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Appendix A: Verification Theorem

Here, we prove a theorem that we later use to verify a candidate symmetric
a�ne equilibrium. The theorem applies to the models of Section III, Section
V, and Appendix H. In what follows, Fi denotes trader i’s information set.
In the models of Section III and Appendix H, Fi = �(Xi) while in the model
of Section V, Fi = �(Xi,

P
j2N Xj). The set of admissible demand schedules,

Mi, is the set of all maps h : ⌦ ⇥ R ! R that are Fi ⇥ B(R)-measurable.
We denote a candidate symmetric a�ne equilibrium by the associated triple of
demand schedule coe�cients, (�,↵, ⇣).

THEOREM 1: Let (�,↵, ⇣) be a candidate symmetric a�ne equilibrium. For

each e 2 E and i 2 N set

rie := �↵
X

j 6=i

Xj + (N � 1)��Qe

and let fie be as in (2). Necessary conditions for (�,↵, ⇣) to be a symmetric

a�ne equilibrium are that ⇣ 6= 0 and

(A1) µ⇡ � E
"
2b

 
Xi +

X

e2E
fie(!, p

f

e )

!
| Fi, rie

#
= pfe +

1

⇣(N � 1)
fie(!, p

f

e )

holds almost surely for each i 2 N and e 2 E. If ⇣ > 0 then (A1) is also su�cient.

PROOF:
We first show that if ⇣ = 0, then (�,↵, ⇣) can not be a symmetric a�ne equilib-

rium. In this candidate equilibrium, with probability 1, no trades are executed on
any exchange.1 Now suppose trader i deviates to submitting the demand schedule
�✏p on a given exchange e. Then trader i will absorb ↵

P
j 6=i

Xj � (N �1)�+Qe

units from the other traders. The market clearing price on exchange e will be

pe =
�↵

P
j 6=i

Xj +�E(N � 1)�Qe

✏
.

Thus the transfer to trader i is

�peqie =
(↵
P

j 6=i
Xj ��(N � 1) +Qe)2

✏
.

1Recall from Section II that if a unique market clearing price does not exist no trades are executed.
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That is, for ✏ > 0 su�ciently small the deviation is profitable. Hence (↵, ⇣,�)
can not be a symmetric a�ne equilibrium.
Going forward we assume ⇣ 6= 0. Suppose that all traders j 6= i submit demand

schedules of the form in (2) to each exchange. Suppose trader i submits gie 2 M
to exchange e. Then if a market clearing price exists, it satisfies

(A2) pe(!) =
rie(!) + gie (!, pe(!))

⇣(N � 1)
.

For any given demand schedule gie which conditions the quantity purchased on the
realization of pe there is a function g̃ie which conditions the quantity purchased
on the realization of rie such that

g̃ie(!, rie(!)) = gie (!, pe(!))

for each ! 2 ⌦ for which a unique clearing price exists and

g̃ie(!, rie(!)) = 0

for each ! 2 ⌦ such that there is no unique clearing price. To see this, define g̃ie
as follows. For each r 2 R let p(r,!) denote the unique solution to

p =
r + gie(!, p)

⇣(N � 1)

if such a solution exists. For all r such that p(r,!) is well defined, we let

g̃ie(!, r) = gie (!, p(r,!)) .

Otherwise, set
g̃ie(!, r) = 0.

Given {fie}e2E as in the statement of theorem, define {f̃ie}e2E in this way. Then

f̃ie(!, r) = �↵
N � 1

N
Xi �

r

N
+

N � 1

N
�

for each e 2 E.
It is convenient to relax trader i’s optimization problem to

(A3) sup
g̃i2ME

i

E

2

4⇡
X

e2E
g̃ie(!, rie)� b

 
Xi +

X

e2E
g̃ie(!, rie)

!2
3

5

� E
"
X

e2E

rie + g̃ie(!, rie)

⇣(N � 1)
g̃ie(!, rie)

#
,
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where, as is standard, we suppress ! from the notation for Xi and rie. For some
g̃i = (g̃i1, ..., g̃iE) 2 ME

i
, the expectation may be infinite. As a result we first

restrict to the subset M̂E where M̂ is the subset of h 2 M such that h( · , rie( · ))
is a finite-variance random variable. Later, we argue that this is without loss of
generality because, if ⇣ > 0, any profile of demand schedules outside of M̂E leads
to a utility of �1.
To derive a first order condition, for each e 2 E, we take the variation of f̃ie

with an arbitrary he 2 M̂ and substitute into the objective. This gives

(A4) E
"
⇡
X

e2E

�
f̃ie(!, rie) + ⌫he(!, rie)

�
� b
�
Xi +

X

e2E
f̃ie(!, rie) + ⌫he(!, rie)

�2
#

� E
"
X

e2E

rie + f̃ie(!, rie) + ⌫he(!, rie)

⇣(N � 1)

�
f̃ie(!, rie) + ⌫he(!, rie)

�
#
,

where ⌫ is a constant in R. Di↵erentiating with respect to ⌫ and evaluating at
⌫ = 0 gives:

(A5) E
"
⇡
X

e2E
he(!, rie)� 2b

�
Xi +

X

e2E
f̃ie(!, rie)

�X

e2E
he(!, rie)

#

� E
"
X

e2E

� f̃ie(!, rie)
⇣(N � 1)

+
rie + f̃ie(!, rie)

⇣(N � 1)

�
he(!, rie)

#
= 0.

This holds if

(A6) E
"
�2b

�
Xi +

X

k2E
f̃ik(!, rik)

� ����Fi, rie

#
=

rie + 2f̃ie(!, rie)

⇣(N � 1)
� µ⇡

for each e 2 E. We now show that (A6) is a su�cient condition for optimality

within M̂E . Di↵erentiating (A4) with respect to ⌫ twice we derive

(A7) E
"
�2b

�X

e2E
hie(!, rie)

�2 � 2

⇣(N � 1)

X

e2E
hie(!, rie)

2

#
,

which is less than or equal to 0 for all (h1, ..., hE) 2 M̂E . The derivative is negative
if one of h1, ..., hN is nonzero on a set of positive measure provided ⇣ > 0. Suppose
for contradiction that (f̃i1, ..., f̃iE) satisfies (A6) but there exists (h⇤1, ..., h

⇤
E
) 2

M̂E which achieves a strictly higher value of (A3). Set (h1, ..., hE) ⌘ (h⇤1 �
f̃i1, ..., h⇤E � f̃iE) 2 M̂E . Then the function (A4) achieves a higher value at ⌫ = 1
than at ⌫ = 0. However (A4) is a strictly concave function of ⌫ and thus has a
global maximum at ⌫ = 0. This is a contradiction.
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To show that it is without loss of generality to restrict attention to optimality
within M̂E we observe that the coe�cient of g̃ie(!, rie)

2 in (A3) is negative if
⇣ > 0. It is easy to see then that any (g̃ie, ..., g̃iE) /2 M̂E must result in �1 for
the objective.
Using (A2), we see that (A6) is equivalent to (A1) which, if ⇣ > 0, is therefore

a su�cient condition for (�,↵, ⇣) to be a symmetric a�ne equilibrium. We now
show that it is also a necessary condition (even if ⇣ < 0). Suppose for some e 2 E,
(A1) does not hold and set

he(!, rie) = µ⇡ + E
"
�2b

�
Xi +

X

k2E
f̃ik(!, rik)

� ����Fi, rie

#
� rie + 2f̃ie(!, rie)

⇣(N � 1)
.

Note that he is an a�ne function of rie with a deterministic slope (does not
depend on !). This is because the conditional expectation above is a�ne in rie in
each of the models of Section III, Section V, and Appendix H with a deterministic
slope. Set hk(!, rik) = 0 for k 6= e. Then (A5) is strictly positive. Thus for all
⌫ > 0 su�ciently small (f̃i1, ..., f̃ie + ⌫he, ..., f̃iE) achieves a higher value of the
objective (A3) than does (f̃i1, ..., f̃iE). Define the demand schedule de such that
for any given p 2 R and ! 2 ⌦

de(!, p) = (f̃ie + ⌫he)(!, r(!, p))

where r(!, p) is defined to be the r that solves

p =
r + (f̃ie + ⌫he)(!, r)

⇣(N � 1)
.

If ⌫ > 0 was chosen su�ciently small, r(!, p) is well defined since the right hand
side is an a�ne function of r with nonzero slope and so de(!, p) is also well defined.
Moreover

de(!, pe(!)) = (f̃ie + ⌫he)(!, rie(!))

for each ! 2 ⌦. But then (fi1, ..., de, ..., fiE) gives higher expected utility to
trader i than does (fi1, ..., fiE) which is a contradiction. Thus (A1) is a necessary
condition.

Appendix B: Proofs for Section III

Here, we provide proofs for all results in Section III. We first prove Lemma 2
which states that an equilbrium is “more e�cient” the closer is E↵E to 1. Lemma
2 will be used in the proof of Theorem 1.

LEMMA 2: Let (�,↵, ⇣) be a symmetric a�ne equilibrium when there are E
exchanges and (�̂, ↵̂, ⇣̂) be a symmetric a�ne equilibrium when there are Ê ex-

changes. For each ! 2 ⌦, the sum of strategic traders’ holding costs post trade is
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strictly lower in the equilibrium corresponding to (↵, ⇣,�) if and only if |1�E↵| <
|1� Ê↵̂|. If the sum of strategic traders’ holding costs post trade are equal across

the two equilibria, then |1� E↵| = |1� Ê↵̂|.

PROOF:
The sum of holding costs in the equilibrium (�,↵, ⇣) is

b
X

i2N

0

@(1� E↵)Xi + E↵
1

N

X

j2N
Xj +

P
e2E Qe

N

1

A
2

.

Expanding, rearranging, and combining like terms we obtain

b

2

4(1� E↵)2
X

j2N
X2

j + [1� (1� E↵)2]
1

N
(
X

j2N
Xj)

2

3

5

+ b


2

P
e2E Qe

P
j2N Xj

N
+

(
P

e2E Qe)2

N

�
.

Thus the lemma is a result of Jensen’s inequality.

B1. Proof of Theorem 1

We prove Theorem 1 in three steps. In step 1, we derive a system of equations
and show that a necessary and su�cient condition for (�E , ↵E , ⇣E) to be a
symmetric a�ne equilibrium is that they solve this system. In step 2 we prove
that there is exists a unique solution to the system, thus establishing existence
and uniqueness of a symmetric a�ne equilibrium. This proves the preamble in
Theorem 1. In step 3, we prove Parts 1 through 7.
Step 1. Conjecture there exists a symmetric a�ne equilibrium (�E ,↵E , ⇣E).

Under this conjecture, each agent i 2 N submits a demand schedule of the form
in (2) to each e 2 E and i 2 N . Market clearing in exchange e implies that the
equilibrium price is

(B1) pfe =
�↵E(

P
i
Xi) +�EN �Qe

⇣EN
.

Price impact can also be determined from the market clearing condition. If trader
i purchases q units on exchange e when all other traders submit the equilibrium
demand schedules then

�↵E

X

j 6=i

Xj � ⇣E(N � 1)pe +�E(N � 1) + q = Qe.
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This implies that the inverse residual supply curve trader i faces is

(B2) pe(q) =
�↵E

P
j 6=i

Xj + q +�E(N � 1)�Qe

⇣E(N � 1)
.

Thus the price impact trader i faces in exchange e is ⇤ := 1
⇣E(N�1) , which

by symmetry, is the price impact each agent faces in all exchanges. Define
fie(Xi, p

f
e ) := qf

ie
. By Theorem 1 a necessary condition for (�E ,↵E , ⇣E) to be

a symmetric a�ne equilibrium is that

(B3) �2b

 
Xi + qf

ie
+ (E � 1)E

"
qf
ik
| pfe �

qf
ie

⇣E(N � 1)
, Xi

#!
= pfe + ⇤Eq

f

ie
� µ⇡

holds almost surely for each e 2 E and trader i 2 N . Moreover if ⇣E > 0 it is also
su�cient. In (B3), we have used symmetry of the exchanges. By the projection
theorem,

E
"
qf
ik

���� p
f

e �
qf
ie

⇣E(N � 1)
, Xi

#
= �↵EXi

N � 1

N
�
✓
1� N � 1

N
�E

◆
�E(B4)

� N � 1

N
�E⇣Ep

f

e + �E
qf
ie

N
+�E ,

where

(B5) �E = corr(pfe , p
f

k
|Xi) =

E↵2
E
(N � 1)�2

X

E↵2
E
(N � 1)�2

X
+ �2

Q

.

