include bonds, bond derivatives such as options, 
swaps, or caps, defaultable bonds, and even foreign bonds or derivatives based in 
sometimes complicated ways on domestic and foreign interest rates. There are many 
other reasons for understanding the process by which interest rates are determined 
and change over time, but our focus will be on models that are particularly useful for 
the above three purposes.

Although various classes of stochastic models are used, the most common language 
of term structure modellers in industry and universities is that of continuous-time 
stochastic calculus, which reached popularity following the impact of the Black & 
Scholes (1973) option pricing formula and the associated modelling ideas developed 
by Merton (1973) and others. We will review how such models are constructed and 
applied, with particular reference to Markov diffusions that represent the current 
term structure in a finite-dimensional state space. Within this class, one can make 
reasonable trade-offs between economic realism and computational tractability, 
bearing in mind that no tractable model can fully capture the complexity of 
unexpected changes in interest rates.

2. Setup
We begin with a probability space (Q,^,P)  and the augmented filtration 

{^:£e[0, oo)} generated by a standard brownian motion If* in Rn, for some ^  1. 
(For technical details, see, for example, Karatzas & Shreve (1988), Protter (1990) or 
other standard references.)

Given is a progressively measurable ‘short rate’ process r such that \ f \r t\dt < oo 
almost surely for all T> 0. We may think of as the interest rate at time t on loans
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578 D. Duffle and R. Kan
price =  exp(yield x maturity)

yield =  -log(price) /  maturity

time to maturity

Figure 1. The yield curve.

of infinitesimal maturity. More properly, it is possible to invest one unit of account 
at any time t in deposits and receive at any ^  the pay-off exp (/* ru dw).

For purposes of this survey, a security is a financial claim promising, for some time 
T, a pay-off defined by some J^-measurable random variable u. According to a model 
of Harrison & Kreps (1979), as subsequently developed by many (see, for example, 
the references cited in Duffie 1992, especially Ansel & Strieker 1992), under technical 
conditions there is not arbitrage if and only if there is a probability measure Q, 
equivalent to P, under which the price of a security paying u at time ^  is given
by

E exp rs ds ( 1 )

Here, and throughout, E denotes expectation under such a probability measure Q, 
which is fixed. The obvious example is to take 1, defining the price of a zero- 
coupon bond maturing at T. The continuously compounding yield of a bond of 
maturity r is then defined as

Vt,r = ( - l /T ) log2>u + r , ( . ( 2 )

For practical applications, there remains the basic issue of how to model the 
probabilistic behaviour of the short rate process r under Q. One wants a model for r 
that is sufficiently rich to capture the essential nature of the actual market, while at 
the same time sufficiently tractable for purposes of econometric estimation and for 
computation of the prices of contingent claims as in (1), for a range of commonly 
traded securities whose pay-offs are represented by u. There are also many 
theoretically interesting questions regarding the equilibrium determination of the 
short rate process r and the equivalent ‘martingale’ measure Q. It is known that, 
under weak technical conditions, any short rate process r can be supported in a 
simple general equilibrium setting with easily specified utility functions and 
consumption endowments (see, for example, Heston 1991; Duffie 1992, exercise 9.3). 
In any case, we will be focusing here only on practical issues, and disregarding other 
aspects of the general equilibrium problem. From this point, we will review some 
basic classes of models for the behaviour of the short rate process r under the 
equivalent martingale measure Q. We begin with ‘single-factor’ models, move to 
‘multi-factor' models, and finally describe ‘infinite-factor’ models in the framework 
of Heath et al. (1992). For many applications, it will also be useful to model the 
distribution of processes under the original probability measure P. Conversion from 
P to Q and back will not be dealt with here, but is an important issue, particularly
Phil. Trans. R. Soc. Loud. A (1994)
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Multi-factor term structure models 579

Maturity X

Figure 2. Actual and modelled yield curves.

from the point of view of statistical fitting of the models as well as the measurement 
of risk.

3. Single-factor models
The simplest class of models that we consider takes the short rate process to be the 

solution of a stochastic differential equation of the form
dr* = ju{rt)dt + cr(rt)dWt,(3)

where IT is a standard brownian motion under Q and where and
have enough regularity to ensure the existence of a unique solution to (3) (see, for 
example, Ikeda & Watanabe 1981). Since is a strong Markov process under Q, we 
have pt T — F(rt,t), for some measurable function x [0, -> and we can
therefore view the entire yield curve yt = {y* t:t ^  0} defined by (2) as measurable 
with respect to rt. Hence the label ‘single-factor model’ applies, since a single state 
variable, in this case the short rate rt, is a sufficient statistic for all future yield 
curves.

