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We model a simple market setting in which fragmentation of
trade of the same asset across multiple exchanges improves al-
locative e�ciency. Fragmentation reduces the inhibiting e↵ect of
price-impact avoidance on order submission. Although fragmenta-
tion reduces market depth on each exchange, it also isolates cross-
exchange price impacts, leading to more aggressive overall order
submission and better rebalancing of unwanted positions across
traders. Fragmentation also has implications for the extent to
which prices reveal traders’ private information. While a given
exchange price is less informative in more fragmented markets, all
exchange prices taken together are more informative.
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In modern financial markets, many financial instruments trade simultaneously
on multiple exchanges (Eric Budish, Robin Lee and John Shim, 2019; Carole
Gresse, 2012; Emiliano Pagnotta and Thomas Philippon, 2018). This fragmenta-
tion of trade across venues raises concerns over market depth. One might therefore
anticipate that fragmentation worsens allocative e�ciency through the strategic
avoidance of price impact, which inhibits beneficial gains from trade (Vayanos,
1999; Du and Zhu, 2017). Fragmentation might seemingly, therefore, lead to less
aggressive trade, which could in turn impair the informativeness of prices, relative
to a centralized market in which all trade flows are consolidated. Perhaps sur-
prisingly, we o↵er a simple model of how fragmentation of trade across multiple
exchanges, despite reducing market depth, actually improves allocative e�ciency
and price informativeness.
In the equilibrium of our market setting, the option to split orders across dif-

ferent exchanges reduces the inhibiting e↵ect of price-impact avoidance on total
order submission. Though market depth on each exchange decreases with frag-
mentation, the common practice of order splitting allows traders to shield orders
submitted to a given exchange from the price impact of orders submitted to
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other exchanges. This e↵ect is su�ciently strong that fragmentation increases
overall order aggressiveness. This in turn leads to a more e�cient redistribu-
tion of unwanted positions across traders and causes prices, collectively across
all exchanges, to better reflect traders’ private information. Once fragmentation
is su�ciently severe, however, any additional fragmentation can cause trade to
become too aggressive, from the perspective of allocative e�ciency. However, at
least in the simple one-period version of our model, any degree of fragmentation
is welfare-superior to a centralized market.
Our model abstracts from some important aspects of functioning financial mar-

kets. In particular, we do not consider the impact of fragmentation on exchange
competition or transaction fees.1 We also ignore the adverse impact of sniping by
fast traders (Budish, Cramton and Shim, 2015; Malinova and Park, 2019; Pag-
notta and Philippon, 2018). Given these and other limitations of our model, we
avoid taking a policy stance on fragmentation. Our primary marginal contri-
bution is to identify a potentially important distinct economic channel for the
welfare implications of market fragmentation.
We now briefly summarize our model and the main results. A single asset is

traded by N strategic traders participating on E exchanges. Before each round of
trade, each strategic trader has a quantity of the asset which is privately observed.
Each trader submits a package of limit orders (forming a demand function) to
each of the exchanges, simultaneously. As in common practice (Wittwer, 2021),
orders to a given exchange cannot be made contingent on clearing prices at other
exchanges. The objective of each strategic trader, given the conjectured order
submission strategies of the other traders, is to maximize the total expected
discounted cash compensation received for executed orders, net of the present
value of asset holding costs that are quadratic in the trader’s asset position, as in
the one-exchange model of Du and Zhu (2017).
At each exchange, “liquidity traders” submit non-discretionary market orders.

The aggregate quantities of market orders submitted by liquidity traders to the
various exchanges are exogenous random variables, independently and identically
distributed across exchanges and periods. In a one-period setting, we also con-
sider a version of the model with no liquidity traders, and a version in which
liquidity traders who are local to each exchange are strategic with respect to
order quantities. In any version of the model, because agents’ preferences are
quasilinear in cash and because total cash payments net to zero by market clear-
ing, an unambiguous measure of allocative e�ciency is the expected discounted
sum of strategic traders’ asset holding costs.
Price impact is increased by market fragmentation because of cross-exchange

price inference, by which traders choose order submissions in light of the positive
equilibrium correlation between exchange prices. For example, conditional on a
clearing price on a given exchange that is lower than expected, a buyer expects to
be assigned higher quantities on all exchanges. This e↵ect dampens the aggres-

1As shown by Budish, Lee and Shim (2019), transaction fees are economically small.
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siveness of order submissions, which reduces market depth and heightens market
impact, relative to a single-exchange setting. Despite this reduction in market
depth, the ability to split orders across exchanges ensures that, in equilibrium,
each strategic trader’s overall order submission is more aggressive, resulting in a
more e�cient allocation.2 This natural implication of fragmentation is novel to
this paper, as far as we know.
We solve both static and dynamic versions of the model. In the static model,

as the number of exchanges increases, the equilibrium allocation becomes more
e�cient until a point at which trade becomes “too aggressive.” We find that the
socially optimal number of exchanges depends only on (a) the number of strategic
traders and (b) the ratio of the variance of the endowments of strategic traders to
the variance of liquidity trade. We show that when there are more exchanges, the
price on any individual exchange is less informative of the aggregate asset inven-
tory of strategic traders, the key “state variable” of our model, yet the exchange
prices taken together are more informative. Although allocative e�ciency is max-
imal for a finite number of exchanges, price informativeness always improves with
the number of exchanges.
In the dynamic version of the model, we show that market fragmentation still

allows e�cient trade, despite the associated cross-period cross-exchange price im-
pact and despite within-period price impact that is even higher than in the static
model. We do not solve for an equilibrium of the dynamic model for an arbitrary
number E of exchanges, given the di�cult-to-solve infinite regress of beliefs about
beliefs concerning the aggregate asset inventory of strategic traders. Rather than
addressing equilibria for general E, we instead construct an equilibrium for a spe-
cific number E of exchanges with the property that the associated equilibrium is
perfect Bayesian and implements e�cient trade. This equilibrium is tractable be-
cause e�cient trade dramatically simplifies the inference problem of each trader,
given that the sum of exchange prices perfectly reveals the aggregate inventory
after each round of trade. We find that the e�cient number of exchanges is
invariant to trading frequency, and is the same as that of the static model.
The remainder of the paper is organized as follows. Section I provides additional

background on exchange market fragmentation and related research. Section II
gives the setup of the most basic version of our model. Section III characterizes
properties of the equilibrium. Section IV presents the implications of fragmenta-
tion on price impact, allocative e�ciency, and price informativeness. Section V
studies a formulation of the model in which traders observe the aggregate asset
endowment before order submission. Section VI solves for the e�cient number of
exchanges in a dynamic formulation of the model with cross-period cross-exchange
inference. Section VII summarizes the results of various model extensions. Section
VIII o↵ers some concluding remarks and discusses some potentially important ef-
fects that are not captured by our model. Appendices contain proofs and model

2A precise degree of market fragmentation that we characterize can even achieve a perfectly e�cient
allocation.
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extensions.