Substituting (B4) and (2) into (B3) and matching coe�cients we derive a system
of three equations which characterize the three unknowns, �E , ↵E , and ⇣E . These
equations are

(B6) �E =
µ⇡

2b
⇣
1 + �E(E�1)

N
+ (�E(E�1)+1)

N�2 + (E � 1)N�1
N

�E
⌘ ,

(B7) ↵E =
1

1 + �E(E�1)
N

+ (E�1)�E+1
N�2 + (E � 1)N�1

N

,

and

(B8) ⇣E =
1

2b((E � 1)�E + 1)

N � 2

N � 1
.

Equations (B6), (B7), and (B8) are necessary and su�cient conditions for
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(�E ,↵E , ⇣E) to be a symmetric a�ne equilibrium.

Step 2. We now prove existence of a symmetric a�ne equilibrium. When E = 1,
there are closed form solutions to equations (B6), (B7), and (B8). When E > 1,
by substituting (B5) into (B7) and rearranging we see that a cubic equation
characterizes ↵E . Since the equation is cubic, there exists at least one real root.
Take this to be the value of ↵E and compute ⇣E and �E using equations (B5),
(B8), and (B6). Thus a symmetric a�ne equilibrium exists.
To prove uniqueness, fix E 2 N and define the function g by

g(a) = a� 1

E�( 1
N

+ 1
N�2) + (1� �)( 1

N
+ 1

N�2) + EN�1
N

,

where � is a function of a such that �(a) is equal to (B5) but with a in place of
↵E . Since we have already shown existence there is an a 2 R such that g(a) = 0.
We observe that the second term in the above expression is strictly monotone
decreasing in �. By (B5) we see that � is strictly monotone increasing in a. Thus
g is strictly monotone increasing in a. Hence there can exist at most one value of
a 2 R such that g(a) = 0.

Step 3. Part 1 follows immediately from (B1) and the fact that ⇤E = 1
(N�1)⇣E

.

Part 2 follows immediately from (B8). Part 4 follows by substituting (B1) into
(2). Parts 5 and 6 can be seen from the fact that when �2

Q
= 0 or E = 1 there

are closed form solutions to (B8), (B7), and (B6) for ⇣E , ↵E , and �E . Using
these closed form solutions we find that E↵E , by (B7), is equal to N�2

N�1 which is

independent of E and also equal to 2b
2b+⇤1

.
Finally, we prove part 7. By inspecting equations (B7) and (B5), �E ! 0.

Using (B7), with some rearrangement we write

(B9) E↵E =
1

�E(
1
N

+ 1
N�2) + (1� �E)

1
E
( 1
N

+ 1
N�2) +

N�1
N

.

Taking limits, E↵E ! N

N�1 . To prove that E↵E is strictly monotone increasing
in E, suppose for contradiction that there exists E 2 N such that (E+1)↵E+1 
E↵E . Then by inspection it must be that �E+1 > �E . But, inspecting (B5), this
implies that (E+1)↵2

E+1 > E↵2
E
which in turn implies that (E+1)↵E+1 > E↵E ,

a contradiction.
When E is equal to 1, E↵E is equal to N�2

N�1 by part 6. When E ! 1, E↵E

converges strictly monotonically to N

N�1 . Thus for any E > 1 we have

1

N � 1
= | 1� ↵1 | > | 1� E↵E | .
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That a fragmented market is always more e�cient than a centralized market
follows from Lemma 2.

Appendix C: Proofs for Section IV

C1. Proof of Proposition 1

That ⇤E is strictly monotone increasing and diverges to 1 when �2
Q

= 0 is

immediate from Theorem 1, where we showed that, in this case, ⇤E = 2bE
N�2 . For

what follows assume �2
Q
> 0.

By Theorem 1 we have ⇤E = 2b(1+�E(E�1))
N�2 . To show ⇤E is strictly monotone

increasing it su�ces to show that (E � 1)�E is strictly monotone increasing. Fix
an arbitrary E 2 N. If �E+1 > �E , then it must be that E�E+1 > (E � 1)�E .
Suppose �E+1  �E . Then to prove that E�E+1 > (E � 1)�E it su�ces to prove
that (E + 1)�E+1 > E�E . Consider the equation for �n derived in the proof of
Theorem 1 which holds for arbitrary n 2 N:

n↵2
n(N � 1)�2

X

n↵2
n(N � 1)�2

X
+ �2

Q

.

Denote the numerator, numn so that

�n =
numn

numn + �2
Q

.

By Theorem 1, (E + 1)↵E+1 > E↵E which implies that

(E + 1)�E+1 =
(E + 1)numE+1

numE+1 + �2
Q

>
EnumE

numE + �2
Q

= E�E

since �E+1  �E implies that numE+1 < numE .
We next prove that ⇤E converges and give an explicit expression for the limit

point. We can, using the expression for �E , write ⇤E as

2b

N � 2

 
1 +

E2↵2
E
(N � 1)�2

X
� E↵2

E
(N � 1)�2

X

E↵2
E
(N � 1)�2

X
+ �2

Q

!
.

By Theorem 1, E↵E ! N

N�1 which implies that E↵2
E
! 0. Taking limits of the

right-hand side of the above equation we obtain ⇤E ! 2b
N�2(1 +

N
2
�
2
X

(N�1)�2
Q
).

To prove that �E ! 0 we inspect (B7) to see that

1

E(N�1
N

+ 1
N

+ 1
N�2)

< ↵E <
1

EN�1
N
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for all E su�ciently large. Using this inequality, inspecting (B5), we see that for
large E, the numerator is O( 1

E
). The denominator is roughly equal to �2

Q
for

large E so it must be that �E ! 0. Note that the proof that �E ! 0 only makes
use of (B7) and not the claim in Part 7 of Theorem 1 that E↵E ! N

N�1 .
Finally, we prove that �E is strictly monotone decreasing in E. Using (B9) and

substituting into (B5) we derive a cubic equation which characterizes �E , in that

�2
X(N � 1) = �3EE�2

Q

✓
1� 1

E

◆2✓ 1

N
+

1

N � 2

◆2
(C1)

+ �EE�2
Q

✓
N � 1

N
+

1

E

✓
1

N
+

1

N � 2

◆◆2

+ 2�2E�
2
Q

✓
1� 1

E

◆✓
1

N
+

1

N � 2

◆✓
N � 1

N
E +

1

N
+

1

N � 2

◆

+ �E�
2
X(N � 1).

Each of the coe�cients are unambiguously increasing in E except for possibly

E�2
Q

✓
N � 1

N
+

1

E

✓
1

N
+

1

N � 2

◆◆2

.

Taking a derivative with respect to E we have

�2
Q

✓
N � 1

N
+

1

E

✓
1

N
+

1

N � 2

◆◆2

� 2

E
�2
Q

✓
N � 1

N
+

1

E

✓
1

N
+

1

N � 2

◆◆✓
1

N
+

1

N � 2

◆
.

This derivative is nonnegative if

E
N � 1

N
� 1

N
+

1

N � 2
.

The above holds for E � 2 since

2
N � 1

N
� 1

N
+

1

N � 2

whenever N � 3. Since each of the coe�cients of the powers of �E in (C1) are
increasing in E and some are strictly increasing it must be that �E is strictly
decreasing in E since the left hand side of (C1) is constant.
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C2. Proof of Proposition 2

Substituting (B5) into (B7) and rearranging we obtain the following cubic equa-
tion which defines E↵E by

(C2) (E↵E)
3

✓
�2
X(N � 1)(1 +

1

N � 2
)

◆
� (E↵E)

2(N � 1)�2
X

+ E↵E�
2
Q

✓
E � E

N
+

1

N
+

1

N � 2

◆
� E�2

Q = 0.

The e�cient allocation is acheived at E⇤ such that E⇤↵E⇤ = 1 provided E⇤ is in
N. Thus

�2
X(N�1)

✓
1 +

1

N � 2

◆
�(N�1)�2

X+�2
Q

✓
E⇤ � E⇤

N
+

1

N
+

1

N � 2

◆
�E⇤�2

Q = 0.

Solving,

E⇤ = 2 +
2

N � 2
+

N � 1

N � 2

N�2
X

�2
Q

.

That the E 2 N whose symmetric a�ne equilibrium allocation is most e�cient is
either bE⇤c or dE⇤e follows from the proof of Part 7 of Theorem 1 which shows
that E↵E is strictly monotone increasing. By inspection, the proof did not rely
upon E taking values in N—the same method of proof can be adapted to show
that if we increase E continuously, the corresponding ↵E which simultaneously
solves (B5) and (B7) is such that E↵E is strictly monotone increasing. Combining
this observation with Lemma 2 gives the result.

C3. Proof of Proposition 3

We first prove part 1. Recall that

p⇤e =
N � 1

N
⇤E

"
X

i2N
�↵EXi +N�E �Qe

#
.

By the projection theorem

var

 
X

i2N
Xi | p⇤e

!
=

0

@1�
↵2
E
var
�P

i2N Xi)
�

↵2
E
var
�P

i2N Xi

�
+

�
2
Q

E

1

A var

 
X

i2N
Xi

!
.

Since �E is strictly monotone decreasing to 0 as stated in Proposition 1, it
follows that

↵2
E
var
�P

i2N Xi

�

↵2
E
var
�P

i2N Xi

�
+

�
2
Q

E
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also converges to 0 strictly monotonically as E diverges.
We now prove part 2. Since the price in each exchange consists of a common

signal component and noise which is iid across exchanges, the sum of prices is a
su�cient statistic for inference so that

var

 
X

i2N
Xi

����
X

e2E
p⇤e

!
= var

 
X

i2N
Xi

���� p⇤1, ..., p
⇤
E

!
.

We have
X

e2E
p⇤e =

N � 1

N
⇤E

 
�E↵E

X

i2N
Xi �Q+ EN�E

!
.

By the projection theorem,

var

 
X

i2N
Xi

����
X

e2E
p⇤e

!
= var

 
X

i2N
Xi

!

�
(E↵E)2var

�P
i2N Xi

�

(E↵E)2var
�P

i2N Xi

�
+ �2

Q

var

 
X

i2N
Xi

!
.

The result follows since

(E↵E)2var
�P

i2N Xi

�

(E↵E)2var
�P

i2N Xi

�
+ �2

Q

increases strictly monotonically, because E↵E increases strictly monotonically as
seen from part 7 of Theorem 1.

PROPOSITION 1: The expected payment of liquidity traders is
N�1
N

⇤E�2
Q

and

if �2
Q
> 0 is strictly monotone increasing in E.

PROOF:

�E
 
X

e2E
p⇤eQe

!
= �N � 1

N
⇤EE

 
X

e2E

 
�↵E

X

i2N
Xi +N�E +Qe

!
Qe

!

=
N � 1

N
⇤E�

2
Q.

That the expected payment is strictly monotone increasing follows from the fact
that ⇤E is strictly monotone increasing as stated in Proposition 1.
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Appendix D: Proofs for Section V

D1. Proof of Theorem 2

We prove Theorem 2 in three steps. In step 1 we derive a candidate equilibrium.
In step 2 we verify that the candidate equilibrium is in fact an equilibrium, and
then establish that it is the unique symmetric a�ne equilibrium if for each e 2
E, Qe has full support over the real line. In step 3 we show that the derived
equilibrium has properties 1 through 5 given in the statement of the theorem.