Although simple and, as it turns out, quite tractable, the single-factor class of 
models given by (3) is (like any theoretical model) at variance with reality. 
Consequently, on a given day, the yield curve associated with the model differs from 
that observed in the market-place, as depicted in figure 2.

If significant, this discrepancy may suggest the development of a new theoretical 
model. In the finance industry, however, one needs to use some particular model, 
even if it is imperfect. In practice, the discrepancy between the actual and theoretical 
yield curves depicted in figure 2 is eliminated by introducing at the current time 
time dependence in the functions p and cr, to arrive at a ‘calibrated model 
[F: Rx [0, oo) -> Rand cd: Rx [0, co) ->• R,of the form

drs = pt(rs,s) ds +cd(rs, <s) dITs, (4)
This calibrated model (/d, cd) is computed numerically from the original model cr) 
using algorithms that are described, for example, in Black et al. (1990). With proper 
calibration, the result is an exact match between the actual and modelled yield 
curves. Indeed, it is common to calibrate not only with the current yield curve, but 
also with certain volatility-related information available in the market through the 
prices of options.

At the next time period t-1-1, of course, there is again a discrepancy between the 
observed market yield curve and the yield curve computed at the new short rate
Phil. Trans. R. Soc. Lond. A (1994)
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580 D. Duffle and R. Kan

Table 1. Parametric single-factor models

d rt = [ccft) + cc2(t) rt + ct3(t) rt \ogrt]dt -\-ffft) + fi2(t) rtY dBt

«i oc2 a3 Ax fit 7
Cox-Ingersoll-Ross • • — — • 0.5
Dothan — — — — • 1.0
Brennan-Schwartz • • — — • 1.0
Merton • — — • — 1.0
Vasicek • * — • — 1.0
Pearson-Sun • • — • • 0.5
Black-Derman-Toy — • • — • 1.0
Constantinides-Ingersoll — — — — • 1.5

with the previous calibration (/A, orl)of the model. It is common in practice to re
calibrate to a new model , crt+1).Since the necessity for re-calibration was not 
considered when using the previous version of the model for pricing purposes, this 
suggests a theoretical inconsistency in the application of the model. The compromise 
involved seems reasonable under the circumstances. It has sometimes been said that 
one can avoid this compromise with the modelling approach of Heath et al. (1992), 
since that framework essentially admits an arbitrary initial yield curve without the 
need for calibration. In effect, the state variable for the Heath—Jarrow—Morton 
(h j m ) model is the entire yield curve itself. In fact, the h j m  model admits 
movements in the yield curve generated only by a finite-dimensional brownian 
motion and therefore limits the sorts of movements of the yield curve that can be 
considered without calibration. Recent work by Kennedy (1992), however, extends 
the h j m  model to allow for an infinite-dimensional brownian motion (in the 
framework of stochastic flows).

Most, if not all, of the parametric single-factor models appearing in the literature 
or in industry practice, are of the form

d rt = [oc^) + cci (t)rt + ai{t)rffogrt]dt+[^(t)+ ̂ { t )r t] (5)
for time-dependent deterministic coefficients oq, a2, a3, and /?2, and for some 
exponent y ^  0.5. (For existence and uniqueness of solutions, additional coefficient 
restrictions apply.) Table 1 lists the origins of various special cases of this parametric 
class, indicating with • the coefficients that are non-zero (sometimes constant) for 
each special case, and indicating the choice of power y. (By offering extensions with 
time-varying coefficients, Ho & Lee (1986) and Hull & White (1990) have popularized 
the constant coefficients models of Merton (1973) and Vasicek (1977).)

Even for this simple parametric class (5), there are clearly degrees of freedom in 
calibrating the model to the observed yield curve. It is also common in practice to 
calibrate the model to market prices for derivative securities, such as bond options 
or ‘caps’, both of which provide useful volatility-related information that can be 
used to obtain more realistic model behaviour. For a description, see Black & 
Karasinski (1992), for example.

4. Multi-factor models

Although single-factor models offer tractability, there is compelling reason to 
believe that a single state variable, such as the short rate rt, is insufficient to capture 
reasonably well the distribution of future yield curve changes. The econometric
Phil. Trans. R. Soc. Lond. A (1994)
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Multi-factor term structure models 581
evidence in favour of this view includes the work of Litterman & Scheinkman (1988), 
Stambaugh (1988), Pearson & Sun (1990), and Chen & Scott (19926, 1993). (For 
empirical comparisons among most of the single-factor models considered in table 1, 
see Chan et al. (1992).)

In principle, of course, the yield curve sits in an infinite-dimensional space of 
functions, and there is no reason to believe that the direction of its movements will 
be restricted to some finite-dimensional manifold. For practical purposes, however, 
tractability suggests a finite number of state variables, and it is an empirical issue as 
to how many might be sufficient to offer reasonable empirical properties. Some of the 
empirical studies mentioned above suggest that 2 or 3 state variables might suffice 
for practical purposes.