I. Background

We focus in this paper on “visible fragmentation,” that is, fragmentation across
di↵erent lit exchanges (meaning trade venues at which market-clearing prices are
set), rather than fragmentation between lit exchanges and size-discovery venues,
which cross buy and sell orders at prices that are set on lit exchanges (Körber,
Linton and Vogt, 2013; Zhu, 2014; Degryse, De Jong and van Kervel, 2015; Du�e
and Zhu, 2017; Antill and Du�e, 2021).
In Europe and the U.S., exchange trading is highly fragmented. Budish, Lee and

Shim (2019) document that in the U.S., as of early 2019, annual trade of about
one trillion shares is split across 13 U.S. exchanges, and that cross-exchange shares
of total exchange-traded volume are stable over time, with 5 exchanges each han-
dling over 10 percent of total exchange volume. Essentially all equities trade on
every exchange, with significant volumes of each equity executed on multiple ex-
changes.3 Broadly speaking, similar patterns apply to European financial markets
(Gresse, 2012; Degryse, De Jong and van Kervel, 2015; Foucault and Menkveld,
2008). This high degree of trade fragmentation is in part a consequence of regula-
tions such as Regulation NMS in the US and MiFid II in Europe, which encourage
exchange entry and competition.
There has been a longstanding debate (Stoll, 2001) over whether fragmenting

trade across exchanges harms market e�ciency, in various respects. Empirical
findings have been mixed (O’Hara and Ye, 2011; Gomber et al., 2017). Some
researchers find that fragmentation has generally been beneficial. For example,
O’Hara and Ye (2011), using data from U.S. trade reporting facilities, find that ex-
ecution speeds are faster, transaction costs are lower, and prices are more e�cient
when the market is more fragmented. Degryse, De Jong and van Kervel (2015) an-
alyze a sample of Dutch stocks and measure the degree of visible fragmentation.
They find that liquidity, when aggregated over all lit trading venues, improves
with fragmentation. Foucault and Menkveld (2008) analyze Dutch stocks and
arrive at a similar conclusion. Boehmer and Boehmer (2003) find evidence of
improved liquidity when the NYSE began trading ETFs that are also listed on
the American Stock Exchange. Gresse (2017), De Fontnouvelle, Fishe and Harris
(2003), Aitken, Chen and Foley (2017), Hengelbrock and Theissen (2009), Félez-
Viñas (2017), and Spankowski, Wagener and Burghof (2012) generally find that
visible fragmentation reduces bid-ask spreads.
Other research, however, suggests less beneficial e↵ects of fragmentation. For

example, Bennett and Wei (2006) find that when equity trading migrated from
Nasdaq to the NYSE, where trade is more consolidated, there was a decrease in
execution costs and an improvement in price e�ciency. Chung and Chuwonganant

3Pagnotta and Philippon (2018) and Budish, Lee and Shim (2019) display the striking facts graphi-
cally.
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(2012) show that price impact increased following the introduction of Regulation
NMS.4 Gentile and Fioravanti (2011) find that MiFID-induced fragmentation
“does not have negative e↵ects on liquidity, but it reduces price information ef-
ficiency. Moreover, in some cases it leads primary stock exchanges to lose their
leadership in the price discovery process.” For small-firm equities, Gresse (2012),
Gresse (2017), and Degryse, De Jong and van Kervel (2015) find that market
depth declines with su�cient fragmentation, consistent with our theoretical re-
sults. Bernales et al. (2018) find that the 2009 consolidation of Euronext’s two
distinct order books for the same equities was followed by a reduction in bid-o↵er
spreads. Haslag and Ringgenberg (2020) find causal evidence that although frag-
mentation reduces bid-o↵er spreads for the equities of large firms, the opposite
applies to small firms.
While the empirical evidence regarding the implications of fragmentation is

mixed, most of the theoretical literature has shown that visible fragmentation
is harmful. For example, Mendelson (1987) shows that fragmentation may iso-
late individuals for whom there are mutually beneficial trades, because they are
located at di↵erent venues. Chowdhry and Nanda (1991) show that adverse se-
lection caused by asymmetric information worsens as markets fragment. Baldauf
and Mollner (2021) find that welfare is harmed by the ability of fast traders to
snipe across fragmented markets. Pagano (1989) shows that fragmented markets
are less stable, in that traders tend to participate at market venues at which
liquidity is greatest. However, regulations promoting exchange competition may
foster fragmentation.
There are few theory papers demonstrating that fragmentation may be bene-

ficial. Of these, Kawakami (2017) shows how splitting investors across multiple
exchanges can improve allocative e�ciency because the resulting reduction in cor-
relation in asset price and asset payo↵ can in some cases su�ciently improve the
hedging e↵ectiveness of trading. Malamud and Rostek (2017), perhaps the clos-
est paper to ours, consider a multi-exchange demand function submission game in
which each exchange operates a double auction as in our model. They find that
in certain settings, when agents’ risk preferences are su�ciently heterogeneous,
fragmented markets can produce outcomes that are welfare superior to centralized
markets.
A key di↵erence is that Malamud and Rostek (2017) allow traders to condi-

tion their demand schedules at a given exchange on prices at other exchanges on
which they participate (fully contingent demand). Because of this assumption,
fragmentation may improve allocative e�ciency in their model only if there is
limited participation by traders across exchanges. In our model, strategic traders
are allowed to submit orders to all exchanges. In their Example 2 and Propo-
sition 4, Malamud and Rostek (2017) show a benefit of fragmentation for some
asset endowments based on (a) partitioning investors across the economy’s two

4In our model, as we have noted, fragmentation indeed increases price impact, yet also increases
allocative e�ciency and overall price informativeness.
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exchanges and (b) di↵erences in risk aversion. Though they later show that wel-
fare improvements may not require such an extreme form of limited participation,
cross-exchange price inference, by which traders use the price in one exchange for
inference regarding prices on other exchanges, does not play a role in their work
as it does in ours, because they allow for fully contingent demand. For the spe-
cial case of no aggregate endowment risk, Proposition 5 of Malamud and Rostek
(2017) shows that fragmentation via limited participation always lowers welfare if
there is a single asset (though this not necessarily the case when there is nonzero
aggregate endowment risk or there are multiple assets and su�cient risk-aversion
heterogeneity). In our model, the allocative e�ciency gains from fragmentation
arise for di↵erent reasons. Namely, because demand in an exchange can only be
made contingent on the price within the exchange, there is no-cross exchange
price impact. Thus, when splitting trade over more exchanges, the purchase of
an additional unit on any given exchange a↵ects the price on a smaller fraction of
the total quantity traded. With imperfectly correlated prices, the weakening of
cross-exchange price inference e↵ects (as discussed in our introduction) ensures
that price impact does not rise quickly enough with fragmentation to o↵set this
beneficial e↵ect of order splitting.
In practice, when mitigating price impact, strategic traders use strategies that

split their “parent orders” both across exchanges and also across time.5 In equi-
librium, however, the e↵ects of allowing more frequent trade and having more
exchanges are not necessarily substitutes for improving allocative e�ciency. For
example, in the models of Vayanos (1999) and Du�e and Zhu (2017), increasing
the frequency of opportunities to split trades worsens allocative e�ciency, because
equilibrium trade aggressiveness declines faster than trading frequency grows.6 In
Section VI, we allow both cross-exchange and cross-time order splitting. We find
that the the number E⇤ of exchanges that achieves an e�cient reallocation of
the asset at each trading date is invariant to the frequency of trade. Thus, when
there are E⇤ exchanges (the only case that we are able to solve), more frequent
trade improves allocative e�ciency.
The majority of theoretical papers assume that traders are restricted to trade

on a strict subset of all trading venues.7 It seems natural to assume that traders
who are strategic about their price impacts are also aware of the option to trade on
multiple exchanges simultaneously. The costs of order splitting are economically
small (Budish, Lee and Shim, 2019). “Smart order routing technology” makes
order splitting convenient and practical (Gomber et al., 2016). In our model,
strategic traders frictionlessly trade on all exchanges. There is evidence (Malinova

5On this point, we interviewed experts in order execution strategies at two large asset managers.
Vincent van Kervel, Amy Kwan and Joakim Westerholm (2020) provide evidence on order splitting
behavior, by which traders with large parent orders learn over time about the presence of large parent
orders of other traders.

6In a somewhat di↵erent setting, Du and Zhu (2017) show there can be a welfare-optimal trade
frequency.