Step 1. To begin the first step, we conjecture that there exists a symmetric a�ne
equilibrium, denoted (�,↵, ⇣) in which each trader submits demand schedules of
the form in (2). Note that in this case�may depend on the aggregate endowmentP

j2N Xj . Under this conjecture, by market clearing, the residual supply curve
trader i faces in exchange e is

pe(q) =
(
P

j 6=i
�↵Xj) + (N � 1)�+ q �Qe

(N � 1)⇣
,

which implies that ⇤ = 1
(N�1)⇣ . Also by market clearing we have

(D1) pfe =
(
P

j2N �↵Xj) +N��Qe

N⇣

for each e 2 E. By observing pfe trader i can infer the realization of Qe but this is
uninformative of pf

k
for k 6= e. By Theorem 1 a necessary and su�cient condition

for (�,↵, ⇣) to be a symmetric a�ne equilibrium is that

(D2) �2b(Xi + qf
ie
+ (E � 1)E[qf

ik
| Fi]) = pfe + qf

ie
⇤� µ,

where we have used symmetry. Rearranging, we have

qf
ie
=

�2bXi � 2b(E � 1)E[qf
ik
| Fi]� pfe + µ⇡

⇤+ 2b
.

Substituting pf
k
into the conjectured equilibrium demand schedule, we have

qf
ik

= �↵Xi +
(
P

j2N ↵Xj) +Qk

N

so that

E[qf
ik
| Fi] = �↵Xi +

(
P

j2N ↵Xj)

N
.
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We therefore have

qf
ie
=

(�2b+ 2b(E � 1)↵)Xi � 2b(E � 1)
(
P

j2N ↵Xj)

N
� pfe + µ⇡

1
(N�1)⇣ + 2b

.

We now match coe�cients with our conjecture that qf
ie

= �↵Xi � ⇣pfe + � to
determine that

(D3) ⇣ =
N � 2

N � 1

1

2b
,

(D4) ⇤ =
2b

N � 2
,

(D5) ↵ =
2b

⇤+ 2bE
,

and

(D6) � =
�2b(E � 1) 2b

⇤+2bE

P
i2N Xi

N
+ µ⇡

2b+ ⇤
.

Step 2. To complete step 2 we appeal to Theorem 1 which can be applied
since (D2) holds. To see that the symmetric a�ne equilibrium is unique when
each Qe has full support over the real line suppose that there exists a symmetric
a�ne equilibrium such that at least one of the equations (D3), (D5), and (D6)
are not satisfied. Then equation (D2) is violated for some realization of the price
in some exchange e 2 E for some agent i 2 N . Continuity implies that (D2) must

be violated for realizations of pfe in an open neighborhood of positive Lebesgue
measure. Since each Qe has full support over the real line and is independent of
Fi (D2) is violated on a set of positive P-measure. This contradicts Theorem 1.

Step 3. Part 1 was shown in equation (D4). Part 2a follows from substituting
equations (D3), (D5), and (D6) into (D1). Part 2b follows from substituting the
equation for price in part 2 in to the equilibrium demand schedule. Part 3 follows
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from part 2b and taking the limit as E tends to infinity. To prove part 4, we have

�E
"
X

e2E
p⇤eQe

#
= �2b(N � 1)

N(N � 2)
E
"
X

e2E

 
�↵

X

i2N
Xi +N��Qe

!
Qe

#

=
2b(N � 1)

N(N � 2)
var

"
X

e2E
Qe

#
.

Appendix E: Proofs for Section VI

This Appendix provides a proof of Theorem 3, characterizing an e�cient equi-
librium for the dynamic version of the model.

E1. Proof of Theorem 3

The proof proceeds in six steps. In Step 1 we derive the Bellman equation for the
dynamic programming problem of trader i. In Step 2 we conjecture a continuation
value function V as a solution to the Bellman and we derive a first order condition
characterizing the optimal demand schedules of trader i in a restricted domain
of demand schedules. In Step 3, we use the first order condition to compute the
necessary number E of exchanges and the demand-schedule coe�cients ⇢, ⇣, and
�. In Step 4 we relax the domain restriction on demand schedules. In Step 5, we
verify a transversality condition on the value function. In Step 6 we verify that
the strategy of submitting demand schedules with coe�cients derived in Step 3
from the Bellman equation is in fact optimal. In what follows, for notation, we
use �2

✏ in place of �2
X
.

Step 1. For a given date t, let

Ht := ({qie}e2E,s<t, {pe}e2E,s<t, {Xis}st)

denote the history of past quantities purchased by trader i, prices on each of the
exchanges, and inventory levels. An admissible demand schedule submitted to
an exchange e is a function f specifying the quantity f(Ht, p) that trader i will
purchase for any given realization p 2 R of the price in the exchange following the
history Ht. By inspecting (16) and following a similar argument to that given in
the proof of Theorem 1, we see that for any such demand function f there exists a
corresponding function f̂ that instead specifies the quantity purchased by trader
i as a function of Ht and

Wet :=
1

E

X

j2N
Xjt +Qet.

For instance, in the conjectured equilibrium, on exchange e, trader i makes the



VOL. VOL NO. ISSUE CHEN AND DUFFIE: MARKET FRAGMENTATION 15

socially e�cient purchase

(E1) f̂iet (Ht,Wet) = � 1

E
Xit +

Wet

N
,

as can be seen by substituting (16) into (14).
We first relax the dynamic programming problem by allowing trader i to select

demand functions of the type f̂ . Let et denote (Xit, Bt,Wet). Under the relax-
ation, the Bellman equation characterizing trader i’s continuation value function
V ( · ) is

(E2) V (Xit, Bt) = sup
{gi1t,...,giEt}

Eit

⇥
uit + e�r�V (Xi,t+1, Bt+1)

⇤
,

where

uit = µ⇡�

 
Xit +

X

e2E
giet(et)

!
� b

 
Xit +

X

e2E
giet(et)

!2

�
X

e2E
petgiet(et).

Above, each giet : R3 ! R is an arbitrary measurable function. We will assume
for now that each giet is such that giet(et) is of finite variance conditional on Xit

and Bt. Call the set of all such measurable functions with this property M̃. We
will show in step 4 that the finite variance assumption is without loss of generality.
Note that f̂iet is in M̃. The operator Eit is the conditional expectation given the
state variables, Xit and Bt. These are the relevant state variables because, at
date t, trader i infers that N�1

N
Bt is the total inventory held by the other traders

following trade at date t� 1. Thus Xit and Bt are su�cient statistics for trader
i to conduct inference on the residual supply curves on each exchange at each
future trading date. The law of motion for (Xit, Bt) is given by (12) and (15).
A standard verification argument implies that if V satisfies the Bellman equa-

tion, and for every feasible strategy, the transversality condition

(E3) lim
t!1

e�r�tEi0 [V (Xit, Bt)] = 0,

then V is indeed the value function and the strategy achieving the supremum in
(E2) determines the optimal policy.

Step 2. We conjecture the value function V defined by

(E4) V (Xit, Bt) =
1X

s=t

e�r�(s�t)Ms,
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where

Ms = Eit

2

4µ⇡�

 
X f̂

is
+
X

e2E
qf̂
ies

!
� b

 
X f̂

is
+
X

e2E
qf̂
ies

!2

�
X

e2E
pf̂esq

f̂

ies

3

5 .

and where the superscript f̂ implies that the inventories, quantities, and prices
are those induced by the conjectured equilibrium strategy in which any given
trader i selects (E1) for any given exchange e. Substituting (E4) into the right
hand side of the Bellman and using the law of iterated expectations, we can write
the objective function in the Bellman equation as

Eit

" 1X

s=t

e�r�(s�t)µ⇡�

 
Xg

is
+
X

e2E
qg
ies

!#

� Eit

2

4
1X

s=t

e�r�(s�t)

0

@b

 
Xg

is
+
X

e2E
qg
ies

!2

+
X

e2E
pgesq

g

ies

1

A

3

5 ,

where the superscript g indicates that inventories, quantities, and prices are those
generated by a strategy that selects at date t demands according to the functions
gi1t, ..., giEt, and then reverts back to the conjectured equilibrium strategy at date
t+1. We now derive the E, ⇢, ⇣, and � such that the optimal choice of gi1t, ..., giEt

coincides with (E1), thus verifying the conjecture (E4).
To simplify the objective further, we recognize that for any choice of the devi-

ating demands gi1t, ..., giEt, following trade at date t+ 1, the inventory of trader
i returns to the e�cient level, so all inventories, prices, and quantities at dates
s > t + 1 would be the same as if trader i had never deviated and therefore do
not depend on the chosen gi1t, ..., giEt. Thus, it su�ces to consider the objective
(E5)

Eit

2

4µ⇡�
X

e2E
qg
iet

� b

 
Xg

it
+
X

e2E
qg
iet

!2

�
X

e2E
pg
et
qg
iet

� e�r�
X

e2E
pg
e,t+1q

g

ie,t+1

3

5 .

Let ⌘et ⌘ � 1
E

P
j 6=i

Xjt �Qet. Then

X

e2E
pg
et
qg
iet

=
X

e2E

⌘et + (N � 1)⇢Bt + (N � 1)�+ qg
iet

⇣(N � 1)
qg
iet

=
1

⇣(N � 1)

"
X

e2E

�
⌘et + (N � 1)⇢Bt + (N � 1)�

�
qg
iet

+
X

e2E
(qg

iet
)2
#
.(E6)
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From (12), (14), and (16),

qg
ie,t+1 = � 1

E

 
Xit +

X

e2E
qg
iet

+ ✏i,t+1

!
+

1

NE

X

j2N
Xg

j,t+1 +
Qe,t+1

N

and

pg
e,t+1 =

� 1
E

P
j2N Xg

j,t+1 +N⇢
�
NE⇢Bt + EN�� ⇣N

P
e2E pg

et

�
�Qe,t+1 +N�

⇣N
.

From the above two equations,

(E7) pg
e,t+1q

g

ie,t+1 =

0

@ 1

⇣N

1

E2

X

j2N
Xg

j,t+1 �
N⇢2

⇣
Bt �

N⇢�

⇣
� 1

E

�

⇣

1

A
X

e2E
qg
ie,t

�N⇢

0

@� 1

E
Xit +

1

NE

X

j2N
Xg

j,t+1

1

A
X

e2E
pg
et
+N⇢

1

E

X

e2E
pg
et

X

e2E
qg
iet

+Oe,

where Oe is a term whose conditional expectation does not depend on the choice
of {giet}e2E . Above we have used the fact that the aggregate endowment of
strategic traders is exogenous. Equivalently, we can express (E7) as

(E8) pg
e,t+1q

g

ie,t+1 =

0

@ 1

⇣N

1

E2

X

j2N
Xg

j,t+1 �
N⇢2

⇣
Bt �

N⇢�

⇣
� 1

E

�

⇣

1

A
X

e2E
qg
iet

�N⇢

0

@� 1

E
Xit +

1

NE

X

j2N
Xg

j,t+1

1

A
X

e2E

⌘et + (N � 1) (⇢Bt + �) + qg
iet

⇣(N � 1)

+N⇢
1

E

X

e2E

⌘et + (N � 1)⇢Bt + (N � 1)�+ qg
iet

⇣(N � 1)

X

e2E
qg
iet

+Oe.

By substituting (E6) and (E8) into (E5), recalling that by definition qg
iet

=
giet (et) , and ignoring terms whose conditional expectation does not depend on
the choice {giet}e2E we have transformed the objective function in the Bellman
equation into

(E9) Eit

2

4A
 
X

e2E
giet(et)

!2

+B
X

e2E
giet(et) + C�it,

3

5 ,
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where

�it =
X

e2E
(⌘et + (N � 1)⇢Bt + (N � 1)�)giet(et) + giet(et)

2,

for coe�cients

A = �b�N⇢
1

⇣(N � 1)
e�r�(E10)

B = µ⇡�� 2bXit � e�r�

2

4 1

⇣N

1

E

X

j2N
Xg

j,t+1 �
NE⇢2

⇣
Bt �

NE⇢�

⇣
� �

⇣

3

5

+
e�r�N⇢

⇣(N � 1)

0

@�Xit +
1

N

X

j2N
Xg

j,t+1

1

A

� e�r�N⇢

⇣(N � 1)

X

e2E

�
⌘et + (N � 1)⇢Bt + (N � 1)�

�

C = � 1

⇣(N � 1)
.

