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The supplement is organized as follows. We first prove Theorem A.1 in Appendix[E] Since
continuous-time independent random matching without enduring partnerships can be viewed
as a special case of the model considered in Appendix A with all the enduring probabilities
being zero, most results in Section 2 are covered by the corresponding results in Appendix A.

Some remaining properties are then checked in Appendix [F]

E Proof of Theorem A.1

This section is organized as follows. Subsection presents a static random partial matching
model with finitely many agents as well as some estimations on the relevant matching proba-
bilities. Such a static model will be used in the construction of a finite-period dynamic random
matching model with finitely many agents in Subsection To make the proof of Theorem
A.1 more accessible, we first state in Subsection some properties of the finite-agent dynamic
matching model (Lemmas - that are needed for proving Theorem A.1 in Subsection
[E4l The proofs of the technical results in Lemmas through are postponed to Subsec-
tion In particular, Lemma is proved in Subsection In order to prove Lemmas
- some additional technical results are presented as Lemmas through in
Subsection [E.5.2] Then, Lemmas through are shown in Subsections through
respectively.

E.1 Finite-agent static random partial matching with general matching probabil-
ities

Let I =1{1,... ,M} be a finite set with M an even integer in the set N of positive integers, Zg

the power set on I, and \g the counting probability measure on Zy with \g(A) = |A|/|I]| for

any A € Ty, where |A| is the cardinality of |A|. A partial matching ¢ on [ is an involution from

I to I in the sense that ¢ (1(i)) = ¢ for any ¢ € I. When (i) # i (¢(i) = i), agent 4 is matched
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with agent (i) (agent 7 is not matched). When (i) # i for each ¢ € I, v is said to be a full
matching on /. For a given probability space (€2, Fy, Fy), a random (partial) matching 7 on I
is a mapping from I x € to I such that 7, = 7(-,w) is a partial matching on I for each w € .

The following result is essential to the construction of finite matching model with multiple

periods (for the matching steps) in Subsection

Lemma E.1. Let (I,Zy, \o) be the finite counting probability space as above. Then, there exists
a finite set Q with its power set Fo such that for any type function o® from I to S and partial
matching ©° on I with
) = {a°<w°<i>> i 7000) # i
J if (i) = i,
and for any function q from S x S to Ry with ) cqq,, < 1 and py;q,; = Py for any
k,l € S, where p = g (ao,go)_l is the extended type distribution induced by (ao,go) on §
there exists a random matching w from I x Q to I and a probability measure Py on (2, Fy) with

the following properties.
(i) Let H={i € I :7%(i) #i}. Then Py ({w € Q: m,(i) = 7°() for any i € H}) = 1.
(ii) Let g be the mapping from I x Q to SU{J}, defined by

) a®(m(i,w ifmw(i,w) £
gli,w) = (m(i,w)) ' (‘) |
J if m(i,w) =1
for any (i,w) € I x Q.
Fiz any i,j € I with i # j, 7°(i) = i and 7°(j) = j; denote a°(i) and a°(j) by k1 and ko
respectively. For any ly,ls € S, the random matching m and the associated type process g

satisfy the following inequalities:

Po(mi =) € ——\
Mpli
o 1
Tpyty — I < Polgi =) < qpyyy Of Pryy = s
5 1 1 . 1
Qi 1y Dol — Ive < Po(gi = 11,95 = l2) < Qrypy Qeoty, + e if Pryg = e and pr,; > Ve

(iii) For any k,l € S and any w € (Q,

: . . . . 2
’)\0 ({z el: ozo(z) = k,go(z) =J,g(i,w) = l}) - kaqm < ﬁ

'That is, for any subset C of 3, p(C) = o ((a07g0)71 (C)) In particular, p,; = Ao ((ao,go) = (k;J)).
Note that ¢° represents the partners’ types for the initially matched agents.
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To reflect their dependence on (o, °, q), ™ and Py will also be denoted by T(a0,70,q) aNd

)
Pa0,70,¢) respectivelyﬂ

Part (i) means that initially matched agents are not rematched. The three inequalities
in Part (ii) provide respectively (1) an upper bound on the probability for two single agents
to be matched, (2) an estimation on the distribution of the partner’s type of a newly matched
agent, (3) the approximate pairwise independence of the random types of the partners for the
newly matched agents. Part (iii) provides an estimation of the cross-sectional extended type

distributions for the newly matched agents.

E.2 Finite-agent dynamic matching model

What we need to do is to construct a sequence of transition probabilities and a sequence
of extended type functions. Since we need to consider random mutation, random matching,
random type changing and break-up at each time period, three finite spaces with transition
probabilities will be constructed at each time period.

Before the formal construction, we briefly describe the timeline. In each period, there are
three steps. The first step is the mutation step, agents (single or matched) change their types
independently. The second step is the matching step, only single agents take part in a static
random matching described in Lemma The third step is the type changing with break-up
step, at which agents who were just matched in the last step either enter into a long-term
partnership or do not, and then experience a change in their types according to the specified
type-changing probabilities. At this step, agents who have been matched for more than one
step may break up with some probability, and change their types according to the specified
type-changing probabilities if they indeed break up.

Denote

7 =max{n : k,l € S,k #l},
G =max{0y(p): k,l € S,pe A},
9= max{ﬁkl 1kl e S},
a = max{n,q, 9} + 1.
Let M be an integer in N with M > max{Ka, 3}. Let M be an even integer in N and sufficiently

larger than M (an explicit expression for M will be given after Lemma [E.2). As in Subsection
let I ={1,2,... ,M }, Zy the power set on I, and A¢ the counting probability measure on

2The above equation shows that g;,i € I are approximately pairwise independent. In fact, we can use similar
techniques to prove that g;,7 € I are approximately mutually independent. For simplicity, we only demonstrate
the case for approximate pairwise independence.



To. Let Ty be the finite set {n}M 0 The corresponding time line is {n/M }M 0 so that the time
length for each period is 1/M.

We define the parameters for the dynamical system as follows. For any k,k’,1,I' € S,
and p € A, let

; _{mklﬂ}z if k1
ol = . .
L= res\ey M LE=1,
o 1
G (P) = 70 (p) and g, (p) =1 — > a4
les
A . 1
&k = min{&x, 1 — W}’
Okl = Ok,
Skl = Skl
A 1 1
0kl—-jiﬂkl+‘jjg-

Note that M > Ka and @ = max{7, g, 9} + 1. Then, we can obtain that

a—1 1 a—1 1 1
< —=— ifk#I
Ko TS ke Trka-x R

1

a 1
~ < i -
qkl( ) K— K7

M <

7. (P >1—K—: .
Qk(p)_ K 0

In this way, we have defined 7, ékl and @kl so that 7, and zg‘kl have lower bound #, and fkl
has upper bound 1 — . Such bounds will be used in the proof of Lemma
For the initial stage at period 0, let &° be the initial type function from I to S, and #°

the initial partial matching from I to I. Let ¢° be the mapping from I to S U {J} defined by

a0 (70(i i) # i
go(i):{ @) 1007

Oi) =1,
for any i € I. Let p° = X\g (do, go)‘l be the initial cross-sectional extended type distribution

>]>

on S. We require that [)2 g = ﬁ for any k € S. Since the initial stage is deterministic, we can
let (920, &0, Qo) be the trivial probability space over the single set {0}. A function on I can be
trivially viewed as a function on I x €y, and vice versa.