7For instance, Mendelson (1987), Pagano (1989), Kawakami (2017), Malamud and Rostek (2017) and
many others make this assumption.
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and Park, 2019; Menkveld, 2008; Chakravarty et al., 2012; Gomber et al., 2016)
that some investors strategically split their orders across multiple exchanges, and
also between exchanges and size-discovery venues such as dark pools.
Methodologically, our model contributes to the literature on demand-function

submission games, including work byWilson (1979), Klemperer and Meyer (1989),
and Malamud and Rostek (2017). Within this literature, our paper, like prior
work by Wittwer (2021) and a contemporaneous paper by Rostek and Yoon
(2020), addresses markets with multiple exchanges. While Wittwer (2021) and
Rostek and Yoon (2020) focus on the welfare implications of connecting exchanges
through the ability to submit orders contingent on cross-exchange prices, we con-
sider only the common case in practice of “disconnected markets.” As opposed
to Wittwer (2021) and Rostek and Yoon (2020), we focus on the implications
for allocative e�ciency and price informativeness of increasing the number of
exchanges (fragmentation), and we include a dynamic analysis that captures the
implications of cross-time cross-exchange price impact, showing that enough frag-
mentation can achieve allocative e�ciency.
Since the work of Hamilton (1979), the literature has explored the key tension

between the benefit of fragmentation associated with increased competition be-
tween exchanges and between specialists, which drives down bid-o↵er spreads and
trading fees, as suggested by the theory of Hall and Rust (2003), versus the cost of
fragmentation associated with decreased market depth.8 Although fragmentation
does indeed reduce market depth in our model, consistent with earlier work, we
believe that we are the first to point out the benefit of fragmentation associated
with increased aggregate order aggressiveness, arising from the ability of strategic
traders to shield orders on a given exchange from price impacts incurred on other
exchanges.

II. Baseline Model

This section presents the setup of our baseline model. All primitive random
variables are defined on a complete probability space (⌦,F ,P). There is a single
asset with a payo↵, denoted ⇡, that is a finite-variance random variable with
mean µ⇡.
We model a market whose agents, called “traders,” are of two types: “liquidity”

and “strategic.” For notational simplicity, we let N denote both the finite set of
strategic traders and its cardinality, which is assumed to be at least 3. The only
primitive information available to strategic trader i is the trader’s own endowment
of the asset, Xi ⇠ N(0,�2

X). We assume that endowments are independently and
identically distributed (iid) across traders.
Trade of the asset takes place in a single period on each of a finite number of

identical exchanges. For notational simplicity, we let E denote both the set and
number of exchanges. Each exchange runs a double auction. Strategic trader i

8For a recent empirical contribution exploring this tradeo↵, see Haslag and Ringgenberg (2020).
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submits a measurable demand schedule fie : R2 ! R to exchange e specifying the
quantity fie(Xi, p) of the asset demanded by trader i at any given price p 2 R
on exchange e. We emphasize that the demand schedule submitted to a given
exchange cannot depend on prices (or any other information) emanating from the
other exchanges. A demand schedule can be viewed as a package of limit orders,
each of which is an o↵er to purchase or sell a given amount of the asset at a
given price.9 Liquidity traders collectively submit an exogenously given quantity
Qe ⇠ N(0,�2

Q/E) of market orders to exchange e.
We assume that the supply of market orders is iid across exchanges and that

{Xi | i 2 N}, {Qe | e 2 E}, and ⇡ are independent. We relax these distributional
assumptions in Section V and in extensions considered in Online Appendix H.
An interpretation of these assumptions on liquidity trade is that a large set of
liquidity traders, not depending on the number of exchanges in operation, are
spread evenly across exchanges and trade independently of one another.
The independence of liquidity trade across exchanges ensures that equilibrium

prices are not perfectly correlated across exchanges, which is crucial for our re-
sults. If prices are perfectly correlated across exchanges, there would be no ben-
eficial e↵ects of fragmentation. From a practical viewpoint, the assumption that
liquidity trade is not perfectly correlated across exchanges can be motivated by
assuming that liquidity traders are local to an exchange, in the sense that they
do not have the sophistication or trading accounts necessary to split their orders
across all exchanges. Online Appendix H shows that it is enough for our main
results to assume imperfect correlation of liquidity demands across exchanges, a
weakening of independence. In a multiperiod setting, the key requirement that
prices are not perfectly correlated across exchanges might be motivated by the
notion that liquidity trades are not perfectly synchronized across exchanges.
Given a collection f = {fie | i 2 N, e 2 E} of demand schedules, the price on

exchange e, if it exists and is unique, is the solution10 pfe to the market-clearing
condition

(1)
X

i2N
fie(Xi, p

f
e ) = Qe.

If there does not exist a unique market clearing price, we assume that no trades
are executed. We restrict attention to equilibria consisting of demand schedules
with the property that pfe is uniquely determined.11 Based on (1), trader i is able
to determine the impact of his own demand on the market-clearing price given
the conjectured demand schedules of the other traders.

9In this sense, f(Xi, p), if positive, is the aggregate quantity of the limit orders to buy at a price of p
or higher, and if negative is the aggregate quantity of the limit orders to sell at price of p or lower. The
space of linear combinations of limit orders is dense, in the sense of Brown and Ross (1991), in the space
of technically regular demand functions.

10That is, pfe is a random variable such that for each state ! 2 ⌦,
P

i2N fie(p
f
e (!), Xi(!)) = Qe(!).

11For this, it su�ces that, for each x 2 RN , the aggregate demand function p 7!
P

i fie(p, xi), which
is monotone, is strictly monotone, continuous, and unbounded below and above.
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The preferences of the strategic traders are quasi-linear in cash compensation,
with a quadratic holding cost. Specifically, given a collection f = {fie | i 2 N, e 2
E} of demand schedules, the payo↵ of trader i is

Ui(f) =

 
Xi +

X

e

fie(Xi, p
f
e )

!
⇡� b

 
Xi +

X

e

fie(Xi, p
f
e )

!2

�
X

e

pfefie(Xi, p
f
e ),

for some b > 0. The quadratic term represents a cost for bearing the risk or other
costs associated with holding a post-trade position in the asset. Preferences of
this form are popular in the market microstructure literature (Vives, 2011; Rostek
and Weretka, 2012; Du and Zhu, 2017; Sannikov and Skrzypacz, 2016). Sannikov
and Skrzypacz (2016) provide a microfoundation.
An equilibrium is defined as a collection f = {fie | i 2 N, e 2 E} of demand

schedules with the property that, for each strategic trader i, the demand schedules
fi = {fie | e 2 E} solve

sup
f̂

E[Ui(f̂ , f�i)],

where as usual f�i denotes the collection {fj | j 6= i} of other traders’ demand
schedules. This is a typical demand-function submission game in the sense of
Wilson (1979) and Klemperer and Meyer (1989), extended to allow for multi-
ple exchanges. Multi-exchange demand function submission games were earlier
analyzed by Malamud and Rostek (2017) and Wittwer (2021).
We conclude this section with an interpretation of the distinction between

strategic and liquidity traders. A strategic trader may be viewed as an agent
who is sophisticated, internalizes price impact, is able to easily split orders across
multiple trading venues, has a relatively low aversion to owning assets, and has
a relatively large initial endowment of the asset. A liquidity trader, on the other
hand, may be viewed as an agent who is not sophisticated about price impacts,
has high aversion to holding assets (thus exercising no discretion in the liquidation
of the assets), and has a small initial asset holding, and who therefore submits
market orders with no price sensitivity. Liquidity traders are a typical modeling
device for settings such as ours in which one wishes to avoid perfect inference of
fundamental information from price observations. In our case, the fundamental
information to be inferred does not concern asset payo↵s but rather the aggregate
endowment of strategic traders. Traders have payo↵-relevant private information
about their own endowments but no private information about asset payo↵s. We
will show that our main results are not driven by the e↵ect of “donations” from
liquidity traders to strategic traders.
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III. A Symmetric A�ne Equilibrium

We will demonstrate the existence and uniqueness of a symmetric a�ne equi-
librium defined by demand schedules of the form

(2) fie(p,Xi) = �E � ↵EXi � ⇣Ep,

for constants �E , ↵E , and ⇣E that do not depend on the trader or particular
exchange, but do depend on the number E of exchanges.
Using (1) it can be shown that the slope of the inverse residual supply curve

facing each agent on each exchange is

(3) ⇤E ⌘ 1

(N � 1)⇣E
.