Next, for each e 2 E, we let

giet(et) = f̂iet(et) + ⌫hiet(et),

for an arbitrary measurable deviation hiet in M̃ from the conjectured optimal
f̂iet, and for some arbitrary constant ⌫. Substituting into (E9) leaves

(E11) Eit


A

 
X

e2E
f̂iet + ⌫

X

e2E
hiet

!2

+B
X

e2E
(f̂iet + ⌫hiet)

+ C
X

e2E

�
⌘et + (N � 1)⇢Bt + (N � 1)�

�
(f̂iet + ⌫hiet) + (f̂iet + ⌫hiet)

2

�
,

where we have suppressed the argument et from the notation, and will continue
to do so whenever convenient. Taking a derivative with respect to ⌫, evaluating
the derivative at ⌫ = 0, and setting the derivative equal to 0 gives the necessary
optimality condition

Eit


2A
X

e2E
f̂iet

X

e2E
hiet +B

X

e2E
hiet

�

+ Eit


C
X

e2E
(⌘et + (N � 1)⇢Bt + (N � 1)�)hiet + 2f̂iethiet

�
= 0,
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which holds if, for each k 2 E,
(E12)

Eit

"
2A
X

e2E
f̂iet +B + C

�
⌘kt + (N � 1)⇢Bt + (N � 1)�

� ���� ⌘kt

#
= �2Cf̂ikt.

The necessary condition (E12) is also su�cient for optimality if the second deriva-
tive of (E11) with respect to ⌫ is negative, that is,

(E13) Eit

2

4A
 
X

e2E
hiet

!2

+ C
X

e2E
h2iet

3

5 < 0.

To see why, suppose for contradiction that there exists a candidate (Li1t, ..., LiEt)
in M̃ satisfying the first order condition (E12) that achieves a strictly higher
value of the objective than (f̂i1t, . . . , f̂iEt). In that case, let hiet = Liet � f̂iet for
each e 2 E. Then (E11) achieves a higher value at ⌫ = 1 than at ⌫ = 0. This is
a contradiction since (E13) ensures that (E11) is maximized at ⌫ = 0.

Step 3. We derive the E, ⇣, ⇢, and � such that (E12) holds and then show
that (E13) is satisfied. This implies that we have found a solution to the Bellman
equation. We first derive the moments in (E12). By (E1),

Eit

"
X

e2E
f̂iet

���� ⌘kt

#
= �Xit +

1

N
Eit

2

4
X

j2N
Xjt +Qkt

���� ⌘kt

3

5

and

Eit[B
�� ⌘kt] = �

✓
2b+

2e�r�N⇢

⇣(N � 1)

◆
Xit + e�r��

⇣
+ µ⇡�

+

✓
� e�r�

⇣NE
+

e�r�⇢(N + 1)

⇣(N � 1)

◆
Eit

2

4
X

j2N
Xj,t +Qkt

���� ⌘kt

3

5 .

By the projection theorem,

Eit

2

4
X

j2N
Xjt +Qkt

���� ⌘kt

3

5 =

✓
N � 1

N
Bt +Xit

◆
(1� �)

E � 1

E

� (1 + �(E � 1))

✓
⌘kt �

1

E
Xit

◆
,
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where

� =
(N � 1)�2

✏

(N � 1)�2
✏ + E�2

Q

.

Finally, we use the fact that

f̂ikt = � 1

E
Xit �

1

N

✓
⌘kt �

1

E
Xit

◆

and match coe�cients in (E12). Matching the coe�cient on Xit gives

(E14)
2C

E
= 2A

1

N
(1��)

E � 1

E
+e�r�

✓
�1

⇣NE
+

⇢(N + 1)

⇣(N � 1)

◆
(1��)

E � 1

E
+

C

E
.

Matching the coe�cient on ⌘kt � 1
E
Xit gives

(E15)
2C

N
= �2A

1

N
(1+�(E�1))�e�r�

✓
�1

⇣NE
+

⇢(N + 1)

⇣(N � 1)

◆
(1+�(E�1))+C.

Matching the coe�cient on Bt gives

(1�N)⇢C = 2A
N � 1

N2
(1� �)

E � 1

E
(E16)

+ e�r�

✓
�1

⇣NE
+

⇢(N + 1)

⇣(N � 1)

◆
N � 1

N
(1� �)

E � 1

E
.

Matching the constant coe�cient gives

(E17) 0 = C(N � 1)�+ e�r��

⇣
+ µ⇡�.

Using (E14) and (E15), we have

N � 2

N
=

1 + �(E � 1)

(1� �)(E � 1)
.

Rearranging gives

(E18) E =
2N � 2

N � 2�N �
1��

.

As an aside, this expression is useful in so far as it characterizes the e�cient
number of exchanges in a partial equilibrium model in which strategic traders
percieve the correlation in exchange prices to be �. Taking � as given, the analysis
does not depend on �2

✏ or �2
Q
.
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We deduce from (E18) that

(E19) E = 2 +
2

N � 2
+

N(N � 1)

N � 2

�2
✏

�2
Q

.

Thus the number of exchanges achieving the e�cient allocation is precisely that
of the static case, as stated by the Theorem.
Next, using (E14) and (E16), we can solve for

⇢ = � 1

NE
.

Now, in order to solve for ⇣, we use (E23) with (E15) to get

1

N
=

N � 1

N
+e�r�N � 1

N

✓
N⇢� 1

E

◆
(1+�(E�1))�2b⇣(N�1)

1

N
(1+�(E�1)),

which rearranges to

2b⇣(N � 1)(1 + �(E � 1)) = N � 2� e�r�(N � 1)
2

E
(1 + �(E � 1)).

Thus

⇣ =
N � 2

2b(N � 1)(1 + �(E � 1))
� e�r� 2N � 2

(N � 1)2bE
.

Using (E17) we find

(E20) � =
µ⇡�

1� e�r�
⇣.

The within-period price impact is

1

⇣(N � 1)
=

2b(1 + �(E � 1))

N � 2� e�r� 2N�2
E

(1 + �(E � 1))
,

as stated in the Theorem. Comparing with the static model, we see that price
impact is higher in the dynamic model. We now verify that ⇣ > 0 by showing
that

N � 2 > e�r� 2N � 2

E
(1 + �(E � 1)).

The above equality holds since (E18) implies that

(N � 2)E = (2N � 2)(1 + �(E � 1)).
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Using (19), the cross-period cross-exchange price impact is

dpe,t+1

dqkt
= �N⇢

1

(N � 1)⇣
=

1

E

2b(1 + �(E � 1))

N � 2� e�r� 2N�2
E

(1 + �(E � 1))
,

as stipulated by the Theorem. Finally, we verify the su�cient condition for opti-
mality (E13) is negative by showing that

A

 
X

e2E
hiet

!2

+ C
X

e2E
h2iet < 0.

Using (E10) and (E23), this is equivalent to

✓
�b+

1

E

1

⇣(N � 1)
e�r�

◆ X

e2E
hiet

!2

� 1

⇣(N � 1)

X

e2E
h2iet < 0,

which holds by Jensen’s inequality because ⇣ > 0. Thus, (E4) solves the Bellman
equation when the domain of admissible demand functions is restricted to M̃.

Step 4. In this step, we show that if any measurable giet : R3 ! R outside of M̃
is chosen, the objective associated with the Bellman equation is �1. Towards
this end, consider the terms in (E9) involving (

P
e2E giet)2 and

P
e2E g2

iet
, which

sum to 
�b+

1

E⇣(N � 1)
e�r�

� X

e2E
giet

!2

� 1

⇣(N � 1)

X

e2E
g2iet.

By Jensen’s inequality, the above expression is less than

(E21) �b

 
X

e2E
giet

!2

� (1� e�r�)
1

⇣(N � 1)

X

e2E
g2iet.

The other terms in (E9) are B
P

e2E giet, which is only linear in
P

e2E giet, with
B having finite variance, and C

P
e2E(⌘et + (N � 1)⇢Bt + (N � 1)�)giet, where

each ⌘et is of finite conditional variance. We define Je by

Bgiet + C (⌘et + (N � 1)⇢Bt + (N � 1)�) giet = Jegiet.

Note that each Je is of finite conditional variance.
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Then

Eit


�1� e�r�

⇣(N � 1)
g2iet + Jegiet

�
=

Z
n
!2⌦:|Je|>| 1�e�r�

2⇣(N�1)giet|
o

✓
�1� e�r�

⇣(N � 1)
g2iet + Jegiet

◆
dP(!)

+

Z
n
!2⌦:|Je|| 1�e�r�

2⇣(N�1)giet|
o

✓
�1� e�r�

⇣(N � 1)
g2iet + Jegiet

◆
dP(!).

The first integral must be finite since Je is a finite-variance random variable
and the integrand satisfies

���� �
1� e�r�

⇣(N � 1)
g2iet + Jegiet

����  KJ2
e ,

for some constant K 2 R. The second integral must be �1 since the integrand
satisfies

�1� e�r�

⇣(N � 1)
g2iet + Jegiet  � 1� e�r�

2⇣(N � 1)
g2iet.

Thus, if giet is of infinite variance then the second integral must be �1. Hence,
in this case,

Eit


�1� e�r�

⇣(N � 1)
g2iet + Jegiet

�
= �1.

With this observation and inspecting (E21) and (E9) we see that if a chosen giet
is not in M̃, the objective function would equal to �1.

Step 5. We now check that the transversality condition (E3) holds. We compute
the moments involved in the terms Ms defining the candidate value function V
of (E4). For s � t,

Eit

"
Xis +

X

e2E
qf̂es

#
=

1

N
Xit +

N � 1

N2
Bt

and

Eit

2

4
 
Xis +

X

e2E
qf̂es

!2
3

5 =

1

N2


(Xit +

N � 1

N
Bt)

2 + �2
✏

�
N(s� t) +N � 1

�
+ �2

Q(s� t+ 1)

�
.
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For s � t+ 1 and e 2 E,

Eit[p
f̂

esq
f̂

ies
] =

Eit

2

4�
1
E

P
j2N Xjs � 1

E
Bs +N��Qes

⇣N

0

@� 1

E
Xis +

1

NE

X

j2N
Xjs +

Qes

N

1

A

3

5

= Eit

2

4�
1
E

P
j2N Xjs � 1

E
Bs +N��Qes

⇣N

0

@ 1

NE

X

j2N
✏js �

1

E
✏is +

Qes

N

1

A

3

5

= �
�2
Q

E⇣N2
.

Above, we have used the results that ⇢ = �1
NE

and Bs = N�1
N

(
P

j2N Xj,s�1 +P
e2E Qe,s�1) for s � t+ 1. Next,

Eit[p
f̂

et
qf̂
iet
] =

Eit

2

4�
1
E

P
j2N Xjt � 1

E
Bt +N��Qet

⇣N

0

@� 1

E
Xit +

1

NE

X

j2N
Xjt +

Qet

N

1

A

3

5

=
N � 1

⇣N2E2
X2

it +
2

E2⇣N

✓
N � 1

N

◆2

XitBt �
N � 1

N2E2

2N � 1

N2⇣
B2

t

�
�2
Q

E⇣N2
� (N � 1)�2

✏

E2⇣N2
� �

⇣

N � 1

NE
Xit +

�

⇣

N � 1

N2E
Bt.
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Substituting these moments into (E4) we find that

V (Xit, Bt) = X2
it


�b

N2(1� e�r�)
� N � 1

⇣N2E

�

+


µ⇡�

1

N(1� e�r�)
+

�

⇣

N � 1

N

�
Xit

+


µ⇡�

N � 1

N2(1� e�r�)
� �

⇣

N � 1

N

�
Bt

�

�2b

N � 1

N3(1� e�r�)
� 2

E⇣N
(
N � 1

N
)2
�
BtXit

+ [�b(
N � 1

N
)2

1

N2(1� e�r�)
+

N � 1

N2E

2N � 1

N2⇣
]B2

t

+ �2
Q


1

⇣N2(1� e�r�)
� b

N2(1� e�r�)2

�

+ �2
✏


� be�r�

N(1� e�r�)2
� b(N � 1)

N2(1� e�r�)
+

N � 1

E⇣N2

�
.