Suppose that the construction for the dynamical system D has been done up to time
period n—1 for n > 1. Thus, {(Qn, Em, Qm) }or=s and {@™, 7™, ™3™} have been constructed,
where each €1, is a finite set with its power set Sm, Qm a transition probability from Q™! to

(Qny Em), @™ a type function from I x Q™! to the type space S, and #™ a random partial



matching from I x Q™! to I. Here, Q™ = [0, and {w;}72; will also be denoted by w™
when there is no confusion. Denote the product transition probability Qo ® @1 ® -+ - ® @, by
Q™, and ®L,&; by E™ (which is simply the power set on Q™). Then, Q™ is the product of
the transition probability Q,, with the probability measure Q™ 1.

We shall now consider the constructions for period n. We first work with the random
mutation step. Let €3, o = S’ (the space of all functions from I to S) with its power set
E3n_o. For each w33 € Q33 and i € I, if %" 3(i,w®"3) = k, define a probability measure
7?3"73 on S by letting 'ygfnmig(l) = 1), for each [ € S. Define a probability measure Qg"igg
on (S,E3,-2) to be the product measure [];; A< Let a3m2 (I x T[22 Qm) - S

m=0
be such that &3"2 (i,w3”_2) = w3, 2(1). Let #3772 : (I X Hf’:;g Qm> — I be such that
A2 (1,w3n=2) = #9779 (i, ). Let 5972 (1 x [[5g Q) — S U{J} be such that
g3n—2 (Z w3n—2) _ d3n72 (7%3”72(7:, w3n72)’ w3n72) if 7¢r3n72(i,w3n72) 7& i
’ J if 732 (i,w3n2) = .

~3n— A 3mn—2  ~3m—2 \—1 : e
Let pi@n_zz =X (ai@n_QQ,gzg,L_QQ) be the cross-sectional extended type distribution after the

random mutation step.
Next, we consider the step of random matching. Let 23,1 be the finite space constructed

in Lemma with the power set &s,,_1. For any given w32 € Q32 the type function is

~3n—2

32 A O

-), while the partial matching function is 7°%, % (). We can construct a probabilit
p g 2 p y

3n—2 .
measure Q% = P.sn—2 .3n-3 . .3n—2 y and a random matching m.sn—2 .3n—3 . 3n—2 \ b
anil awgn7277rw73ln737 (pw’%n72) g aw”??;nf2’Ww’gnfii’q(pwgn72) y

Lemma B4} Let 6% 5 (1x [[02) @) = S, #%1o (1x [Tz @) — T and gt
(I x [ Qm> — S U{J} be such that

m=0

dSn—l (i7w3n—1) — dSn—Q (i’w3n—2) ,

~3n—1 (.  3n—1 _ .
R = maae pana gz (b wsn1)

{075511—2(ﬁgm—l(z-7 w?m—l)7 w3n—2) if ﬁ:’m—l(i’ w3n—1) #

J if A3, w3ty =

~3n— ~ 33— ~3n—1 \—1 . . . .
Let pi@n}l = X (ai@nfl,gzgn,ll) be the cross-sectional extended type distribution after the

random matching step.

Now, we consider the final step of random type changing with break-up for matched
agents. Let Qg, = (S x {0,1})! with its power set &3, where 0 represents “unmatched” and 1
represents “paired”. Each point ws, = (wi,,w3,) € Qs is a function from I to Sx{0,1}. Define
a new type function & : (I x Q3") — S by letting 43"(i,w?") = wi (7). Fix w31 € Q371

For each i € I,



if 3714, w3 1) = i (i is not paired after the matching step at period n), let 7'~°J3"71 be the
probability measure on the space Sx{0, 1} that gives probability one to ( 3n=2(4, w3n=2), 0)

and zero for the rest.

2. if #3715, w3 1) #£ 4 and 737 73(4, w3 3) =i (i is newly paired after the matching step
at period n), &3"2(i, w3”_2) =k, A3 1(4, w3 ) = j and &3 2(j,w?"2) = I, define a

probability measure 7" on (S x {0,1}) x (S x {0,1}) such that

J

w3n—1

Tz] ((k/ ) (l,7 1)) = ékl(}kl(k/’l/)

and
3n 1

5 ((K,0),(I,0) = (1 - fkl) Skt (KNS (1)
for ¥',1’ € S, and zero for the rest.
3. if #%n— 1( 3”_1) # 4 and 7?3”_3(1' w3”_3) # i (i is already paired at time n — 1),
an=2(i, w3”_2) = k: #3014, w3l = 5 and @3 2(j,w®"2) = I, define a probabil-

n (S x {0,1}) x (S x {0,1}) such that

ity measure 7" )

3n1

(0,0 0) = (1= D) e (K)a0)

and
3n 1

i ((K,0),(1,0)) = O (K1)

for k/,1' € S, and zero for the rest, where 5 (k') is one for k = k' and zero for k # k.
Let

Aoy = {(i,j) €I xT:i<j, #1601 = j}
By, = {iel:#" (i, 1) =i}

Define a probability measure Q“ﬁnil on (S x {0,1})! to be the product measure
Yy 3n

3n—1 3n—1
w w
I ="« I ="

ieBZi’)n*l (ivj)eAZ?,n—l

We define #3" and §®" such that for any (i,w") € I x Q3"

IO i A1 (1, %) = or (1) = 0 or wl, (711, w1 =
’ 3n=1(4,w3n=1)  otherwise,

g?)n (Z an) — @Sn( 3n(2 {")3 ) 3n) if 7}3n(i7w3n) 7é i
’ J if 737 (4, W) = i.

0



It is to check that for each w € Q3" #%% (.) is indeed a partial matching on I E| Let
prn )\g( Al gjgn) ! be the cross-sectional extended type distribution after the step of
random type changing with break-up for matched agents.

Repeating this construction, we can construct a sequence of transition probabilities
{( Qs Emy Q) 13! 0 and a sequence of functions {(&a", 7™, g)}g’M2

Let (I x MBM? T, 0 M N ® Q3M ) be the product probability space of (I,Zy, Ag) and
(Q3M2, £3M* Q3M2). For simplicity, we denote Q3M* by Q and Q3M2 by Py. For a natural num-
ber N, any function f from (Qm*1 ™+l Q1) to RN and w™ € Q™, E“" (f) and Var*" (f)
are defined to be me+1 fwm™)dQw’,, and me+1 I[f (™) — E" |2, dQ%\ 1, respectively.

In the following, we will often work with functions or sets that are measurable in
(Qm, £m, Q™) for some m < 3M?, which may be viewed as functions or sets based on (Q3M2 , 53M2, Q3M2)

by allowing for dummy components for the tail part.

E.3 Properties of the finite-agent dynamic matching model

In this subsection, we first introduce a process Bm to capture the types of the agents and
their partners, and whether the agents are newly matched. For 1 < m < 3M 2andiel , let
Bm - (A;n’g;m’h;n)’ where

7

jm {0 if g;" #JandAml#J

1 otherwise.