We refer to ⇤E as inverse market depth, or simply as “price impact.” Each
strategic trader is aware that by deviating from the equilibrium demand schedule
and demanding an additional unit on a given exchange, the trader will increase
the market-clearing price on that exchange by ⇤E . Price impact is a perceived
cost to each strategic trader, but is not a social cost because the payment incurred
by any trader is received by another. As emphasized by Vayanos (1999), Rostek
and Weretka (2015), and Du and Zhu (2017), the strategic avoidance of price
impact through the “shading” of demand schedules is socially costly because it
reduces the total gains from the beneficial reallocation of the asset.
Taking price impact as given, in equilibrium trader i selects a demand schedule

for exchange e such that the quantity purchased equates his marginal benefit with
his marginal cost for each realization of the price pe on the exchange, in that

(4) µ⇡�2b

0

@Xi + fie(Xi, pe) + E

2

4
X

k 6=e

fik(Xi, pe)

����Xi, pe

3

5

1

A = pe+⇤Efie(Xi, pe).

Condition (4) would be di↵erent if each trader i could condition his demand on
the realizations of prices on all exchanges on which i participates, as in Malamud
and Rostek (2017). Firstly, there would be cross-exchange price impact, so the
marginal cost of purchasing more of the asset would account for the e↵ect of price
impact for all units traded, as opposed to just those units traded on exchange
e. Secondly, given all exchange prices, the choice by trader i of how much to
purchase on exchange e would be made with perfect foresight of the quantities
that he will purchase on the other exchanges. In contrast, when trader i can
condition demand only on the price on exchange e, he is uncertain about the total
quantity purchased on the other exchanges, provided that that the variance �2

Q of
liquidity trade is not zero. In order to evaluate the marginal benefit of purchasing
an additional unit, he must form a conditional expectation of this quantity. As we
will soon show, this gives rise to significant implications of fragmentation that are
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not present in a model in which demands can be conditioned on contemporaneous
cross-exchange price information.
Based on the demand schedule (2), the final asset position of strategic trader i

is

(5) (1� E↵E)Xi + E↵E

P
j2N Xj

N
+

P
e2E Qe

N
.

As the market setting changes to one in which E↵E is higher, traders retain less
of their own endowments and absorb more of the aggregate endowment. Because
of this, we refer to E↵E as order aggressiveness. Indeed, increasing E↵E in a
multi-exchange setting is allocatively equivalent in a single-exchange setting to a
perception by traders of lower price impacts.
Generically in the parameters of the model, the equilibrium allocation is ine�-

cient. Given the non-discretionary liquidation
P

e2E Qe by liquidity traders, the
e�cient allocation is one in which each strategic trader receives an equal share of
the aggregate supply of the asset, which is

q =
1

N

 
X

e2E
Qe +

X

i2N
Xi

!
.

Inspecting (5), this e�cient sharing rule corresponds to the case of E↵E = 1. By
Jensen’s inequality, E↵E = 1 yields the e�cient allocation because traders have
symmetric convex holding costs. Because preferences are quasi-linear in cash
compensation, this is also the welfare-maximizing allocation, in that any other
allocation would be strictly Pareto dominated by this e�cient sharing rule, after
allowing voluntary initial side payments.
The equilibrium allocation defined by (5) becomes less e�cient as |E↵E � 1|

increases. This is so because replacing E↵E in (5) with a number farther from 1
results in a mean-preserving spread in the cross-sectional distribution of the asset
to strategic traders, state by state. Jensen’s inequality, applied cross-sectionally
in each state ! 2 ⌦, then implies an increase in the sum across traders of quadratic
holding costs.
The following theorem collects several properties of symmetric a�ne equilibria.

Of primary interest is the property that in the presence of non-trivial liquidity
trade, the allocation becomes more e�cient as market fragmentation E increases,
up to the point at which E↵E = 1, and then becomes increasingly less e�cient.
We will explore this issue in more depth in Section IV. Our proof of the theorem,
found in Online Appendix B, uses equations (2), (3), and (4) to derive a can-
didate set of equilibrium demand coe�cients (�E ,↵E , ⇣E) and then applies the
calculus of variations to verify that these candidate coe�cients do in fact uniquely
correspond to an equilibrium.

THEOREM 1: For each positive integer number E of exchanges, there exists
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a unique symmetric a�ne equilibrium. The associated demand-function coe�-
cients (�E ,↵E , ⇣E) form the unique solution to equations (B6), (B7), and (B8)
in Online Appendix B. Moreover:

1. For any E, the market-clearing price on exchange e is

(6) p⇤e =
N � 1

N
⇤E

"
N�E �Qe � ↵E

X

i2N
Xi

#
.

2. For any E, the price impact is

(7) ⇤E =
2b(1 + �E(E � 1))

N � 2
,

where

(8) �E =
E↵2

E�
2
X(N � 1)

E↵2
E�

2
X(N � 1) + �2

Q

.

3. If E > 1, �E is the correlation between the prices on any two distinct ex-
changes from the perspective of any strategic trader i, conditional on Xi.

4. For any E, the final asset position of strategic trader i is given by (5).

5. If there is no liquidity trading, in that �2
Q = 0, then the equilibrium allocation

does not depend on the number E of exchanges.

6. If E = 1 or �2
Q = 0, then the final asset position of strategic trader i is

⇤1

⇤1 + 2b
Xi +

2b

⇤1 + 2b

1

N

X

j2N
Xj +

P
e2E Qe

N
,

where ⇤1 = 2b/(N � 2).

7. Suppose there is liquidity trading, in that �2
Q > 0. Then the order aggressive-

ness E↵E is strictly monotone increasing in E and converges to N/(N � 1).
In particular, a market with only one exchange is strictly dominated, from
the viewpoint of allocative e�ciency, by a market with any larger number
of exchanges.

Part 6 of Theorem 1 implies that with a single exchange, the fraction of the
endowment retained by a trader is increasing in the price impact ⇤1. In a central-
ized market, price impact avoidance is the only source of allocative ine�ciency.12

12Otherwise, the proof of the First Welfare Theorem applies.
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As we have described and will later elaborate, the e↵ect of price impact avoid-
ance on allocative e�ciency can be mitigated by increasing the degree of market
fragmentation. In the next section, we analyze the forces behind this and other
e↵ects of market fragmentation. But, as stated in Part 7 of Theorem 1, any de-
gree of fragmentation is socially preferred to concentrating all trade on a single
exchange.

IV. The E↵ects of Fragmentation

We present several predictions of our model, beginning first with the e↵ects of
fragmentation on price impact.

A. Price Impact

Part 2 of Theorem 1 provides the equilibrium relationship between price impact
and the correlation between exchange prices. This relationship reflects the e↵ect
on trade demand of cross-exchange inference from prices. As seen from (4), the
quantity fie(Xi, pe) purchased by trader i on exchange e at the price pe depends
on the probability distribution of the quantities that trader i will execute on the
other exchanges, conditional on Xi and pe.
To illustrate, suppose for example that in state ! 2 ⌦ trader i is a buyer of

the asset at the equilibrium price on exchange e. If the observed price outcome
pe(!) was lowered, trader i would assign a higher conditional likelihood to lower
prices on the other exchanges because strategic traders’ demands are positively
correlated on any two exchanges (which implies a positive cross-exchange price
correlation, �E). But trader i submits demands to the other exchanges before
observing pe. Thus, the lower is pe(!), the higher is the conditional expected
quantity executed by trader i on the other exchanges. As pe(!) declines, the
marginal utility of trader i per unit purchased on exchange e is also reduced. Due
to cross-exchange inference, the quantity purchased by trader i on exchange e in
response to a decrease in price pe(!) is smaller than would be the case if there was
no cross-exchange correlation. Analogous reasoning can be applied to show that,
due to cross-exchange inference, the quantity purchased by trader i optimally on
exchange e in response to an increase in the price pe(!) is smaller than it would be
if there was no cross-exchange correlation. Overall, cross-exchange price inference
reduces the steepness (absolute slope) of the demand schedule of trader i on each
exchange. The result, by (3), is that price impact rises. Because this channel
does not exist with a single centralized exchange, price impact is always higher
in a fragmented market than in a centralized market.
We now discuss comparative-static e↵ects for price impact associated with a

change in the variance �2
Q of liquidity trade and the number E of exchanges. As

�2
Q increases, prices at di↵erent exchanges become less correlated, so price impact

declines, eventually converging to that of a single exchange market as �2
Q tends to

infinity. Thus, price impact is lower in markets with noisier liquidity trader supply
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because the cross-exchange inference channel is weaker. The following proposition
characterizes the dependence of price impact on the number of exchanges.