Recall that an admissible strategy must lead to an inventory process that
satisfies the no-Ponzi scheme condition e�r�tEi0[X2

it
] ! 0. Thus to show that

e�r�tEi0[V (Xit, Bt)] ! 0 it su�ces to show that e�r�tEi0[BtXit] ! 0 and
e�r�tEi0[B2

t ] ! 0.
We have

e�r�tEi0 [BtXit] = e�r�tEi0

2

4 N

N � 1

X

j 6=i

 
Xj,t�1 +

X

e2E
qje,t�1

!
Xit

3

5

= e�r�tEi0

2

4 N

N � 1

0

@
X

j2N
Xj,t�1 +

X

e2E
Qe,t�1 �Xi,t + ✏it

1

AXit

3

5

=
N

N � 1
e�r�tEi0

2

4

0

@
X

j2N
Xj,t�1 +

X

e2E
Qe,t�1

1

AXit �X2
it

3

5

+ e�r�t
N

N � 1
�2
✏

where, for the first equality, we have used

N � 1

N
Bt =

X

j 6=i

 
Xj,t�1 +

X

e2E
qje,t�1

!
,

and for the second equality we have used Xit = Xi,t�1+
P

e2E qie,t�1+ ✏it. Since,
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by Cauchy-Schwarz,

e�r�tEi0

2

4

0

@
X

j2N
Xj,t�1 +

X

e2E
Qe,t�1

1

AXit

3

5



vuuutEi0

2

4

0

@
X

j2N
Xj,t�1 +

X

e2E
Qe,t�1

1

A
23

5 e�2r�tE
⇥
X2

it

⇤
,

it follows that

lim
t!1

e�r�tEi0

2

4

0

@
X

j2N
Xj,t�1 +

X

e2E
Qe,t�1

1

AXit

3

5 = 0.

Thus, limt!1 e�r�tEi0[BtXit] = 0, as desired. That limt!1 e�r�tEi0[B2
t ] = 0

can be shown using the same method.

Step 6. We now verify that the optimal strategy of trader i is the conjectured
equilibrium strategy, coinciding with (E1). For an arbitrary admissible strategy,
which we denote l, let ql

iet
, plet, X l

it
, and Bl

t denote, respectively, the induced
quantity purchased on exchange e, the price on exchange e, the inventory, and
the belief at date t. By recursive substitution, using the Bellman equation, for
each t 2 N,

Ei0 [V (Xi0, B0)] � Ei0

"
tX

s=0

e�r�sµ⇡�

 
X l

is +
X

e2E
qlies

!#

� Ei0

2

4
tX

s=0

e�r�s

0

@b

 
X l

is +
X

e2E
qlies

!2

+
X

e2E
pesq

l

ies

1

A

3

5

+ Ei0

h
e�r�tV (X l

i,t+1, B
l

t+1)
i
.

The above holds with equality under the conjectured equilibrium strategy. By
taking limits as t ! 1, applying the transversality condition and Fatou’s Lemma,

V (Xi0, B0) � Ei0

2

4
1X

s=0

e�r�s

0

@µ⇡�

 
X l

is +
X

e2E
qlies

!
� b

 
X l

is +
X

e2E
qlies

!2
1

A

3

5

� Ei0

" 1X

s=0

e�r�s
X

e2E
pesq

l

ies

#
.
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The right-hand side is the utility of the arbitrary strategy l, whereas the left-
hand side is the utility of the conjectured equilibrium strategy. This completes
the proof of the Theorem.

Recall that for the proof, we used the notation �2
✏ in place of �2

X
. Summarizing

the solution for coe�cients of the model, we have found that

E = 2 +
2

N � 2
+

N(N � 1)

N � 2

�2
X

�2
Q

(E22)

⇢ = � 1

NE
(E23)

⇣ =
N � 2

2b(N � 1)(1 + �(E � 1))
� e�r�

bE
,(E24)

� =
µ⇡�

1� e�r�
⇣,(E25)

where

� =
(N � 1)�2

X

(N � 1)�2
X
+ E�2

Q

.

E2. Equivalence to Model with Brownian Inventory Shocks

Suppose that instead of receiving an inventory shock which is Gaussian with
mean zero and variance �2

✏� at each trading date, trader i’s inventory is continu-
ally shocked by a Brownian Motion, Zi, with volatility �2

✏ . That is, Zi,t� is trader
i’s cumulative inventory shock up to time t�. We assume that the Brownian Mo-
tions (Zi)i2N are independent across traders and of all other primitive stochastic
processes. Then in this setting,

Xit = Xi,t�1 +
X

e2E
qie,t�1 + Zi,t� � Zi,(t�1)�
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where Zi,t� � Zi,(t�1)� ⇠ N(0,�2
✏�). Moreover, trader i’s flow utility Fit(qit) is

⇡t

 
Xit +

X

e2E
qiet

!
�
X

e2E
petqiet

�
Z

t+�

t

e�r(s�t)Eit

2

4b̃
 
Xit +

X

e2E
qiet + Zi,s� � Zi,t�

!2
3

5 ds

= ⇡t

 
Xit +

X

e2E
qiet

!
�
X

e2E
petqiet � b

 
Xit +

X

e2E
qiet

!2

� b̃�2
✏

1� e�r�(r�+ 1)

r2
,

where qit = (qi1t, ..., qiEt) and b = b̃
�
1� e�r�

�
/r.

Except for the last term which is a constant (and therefore has no e↵ects on
incentives), the flow utility is the same as in the model of the main text. Thus,
the e�cient PBE constructed in the main text is also an e�cient PBE of this
model.

Appendix F: Extension—Endogeneous Liquidity Trade

This Appendix o↵ers an extension in which liquidity traders, who are local
to each exchange and conduct no cross-exchange trade, choose the sizes of their
trades.

F1. Setup

In this section we extend the baseline model by allowing liquidity traders to
endogenously choose the quantity of market orders that they supply. There are
M liquidity traders who are each restricted to trade on a single exchange. We
assume that M is divisible by E and that a fraction 1/E of them trade on any
given exchange. Liquidity trader j has endowment

Hj ⇠ N(0,
1

M
�2
H),

where the {Hj} are mutually independent. Suppose further that each liquidity
trader j has preferences of the same form that we have assumed for the strategic
traders. If liquidity trader j is restricted to trade on exchange e, his or her ex-ante
expected utility of purchasing hj units via a market order is

E[⇡hj � c(Hj + hj)
2 � hjpe |Hj , hj ].
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Above, c 2 R+ is the holding cost parameter of the liquidity traders. It is useful to
think of c being high relative to b, the holding cost parameter of strategic agents.
Finally, for simplicity, for this section, we assume that µX = 0 and µ⇡ = 0.

F2. Analysis

THEOREM 3: There exists a symmetric a�ne equilibrium. In any symmetric

a�ne equilibrium the following are true.

1) The quantity of market orders submitted by agent j is

hj =
�cHj

c+ ⇤E
N�1
N

.

2) For each e, e0 2 E distinct, the correlation between prices in the two ex-

changes from the perspective of a strategic trader is

(F1) �E =
(E↵E)2�2

X
(N � 1)

(E↵E)2�2
X
(N � 1) + ( c

c+⇤E
N�1
N

)2�2
H
E
.

3) A strategic trader’s price impact satisfies

(F2) ⇤E =
2b((E � 1)�E + 1)

N � 2
,

while the price impact of a liquidity trader is

(F3)
N � 1

N
⇤E .

4) E↵E satisfies

(F4) E↵E =
1

�E(
1
N

+ 1
N�2) + (1� �E)

1
E
( 1
N

+ 1
N�2) +

N�1
N

.

PROOF:
We conjecture that there exists a symmetric a�ne equilibrium in which each

strategic trader i 2 N submits a demand schedule of the form �↵EXi � ⇣Ep and
each liquidity trader j submits a market order of the form �↵̃EHj . We study the
best response problem of trader j 2 M . Via market clearing, we can compute the
market clearing price in exchange e is

pe =

P
i2N �↵EXi �

P
{k2M | k 6=j} ↵̃EHk + hj

N⇣E
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if all agents i 2 N and k 2 M such that k 6= j behave as conjectured and agent j
purchases hj units on the exchange. Retaining the notation that ⇤E = 1

(N�1)⇣E
,

the price impact of liquidity trader j is ⇤E
N�1
N

. He seeks to maximize

E[⇡hj � c(Hj + hj)
2 � hjpe |Hj , hj ] = �c(Hj + hj)

2 � ⇤E

N � 1

N
h2j

by choosing hj 2 R. Taking a first order condition with respect to hj we have

�2c(Hj + hj)� 2hj⇤E

N � 1

N
= 0,

which implies that

hj =
�cHj

c+ ⇤E
N�1
N

.

Thus
↵̃E =

c

c+ ⇤E
N�1
N

.

If strategic traders take the variance of aggregate liquidity trade to be

�2
Q =

 
c

c+ ⇤E
N�1
N

!2

�2
H ,

we see that the analysis of the baseline model applies. That is, strategic traders
maximize by submitting a�ne demand schedules such that equations (F1), (F2)
and (F4) are satisfied. Then the analysis of the baseline model therefore ensures
that provided there exists ↵E and �E which satisfies (F1), (F2), and (F4), there
exists a symmetric a�ne equilibrium with the four properties given in the state-
ment of the theorem. To show existence it su�ces to recognize that substituting
expressions (F2) and (F4) into (F1) and re-arranging yields a cubic equation in
�E . Since the equation is cubic there always exists at least one real root. Thus
there always exists a solution to the system of equations.
The above theorem has characterized a symmetric a�ne equilibrium of the

model with endogenous liquidity traders. The following proposition states some
results relevant for assessing the allocative e�ciency of the symmetric a�ne eqi-
ulibrium.

PROPOSITION 2: The following are true of any symmetric a�ne equilibrium.

1) E↵E 2 [N�2
N�1 ,

N

N�1 ] is always higher in fragmented markets than in central-

ized markets.

2) Fixing arbitrary E, in the limit as c tends to infinity, the expected sum of

liquidity traders’ holding costs tends to zero.
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3) Fixing arbitrary E > 1, for all c su�ciently large, a market with E ex-

changes is more e�cient than a market with a single exchange in the sense

that the expected sum of all traders’ holding costs is lower.

4) For any E > 1, there exists an c such that if c > c then a market with

1 < E  E exchanges is more e�cient than a market with a single exchange

in the sense that the expected sum of all traders’ holding costs is lower.

PROOF:
Centralized markets correspond to the case when E is 1. To prove Part 1,

it is clear by inspecting (F4) that E↵E 2 [N�2
N�1 ,

N

N�1 ]. Next recognize that in
fragmented markets E > 1 and �E < 1 so that again by inspection, E↵E is
always higher in fragmented markets.
To prove part 2 recognize that, using part 1 of Theorem 3, the expected sum

of liquidity agents’ holding costs is

c

 
⇤E

N�1
N

c+ ⇤E
N�1
N

!2

�2
H ,

which decays to 0 as c diverges.
To prove part 3, fix E > 1 and inspect equation (F1). Since E↵E 2 [N�2

N�1 ,
N

N�1 ]
there exists a, b 2 R such that 1 > b > a > 0 and �E 2 [a, b] for all c su�ciently
large. This implies that | 1� E↵E | is bounded above by a constant strictly less
than 1

N�1 whenever c is su�ciently large. In the limit as c ! 1 the aggregate
quantity of liquidity trader supply absorbed by strategic traders when there is a
single exchange as well as when there are E exchanges becomes arbitrarily close
to
P

j2M Hj . Therefore, by Lemma 2, in the limit as c ! 1, the expected sum
of holding costs is strictly lower when there are E exchanges than when there is
a single exchange since | 1 � E↵E | < | 1 � ↵1 | = 1

N�1 . However, the sum of
liquidity traders’ holding costs converges to 0 as c ! 1. This implies the claim
asserted in part 3 of the theorem.
Part 4 is an immediate implication of part 3.
We now prove the following proposition which implies that E↵E must be strictly

monotone increasing in E at least until a certain cuto↵ point. As c increases the
range that we can prove that E↵E is strictly monotone increasing in is larger.