It is clear that ﬂ:” = 0 if and only if agent ¢ has been matched with another agent for at least
two steps. Note that in the third step of each time period, agents who have been matched
for at least two steps break up with some probability; agents who have just been matched
in the previous step (the matching step) form a long-term partnership with some probability.
That is why we need h to identify agents who have been matched for at least two steps. By
the construction of the model, if an agent has a partner at the end of the mutation step, he
or she must have the same partner in the previous step. It is easy to verify that for any

ne{l,...,M},

cans O g AT
hi = Agn 2 (El)

1 ifg =J.
3For any given w" € Q3" let Clsn ={i€l: A4, WP = or wi, (1) - Wi, ( Sn=1(y, w3"71)) = 0}.
Then, for any i € C[s,., we have ﬁiﬁn (i) = i by the definition of #3". For any i ¢ C" "3n, we know that

e 1(z W) = j # 4, and w3, (1) w3, (j) = 1. The definition of #*" indicates that #°%, (i) = #*" ' (3,w?"* ') =
j. Since Wi3;,11( ) is a matching, we know that #°" 71 (4,w®" 1) =i # j. It is also clear that w3, (j) - w3, (i) = 1,
which implies that j ¢ C",,. Tt follows from the definition of #2™ that #>%, (§) = #*" 7' (j,w®"™') = 4. Therefore,
fri’%n () is a partial matching on I.



Similarly, for the type changing with break-up step,
sz?wwj (®2)
1 if gf’” =J.

Let S =S x (SU{J}) x {0,1}. Any (k,I,7) € S is called an expanded type. Let A be
the space whose elements consist of any probability measure  on S = S x (SU{J}) x {0,1}
satisfying py;, = Dy, and ppj;o = 0 (which means that p, ;; = p,;) for any k,l € § and
r € {0,1}, which can be viewed as a compact and convex subset of the simplex in a Euclidean
space. We will work with the sup norm || - || on the relevant Euclidean space. For each
k,l € S, we use the same notation g;; to denote the matching probability from A = R that is
defined by letting §,,(p) = Gy, (p), where py; = P10 + Pris- B

Let p™ be the cross-sectional expanded type distribution \g (Bm) . For k,1 € 5, pijy
is the fraction of agents who are of type k, matched with type-l agents at the m-th step and
paired at the (m — 1)-th step as well, while p}}; is the fraction of agents who are of type k,
matched with type-l agents at the m-th step and single at the (m — 1)-th step. Note that p]
is the proportion of type-k agents matched with type-I agents at the m-th step, which implies
PR = Prio + Py~ It is clear that p™ belongs to A.

Next, we define three mappings 717, 15, T3 on A to represent the transformation of the
expanded type distribution after each step of random mutation, random matching, and random
type changing and break—up For any p € A, let

[Tl( )]klO — {Zk’ les Iak’l’O ﬁk’k ﬁl’l lf l 7& J
ifl =,
0 ifl#£J

kes Py, L=,

m<mm={ o

kll -

)

it l = J,

() y = 4 Pendalp) AELZT

ﬁk]lqk p) L=,
[T3(p)]kl0 _ 1 — 'l9k-l) + Zk’ l'es pk/l/l gk/l/ O'k/ll(k l) if 1 7é J
0 if1=J
W14
[T5(p)|ki1 = N 2 - s _ .
Zk/,z/es P (1 - fk/l/) Sk (k) + 2 ves Prvo U S (k) + prn i 1=,

4If the expanded type distribution at the beginning of step 3n—2 is j, Lemmaindicates that the expected
expanded type distribution at the end of step 3n — 2 is T1(p). Similarly, Lemma says that the expected
expanded type distribution at the end of step 3n is T5(p) if the expanded type distribution at the beginning of
step 3n is p. However, T>(p) is not the expected expanded type distribution at the end of step 3n — 1 if the type
distribution at the beginning of step 3n — 1 is p. Nevertheless, by Lemma T>(p) is a good approximation
of the expected expanded type distribution at the end of step 3n — 1.



The following lemma shows the equicontinuity of 77, 15, 15 and 4.

Lemma E.2. There exists a sequence of positive numbers {ﬁm}?’J‘J_Jrl with £_1 = W and
3M2E, < & < €1 for any m € {1,...,3M? + 1} such that for any m € {—1,0,...,3M?},
ref{1,2,3}, 5,7 €A, if 5= lloo < &mya, then

I7:(5) = T (7 )lloo < &m,
13(p) = 4(")lloo < &m-

In the rest of this paper, we shall take M to be the smallest even integer greater than

(es)
Cam241/)

Let e(m) = [mT”] and f(m) = m — 3e(m) + 3. Then for any m € {1,...,3M?}, the
m-th step in the finite dynamical system is also the f(m)-th step in the e(m)-th period. For

integers 1 < my < mo < 3M?, we use U to represent Ty(,,) © Tmy—1) © -+ © Ty(py). For

convenience, when 1 < mgy < m; < 3M?2, U2 is defined to be the identity mapping on A.
The following lemma provides an upper bound on the difference between the expected

expanded type distribution at the m-th step Ep™ and the repeated applications of the trans-

formations 17, 15, T5.

Lemma E.3. There exists a sequence { B1(n)}52; of positive real numbers with lim,,_,oc B1(n) =
0 such that for any m € {1,2,...,3M?}, we have |E(p™) — U (3°)|lco < B1(M).

Let F = {F € &M . p = Fm x B3}

g1y and F™ € EM}. Any set Fin F™

represents an event that “happens” by step m. For example, we use (53" 2 = (k, J, 1)) NE3n—2
to represent some event that happens by step 3n — 2 in which ﬁgn 2 = (k, J,1). The following
two lemmas consider conditional probablhtle of the form of P (BZ-T”H =b ‘ (ﬂzm = a> ey m)
for F™ € F™, which will be used in Subsection [E.4] below.

The following lemma provides an upper bound on the difference between ¢, (U S 2(IE(ﬁO)))
and P, (53" L= (k,0,1) | (53" 2= (k, J, 1)) N Fn— 2) .

Lemma E.4. For anyic€ I, n€ {1,2,...,M?}, k,1 € S, and F3"2 € F3=2 with
<(B3n 2= (k,J, 1)) ﬂF3n_2) > 0, we have

o (3 = (1 ))] (B = (k1)) 0 ) — gy (UF2(2))|
1 1
MEPy (B2 = (k1)) 0 Fon-2) T

SFor given events A and B with Py(A) = 0, we can define the value of the conditional probability Py(B|A)
to be any number in [0, 1] that suits a particular context.

<




The next lemma shows the relationship between F <ﬁlm+1 =b ‘ Blm = a> and
Py (52”“ —b] (Bgn - a) mFm>.
Lemma E.5. Fiz anyic I, a,b€ S, andn € {1,2,...,M?}.
(i) For any F3"=3 € F3"=3 with P, ((53’”73 = a) N F3"_3> > 0, the following identity holds:
Py (B2 =b| (B =a) nF™ %) = Ry (B2 = 0] " = a).
(ii) For any F3"=2 € F3=2 with P, ((B?an = a) ﬂF3n_2> > 0, we have the following

inequality

7o (3t =] (B2 =a) nE) - (0 0] 52 =)
1 1
M3 Py ((B?”_Q = a) N F3”*2) e

<

(ifi) For any F**~' & Fn L with Py (33"~ = a) 0 F~1) >0, we have
Ry (3 = b] (31 =a) nFoet) = By (3 =] 5 = a).