PROPOSITION 1: The price-impact coe�cient ⇤E is strictly monotone increas-
ing in the number E of exchanges. If the variance �2

Q of liquidity trade is zero,

then limE!1 ⇤E = 1. If �2
Q > 0, then

lim
E!1

⇤E =
2b

N � 2

 
1 +

N2�2
X

(N � 1)�2
Q

!
,

and for E > 1, cross-exchange price correlation �E declines strictly monotonically
as E increases and converges to zero as E ! 1.

Proposition 1 states that market fragmentation increases price impact and (with
nontrivial liquidity trade) reduces cross-exchange price correlation. Without liq-
uidity trade (�2

Q = 0), price impact diverges as the number of exchanges diverges,

because �E is equal to one. But with liquidity trade (�2
Q > 0), price impact con-

verges to a finite value. Because price impact depends on �E(E � 1), this follows
from the fact that �E declines at a rate proportional to 1/E. The intuition is that
as the number of exchanges increases, the expected quantity traded on a given
exchange decays at rate 1/E, which in turn causes the variability in prices due
to strategic traders’ orders to decay at a rate proportional to 1/E2. Since the
variability in prices due to exchange-specific liquidity trade is �2

Q/E, this implies
that �E must decline at the rate 1/E, so that price impact converges.
Figure 1 illustrates the relationship between price impact and the number of

exchanges, for di↵erent cases of the number N of strategic traders. As illustrated,
price impact converges faster when there are more strategic traders. For instance,
consider the case of b = 1/2, N = 5, and E = 100. Without liquidity trade, price
impact is roughly ⇤E = 33. However, with �2

Q > 0 and strategic traders whose
endowments are 10 times more uncertain (in terms of variance) than aggregate
liquidity trader supply (in that �2

X/�2
Q = 10), price impact drops to approximately

10. As �2
X/�2

Q falls below 10, �E is reduced and, because of this, price impact is
further reduced.

B. Allocative E�ciency

We have just shown that price impact is higher in more fragmented markets.
However, Theorem 1 tells us that, provided there is no liquidity trade (�2

Q = 0),
even though price impact diverges as E tends to infinity, total trade aggressive-
ness is una↵ected and the equilibrium allocation remains constant. Moreover,
when �2

Q > 0, even though price impact increases with fragmentation, total trade
aggressiveness actually increases. One might have expected that the rise in price
impact would lead to a reduction in trade aggressiveness and thus lower allocative
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Figure 1. Price Impact

Notes: Variation of price impact ⇤E with the number E of exchanges, for various cases of N , the
number of strategic traders. In all cases, the variance-aversion coe�cient is b = 1/2 and the ratio
�2
X/�2

Q of the variance of strategic-trader asset endowment to total liquidity trade quantity is 10.

e�ciency, but this is not the case. We turn now to a resolution of this superficial
paradox.
As fragmentation rises, price impact rises but traders are better able to evade

the overall cost of price impact by splitting their orders across exchanges. This is
so because traders bear the cost of price impact on a given exchange only to the
extent of the trades executed on that exchange. By order splitting, a trader can
shield an order on a given exchange from the price impact of units executed on the
other exchanges. When there are more exchanges, the purchase of an additional
unit on a given exchange a↵ects a smaller fraction of the total quantity traded.
When there is no liquidity trade (�2

Q = 0) this e↵ect exactly o↵sets the rise in
price impact, leaving the overall agressiveness of a trader’s demand invariant to
the number of exchanges. When �2

Q > 0, price impact does not rise quickly
enough to o↵set the e↵ect of increased aggressiveness through order splitting.
As a source of intuition, suppose that trader i purchases q/E additional units

of the asset on each exchange, for a total of q units. Because there is no cross-
exchange price impact, this increases the price on each exchange by ⇤Eq/E. Thus,
the overall price-impact cost to trader i is ⇤Eq2/E. If the price impact coe�cient
⇤E were to remain constant, an increase in the number of exchanges would reduce
the overall cost of price impact, because of order-splitting. Price impact in fact
rises with E, but overall order aggressiveness depends on ⇤E/E. By Part 2 of
Theorem 1,
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⇤E

E
=

2b

N � 2

✓
�E +

1� �E
E

◆
.

If the equilibrium cross-exchange price correlation, �E , is imperfect and non-
increasing in E, then ⇤Eq/E is decreasing13 in E. In fact, Proposition 1 states
that if �2

Q > 0, then �E is strictly decreasing in E and ultimately converges to zero.
Intuitively, when prices are imperfectly correlated, the e↵ects of cross-exchange
inference discussed in Section IV.A are weakened by market fragmentation, so that
price impact rises less quickly than the number of exchanges. Thus, the dominant
e↵ect on overall aggressiveness is order-splitting, and overall price impact costs
decline with E. As a result, agents trade more aggressively in more fragmented
markets.
At low levels of fragmentation, increases in trade aggressiveness are beneficial

for allocative e�ciency. But when markets become su�ciently fragmented, addi-
tional increases in aggressiveness are ine�cient, in that E↵E increases past the
point of e�ciency, at which E↵E = 1, rising with ever larger E to the limit
N/N � 1. We emphasize, however, that trade never becomes so aggressive that
fragmentation leads to a loss of allocative e�ciency relative to that of a market
with a single exchange.
By Equation (5), the number of exchanges that maximizes allocative e�ciency

is that for which E↵E is closest to 1.

PROPOSITION 2: Suppose �2
Q > 0. Let

(9) E⇤ = 2 +
2

N � 2
+

N � 1

N � 2

N�2
X

�2
Q

.

If E⇤ is an integer, the unique symmetric a�ne equilibrium for a market with
E⇤ exchanges achieves an e�cient allocation of the asset, by allocating an equal
amount q̄ of the asset to each strategic trader. In general, the number of exchanges
that maximizes allocative e�ciency is bE⇤c or dE⇤e.

By Proposition 2, the optimal number of exchanges is finite, is at least 2,
and depends crucially on the ratio of the variance of the endowment of strategic
traders to the variance of the total amount of liquidity trade, �2

X/�2
Q. This

ratio determines the cross-exchange price correlation �E , as seen in Equation (8),
which in turn determines price impact. As �2

X/�2
Q rises, price impact is higher,

so more fragmentation necessary to o↵set the adverse e↵ect of price impact with
the beneficial e↵ect of increasing the number of exchanges over which strategic
traders can split their orders.

13The assumption that liquidity trade is independent across exchanges ensures �E < 1. If liquidity
trades were instead perfectly correlated across exchanges, then �E would be 1 and fragmentation would
have no e↵ects on allocative e�ciency.
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It is perhaps surprising that the socially optimal number of exchanges is finite.
For any finite E, price impact costs are positive and only disappear in the limit, in
that limE!1⇤E/E = 0. It turns out, however, that fragmentation introduces an
additional ine�ciency beyond price impact. For intuition, consider again equation
(4), which determines the demand of trader i at a given price, pe on exchange
e. To evaluate the marginal benefit of purchasing additional units, trader i must
form a conditional expectation of the quantities that he will purchase on the other
exchanges. To form this expectation, trader i must in turn form a conditional
expectation of the prices on the other exchanges. If prices at distinct exchanges
are perfectly correlated, then E [pk |Xi, pe] = pe for each exchange k. However, if
exchange prices are imperfectly correlated, then, using (6), it can be shown that

(10) E [pk|Xi, pe] = �(1� �E)

✓
N � 1

N
⇤E↵EXi �N�E

◆
+ �EpE ,

for an arbitrary exchange k 6= e. That is, trader i must use his own endowment
Xi to forecast prices on the other exchanges. The e↵ect of using Xi for cross-
exchange inference is an increase in ↵E , the sensitivity of demand with respect
to Xi.
The intuition behind this is analogous to that of Section IV.A, where we ex-

plained why cross-exchange inference leads to a rise in price impact. Holding pe
fixed, if Xi is lowered, trader i would expect prices on the other exchanges to rise,
as seen by (10), and thus would expect to purchase less on the other exchanges.
The marginal benefit of purchasing an additional unit on exchange e would then
rise. As a result, the sensitivity of the quantity purchased by trader i to reductions
in Xi is increased by cross-exchange inference. That is, total order aggressiveness
↵E increases because of the role of Xi in cross-exchange inference. This force
is not present in a market with a single exchange. With a single exchange, the
allocation would be e�cient if traders ignored their price impact. In contrast, if
�2
Q > 0, then as E tends to infinity, even though price impact disappears, trade

eventually becomes overly aggressive from a welfare perspective.
Figure 2 illustrates the results of this section. As shown, E↵E is strictly in-

creasing in fragmentation and can exceed the socially e�cient level. The socially
e�cient number of exchanges increases with �2

X/�2
Q.