In any case, we will consider a state process in some open subset!) of defined 
as the solution to

= Mx t)dt + d (6)
where IT is a standard brownian motion in Rn under Q, and where and
cr: D-> RnXn satisfy sufficient regularity for existence and uniqueness of solutions. In 
what follows, we could add time dependence to and cr without changing the major 
ideas.

We also suppose that the short rate process r is given by rt for some
R : Dn -> R. Thus the zero-coupon bond maturing at T has a price at ^  given from

(1) by
F(Xt, t )= E exp — R(Xs)ds X (7)

One could imagine that the state vector X t might include various economic indices 
that would affect interest rates such as economic activity, monetary supply 
variables, central bank policy objectives, and so on. In order to facilitate the pricing 
and hedging of fixed-income derivatives, however, it is convenient to assume that 
one can find a change of variables under which we may view Xt as yield-related 
variables. This will be one of our objectives. We also desire a model that has some 
measure of numerical and econometric tractability. For both of these reasons, it may 
turn out to be convenient to take fi, cro'T and R to be affine functions on D into their 
respective ranges. (An affine function is a constant plus a linear function.) In this 
case, we say that the primitive model (ja, crcrT, R) is affine.

Likewise, we say that the term structure is itself affine if there are C1 functions 
c:[0, oo) ^ R  and C:[0, oo )->Rnsuch that

V t , i  =  C{T)  + C(T)-Xt, ^  0 , (8)

so that yields are affine in the state variables.
Indeed, in Duffie & Kan (1992) it is shown that, under technical conditions, the 

basic model ( / i , <rcrT,i?) is affine if and only if the term structure is affine. This extends 
the same result for n = 1 given by Brown & Schaefer (1991). For an affine model, 
Duffie & Kan (1992) show that the coefficient functions c and C of (8) solve an 
ordinary differential equation of the form

C\(t) = ki+KfCW  + CiTfQiCiT), (9)
c\ t) = Jc0+K0-C(t) + C(t)tQ0C(t), (10)

with boundary conditions
c(0) = (7,(0) = 0, ( 11)

Phil. Trans. R. Soc. Lond. A (1994)
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582
where {k0, ..., k j  c  R, {K0, . . . , K J c z  Rn,and <= are constant
coefficients given in terms of the coefficients defining the underlying affine functions 
p, o'crT, and R. The Ricatti equation (9)—(11) can easily be solved numerically, for 
example by a Runge-Kutta method.

Given the solution {c,C) of (9)—(11), relation (8) provides an affine change of 
variables under which the state may be taken to be an ^-dimensional ‘yield-factor 
process F, where for some fixed maturities r(l), we take

Yti = Vt, tU) = c(T(i)) + C(T(i))-Xt, (12)
We need only ensure that the ‘basis maturities’ r(l), are chosen so that the
matrix K  in Rnxn, defined by Kif = Cf(r(^)), is non-singular. In that case, we have 
Yt = k+KXt, where ki = c(r(i)), and the new state dynamics are given by

dF, = y*(Yt)dt + a*(Yt (13)

where /^*(y) = ky(K~
cr*( y) =Ka{K~xy — k),

for yeD* = {Kx + k: xeD}.
If <r is constant, X  and F are Gauss-Markov processes of the Ornstein-Uhlenbeck 

form. For abstract factors, this gaussian model was developed by Langetieg (1980) 
and Jamshidian (1990, 1991). A Gauss-Markov yield-factor model was developed by 
El Karoui & Lacoste (1992) in the forward-rate setting of Heath al. (1992), and in 
the current state-space setting, was developed as a special case of stochastic 
volatility models by Duffie & Kan (1992).

A simple example of non-constant or is the multivariate Cox-Ingersoll-Ross 
model:

= {ai - b iX it)dt + ci \ / X itdWu, (14)
for positive constants ai,bi, appearing in Feller (1951), and developed for interest- 
rate modelling by Cox et al. (1985), Richard (1978), Heston (1991), Longstaff & 
Schwartz (1992), and Chen & Scott (1992a). Restrictions apply. For all i, we want

« i>  cf/2. (15)
As shown by Ikeda & Watanabe (1981), the latter restriction is necessary and 

sufficient to ensure that X  will remain in the obvious open state space D = int (̂ ?+). 
Duffie & Kan (1992) study the general case, under which we can without loss of 
generality take

y(x) = ax+ 6; a^x)  = V (actf + f a x ) ,  (16)
for some y^eR,  a{jeR, /3ije R n, a e R nxn, and beR n. In this case, the state space is

D = {xeRn:aij + /3ij-x > 0, (17)

Strong restrictions on the coefficients (a, b, y, a, /?), analogous to (15) but more
complicated, are shown by Duffie & Kan (1992) to imply the affine form and 
to guarantee the existence and uniqueness of solutions to dXt = ja(Xt)dt + 
a{Xt)dWt,x0eD,for (16)—(17).