PROPOSITION 3: Fix E⇤ 2 N. If c is su�ciently large such that

 
c

c+ 2bE⇤
N�2

N�1
N

!2

>
E⇤

E⇤ + 1
,

then E↵E is strictly monotone increasing for all E < E⇤
.

PROOF:
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We begin by proving that

 
c

c+ ⇤E
N�1
N

!2

E

is strictly monotone increasing in E for all E < E⇤. Since ⇤E is bounded above
by 2bE⇤

N�2 we have that

 
c

c+ ⇤E
N�1
N

!2

E >
E⇤

E⇤ + 1
E

for each E < E⇤. Thus we have

 
c

c+ ⇤E+1
N�1
N

!2

(E + 1)�
 

c

c+ ⇤E
N�1
N

!2

E >
E⇤

E⇤ + 1
(E + 1)� E

for each E < E⇤. But the right hand side is equal to

✓
E⇤

E⇤ + 1
� 1

◆
E +

E⇤

E⇤ + 1
>

✓
E⇤

E⇤ + 1
� 1

◆
E⇤ +

E⇤

E⇤ + 1
= 0.

Now we prove that E↵E is strictly monotone increasing at each E < E⇤. Inspect
the equation (F4). Suppose E↵E is decreasing in E then it must be that �E is in-
creasing. Consider now (F1). Since ( c

c+⇤E
N�1
N

)2E is strictly monotone increasing

and E↵E is decreasing it must be that �E is decreasing, a contradiction.

Appendix G: Extension—Private Information about Asset Payoff

This Appendix addresses an extension of the model in which strategic traders
are asymmetrically informed about the asset payo↵.

G1. Setup

We alter the baseline model so that each agent has private information about
the asset’s final payo↵, ⇡ ⇠ N(µ⇡,�2

⇡). We assume the aggregate endowment of
strategic traders, Z ⌘

P
i
Xi, is public information. As before, liquidity traders

supply a quantity Qe ⇠ N(0,
�
2
Q

E
) to each exchange, independent across exchanges.

Strategic traders receive private signals of ⇡:

Si = ⇡ + ✏i

where ✏i ⇠ N(0,�2
✏ ) is i.i.d across individuals and independent of all other prim-

itive random variables.
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G2. Analysis

THEOREM 4: In any symmetric a�ne equilibrium with demand schedules which

are each monotone decreasing in price,

1) Each strategic trader i submits a demand schedule to each exchange e of the

form

fie(Xi, Si, p) = �� ↵Xi � ⇣p+ wSi.

where ↵, ⇣, w, and � are defined by the system of equations (G2)—(G9).

2) Price impact is

⇤E =
(2b[(E � 1)�̃1 + 1] +N �̃3

w
)

N � 2
,

where �̃1 and �̃3 are defined by equations (G2) and (G4).

3) The final inventory of strategic trader i is

Xi +
X

e2E
fie(Xi, Si, p

f

e ) =(1� E↵)Xi + E↵
1

N

X

j2N
Xj

+ Ew

0

@Si �
1

N

X

j2N
Sj

1

A+

P
e2E Qe

N
.

PROOF:
Conjecture a symmetric a�ne equilibrium in which agent i submits demand

schedule
fie(Xi, Si, p) = �� ↵Xi � ⇣p+ wSi

to exchange e 2 E for each i 2 N and e 2 E. By market clearing the residual
supply curve trader i faces in exchange e is

pe(q) =
1

(N � 1)⇣

2

4
X

j 6=i

(�↵Xj + wSj +�)�Qe + q

3

5 .

Thus price impact is ⇤ = 1
(N�1)⇣ . Also by market clearing, the equilibrium price

is

pfe =
1

N⇣

2

4
X

j2N
(�↵Xj + wSj +�)�Qe

3

5 .

Going forward, let us define qf
ie

:= fie(Xi, Si, p
f
e ) for each e 2 E for ease of

notation. In any equilibrium, trader i must equate marginal utility with marginal
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cost for every realization of the price:

(G1) � 2b

✓
Xi + qf

i1 + (E � 1)E

qf
i2 | p

f

1 � 1

(N � 1)⇣
qf
i1, Xi, Si

�◆

= pf1 � E

⇡ | pf1 � 1

(N � 1)⇣
qf
i1, Xi, Si

�
+

1

(N � 1)⇣
qf
i1.

Above we have used symmetry. We now compute the two conditional moments
E[qf

i2 | p
f

1� 1
(N�1)⇣ q

f

i1, Si, Xi] and E[⇡ | pf1� 1
(N�1)⇣ q

f

i1, Si, Xi] by using the projection
theorem. We begin with the former. We can, using the projection theorem,
express

E

2

4
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⇣
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Z �Xi
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⇣
) + �2(Si � µ⇡).

Here, �1 and �2 are derived as follows. The variables,
P

j 6=i
Sj ,Si, p

f

1 � 1
(N�1)⇣ q

f

i1

are jointly Gaussian with variance matrix

⌃ =

2
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.
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By the rules of conditional normals

⇥
�2 �1

⇤
= ⌃12⌃

�1
.

This yields,
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Note that 1
N�1�2 2 [0, 1]. Next, we have
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Note that w

⇣(N�1)�1 2 [0, 1]. We have
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Next, we move on to compute, E[⇡ | pf1 � 1
(N�1)⇣ q

f

i1, Si, Xi]. We can, using the
rules of conditional normals, express

E
"
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(N � 1)⇣
, Si
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The variables, ⇡,Si, p
f

1 � q
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(N�1)⇣ are jointly Gaussian with variance matrix

⌃ =
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Define
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Then ⇥
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Note that �3
w

⇣(N�1) 2 [0, 1] and �4 2 [0, 1]. It is useful, for the analysis to follow,

to redefine the inference coe�cients so that they all lie in the interval [0, 1].
Specifically, define �̃1 = w

⇣(N�1)�1, �̃2 = 1
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We can now use the equation (G1) together with the conditional moments we just
computed, to match coe�cients and pin down ↵, ⇣, w, and �. The coe�cient of
qi1 gathered on to the LHS is

�2b� 1

(N � 1)⇣
� 2b(E � 1)

1

N
�̃1 �

�̃3
w
.

The coe�cient of p1 gathered on to the RHS is

1� 2b(E � 1)
1

N
�̃1(N � 1)⇣ � ⇣

(N � 1)�̃3
w

.

The coe�cient of Si gathered on to the RHS is

2b(E � 1)w

✓
N � 1

N
)(1� �̃2

◆
� �4.

The coe�cient of Xi gathered on to the RHS is

2b+ 2b(E � 1)


�↵+ ↵

�̃1
N

�
+

�̃3
w
↵.

The constant coe�cient gathered on to the RHS is

2b(E � 1)


↵Z

N
� w

N

✓
µ⇡(N � 1) (1� �̃2 � �̃1) +

�̃1↵Z

w
� ��̃1(N � 1)

w

◆�

�µ⇡ + �̃3µ⇡(N � 1)� �̃3↵Z

w
+ �̃3

(N � 1)�

w
+ �̃4µ⇡.

We now match coe�cients to compute ⇣ as a function of �̃1 and �̃3:

⇣ =
N � 2

N � 1

1

(2b[(E � 1)�̃1 + 1] +N �̃3
w
)
.

Price impact is therefore

(G6)
1

(N � 1)⇣
=

(2b[(E � 1)�̃1 + 1] +N �̃3
w
)

N � 2
.

Notice that compared with the model without private information about asset
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payo↵s, there is now a N �̃3
w

term which is a result of using the price in an exchange
to do inference on the asset’s payo↵, ⇡. We now match coe�cients to derive an
equation which characterizes w:

(G7) � 2b(E � 1)w
N � 1

N
(1� �̃2) + �4 =

w[2b+
(2b[(E � 1)�̃1 + 1] + N

w
�̃3)

N � 2
+ 2b(E � 1)

1

N
�̃1 +

�̃3
w
].

Notice that after substituting in the expressions for the inference coe�cients and
rearranging, we would obtain a cubic equation in w. We now match coe�cients
to compute ↵ as a function of the inference coe�cients:

(G8) ↵ =
2b

2b+
(2b[(E�1)�̃1+1]+N

�̃3
w )

N�2 + 2b(E � 1) 1
N
�̃1 + 2b(E � 1)(1� �̃1

N
)
.

We now match coe�cients to compute� as a function of the inference coe�cients:

� = �
2b(E � 1)

h
↵Z

N
� w

N
(µ⇡(N � 1) + �̃1↵Z

w
� �̃2(N � 1)µ⇡ � �̃1(N � 1)µ⇡)

i

2b+ 1
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N
+ �̃3

w
+ 2b(E�1)�̃1(N�1)

N
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�
�µ⇡ + �̃3µ⇡(N � 1)� �̃3↵Z

w
+ �̃4µ⇡
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N
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w
+ 2b(E�1)�̃1(N�1)

N
+ �̃3(N�1)

w

.

Thus equations (G8), (G6), (G7), (G9), (G2), (G3), (G4), and (G5) are necessary
conditions that any symmetric a�ne equilibrium must satisfy. An argument
analogous to that of Theorem 1 can be used to show that a solution to these
equations constitute a symmetric a�ne equilibrium provided that ⇣ is positive.
Part 2 follows from equation (G6). This completes the proof of parts 1 and 2.
We omit the proof of part 3 since it is a straightforward computation.

PROPOSITION 4: For any value of E, if there exists a symmetric a�ne equi-

librium with ⇣ > 0 then w > 0 .

PROOF:
The equation characterizing w is

�̃4 � �̃3 = w[2b+
1

⇣(N � 1)
+ 2b(E � 1)

1

N
�̃1 + 2b(E � 1)(

N � 1

N
)(1� �̃2)].

The left hand side is positive as seen by inspecting the equations defining the
inference coe�cients. The bracketed term on the right hand side is also always
positive if the demand schedules are downward sloping since the inference coef-
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ficients are in the unit interval. Thus the only way for the cubic equation to be
satisfied is if w is positive.
We now focus on characterizing how Ew and E↵ change as E varies. In this

model, the e�cient allocation is the same as that of the baseline model. Thus
by part 3 of Theorem 4, perfect allocative e�ciency is acheived if Ew = 0 and
E↵ = 1.

PROPOSITION 5: The following are true.

1) There exists a unique symmetric a�ne equilibrium when E = 1.

2) When there is just a single exchange,

0 < w1 <
1

2b

�2
⇡

�2
⇡ + �2
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,

where w1 corresponds to the unique symmetric a�ne equilibrium.

3) There exist at least one and at most three symmetric a�ne equilibria for all

E su�ciently large.

4) For any sequence {EwE} corresponding to symmetric a�ne equilibria,
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as E ! 1.

5) For any sequence, {E↵E}m corresponding to symmetric a�ne equilibria,

E↵E ! 1, which is strictly greater than ↵1.

PROOF:
Part 1. When there is a single exchange,
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Rearranging (G10), we derive
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Thus, when E is 1, w1 satisfies a cubic equation with coe�cients:

[w3
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Since the coe�cient of w2
1 is positive, the coe�cient of w3

1 is positive, and the
constant is negative, there always exists exactly one positive real root. Let p, q,
and r denote the roots of the cubic equation. Then pqr = � constant coefficient

coefficient of w
3
1

>

0. Thus if there is one real root and 2 complex roots, the real root must be
positive. If there are are three real roots, at least one must be positive. Next,

p + q + r = � coefficient of w
2
1

coefficient of w
3
1
< 0 so if there are three real roots, two must be

negative and one must be positive. There always exists a unique positive real
root. Take this positive real root. For this value of w1, by (G6), ⇣1 is positive.
An approach analogous to that of Theorem 1 (which we omit) can then be used
to verify that there is a symmetric a�ne equilibrium corresponding to this value
of w1. To prove uniqueness, it can be shown that �̃4 � (1 + N

N�2)�̃3 is monotone
decreasing in w1 as seen by using (G4) and (G5). Since

w1 �
�̃4 � (1 + N

N�2)�̃3

2b(1 + 1
N�2)

is monotone increasing in w1 when viewing �̃3 and �̃4 as functions of w1, the
equilibrium is unique since (G10) is a necessary condition which must be satisfied
in any symmetric a�ne equilibrium.
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Part 2. We rearrange (G5) to derive
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Inspecting (G10) together with the above inequality gives the result.