For any i € I and m € {0,1,...,3M?}, let F™ be the algebra generated by {ﬁN{”/}z,:O.
Any set in F]" represents an event for agent ¢ that happens by step m.

An approximate Markov property for the expanded type process is presented below.

Lemma E.6. There exists a sequence { Ba2(n)}5°, of positive real numbers with lim,_,., Ba(n) =
0. Fox any i € 1, B; satisfies the approximate Markov property in the sense that for any
m,m’ € {0,1,...,3M?} withm >m’, a,d’ € S, and Fim,_1 € fim/_l,

Py (B =a. g =a) 0B ) Py (B =) = B (B =0, B = o) 2o (B = o) 0 B
< By(M).

The following lemma shows that the expanded type process satisfies an approximate

pairwise independence condition.

Lemma E.7. There exists a sequence { B3(n)}5%, of positive real numbers with lim,_,., Bs(n) =
0 such that for any i,j € I with i # j and 79 # j, m € {0,1,...,3M?}, F™ € F", and
F" e F" we have

|Po (F{" N Fj*) — Py (F{™) P (FJ")| < B3(M).

10



In the rest of this subsection, we consider an estimation of the number of mutations,
matchings and break-ups that can happen within any time interval, and consider the expected

cross-sectional expanded type distribution. For any w € €, let

H () = [{n € To: &§" () # af"*(w) or §7" () # 4" (), 3

7

NP (w) = [{n € To : g7 (@) # 67" 2(w),3n — L < m}|,

1

RMw) = ‘{n € To: §"(w) = J and A3 L(w) = 0,3n < m}‘ .

Here, ]-Alf"” is the number of mutations of agent ¢ and of the partner of agent 7, by the m-th
step, while sz and R;" are the numbers of matchings and breakups of agent i by the m-th
step. Let le = ﬁzm + Nlm + RZ”

The following lemma provides a lower bound for the probability that there is no jump

for the counting process X, between two different steps.

Lemma E.8. For any m,Am € {0,...,3M?} and F™ € F™ such that m + Am < 3M? and
Py(F™) > 0, we have

R ) Ka 2Am
Po(XHAm — Xm|Fmy) > <1 - M) .

An estimation on the probability of changing type twice in a given time interval is

presented below.

Lemma E.9. For any m,Am € {0,...,3M?} such that m +Am < 3M? and Py(F™) > 0, we

have
) ) Ka 2Am\ 2
Py (Xyam - X =2 | ) < (11— <1—>
M
An upper bound is provided below for ||E (5™+2™) —E (5™) |-

Lemma E.10. For any m,Am € {0,...,3M?} such that m + Am < 3M?, we have

Ka 2Am
V)

JE (57 A™) —E (77 e < 1 - (1 M

E.4 Existence of continuous-time random matching

The proof in this subsection makes extensive use of some basic results in nonstandard analysis,
of which a comprehensive introduction is provided in the first three chapters of the book |Loeb
and Wolff (2015).

As noted in [Loeb and Wolfl (2015)), hyperfinite sets are important objects in nonstandard

analysis, which can be viewed as equivalence classes of sequences of finite sets. The transfer
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principle indicates that any results about finite sets can be restated on hyperfinite sets. In
particular, the dynamic matching model and its properties as developed in Subsections [E.2]
and [E-3] can be recast in the setting with a hyperfinite number of agents and time periods with
the same notations.

We recall some notations in the hyperfinite setting as follows. First, we take M, as used

in the finite dynamic matching model, to be an unlimited hyperfinite integer in *N,, and M

the smallest even hyperinteger in *N,, which is greater than ( §3MlQ+1>3 (as described in the
paragraph below Lemmaﬁ Then, let I be the hyperfinite set {1,2, ... M } with its internal
power set Zy and the internal counting probability measure Ay on Zy, and Ty the hyperfinite set
{n}ﬁ/fo with the corresponding time line {n/M}QfO (i.e., the time length for each period is the
infinitesimal 1/M). The parameters for the dynamical system, 7;;, Gy, ékl, Oty Skl U1, Temain
the same. As in the finite dynamic matching model, we denote Q3™ 2, £3M? (the internal power
set on Q3M2) and Q3M2 by Q, Fo and Py respectively. Let (I x Q,Zy ® Fo, Ao @ Py) be the
internal product probability space of (I,Zy, Ag) and (2, Fo, Py). Note that Zy ® Fp is also the
internal power set on I x . By the Transfer Principle, we know that Lemmas to [E.10] still
hold in the hyperfinite setting. We will not distinguish the statements of Lemmas [E.1] to [E-I0]
in the finite and hyperfinite settings when there is no confusion.

Let (I,Z,)\), (2, F, P) and (I xQ,ZXF, AKX P) be the standard probability spaces that are
obtained from the internal probability spaces (I, Zy, Ao), (2, Fo, Po) and (I xQ, Zo® Fo, Ao ® Pp)
respectively by taking their corresponding Loeb probability spaces. Note that (I x Q,ZXF, AK
P) is a Fubini extension of the usual product space (I xQ,Z®F, A® P). We need to prove that
thereexist a : I X Q@ xRy = S, m: I x QA xRy — I, and g: I x Q xRy — SU{J} satisfying
all the properties described in Appendix A.1. Towards this end, we divide the proof into six
parts. In Part 1, we define these processes, and discuss their basic properties. In Part 2, we
prove that (a,g) is Markovian and independent. We then check that the transition-intensity
matrix of the relevant Markov chains at time ¢ is Q(p(¢)). In particular, we consider Cases 1,

2, 3 and 4 of Table 1 in Parts 3, 4, 5, and 6 respectively.

Part 1: Recall that p° is the initial extended type distribution. Let {4z} (k)es be an internal

partition of I such that % ~ p? for any k € S and | € SU {J}, ‘Aﬂ’ﬁljl > ﬁ for any

k € S, and |Ay| = |Aj| for any k,1 € S, and |Ag| is even for any & € S. Let &° be an

SA positive hyperreal number is said to be infinite or unlimited if it is greater than every standard natural
number. As usual, *No denotes the set of unlimited hyperfinite integers. A hyperreal number is said to be
finite or limited if its absolute value is less than some standard natural number. Two hyperreal numbers a and
b are said to be infinitely close to each other if a — b is an infinitesimal, which is denoted by a ~ b. We also use
monad(a) to denote the set of all the hyperreal numbers infinitely close to a. When a is limited, it is infinitely
close to a standard real number b, which is called the standard part of a, denoted by °a or st(a).

12



internal function from (I,Zy, \g) to S such that a°(i) = k if i € Usesugsy Ari- Let #° be an
internal partial matching on I such that #°(i) =i on (J,cg Ak, and the restriction #°|4,, is
an internal bijection from Ay, to Ay for any k,1 € S. Let §°(i) = a°(7°(4)). It is clear that
Mo({i:a%3i) =k, 9°(i) = 1}) ~ pY, for any k € S and I € SU {J}.

Fix any ¢t € Ry, and denote the hyperinteger part of tM by n. Based on the hyperfinite
dynamic system transferred from Appendix let o/(t) = &7, n(t) = 737, ¢'(t) = "
Since &3, #37, and ¢*" are all internal, it is clear that o/(t), 7 (t), and ¢/(t) are measurable on
(IxQIRF,ANXP).