Aside from the affine case, multivariate term-structure models appear in Brennan 
& Schwartz (1979), Chan (1992), El Karoui et (1992), Constantinides (1992), 
Beaglehole & Tenney (1991) and Jamshidian (1993). Most of these non-affine 
multifactor models do not allow direct observation of the state from the yield curve.

D. Dujjie an Kan

Phil. Trans. R. Soc. Loud. A (1994)
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If one does not observe the state-vector directly, in principle one can filter the state 
variable from yield-curve data. There are debates concerning how much this limited 
observation property detracts from the practical application of the models. It can be 
said, for example, that we do not observe the yield curve in any case, but merely the 
prices of coupon bonds, from which one infers statistically (and with noise) the zero- 
coupon curve by some curve-fitting method such as splines or nonlinear least squares. 
In any case, it seems to be of at least some value to have state variables that can be 
observed in terms of the yield curve, as in the affine models described above.

Multi-factor term structure models 583

5. Derivative pricing
Given a term structure model {pi, crcrT,affine or not, one is interested in the 

pricing of derivative securities. Recall that the price of a security with pay-off u at 
time T is given at time t by

exp R{XS) ds I u
Jt

If u is measurable with respect to the yield curve at time T, as are bond options and 
other ‘path-independent’ derivatives, we may take u = g{XT) for some 
since the yield curve yT is itself Ar -measurable. In this case, the Markov property of 
X  implies that we can write the derivative price as

F(Xt, t) = E exp -  R{X X (18)

for some F : Dx [0, T]->■ R .Under the technical regularity given, for example, in
Friedman (1975), we also know that F is the unique solution in x [0,
under technical growth conditions, to the parabolic partial differential equation

Q>F{x,t)—R{x)F{x,t) = 0, (19)
F{x,t) = g{x),x e D,  (20)

where , „ „
2>f{x, t) = Fx(x, t) fi{x) +Ft(x, t) + |  trace (cr(x) t)).

One can then solve for path-independent derivative prices via a numerical solution 
of the partial differential equation (19)—(20), say by finite-difference methods. (For 
finite-difference algorithms, see for example Ames (1977).) For affine multi-factor 
models, fully worked examples are given by Duffie & Kan (1992) for the case = 2. 
For large n, say more than 3, currently available algorithms and hardware are not 
up to the task, and Monte Carlo simulation may be applied (see, for example, Duffie 
& Glynn 1992; Kloeden & Platen 1992). For the path-dependent case, unless there 
is a simple way to augment the state space so as to capture the path dependence with 
an additional state variable, it may also be advisable to resort to Monte Carlo 
simulation. There are only rare cases, such as Jamshidian’s (1991) solution for bond 
options in the gaussian setting, for which one can obtain explicit solution for 
derivative prices (see, also, El Karoui & Rochet 1989).

6. Where do we go from here?
A great deal of work remains to be done. First, we have discussed only the case of 

single-currency yield curves with no default risk. International models, which 
consistently include random exchange rate fluctuations, are difficult to model in a
Phil. Trans. R. Soc. Loud. A (1994)
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584

tractable way. An example, in the same affine state space setting emphasized here, 
is offered by Nielson & Saa-Requejo (1992). Modelling default risk in a consistent 
way, while maintaining tractability, is also challenging. Madan & Unal (1992) and 
Jarrow & Turnbull (1992) offer examples of models that push in this direction.

Econometric modelling of the term structure, particularly in a multi-factor 
setting, has stayed within a relatively narrow framework. Recent work by Gibbons 
& Ramaswamy (1992), Pearson & Sun (1990), and Chen & Scott (1992&, 1993), for 
example, stays strictly within the CIR single-factor or multi-factor cases of the affine 
model emphasized here. For the constant-volatility Gauss-Markov (affine) case, 
Frachot et al. (1992) together with Frachot & Lesne (1993) have done some empirical 
work in the Heath-Jarrow-Morton setting. Much remains to be done in integrating 
the use of statistical models within the practical applications of term structure 
models mentioned in the introduction.

Judging from the literature on term structure modelling, much also remains to be 
done in the development and application of numerical methods, such as finite- 
difference or finite-element algorithms for multidimensional Cauchy problems such 
as (19)-(20), to the particular sorts of applications that are found in fixed-income 
markets.

D. Duffle and R. Kan
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