C. Price Informativeness

Our finding that trade aggressiveness increases with market fragmentation has
natural implications for price informativeness. By price informativeness, we mean
the degree to which prices reveal information about the average endowment X =P

i2N Xi/N of strategic traders. This notion is especially relevant when viewing
our model as though a snapshot of a dynamic market in which liquidity trade
is serially uncorrelated and the aggregate strategic endowment is a persistent
Markov process. In such a setting, the aggregate endowment of strategic traders
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Figure 2. Allocative Inefficiency

Notes: We plot equilibrium allocative ine�ciency as measured by | 1� E↵E | against the number of
exchanges for di↵erent values of the ratio �2

X/�2
Q of the variance of the endowment of a strategic trader

to the variance of the total amount of liquidity trade. In all cases, the number N of strategic traders is
10. Allocative ine�ciency, |1� E↵E |, does not depend on the variance-aversion coe�cient b.

is a su�cient statistic for inference regarding future prices and future aggregate
endowments.
Because of the joint normality of prices and endowments in our model, the

conditional variance of X given exchange prices is an unambiguous metric for
price informativeness. Our results are summarized in Proposition 3.

PROPOSITION 3: Suppose that the variance �2
Q of liquidity trade is not zero.

Then:

1. For any exchange e, var(X̄ | p⇤e) is strictly monotone increasing in the num-
ber E of exchanges and converges to var(X̄) as E goes to 1.

2. var(X̄ | {p⇤e : e 2 E}) is strictly monotone decreasing in E.

That is, as market fragmentation rises, the informativeness of the price on
any individual exchange worsens, but overall price informativeness, taking into
consideration information from all exchange prices, improves.

V. The Case of Observable Aggregate Endowment

This section presents a simplified version of the model in which the aggregate
endowment of strategic traders is publicly observable. This allows a demonstra-
tion of the welfare benefits of fragmentation in a setting that requires neither
liquidity traders nor Gaussian asset endowments. As before, the equilibrium
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price on a given exchange is linear with respect to the aggregate endowment and
exchange-specific liquidity trade. Thus, conditional on the aggregate asset endow-
ment which we now assume is publicly observable, prices on any two exchanges are
uncorrelated, so traders do not make cross-exchange inferences from prices. This
shuts down the cross-exchange inference channel, allowing an isolated analysis of
the welfare benefits of order splitting.
We retain the model setup of Section II with the exceptions that, for any ex-

change e and any trader i, (a) Qe and Xi are of finite variance but not necessarily
normally distributed (though Qe still has mean zero) and (b) trader i observes14

the private endowment Xi and the average endowment X. The following theorem
characterizes the equilibrium of this model.

THEOREM 2: For each number E of exchanges, there exists a symmetric a�ne
equilibrium. If, in addition, for each e, Qe has full support on R, then the equi-
librium is unique in the class of symmetric a�ne equilibria, and:

1. The price-impact coe�cient ⇤E = 2b/(N�2) does not depend on the number
E of exchanges.

2. For each fixed number E of exchanges:

a) The price on exchange e is

p⇤e = �2b

✓
X̄ +

Qe

N � 2

N � 1

N

◆
+ µ⇡.

b) The final asset position of trader i is

⇤E

⇤E + 2bE
Xi +

2bE

⇤E + 2bE
X̄ +

P
e2E Qe

N
.

3. Allocative e�ciency is increasing in the number E of exchanges. As E di-
verges, the allocation converges to the e�cient allocation, q̄ to each strategic
trader.

4. The total expected equilibrium payment �E
⇥P

e2E p⇤eQe
⇤
of liquidity traders

is invariant to the number E of exchanges and is equal to

var(
P

e2E Qe)

N � 2

N � 1

N
.

In this setting, price impact is a constant that does not depend on the level of
fragmentation because there is no cross-exchange inference e↵ect. By Part 3 of
the theorem, more fragmentation is unambiguously beneficial in this setting. In

14That is, the demand submitted by trader i on exchange e is a measurable function fie : R3 ! R
that, at any price p, determines the demand fie(Xi, X, p).
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the limit as E tends to infinity, the fully e�cient allocation obtains. The ben-
efits here of fragmentation arise entirely from the beneficial e↵ects of increased
order aggressiveness associated with order splitting. An equilibrium exists with
the properties stated in the theorem even if there is no liquidity trade, in that
Qe = 0 for each e. However, liquidity trade is still needed for equilibrium unique-
ness. Even in the presence of liquidity traders, the total expected payment of
liquidity traders is invariant to market fragmentation. Thus, the beneficial e↵ect
of fragmentation is not related to the exploitation of liquidity traders by strategic
traders.15 In the model of Section II, the liquidity traders are only a conve-
nient modeling device for breaking the perfect correlation in exchange prices. In
an alternative high-frequency multi-period setting, Budish, Cramton and Shim
(2015) note that the prices of similar assets on di↵erent exchanges are virtually
uncorrelated, empirically. We explore a multi-period setting in the next section.

VI. A Dynamic Model

One might guess that market fragmentation would not support allocative e�-
ciency as well in a dynamic setting as in a static setting. In our static setting,
the price impact of a trader’s orders on exchange e does not increase trading
costs on other exchanges, because of the simultaneity of trade. In a dynamic
setting, however, when submitting a trade on exchange e at period t, a trader
internalizes the resulting impact on the prices on all exchanges in period t + 1,
given the inference about aggregate inventory that is drawn by other traders from
observing pet. Nevertheless, in this section, we show that market fragmentation
allows e�cient trade even in a dynamic setting, despite the associated cross-period
cross-exchange price impact and higher within-period price impact. Moreover, the
e�cient number of exchanges is invariant to trading frequency, and is the same
as that of the static model.

A. Setup

Trade occurs at each of a discrete set of times separated by some duration �. A
positive integer t denotes the t-th trading date. As in the baseline static model,
E exchanges operate separate double auctions for a single asset at each trade
time. The asset pays ⇡t at date t, post-trade, where ⇡1,⇡2, . . . are independent
with common mean µ⇡�. Liquidity traders supply a Gaussian quantity Qet of
the asset to exchange e at trade date t, independent across exchanges and dates,

15In the setting of Section IV, our results are not driven by donations from liquidity traders, but
liquidity traders do pay more in expectation as fragmentation increases. The total expected payment to
strategic traders is

(11) E

2

4
X

e2E

p⇤eQe

3

5 =
N � 1

N
⇤E�2

Q.

which is strictly increasing in E since ⇤E is strictly increasing.
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with common mean zero and variance �2
Q�. Immediately prior to trade at date

t, trader i receives a Gaussian inventory shock ✏it that has mean zero and vari-
ance �2

X�, independent across trading dates and traders. The inventory shocks,
liquidity trader supplies, and the asset payo↵s are independent.
The pre-trade inventory of trader i at period t is

(12) Xit = Xi,t�1 +
X

e2E
qie,t�1 + ✏it,

where qiet is the quantity purchased by trader i on exchange e at period t. For
t = 0, we set Xi,t�1 +

P
e2E qie,t�1 = 0. Note that since the equilibrium we

construct has e�cient trade, the variance of ✏it, �2
X�, is also the conditional

variance of Xit from the perspective of each trader following trade at date t� 1.
It is not, however, the unconditional variance of Xit for t > 0.
During the time interval [t�, (t + 1)�), the net payo↵ to trader i, discounted

to the beginning of the interval at the rate r > 0, is the total initial payo↵ from
asset holdings, net of asset purchase costs, plus discounted inventory holding
costs, given by

Fit(qit) = ⇡t

 
Xit +

X

e2E
qiet

!
�
X

e2E
petqiet �

Z �

0
e�rsb̃

 
Xit +

X

e2E
qiet

!2

ds

= ⇡t

 
Xit +

X

e2E
qiet

!
�
X

e2E
petqiet � b

 
Xit +

X

e2E
qiet

!2

,(13)

where qit = (qi1t, ..., qiEt) and

b = b̃
1� e�r�

r
.