Fix any i € I. The stochastic processes o and g, may not be right-continuous with left
limits (RCLL). We will show that up to any finite time, any agent can only change their types
finitely many times with probability one. Recall that le(w) is defined in the paragraph below

Lemma Let
A; = {w € Q: X™(w) is finite for any m € *N such that % is finite}.
For any N in the set N of (standard) positive integers, let AN = {w € Q: XNM(w) is finite}.

It is clear that A; = N¥_; AN, and

AV = JH{we : XMM(w) <k}
k=1

Since the set {w € Q : XM (w) < k} is internal, AN is measurable in F Fix any N € N. For any

n € Nand j € {0,1,...,n}, let m; be the hyperinteger part of % Then mo =0, m,, = NM

and m; —mj_1 < 2M for any j € {1,...,n}. Fix any n € N. For any w ¢ AV, XNM ()

is infinite, which implies that there exists j € {1,...,n} such that X" (w) — X; 7" (w) > 2.
Therefore, we know that

0\ AN C O{w €Q: X" (w) - X" (w) > 2},

K3
=1

which implies that

n

P\ AN <Y P (X{”j XM > 2) . (E.3)
j=1

It follows from Lemma [E.9] that
o _\ 2(mj—m;_1)\ 2
Py (X - X7 22) < (1 - <1 - Ijj) ) . (E.4)

Note that M is unlimited. It is clear that for any Am such that Avm is finite,

M KaAm

-\ Am — =
K K Ka M alAm o m =
<1 _ CL> — <1 _ CL) ~ efKI\? ~ e (AM )Ka‘ (E5)
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Since the standard part of =1 s %, it follows from Equations 1' and || that

A . A . a 2
P(XWJ _injfl > 2) < (1_6_2KnN > ‘

1

(E.6)

By combining Equations (E.3) and (E.6[), we obtain that

P\ AY) <n(1-e )",

2K Na

2
Note that n (1 —e n ) — 0 asn — oo. Then P(Q\Afv) = 0, which implies that
P (AN) = 1. Therefore, we have P (4;) = P (NF_;4Y) = 1.
Let A = {(i,w) € I x Q: X'*(w) is finite for any m € *N such that i is finite}. Then,

it is clear that
o [o@)

A=) U{Gw) e I xQ: X" (w) <k},
N=1k=1

which also implies that A is measurable in ZX F. Since A = {(i,w) € I x Q : w € A;} and
P(A;) =1 for any i € I, we have AX P(A) = 1 by the Fubini property.
We define

{limt/*)t-ﬁ— a(w,t') if (l,w) € A
ai(w’t) =

a3 (w) otherwise,

limy 4+ gh(w, ') if (l,w) € A
gilw 1) = {gf’”(w) otherwise.

Now we prove that o and g are well defined and measurable on (I x Q@ x Ry, (ZKF)® B(R4)).
For any (i,w) € A, a}(w,t') can only change finitely many times in the time interval [0, ¢ + 1].
Then there exists € > 0 such that o}(w,t’) are constant on (¢,¢ + €). Then, for any (i,w) € A,
t/lLr?+ o) (w,t') is well defined, and the sample path a;(w,t) is RCLL in ¢t € Ry. For any i € I,
since P(A;) = 1, the stochastic process «; is RCLL. We can prove that g is well defined
with the RCLL property in the same way. By the definition of o and g, and the fact that
A is measurable, it is clear that for any ¢ € Ry, a(i,w,t) and g(i,w,t) are measurable on
(I x QITX F,AK P). By Proposition 1.13 in |[Karatzas and Shreve, (1991)), o and ¢ are
measurable on (I x Q@ x Ry, (ZX F) @ B(R})).

For each n € Ty = {n}ﬁ/fo and w € Q, since 72" is an internal involution on I and \g is
the hyperfinite counting probability measure on Ty, it is obvious that the particular case #>"
is measure-preserving from the Loeb space (I,Z, \) to itself. Hence, for any ¢t € Ry and w € ,

Twt(+) is an internal involution on I and is measure-preserving,.
Part 2: Fix any i € I and t € Ry. Letting £y = {n € *N: {; € monad(t)}, it is obvious that
n € Fy. Define the following F -measurable set

Bi(t) = {w € Q: X}"(w) = X}"(w) for any n € E;}. (E.7)

(2
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For any n1,ne € Tg such that st(§}) <t <st(47) for t > 0, ny = 0 and st(53) > 0 for t = 0,
Lemma [E.8] implies that

PO\ Bi(t) < P (X XPm) <1—st (e 1),
If st (22;2+) — 0, then st (e_%ﬁ_nl)) — 1. Hence, we have P (2 \ B;(t)) = 0, which implies
that P (B;(t)) = 1.
Fix any w € A;. If 43"(w) = C for any n € Ey, then the Spillover Principle implies that
there exists ni,ny € Ty such that st(5}) < ¢t < st(33) for t > 0, ny = 0 and st(5%) > 0 for
t =0, and &3"(w) = C for any n € {n1,n; +1,...,n2}. Hence for any ¢’ in the time interval

(st(%F),st(%2)), af(t') = C. Therefore, for any n € Ey, we have

)

ai(w,t) = lim o(w,t) = C = 63" (w).

t/—tt

Fix any ng € E;. For any w € A;, if 2™ (w) # a;(w,t), then ¢3"(w) can not be constant
for n € E; by the argument above. In this case, there is a mutation, matching, or break up at
some period in Ej, which implies that the event {w € A; : @™ (w) # a;(w,t)} is a subset of
Q\ B;(t). Since P(A;) =1, we have

P (a3" £ aq) < P(@\ Bi(t) =0,

3n0 _

which implies that P <A3"° = an> = 1. Similarly, we can prove that P ( = gzt> = 1. Denote
Bi(t) = (a(t), gs(t)) and B = (&, g7) for any 0 < m < 3M?2. Then we have

P (w €0 B(w) = ﬂi(w,t)> = 1. (E.8)
Fix any w € Bj(t). The Spillover Principle implies that there exists nj,ns € Ty such
that st(™) < t < st(%2) for t > 0, n; = 0 and st(2) > 0 for t = 0, and X" (w) = X" (w).

Then, we know that for any n € {ny,n1 +1,...,n}, #"(w) = #"(w) and &*" (73" (w),w) =
n

)

o (ﬁ(i,w,t),w,t’) =d (W(i,w,t’),w,t) a’n (Afn(w),w) )

&3" (73™(w),w). Hence, for any ¢’ in the time interval (st(%}),st(42

Therefore, we can obtain that

lim o (7(i,w,t),w,t') = &" (77" (w),w) .
t/—t+

We consider two cases as in the definition of a.. If w € Ay(; ), then

a(m(i,w,t),w,t) = t/liﬁr?+ o (m(i,w, t),w,t') = & (ﬁf’ﬁ(w),w) .
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G 1) = 55 (w) = {d3" (737 (w), w) ?f A (w) # i _ {a (m(i,w, t),w,t) if m(i,w,t) #1i

J if 7(i,w,t) = 1.

Therefore, the above equation together with Part 1 imply that Property 1 of the independent
dynamical system D is verified.