Parts 3 and 4. Rearranging equation (G7), we derive
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we observe that |wE | is less than C

E
for large E for some constant C since �̃2 is

by inspection bounded away from 1 (we can derive a bound which holds for all
E) and the numerator is bounded above by 2 + N

N�2 . Thus, it must be the case
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Thus in the limit as E ! 1,

EwE ! 1

2b

1
N�1
N

�2
✏

�2
⇡+�2

✏

�2
⇡

�2
✏ + �2

⇡

=
1

2b

N

N � 1

�2
⇡

�2
✏

.

Note that this implies that for large enough E, any real root of the cubic equation
for wE must be positive, which by (G6) implies that ⇣E is positive for any real
root. An argument analogous to Theorem 1 can then be used to verify that there
is a symmetric a�ne equilibrium corresponding to any positive root of the cubic
equation for wE . Since a cubic equation always has at least one real root and at
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most three, there always exists at least one and at most three symmetric a�ne
equilibrium for E su�ciently large.

Part 5. Using earlier results we can write

E↵E =
2bE

2b+
(2b[(E�1)�̃1+1]+ N
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Thus, if �2
Q
> 0, as E ! 1,

E↵E ! 1.

When E = 1,

↵1 =
2b
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2b+

N �̃3
w1
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< 1.

Thus, an increase in fragmentation means a more e�cient redistribution of en-
dowments, at least in the limit.
Next, we give a coarse analysis of welfare which compares the expected holding

costs of strategic agents as E tends infinity with the case of centralized exchange
when E = 1.

PROPOSITION 6: If
�
4
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�2
✏
is su�ciently small, then for all E su�ciently large the

allocation of any symmetric a�ne equilibrium is more e�cient than the allocation

of the unique symmetric a�ne equilibrium when E is 1.

PROOF:
By symmetry it su�ces to study the expected holding cost of an individual

agent. Recall, in what follows, that we have assumed for simplicity that the mean
of the liquidity trader supply is zero. The expected holding cost of an agent is
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Consider taking a limit as E ! 1 of the above expression. Then we obtain
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The only di↵erence between this expected holding cost and the expected holding

cost at the e�cient allocation is the last term. Thus when �
4
⇡

�2
✏
is small, a large

level of fragmentation is preferred to centralized exchange.
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Appendix H: Extension—Arbitrary Covariance Matrix

In this Appendix, we extend the baseline model to allow for correlation among
the primitive asset quantities {X1, . . . , XN , Q1, . . . , QE} setting the sizes of trad-
ing interests. This model variant nests the baseline model. Consequently, many
of the proofs are quite similar.

H1. Setup

We retain the same model setup as in the baseline but alter the assumptions
about the joint distribution of (X1, . . . , XN , Q1, . . . , QE). We assume that Q =
C +

P
e2E ⇠e and Qe =

C

E
+ ⇠e for each e 2 E, where C and {⇠e}e2E are random

variables in L2(⌦,F ,P). Here, C is the component of liquidity trader supply which
is common across exchanges and ⇠e is the component idiosyncratic to exchange
e. We assume that the distribution of C does not depend on E and that {⇠e}e2E
is a collection of i.i.d, Gaussian distributed random variables with a mean of 0

and variance of
�
2
⇠

E
that are independent of X1, . . . , XN , and C. Under these

assumptions, the distribution of Q does not depend on E. Next, we assume that
X1, . . . , XN , C are jointly Gaussian with E[C] = µQ, var[C] = ⇢, cov(Xi, Xj) = ⌃
for all i, j 2 N such that i 6= j, and cov(Xi, C) = ⌘, E[Xi] = µX , and var[Xi] = �2

X

for all i 2 N . For the distribution to be well defined, ⇢, ⌃, ⌘, and �2
X

are such
that the covariance matrix of X1, . . . , XN , C is positive definite.

H2. Analysis

LEMMA 5: The condition, �2
X
+ (N � 1)⌃ > 0, holds.

PROOF:
The covariance matrix of (X1, . . . , XN ) is positive definite. Denote the covari-

ance matrix VX . Each element of the diagonal of VX is �2
X
while all other elements

are ⌃. This implies that 1TVX1 = N [�2
X
+ (N � 1)⌃] > 0 where 1 is an N ⇥ 1

vector of ones.

THEOREM 6: For each E 2 N, there exists at least one and up to three sym-

metric a�ne equilibria. If either ⌘ � 0 or �2
⇠
= 0, there is a unique symmetric

a�ne equilibrium. Given an arbitrary E 2 N let (�E ,↵E , ⇣E) be an arbitrary cor-

responding symmetric a�ne equilibrium. Then �E, ↵E, and ⇣E satisfy equations

(H16), (H17), and (H18). Moreover:

1) For each e 2 E,

⇤E =
2b(1 + �E(E � 1))

N � 2
where

�E ⌘ corrXi(p
⇤
e, p

⇤
k
),

for k 6= e such that k 2 E.
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2) Price in exchange e 2 E is

p⇤e =
N � 1

N
⇤E [

X

i2N
�↵EXi �Qe +N�E ].

3) The final asset position of trader i 2 N is

(1� E↵E)Xi + E↵E

P
i2N Xj

N
+

Q

N
.

4) If �2
⇠
= 0 or E = 1, for each E 2 N, the equilibrium allocation corresponds

with that of the centralized benchmark.

5) If �2
⇠
> 0, given an arbitrary sequence of symmetric a�ne equilibria,

{(�E ,↵E , ⇣E)}E2N, we have

E↵E ! N

N � 1

1 + ⌘

N�
2
X

1� ⌃
�
2
X

.

PROOF:
The proof proceeds in 3 steps. In the step 1 we compute some relevant moments

corresponding to a symmetric a�ne equilibrium, (�E ,↵E , ⇣E). In step 2, we
substitute the derived moments from step 1 into the optimality condition for a
traders’ demand submission problem and match coe�cients to derive a system of
three equations for �E , ↵E , and ⇣E . In step 3 we prove existence of a symmetric
a�ne equilibrium and uniqueness when ⌘ � 0. We then prove parts 1 through 5.

Step 1: To begin we conjecture an arbitrary symmetric a�ne equilibrium
(�E ,↵E , ⇣E) in which each trader submits a demand schedule of the form in
(2) to each exchange e. For ease of notation define

qf
ie
:= fie(Xi, p

f

e ).

We compute the following unconditional moments.

E

�↵E(

P
i
Xi) +�EN �Qe0

⇣EN

�
=

�↵EµX +�E

⇣E
� µQ

E⇣EN
(H1)

E
P

j 6=i
�↵EXj

⇣E(N � 1)
� Qe

⇣E(N � 1)
+

�E

⇣E

�
=

�↵EµX +�E

⇣E
� µQ

E⇣E(N � 1)
(H2)
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var

"
X

i

Xi

#
= N�2

X + 2⌃
NX

i=1

(i� 1) = N�2
X + ⌃(N � 1)N.(H3)

Using the above moments we can then compute the following moments, condi-
tional on Xi, using the projection theorem.

(H4) E

�↵E(

P
i
Xi) +�EN �Qe0

⇣EN

����Xi

�
=

�↵EµX +�E

⇣E
� µQ

E⇣EN
+

1
⇣EN

(�↵E(N � 1)⌃� ↵E�2
X
� ⌘

E
)

�2
X

(Xi � µX)

(H5) E

(
P

j 6=i
�↵EXj)�Qe +�E(N � 1)

⇣E(N � 1)

����Xi

�
=

�↵EµX +�E

⇣E
� µQ

E⇣E(N � 1)
+

1
⇣E(N�1)(�↵E⌃(N � 1)� ⌘

E
)

�2
X

(Xi � µX)

(H6) var

2

4�↵E(
X

j 6=i

Xj) +�E(N � 1)�Qe0

����Xi

3

5 =

↵2
E(N � 1)�2

X + ↵2
E⌃(N � 2)(N � 1) +

⇢

E2
+

�2
⇠

E
+

2⌘↵E(N � 1)

E

�
[(�↵E⌃(N � 1)� ⌘

E
)]2

�2
X

(H7) covXi

0

@
X

j

�↵EXj �Qe0 ,
X

j 6=i

�↵EXj �Qe

1

A =

var

2

4
X

j 6=i

�↵EXj |Xi

3

5� 2covXi(Qe0 ,
X

j 6=i

�↵EXj) + covXi(Qe0 , Qe).

Using the above moments, we compute the following moments, conditional on
Xi and pfe � ⇤qf

ie
, (the portion of price in exchange e which is unknown to agent
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i—see equation (H14)) by using the projection theorem. We have,

(H8) E
"
pf
e0 | p

f

e �
qf
ie

⇣E(N � 1)
, Xi

#
=

(1� N � 1

N
�E)

�↵EµX +�E

⇣E
� (1� �E)

µQ

E⇣EN
+

N � 1

N
�Ep

f

e � �E
qf
ie

⇣EN

+ (1� �E)
1

⇣EN
(�↵E(N � 1)⌃� ⌘

E
)

�2
X

(Xi � µX) +
�↵E

⇣EN
(Xi � µX)

(H9) E
"
qf
ie0 | p

f

e �
qf
ie

⇣E(N � 1)
, Xi

#
=

� ↵EXi

N � 1

N
� (1� N � 1

N
�E)(�↵EµX +�E) + (1� �E)

µQ

EN
� ↵E

N
µX

� (1� �E)
1
N
(�↵E(N � 1)⌃� ⌘

E
)

�2
X

(Xi � µX)� N � 1

N
�E⇣Ep

f

e + �E
qf
ie

N
+�E .

Above, �E denotes

(H10)
covXi(

P
i
�↵EXi �Qe,

P
j 6=i

�↵EXj �Qe0)

var[
P

j 6=i
�↵EXj �Qe |Xi]

.

Of course, E[qf
ie0 | p

f
e� q

f
ie

⇣(N�1) , Xi] could have been computed in one step by just a
single application of the projection theorem, but we found it less algebraicly taxing

to apply the projection theorem twice. To finish deriving E[qf
ie0 | p

f
e � q

f
ie

⇣(N�1) , Xi],
we must compute an expression for �E . The denominator was computed earlier
in equation (6). To compute the numerator, we make use of the decomposition
in equation (H7). The terms

P
j 6=i

Xj , Q0
e, Qe, and Xi are jointly normally

distributed with covariance matrix

⌃ =

2

66664

(N � 1)�2
X
+ ⌃(N � 2)(N � 1) ⌘(N�1)

E

⌘(N�1)
E

⌃(N � 1)
⌘(N�1)

E

⇢

E2 +
�
2
⇠

E

⇢

E2
⌘

E

⌘(N�1)
E

⇢

E2
⇢

E2 +
�
2
⇠

E

⌘

E

⌃(N � 1) ⌘

E

⌘

E
�2
X

3

77775
.

The goal is to derive the covariance matrix of
P

j 6=i
Xj , Qe0 , Qe conditional on
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Xi, which we denote ⌃̃. To do this we can apply the projection theorem. Then

⌃̃ =

2

664

(N � 1)�2
X
+ ⌃(N � 2)(N � 1) ⌘(N�1)

E

⌘(N�1)
E

⌘(N�1)
E

⇢

E2 +
�
2
⇠

E

⇢

E2

⌘(N�1)
E

⇢

E2
⇢

E2 +
�
2
⇠

E

3

775

� 1

�2
X

2

64
⌃2(N � 1)2 ⌃⌘(N�1)

E

⌃⌘(N�1)
E

⌃⌘(N�1)
E

⌘
2

E2
⌘
2

E2

⌃⌘(N�1)
E

⌘
2

E2
⌘
2

E2

3

75 .

From above, we have

covXi

0

@�↵EXi +
X

j 6=i

�↵EXj �Qe0 ,
X

j 6=i

�↵EXj �Qe

1

A =

↵2
E

✓
(N � 1)�2

X + ⌃(N � 2)(N � 1)� ⌃2(N � 1)2

�2
X

◆
+

2↵E⌘(N � 1)

E

✓
1� ⌃

�2
X

◆

+
⇢

E2
� ⌘2

E2�2
X

.