Our formulation is in the spirit of Vayanos (1999), di↵ering mainly in that
we allow multiple exchanges, introduce liquidity traders, and assume a di↵erent
inventory preference model. For tractability, a significant part of the analysis
in Vayanos (1999) focuses on the case in which �2

X tends to zero. Our analysis
applies to arbitrary �2

X .
We do not solve for an equilibrium of the model for an arbitrary number E

of exchanges because of the problem of infinite regress of beliefs, as described in
the conclusion of Vayanos (1999). In the presence of liquidity traders, strategic
traders choose their trades based on their beliefs about the aggregate market
asset inventory, as well as beliefs about other traders’ beliefs about aggregate
inventory, beliefs about the beliefs of other traders about their own beliefs, and
so on, causing the state space to explode. To our knowledge, there has been no
analysis of demand-function submission games in which traders filter information
from prices so as to discern strategic trading from liquidity trading. Rather than
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addressing equilibria for general E, we instead construct an equilibrium for a
specific number E of exchanges with the property that the associated equilibrium
is perfect Bayesian and implements e�cient trade. This equilibrium is tractable
because e�cient trade dramatically simplifies the inference problem of each trader,
given that the sum of exchange prices perfectly reveals the aggregate inventory
after each round of trade.

B. An Equilibrium with E�cient Trade

In this section we briefly derive an e�cient equilibrium and characterize its key
properties, including the associated number E of exchanges. A proof is given in
Online Appendix E.
To start, we conjecture that there exists a number E of exchanges such that in

equilibrium each trader i submits the demand schedule to exchange e given by

(14) fiet(Xit, pet, Bt) = � 1

E
Xit � ⇣pet + ⇢Bt + �,

for some constants ⇣, ⇢, and � to be determined, where Bt is defined recursively
by B0 = 0 and

(15) Bt = NE⇢Bt�1 +NE�� ⇣N
X

e2E
pe,t�1.

We later interpret Bt as a variable related to trader beliefs about the aggregate
supply of the asset. Given the conjectured form (14) of the demand function,
market clearing implies that the equilibrium price on exchange e is

(16) pet =
N⇢Bt +N��Qet � 1

E

P
j2N Xjt

⇣N
.

The post-trade aggregate inventory of strategic traders at date t is

Wt =
X

j2N
Xjt +

X

e2E
Qet.

Substituting (16) into (14) and summing across e 2 E, we verify that the final
inventory of trader i at date t is e�cient and equal to Wt/N . By substituting
(16) into (15) we see that, along the equilibrium path, Bt is equal to Wt�1. If
any given trader were to deviate from the equilibrium strategy prior to date t,
it is possible that Bt 6= Wt�1. Nonetheless, even if traders had deviated prior
to date t, any trader who has not deviated must believe that Wt�1 = Bt with
probability 1 because the Gaussian liquidity trading and inventory shocks ensure
that deviations are undetectable. Thus, any given trader i must believe that any
other trader j believes that Wt�1 = Bt, and so on with respect to higher-order
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beliefs. Thus, Bt is a su�cient statistic for higher-order beliefs. This allows for a
tractable equilibrium construction.
We now provide intuition for the role of the key state variable Bt in traders’

demand schedules. If trader j follows the equilibrium strategy, (15) and (14)
imply that

Xj,t�1 +
X

e2E
qie,t�1 =

1

N
Bt.

Summing across j 6= i,

X

j 6=i

 
Xj,t�1 +

X

e2E
qje,t�1

!
=

N � 1

N
Bt.

Thus for trader i, Bt is a su�cient statistic for the total post-trade inventory of
other traders at date t� 1. This in turn implies that Bt is su�cient information
for trader i to conduct inference about the residual supply that he will face on
each of the exchanges at time t. This explains the role of Bt in the demand
schedule (14).
In a perfect Bayesian equilibrium, any given trader i, conjecturing that other

traders submit demand functions according to (14), solves the stochastic control
problem

(17) sup
{fiet}

E
" 1X

t=0

e�r�tFit(qit)

���� Xi0

#
,

with demands that are measurable16 with respect to the history of inventory levels
{Xis}st, trades {qies}e2E,s<t, and prices {pes}e2E,s<t, and satisfy17

(18) lim
t!1

e�r�tE
⇥
X2

it

⇤
= 0,

ruling out “Ponzi schemes” that are based on explosive growth in asset positions.
An equilibrium is characterized by optimal demands determined by the same
function fiet( · ) of (14).
In solving the optimization problem (17), trader i correctly considers the im-

pacts of his trades on current and future prices. These impacts occur directly
through the formation of the clearing price on the exchange to which an order is
submitted and also through the recognition by trader i that other traders draw in-
ference from market prices about the aggregate market supply of the asset, which
a↵ects future prices at all exchanges. This impact occurs through the “beliefs”
state variable Bt, through the dynamic equation (15).

16Although the objective function involves second moments of Xit, we allow strategies that do not
have finite second moments and show that any such strategy is strictly suboptimal.

17This condition is implied by the square-integrability condition E
⇥P1

t=0 e
�r�t P

e2E q2iet
⇤
< 1.
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In Online Appendix E, we use Bellman’s principle of optimality to calculate
the required number E⇤ of exchanges, which is given by (9), the same as that for
the static model. Solutions for the equilibrium demand coe�cients ⇢, ⇣, and �
are reported at the end of Online Appendix E.
From the demand schedule (14), the within-period price impact on any exchange

is

(19)
1

⇣(N � 1)
=

2b(1 + �(E � 1))

N � 2� e�r� 2N�2
E (1 + �(E � 1))

,

which is higher than in the associated static model. We also compute the cross-
period cross-exchange price impact

(20)
dpe,t+1

dqjkt
= �N⇢

1

(N � 1)⇣
=

1

E

2b(1 + �(E � 1))

N � 2� e�r� 2N�2
E (1 + �(E � 1))

,

which is a fraction 1/E of the within-period within-exchange price impact. (Our
di↵erential notation for this price sensitivity involves a transparent abuse of nota-
tion.) The marginal impact of the quantity traded by any trader on any exchange
on the sum of exchange prices in the next time period is equal to the within-period
within-exchange price impact.

C. Summary of Results

The following theorem summarizes the results of our analysis of the dynamic
model.

THEOREM 3: If E⇤ of (9) is an integer, then there exists a perfect Bayesian
equilibrium in symmetric a�ne demand schedules for the dynamic market with
E⇤ exchanges such that:

1. Trade is allocatively e�cient along the equilibrium path.

2. Traders submit the demand schedule given by (14), with ⇢, ⇣, and � given
by (E23), (E24), and (E25), respectively.

3. Beliefs about the aggregate market inventory evolve according to (15).

4. Trades on each exchange have nonzero price impact at each exchange in the
next period, given by (20).

5. The within-period within-exchange price impact (19) is higher than that for
the associated static model.

In the equilibrium, by deviating, traders can manipulate other traders’ beliefs
about the aggregate market asset inventory. Following a one-shot deviation, trade
returns to e�ciency in the next period, and beliefs become “corrected.”
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Our analysis shows that in our dynamic model, as for the associated static
model, a precise and non-trivial amount of market fragmentation achieves alloca-
tive e�ciency. Relative to the static model, our dynamic model allows a clearer
characterization of how fragmentation improves price discovery. A weakness of
our analysis of the dynamic setting is that, because of the need to incorporate
the infinite regress of beliefs about beliefs, we are able to characterize equilibrium
only for the number of exchanges that is associated with an e�cient allocation.
A notable implication of Theorem 3 is that this e�cient number of exchanges is
invariant to the frequency of trade and is identical to that of the static model.
Though the presence of multiple periods of trade increases price impact relative
to the static model, it also amplifies the role of traders’ asymmetric information,
which, as we saw in the static model, leads to more aggressive order submission.
This is so because traders rely on their privately observed inventories to conduct
inference that is relevant not only to current-period trade prospects, but also to
future-period trade prospects. This e↵ect on trade aggressiveness precisely o↵sets
the e↵ects of the rise in price impact on each exchange.
Our analysis has side implications for the optimal trading frequency. We show

in Online Appendix E that our model is essentially equivalent to a setting in
which traders’ inventories are continually shocked by independent Brownian Mo-
tions. In that setting, since Theorem 3 also applies, for the e�cient number E⇤

of exchanges, allocative e�ciency increases as trade frequency increases. This
contrasts with Vayanos (1999) and Du and Zhu (2017), who show that with a
single exchange, allocative e�ciency may decline as trade frequency increases.