By the hyperfinite analog of Lemmal|E.6], we know that By (M) =~ 0 (since M is unlimited),
and for any r € N, my = 3ny, me = 3ns,...,m, = 3n, with ny > ng > --- > n, in Ty, and any

expanded types a1, az,...,a, in S,

P (B = ai, B = az,... . B = a,) P (3" = az)
) (E.9)

= P(B" =a B =) P (B =an B =
For any n € Ty, Equation (E.2|) indicates that

fan _ {o if g3 # J

=1 53n
? 1 lf‘@?n:J {J} (gl )7

which means that the value of B?" is completely determined by gf’”. Hence, Equation 1}
implies that for any n; > no > --- > n, in Ty, and any extended types b1, bo,...,b, in 5’,

P(BFm = b0, B2 = by, B3 =00 ) P (B2 = )
- P (Bf’"l = by, B = bg) P (Bfm —by,..., B = b,,) . (E.10)

For any r € N, and real time sequence t; > to > --- > ¢, in Ry, choose n; € Ty such that
i ~ty for 1 <k <r. Then, it follows from Equations (E.8) and (E.10|) that for any extended
types b1,ba, ..., b, in S

P (Bi(t1) = b1, Bi(t2) = ba, ..., Bi(ty) = b,) P (Bi(t2) =
= P (Bi(t1) = by, Bi(t2) = ba) P (Bi(t2) = b2, ..., Bi(tr)

2)

b
bT’)7

which implies that the stochastic process 8; = (o, g;) has the Markov property.
Fix any j € I with j # i and 7?? # j. By the hyperfinite analog of Lemma we
know that B3(M) ~ 0 (since M is unlimited), and for any n; > ng > --- > n, in Ty, and any

extended types b1, cq,b2,C2,..., by, ¢ in S,

23 23 23 Q3
P (B = b, G =, B = by, B =)

= P(B =t B =) P (B = B =) (E.11)
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For any r € N, and real time sequence t; > to > --- > ¢, in Ry, choose n; € Ty such that
Tk~ tp for 1 < k < r. We can obtain from Equations (E.8) and (E.11)) that for any extended
types bla C1, b27 €2, -, b?“7 Cr in S'7
P (Bi(t1) = b1, Bj(t1) = c1,- .., Bity) = by, Bi(tr) = ¢)

= P (,Bz(tl) = bl, ces ,ﬁi(tr) = br) P (ﬂj(tl) =Cly---, ﬂj(tr) = CT) y (E.12)
which implies that the stochastic processes (o, g;) and (¢, gj) are independent.
Part 3: Fix any i € I, t € Ry, k,[,k,I' € S with (k,l) # (K',I') and P (B;(t) = (k,1)) > 0.
The purpose of this part is to verify that the transition intensity for agent ¢ from expanded
type (k,l) to expanded type (k’,1") at time ¢ is given in Case 1 of Table 1.

For any At € Ry, (the set of positive real numbers), let n, An € *N such that §; €
monad(t) and % € monad(At). By Equation (E.8),

P (Bit + At) = (K, 1) | Bi(t) = (k, 1)) ~ R (3§"+3A" = (K1) | 87" = (k, z)) :

Lemma [E.9 indicates that

2
-3n+3An -3 A3n Ka 6an _6Kaan\ 2 —6KaAt\2
P0<Xi — X3 > 2| B :(k;,l))g - (1-57 :(1—e i ) ~(1-e )%,

which implies that the probability for agent ¢ to change her extended type twice in the time
interval [t,t + At] is of order At%. Hence,

P (Bi(t + At) = (K, I') } Bi(t) = (k1))
=P, (B§”+3A” = (K, 1), XPr38n _ x3n = 1| g = (k, l)) +0(At?). (E.13)
For any kq,l; € S and m,m’ € {3n,3n +1,...,3M?} with m > m/, let
By, ={w € Q: B (w) = (ki, 1), X" (w) = X" (w), B (w) = (k, 1)},

which is the event that Bzm = (k1,11), Bf‘” = (k,1), and there is neither mutation, nor matching,

nor break-up for agent i between 3n-th step and (m — 1)-th step. Further,
O ={weQ: X" (w) = X™(w)}

is the event that there is neither mutation, nor matching, nor break-up for agent ¢ between
m/-th step and m-th step. In particular, when the event C, happens, agent i does not change
her extended type between m’-th step and m-th step.

If the events <B§” = (k:,l)) and (X?"+3A" — XZ?’" = 1) happen, then mutation is the
only way for agent i to change her extended type to (k’,l') by the end of step 3n + 3An
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(since the other two steps must involve single agents). Based on the definition of conditional
probabilities, Equation (E.13]) can be expanded as follows:

P (Bi(t + At) = (K1) | Bi(t) = (k,1))
= B <B§n+3An — (k/’l/)’X§n+3An . XzSn =1 ’ Bf}n — (k,l)) + O(At2)
n+An—1 A
= Y R (B A B = (kD) + O(AR)
nizz;l .
= > (R (BEE = 00) R (R B | + o)

n+An—1

= X [R(E =w.n|chn (5= k) R (G| B = (k)

r=n

Py (Cgrian )| + o).

By Equation (E.1) and Lemma we obtain that

= ﬁkk'ﬁuu

where the last identity follows from the step of random mutation for matched agents in the

construction of the dynamic matching model. Then, the above identities imply that

P (Bi(t+ At) = (K,I') | Bi(t) = (k1))

n+An—1
= Y [B(BT = w08 = kD) R (Ch| B = (kD)
Py (Cian | B | + o). (E.14)
When k # K and { = I/, Py (8% 1 = (k,0) | B = (k,1) ) = iy, which implies that

P (B = WD B = (kD)) = g

2
R R R R R “ R a
= T — i | = Mg (L= 7)) = Tgpr E My < K <M) :
1eS\{1}
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Now, we estimate the difference

n+An—1
P (Bi(t + At) D] = kD)= Y i

n+An—1 A T_An )

< Z ‘(Po <B§r+1 = (K1) } B3 = (k,l)) - f/kkf) Py (cg; ’ gin = (k,l))
R (i | B )
n+An—1 )
O e [P (G B = (kD) R (CRA | B 1]+ O(a8)

n+An—1 T_nd 9

< ¥ K(3)
- n+An—1

O e [P (G B = (kD) R (CHEA BEEY) = 1]+ O(AR).

Since a is finite, we know that Z"+A" 'K (%)2 = %Aﬁ is infinitesimal and can be absorbed
into O(At?). By Lemma we have

Py (G| B = (k1)) Po (e | BEH)
( Ka) G(T_n) ( Ka,) (n+An_T) _6K(r—n)a _ 6K(nt+An—r)a
1 M .

>

1— —= ~e M e

M

M

Then, it follows from the above inequalities that

n+An—1
P (Bi(t+ A1) = (K, 0) | 5i(1) = (kD) = D e
ntan-1 - 6K(r—m)a _ 6K(ntAn—r)a

< TZ; i (1 —e M e M ) +0(Ar%)
= aAt(1— e 5528 1 O(AR)

= o(At?).