We finally derive that

(H11) �E =
⌅

⌅+
�
2
⇣

E

,

where

(H12) ⌅ = ↵2
E((N � 1)�2

X + ⌃(N � 2)(N � 1)) +
⇢

E2
+ 2

⌘

E
↵E(N � 1)

�
�
� ↵E⌃(N � 1)� ⌘

E

�2

�2
X

.

This concludes step 1.

Step 2. By market clearing, we have

(H13) pfe =
�↵E(

P
i
Xi) +�EN �Qe

⇣EN
.

Also by market clearing, the residual supply curve trader i faces in exchange e



48 THE AMERICAN ECONOMIC REVIEW MONTH YEAR

is

(H14) pe(q) =
�↵E(

P
j 6=i

Xi) + q +�E(N � 1)�Qe

⇣E(N � 1)
.

This implies that the price impact agent i faces in exchange e is ⇤ := 1
⇣E(N�1) ,

which by symmetry, is the price impact each agent i faces in all exchanges. In
equilibrium trader i equates his expected marginal utility conditional on pfe �

q
f
ie

⇣E(N�1) and Xi, with his marginal cost. That is

(H15) µ⇡ � 2b

 
Xi + qf

ie
+ (E � 1)E

"
qf
i2 | p

f

e �
qf
ie

⇣E(N � 1)
, Xi

#!
= pfe + ⇤qf

ie
.

Substiting equation (H9) into (H15) and matching coe�cients we obtain a system
of three equations which characterize the three unknowns, �E , ↵E , and ⇣E . We
do not explicitly list the algebraic steps here. Matching the coe�cients on price,
we obtain

(H16) ⇣E =
1

2b((E � 1)�E + 1)

N � 2

N � 1
.

Matching the coe�cients on Xi we obtain

(H17) ↵E =

1 + E�1
E

(1��E)⌘
N�

2
X

E�E(
1
N

+ 1
N�2 + N�1

N

⌃
�
2
X
) + (1� �E)(

1
N

+ 1
N�2 + N�1

N

⌃
�
2
X
) + EN�1

N
(1� ⌃

�
2
X
)
.

Matching the constant coe�cients, we obtain

(H18) �E =

µ⇡ � 2b(E � 1)µX

⇣
(1��E)µQ

ENµX
� (1��E) 1

N (↵E(N�1)⌃+ ⌘
E )

�
2
X

+ ↵E
N�1
N

(1� �E)
⌘

2bN�1
N�2(1 + �E(E � 1))

.

Above, �E , as we saw in equation (H11) is dependent on ↵E . By inspecting
(H17) and (H11) we see that ↵E satisfies a cubic equation. This cubic equation
can be derived by multiplying both sides of (H17) by the denominator on the right
hand side of (H17), and then multiplying both sides by the denominator in the
expression for �E . Note that this does not add “solutions” since the denominator
in (H17) is strictly positive since �E > � 1

E�1 (which can be seen by a proof
analogous to that of Lemma 5) and since the denominator in the expression for
�E is also strictly positive since it is a variance.
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Step 3. By Theorem 1, equations (H17), (H16), and (H18) are necessary and
su�cient conditions for (�E ,↵E , ⇣E) to be a symmetric a�ne equilibrium. To
prove existence of at least one and up to three such symmetric a�ne equilibria,
we observe that equilibrium existence is equivalent to the existence of a real root
of the cubic equation that characterizes ↵E . But since the equation is cubic
it must have at least one real root and up to three real roots. We now prove
uniqueness of the equilibrium when ⌘ � 0. Fix E � 1, denote y ⌘ ↵E , and define

g(y) ⌘

y �
1 + E�1

E

(1��E)⌘
N�

2
X

E�E(
2N�2

N(N�2) +
N�1
N

⌃
�
2
X
) + (1� �E)(

2N�2
N(N�2) +

N�1
N

⌃
�
2
X
) + EN�1

N
(1� ⌃

�
2
X
)
.

Above we view each �E also as a function of y as defined by (H11) with y in
place of ↵E . There exists a symmetric a�ne equilibrium for each y positive such
that g(y) = 0. Using the assumption that ⌘ � 0, the second term in the above
expression is strictly monotone decreasing in �E when �E 2 (0, 1]. By inspecting
equation (H11) (and using Lemma 5) we can show that �E 2 (0, 1]. Moreover it
is strictly monotone increasing in y. Thus g(y) is strictly monotone increasing in
y. Hence there can exist at most one value of y 2 R such that g(y) = 0.
We now prove the remaining parts of the theorem. Part 1 follows immediately

from (H16). Part 2 follows immediately from (H14). Part 3 of the theorem is true
of any symmetric a�ne equilibrium independent of the joint distribution of the
random variables and the proof is analogous to that of Theorem 1. Part 4 follows
from part 3 and (H17) when substituting in �E = 1 which is the value �E takes
on when �2

Q
= 0. To prove part 5, observe that using Proposition 8, �E ! 0. By

equation (H17),

E↵E =
1 + (E�1)

E

(1��E)⌘
N�

2
X

1
E
+ �E(E�1)

EN
+ (E�1)�E+1

E(N�2) + (E � 1)N�1
EN

� (1� �E)(E � 1)N�1
EN

⌃
�
2
X

.

Since �E ! 0, E↵E !
1+ ⌘

N�2
X

N�1
N (1� ⌃

�2
X

)
.

COROLLARY 6.1: Let {E↵E}E2N be defined as in Theorem 6. Then �ElE
converges to a constant that exceeds 1 if and only if �2

⇠
> 0 and ⌘ > �[�2

X
+(N �

1)⌃], where, by the positive definiteness of the covariance matrix of X1,...,XN ,

we have �2
X
+ (N � 1)⌃ � 0. Further, E↵E converges to a constant that exceeds

N�2
N�1 if and only if �2

⇠
> 0 and ⌘ > �[2�2

X
+ (N � 2)⌃].

PROOF:
Theorem 6 supplies a closed form expression for the limiting value of E↵E as

E ! 1. The rest of the proof is a simple computation.
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PROPOSITION 7: Let

E⇤ ⌘
ĉ� �2

⇠
( 1
N

+ 1
N�2 + N�1

N

⌃
�
2
X
)� �2

⇠

⌘

N�
2
X

�2
⇠

N�1
N

(1� ⌃
�
2
X
)� �2

⇠
(1 + ⌘

N�
2
X
)

,

where

ĉ ⌘

�
(N � 1)�2

X
+ ⌃(N � 2)(N � 1)� ⌃2(N�1)2

�
2
X

+ 2⌘(N � 1)(1� ⌃
�
2
X
) + ⇢� ⌘

2

�
2
X

N � 2
.

If E⇤
is in N, there is a unique symmetric a�ne equilibrium when E = E⇤

whose

allocation is the e�cient allocation. If ⌘ � 0, by Theorem 6, there is a unique

symmetric a�ne equilibrium allocation associated with each E 2 N. The E 2 N
whose symmetric a�ne equilibrium is most e�cient is either bE⇤c or dE⇤e.

PROOF:
Let (↵E , ⇣E ,�E) denote an arbitrary symmetric a�ne equilibrium. Define gE ⌘

E↵E . Substituting equation (H11) into (H17) and rearranging yields a cubic
equation in gE with coe�cients

[g3E ] : A(1 +
1

N � 2
)

[g2E ] : B(1 +
1

N � 2
)�A

[gE ] : F (1 +
1

N � 2
) + �2

⇠
(
1

N
+

1

N � 2
+

N � 1

N

⌃

�2
X

) + �2
⇠
E
N � 1

N
(1� ⌃

�2
X

)�B

[1] : �F � E�2
⇠
(1 +

⌘

N�2
X

) + �2
⇠

⌘

N�2
X

,

where

A ⌘ ((N � 1)�2
X + ⌃(N � 2)(N � 1)� ⌃2(N � 1)2

�2
X

),

B ⌘ 2⌘(N � 1)(1� ⌃

�2
X

)

and

F ⌘ ⇢� ⌘2

�2
X

.
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By definition, at E⇤, gE⇤ = 1. Therefore, we have

A(1 +
1

N � 2
) +B(1 +

1

N � 2
)�A+ F (1 +

1

N � 2
)

+ �2
⇠
(
1

N
+

1

N � 2
+

N � 1

N

⌃

�2
X

) + �2
⇠
E⇤N � 1

N
(1� ⌃

�2
X

)�B � F

� E⇤�2
⇠
(1 +

⌘

N�2
X

) + �2
⇠

⌘

N�2
X

= 0.

Solving for E⇤ we obtain,

E⇤ =
�A+B+F

N�2 � �2
⇠
( 1
N

+ 1
N�2

N�1
N

⌃
�
2
X
)� �2

⇠

⌘

N�
2
X

�2
⇠

N�1
N

(1� ⌃
�
2
X
)� �2

⇠
(1 + ⌘

N�
2
X
)

.

That the E 2 N whose symmetric a�ne equilibrium allocation is most e�cient is
either bE⇤c or dE⇤e when ⌘ � 0 follows from Proposition 11.

PROPOSITION 8: For each E 2 N denote an arbitrary corresponding symmet-

ric a�ne equilibria, {(�E ,↵E , ⇣E)}e2E. Let ⇤E be the corresponding equilib-

rium price impact and �E the equilibrium inference coe�cient. Then, if �2
⇠
= 0,

{⇤E}E2N diverges to 1 and {�E}E2N is the constant sequence of ones. If �2
⇠
> 0,

{⇤E}E2N converges to

1 + c⇤

1
2b(N � 2)

,

where

c⇤ =
1

�2
⇠

"
(

1 + ⌘

N�
2
X

N�1
N

(1� ⌃
�
2
X
)
)2((N � 1)�2

X + ⌃(N � 2)(N � 1)� ⌃2(N � 1)2

�2
X

)

+ 2N(1 +
⌘

N�2
X

)⌘ + ⇢� ⌘2

�2
X

#
,

while {�E}E2N converges to 0.

PROOF:
The claims when �2

⇠
= 0 are obvious in light of Theorem 6. We prove the

claims when �2
⇠
> 0. By inspecting equation (H17), and recognizing that Lemma

5 implies that 1
N

+ 1
N�2 + N�1

N

⌃
�
2
X

> 0, and that �E > � 1
E�1 we see that

|↵E | <
1 + E�1

E

(1��E) | ⌘ |
N�

2
X

EN�1
N

(1� ⌃
�
2
X
)

.
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Thus inspecting the equation (H11), we see that for large E, the numerator of
�E is O( 1

E2 ) while the denominator is !( 1
E2 ) so that �E ! 0. To prove that ⇤E

converges and compute its limit point, we can use (H11) to derive an explicit
expression for E�E and then use part 5 of Theorem 6. We find that ⇤E converges
to

1 + c⇤

1
2b(N � 2)

.

PROPOSITION 9: Suppose ⌘ � 0. For each E 2 N, let ⇤E denote the equi-

librium price impact in the unique symmetric a�ne equilibrium. The sequence,

{�⇤E}E2N, is strictly monotone increasing.

PROOF:
The proof is analogous to that of Proposition 1.

PROPOSITION 10: The total expected payment of liquidity traders is

N � 1

N
⇤E(�µQN�E + �2

⇠
+

⇢+ µ2
Q

E
� ↵EN(⌘ + µXµQ)).

PROOF:
We compute

�E
"
X

e2E
p⇤eQe

#
= �N � 1

N
⇤EE

"
X

e2E
(
X

i2N
�↵EXi +N�E �Qe)Qe

#

=
N � 1

N
⇤E(�µQN�E + �2

⇠
+

⇢+ µ2
Q

E
+ ↵EN(⌘ + µXµQ)).

PROPOSITION 11: Suppose �2
⇠
> 0 and ⌘ � 0. For each, E 2 N, denote the

unique symmetric a�ne equilibrium, (�E ,↵E , ⇣E). The sequence, {E↵E}E2N, is
strictly monotone increasing.

PROOF:
The proof is analogous to that of part 6 of Theorem 1.