VII. Discussion of Model Extensions

In this section we summarize the results of three extensions of the main model
that are provided in appendices.

A. Endogenous Liquidity Trade, Exchange by Exchange

In our first model extension, found in Online Appendix F, liquidity traders, who
are local to each exchange and conduct no cross-exchange trade, choose the sizes
of their trades. Liquidity traders are assumed to have the same preferences as
strategic traders, with the exception of a potentially di↵erent quadratic holding
cost parameter, c. They are also each endowed with a Gaussian distributed quan-
tity of the asset prior to trade. Thus, the baseline model is equivalent to the case
in which c = 1, in that liquidity traders liquidate their entire endowed positions
as though without discretion. Relaxing this baseline extreme assumption to the
case of finite c, we find for any positive integer E > 1, there exists a cuto↵ c such
that if c > c, then a market with 1 < E  E exchanges is welfare superior to a
centralized market, in that the expected sum of all agents’ holding costs is lower.
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B. Private Information About Asset Payo↵

In a second extension, found in Online Appendix G, agents have di↵ering private
information about the asset’s final payo↵. In this case, allocative e�ciency is not
necessarily improved by fragmenting a centralized market. This is so because
fragmentation leads agents to trade more aggressively for two reasons: not only
to mitigate holding costs, but also to exploit payo↵-relevant private information.
While the former motive leads fragmentation to improve allocative e�ciency,
as we demonstrated in Section IV, the latter e↵ect can cause fragmentation to
reduce allocative e�ciency, because the e�cient allocation of the asset does not
depend on agents’ payo↵-relevant private information. Whether fragmentation is
beneficial or harmful is shown to depend on the relative magnitudes of these two
e↵ects.

C. Correlated Trade Motives

In a third extension, found in Online Appendix H, we relax the assumption
that the asset endowments (X1, . . . , XN , Q1 . . . , QE) are jointly independent. We
retain the assumption that these random variables are jointly Gaussian, but al-
low for an essentially arbitrary covariance matrix, subject to the condition that
the traders’ endowments X1, . . . , XN are symmetrically distributed and that the
liquidity-trade quantities Q1, . . . , QE are symmetrically distributed.
If a strategic trader’s endowment Xi does not covary more negatively with

aggregate liquidity trader supply
P

eQe than it covaries positively with the ag-
gregate endowment

P
j Xj , then there is an interior optimal level of fragmentation

which, up to the integer constraint on E, achieves the e�cient allocation.18

In this setting, however, an arbitrary level of market fragmentation need not
coincide with an unambiguous improvement in allocative e�ciency over a central-
ized market. Whether this is so depends on the covariances of endowments. With
some parameters, agents may trade even more aggressively than they do in the
baseline model, which we have shown has the property that trade already becomes
“too aggressive” for su�ciently large E. Moreover, if a strategic trader’s endow-
ment covaries more negatively with the aggregate liquidity trader supply than
it covaries positively with the aggregate endowment, fragmentation is harmful.
This is so because the ine�ciency associated with the inferior trading technology
associated with disconnected fragmented markets dominates the beneficial e↵ect
of reducing the strategic avoidance of price impact. This follows from the fact
that, ex ante, with this correlation structure, traders expect that the residual
supply on each exchange is on average relatively favorable for o↵setting their po-
sitions. This, however, leads to less aggressive trade than is socially e�cient since
agents are less willing to trade large quantities at unfavorable prices on any given

18Positive definiteness of the covariance matrix ensures, for each i, Xi is positively correlated withP
j Xj .
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exchange because they expect that prices on the other exchanges will be more
favorable.

VIII. Concluding Discussion

We have presented a simple market setting in which fragmentation of trade
across multiple exchanges improves allocative e�ciency and price informativeness.
Our main marginal contributions are (a) a newly identified channel by which
cross-exchange price inference exacerbates price impact, and (b) a demonstration
of the beneficial e↵ects of cross-exchange order-splitting on allocative e�ciency
and price informativeness. We find that although fragmentation reduces market
depth on any given exchange, this need not be a sign of worsening overall liquidity
or market ine�ciency. We characterize the number of exchanges that achieves
allocative e�ciency, and show that this “optimal” degree of fragmentation is
invariant to the frequency of trade and indeed the same as that of the static
version of the model.
Our stylized model abstracts from many important practical considerations. We

do not consider some of the direct frictional costs of trade and order splitting, such
as trading fees and subsidies, minimum tick sizes, and bid-o↵er spreads, which
are endogenous to market structure, particularly through the role of competition
among exchange operators, specialists, and market makers (Baldauf and Mollner,
2020; Chao, Yao and Ye, 2018; Colliard and Foucault, 2012; Malinova and Park,
2019; Foucault and Menkveld, 2008; Chlistalla and Lutat, 2011; Clapham et al.,
2021; Hengelbrock and Theissen, 2009; Parlour and Seppi, 2003). For example,
Foucault and Menkveld (2008) show that, with non-zero tick sizes, adding an
additional limit-order market increases market depth by allowing limit-order sub-
mitters to jump the queue of posted orders on one exchange by posting orders on
another exchange, due to the absence of cross-exchange time-priority rules. Foley,
Jarnecic and Liu (2020) show that liquidity providers increasingly fragment their
activities amongst alternative venues, attempting to jump long queues on larger
venues by increasing submissions to venues with short (or empty) queues. This
reduces adverse selection costs faced on alternative venues and helps explain the
increase in fragmentation for jurisdictions with trade-through prohibitions.
We also do not consider the endogenous entry of exchanges, a common theme

in the literature going back to Glosten (1994), as reviewed by Pagnotta and
Philippon (2018). Our model does not capture the e↵ect of high-frequency traders
who can take advantage of slight discrepancies in order execution times across
di↵erent exchanges (Eric Budish, Robin Lee and John Shim, 2019; Carole Gresse,
2012; Emiliano Pagnotta and Thomas Philippon, 2018). We also ignore the role
of trade-through rules such as Regulation NMS, which e↵ectively forces all U.S. lit
exchanges to recognize the best bid or o↵er available across all order books in the
market. While Reg NMS has the e↵ect of consolidating markets for small trades,
trade-through rules do not play a significant role in price-impact costs, which are
only pertinent for large trades. The ine�ciencies associated with price-impact
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cost avoidance through order splitting are the main concern in this paper.
Because we have abstracted from these and other potentially important realistic

e↵ects, we make no normative claims or policy recommendations. The mecha-
nisms that we identify do, however, appear to have a natural basis and to be
worthy of serious consideration in policy discussions.
Our model also has implications for the welfare impact of innovation of trading

technologies. For example, the beneficial welfare e↵ects of order splitting that we
have described rely crucially on the realistic assumption that orders submitted to
one exchange cannot condition on prices at other exchanges. If, instead, trading
technology were to allow orders to condition on cross-exchange prices, then trades
on a given exchange would have impact on prices at other exchanges, which could
eliminate the beneficial e↵ect of order-splitting in fragmented markets, an issue
considered by Wittwer (2021) and Rostek and Yoon (2020).
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