Therefore, we obtain the estimation
n+An—1
P (Bi(t + At) 0| sit) = (k1)) = Z Ak + O(A)
= At + O(AL?). (E.15)

When k = k" and | # I’, we can also prove in the same way as above that

P (Bi(t+ At) = (k1) | Bi(t) = (k,1)) = mp At + O(AE). (E.16)
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It remains to consider the case that k # k' and [ # I’. Tt is clear that

Ry (B = (.0 | 87 = (kD) = g < ()

Therefore, Equation (E.14) implies that

P (574(7f + At) - (klvl/) ‘ Bz(t> - (kal))
n+An—1

= Y [B(BT = w08 = kD) R (Ch | B = (kD)

h Py (Corsan | Byt n (B = (k1)) )| + 0(a8?)
ntAn—1 4
S (%) +O(A)

= O(A#). (E.17)

By combining Equations (E.15)), (E.16), (E.17]), we obtain that

P (Bi(t+ At) = (K, 1) | Bi(t) = (k,1)) = (mwr i (1) + mur 0 (k")) At + O(AL).

Hence, agent #’s transition intensity for her expanded types from (k,l) to (k¥',1') at time ¢ is

indeed Q1)) (P(t)), as given in Case 1 of Table 1.

Part 4: Fix any i € I, t € Ry, k, [,k € S with P (8;(t) = (k,1)) > 0. The purpose of this
part is to verify that agent 4’s transition intensity for her expanded types from (k,1) to (k’, J)
at time t is given in Case 2 of Table 1.

For any At € Ry ¢, let n, An € *N such that §; € monad(t) and % € monad(At). By
Equation ([E.8|), we have

P (Bi(t+ Aty = (K, )| Bi(t) = (k1)) = P <3§"+3A" =(K.,J)| B = (k, 1)> .

By Lemma the probability for agent ¢ to change her extended type twice in the time
interval [t,t + At] is at level of At%. Hence, we have

P (Bz(t + At) = (klv J) ‘ B@(t) = (k’ l))
- B <3§n+3m = (K, J), X3n¥3An _ dn 1| n — (k, z)) +O(AP).  (B.18)

For any k; € S and m,m’ € {3n,3n +1,...,3M?} with m > m/, let
By ={weQ: f(w) = (b1, ), X" (w) = X" (w), B (w) = (k, 1)}

and OV, = {w € Q : X (w) = X™(w)}. Then, By, is the event that B = (ki,J),

313" = (k,l), and there is neither mutation, nor matching, nor break-up for agent i between
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3n-th step and (m — 1)-th step; C)7, is the event that there is neither mutation, nor matching,
nor break-up for agent i between m/-th step and m-th step. In particular, when the event C",
happens, agent 7 does not change her extended type between m/-th step and m-th step.

If the events (Bf’” = (k:,l)) and (XZ-?’”HA” — Xf’” = ) happen, break-up is the only
way for agent i to change her extended type to (k’, J) by the end of step 3n + 3An (since, in
the other two steps, paired agents must stay paired). Based on the definition of conditional

probabilities, Equation (E.18]) can be expanded as follows:

P (Bi(t+ At) = (K, J) | Bi(t) = (k,1))

— PO (B?nJrBAn — (k/7 J)’X§n+3An . XzSn =1 ’ Bz?m — (k?,l)) + O(At2)
n+An—1 .

= > R(BENCEEA B = (kD) +O(AR)
nJrTA::fl R

= > [R(BES5 = (kD) R (Chgtn | B |+ o(ar)

n+An—1

= > [ (E = cn (B = kD)) P (CHP B = (k1)

r=n

Py (G332 | B | + o).
It follows from Equation (E.2)) and Lemma that

Py (B0 = (W) [ €32 0 (B = (kD))

p ( (W, D) C2n (374 = (kD))

= R (B = (W, 01| G0 (B = (k,1,0)) )
Py (B§T+3 = (K, J,1)| B2 = (k, 1, 0))

= DS (k).

A3r+3
gt

where the last identity follows from the step of random type changing with break-up for agents
(who are not newly matched, but break up the partnership) in the construction of the dynamic

matching model. Then, the above identities imply that

n+An—1
= dudul)R (c§;+2 | B3 = (k, 1)) P (Cgﬁj??m | B;jz“j?’) + O(A2). (E.19)
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Next, we estimate the difference

n+An—1

P (Bi(t+ At) = (K, J)| Bi(t) = (k1)) — Z Drara (k)

n+An—1 . . o
< D Oudalk) ‘Po (053’2” | 57" = (k,l)) (C§’ﬁj§’“ | Bgfﬁ) - 1‘
+ O(At).

By Lemma we obtain that

Ry (O3 B = (1)) By (OB | B

Ka 2(3r—3n+2) Ka 2(3n+3An—3r—3)
1- == 1- ==
(%) ()

__2Ka(3r—3n+2) _ 2Ka(3n+3An—3r—3)
(& M e M

Y

12

e—GK&At'

Then, it follows from the above inequalities that

n+An—1 .
P (Bi(t + At) | 8i(t) = (k1) — Z Dpana (k
n+An—1 a B
—6KaA

< ;L M(l_eﬁKa t)—}—O(AtQ)

= alt (1 - e 558 1 O(AE?)

= O(A).

Therefore, we have
n+An—1
P (Bi(t+ At) = (K, J) | Bi(t) = (k1)) = Z Daéu (k') + O(A)
= ﬂkl%l(k )AL+ O(At?), (E.20)

which implies that agent 4’s transition intensity for her expanded types from (k,1) to (k’, J) at
time ¢ is Q k1)) (B(t)), as given in Case 2 of Table 1.

Part 5: Fixany i € I, t € Ry, kK ,I' € S with P (5;(t) = (k,J)) > 0. The purpose of this
part is to verify that agent 4’s transition intensity for her expanded types from (k, J) to (k¥',1')
at time t is given in Case 3 of Table 1.

For any At € Ry ¢, let n, An € *N such that §; € monad(t) and % € monad(At). B

Equation (E , we have
P (Bilt+A8) = (K1) Bi(t) = (k. J)) = Py (B387 = (60| B = (k)
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Lemma [E.9] says that the probability for agent i to change her extended type twice in the time
interval [t,t + At] is at level of At2. Hence, we have

P (Bi(t+At) = (K, 1) | Bi(t) = (k,))
= Py (Bprrean = (k’,l ),X§"+3An — XP 1] B = (kD)) + O(AR). (B21)

For any kq,l; € S and m,m’ € {3n,3n +1,...,3M?} with m > m/, let
By, ={w € Q: B (w) = (k1 1n), X" (w) = X7" 7 (w), A" (w) = (k, 1)}

and C7, = {w € Q: X" (w) = X(w)}. Then By, is the event that B = (ky,lh), B3 =
(k,J) and there is neither mutation, nor matching, nor break-up for agent ¢ between 3n-th
step and (m — 1)-th step; C)7, is the event that there is neither mutation, nor matching, nor
break-up for agent i between m/-th step and m-th step. In particular, when the event C",
happens, agent ¢ does not change her extended type between m/-th step and m-th step. It is
clear that

Bily, ={w e Q: B w) = (ki 1), B (w) = (k, )} N Ca (E.22)

If the events (Bf” = (k, J)) and (XE"HA” — Xf” = ) happen, then matching is the
only way for agent i to change her extended type to (k’,1’) by the end of step 3n + 3An (since,
in the other two steps, single agents must stay single). Equation (E.21) can be expanded as

follows:
P (Bi(t+ At) = (K1) | Bi(t) = (k, J))
_ PO <B§n+3An _ (k:l,l )’X§n+3An _ XzSn -1 ’ B?n — (/{3, J)) + O(AtQ)
n+An—1
- Y S ((53“3 (K, 1 )) N BIT2 A Cnsan | 3 — (1, J)) +O(A)
n—:A::—l 1 A
= Z Z |:P0 (<B3r+3 (k/ l)) ﬂBlfjlr+2 ‘ Bz?m — (k‘,J))
r=n_ leS
(ngfigwn (631"4-3 (K, l)) A Bi’f”)]
+O(AR?)
n+An—1 )
= Z Z |: (531”-1-3 (k/ l/) ‘ Bg;-ﬁ-?) PO (Bz)z‘+2 | B?n _ (k‘, J))
r=n €S
Ry (Cimaan | (B = w.1)) 0 B2 |
+O(A?).
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By Equations (E.2), (E.22) and Lemma[E.5|

(537"4—3 (K, | B37’+2>
= B (Br =0 | (B = D) n O30 (B3 = ()
= R (B = W0 (B = (k) n G (B = (k)
_ (/837“4-3 (K, 1,0 )}537"-1—2 (k, 1, 1)>

= Euon(k,0),

where the last identity follows from the step of random type changing with break-up for agents
(who are newly matched with an enduring relationship) in the construction of the dynamic
matching model. Then, the above identities and Equation (E.22) imply that

P (Bt + At) = (K,1) | Bi(t) = (, )

n+An—1

= ) Zéklf}kl(k/al,)PO (B;:’fﬁ | 67" = (k, J))

r=n €S
(ng:_o—gAn (537“—4-3 (k/ l )) N BZ);+2>

+0(At?)
n+An—1
= Z Z [fklakl KUY (ﬁgTH (k1) [ G5t (53n = (k,J)»
r=n [|€S
By (70| B = (ko) o (B (300 = ) 0 )

Fix any sample realization w? ! € Q3! such that Bgrﬂ (wSH‘l) = (k,J). By the
definition of iL;”, we know that l}?’drl (w37"+1) =1, and fL?TJrQ (w?”"“, w3r+2) = 1 for any ws, 42 €

Q3,42. Hence, these facts together with Lemma [E.4] imply that

G (UST(39)) — P0<53r+2 kD) CEn (l@’?n:(k”])))‘
- ) L(UF () = o (B = (kD C (B = (k) )|

da (U121 () = Py (572 = (kL) R0 (574 = (. 7))
1 1

M3P, (C;ZH (B3T+1 (k. J. 1))> T

1 1

MRy (Ct 0 (B9 = (k,0)) ) T

By Lemma P <C§;+1 ’BZS” = (k, J)) > 0, which implies that P <C’§’;+1 N (Bf" = (k, J))) >
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0. Then Py (Cg;“ N (Bf’” =(k,J ))) is not infinitesimal. It is then clear that

1 1
wer (G (B =)~

Therefore, we obtain the following estimation

G UFH ) - o (B = ) | Gl 0 (B = (6 ))| < 17 (B29)
which implies that
Py (3742 = (k)| € 0 (B3 = (k) ) )
< WU ) +
< a 2
S + ek
It follows from the above inequality that
n+An—1 ) . .
S [dwn yp (5772 = (e | Clt (53 = (h,0)) )
r=n leS
Po (O3 B = (ko)) Ro (i | (B2 = (0.0)) n B2
n+An—1
_ Z Zékl&kl(k/;l/)PO <B3r+2 _ (k,l) } C§£+1 N (B?n _ (k‘, J)))'
r=n €S
n+An—1 . ) A .
= > X [Ewent . r (B = (e [0 (B = (1))
r=n_[€S
(1 o PO <C§);”L+1 |B;”m — (k:, J)) PO (C;?}rg)An (B;‘}r+3 _ (k/,l/)) N Bg;+2>)}
n+An—1 a 9
< X (5 + 37)

(1= R (G5 B2 = (k) o (G5 | (8070 = (W, 0)) N B2 ) (B.25)
By Lemma [E.8] we obtain that

Po (Gt |2 = (o)) Po (G358 | (B2 = (1) 0 BY )

Ka 2(3r—3n+1) Ka 2(3n+3An—3r—3)
> (1-=2 1-—
M M
_2Ka(3r—3n+1) _ 2Ka(3n+3An—3r—3)
~ e M e M
~ g OKaAL (E.26)
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For z,z € *R, we use z < z (¢ 2 z ) to denote that there exists y € *R with y ~ x such that
y < z (y > 2). Then, Equations (E.25) and (E.26) imply that

n+An—1

S S (s 1R (572 = () [ G (B = (k) ) )

r=n [eS

Py (G5t B3 = (k. D)) Ro (CRrgan | (B34 = (0.0)) 0 By 2]

n+An—1
- Z kalakl (K, 1) Py (53r+2 (k)| Cirtin (55’” = (’%ﬂ))‘
r=n eSS
n+An—1 a 9
S Z K (M + ]\42> (1 _ e—GK&At)
< Ka(l—e K08 At
= O(AP). (E.27)

Therefore, Equations (E.23|) and (E.27) lead to the following estimation

P (Bi(t + At) = (K, 1) ’ﬁi(t) = (k,J))
n+An—1

= Y S R (B = (k| C o (5 = ()

r=n €S
+O(AF?). (E.28)

We can use Equation (E.24]) to deduce that

n+An—1 )
SN o, ay (U (2%))
r=n eSS
n+An—1 )
= > Y bW 1R (B = (1) \c§;+lm(ﬁ?”:(k,=f>))‘
r=n S
n+An—1
< Z kalfszk ') M2
r=n eSS
< AnK%, (F.29)

which is an infinitesimal and can be absorbed into the term O(At?). Therefore, Equations

(E.28) and (E.29) imply that

P (Bi(t+ At) = (K,U') | Bi(t) = (k, J))
n+An—1
= Z kalﬁkl(k,, a4 (UP T (87)) + O(AE?). (E.30)
r=n €S
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Equation (E.§) implies that j; = E(p;) ~ E(5*"). By Lemma U0 ~
E (537"“). By the continuity of 8y;, we obtain the following estimation

n+An—1
Z Z&cmkl K, )q (U () —Zékz&kz(k'7l/)9kz (pe) At
r=n [eS les
1 . n+An—1 1 An
S At;&gz&m(kﬁ',l') ; VL (O (") = "Ou (E(A‘gn))ﬁ
1 ) n+An—1
S apag 2 Gmon(KL ) D [0 (B(5) 0w (E (57))]
les r=n
K n+An—1
S X 2 o EET) = 0w (E ()]

Fix any An’ € Ty such that A" is infinitesimal. Lemma implies that [[E (5% 1) —
E (5*") ||l is infinitesimal for any r between n and n + An’. By the continuity of 6y,

‘*Hkl ( (537"“)) — "0k ( (p3"))‘ is also infinitesimal. Then, we obtain that

K n+An'—1
B S Poa (B(57) — 0 (£ (7)) ~ .

By the Spillover Principle, it is easy to show that for any € € R, there exists 6 € R4
such that for any An € Ty with st ( ) < 4, the standard part of

K n+An—1
BN P B - 0 (B ()]
is less than €. We can then claim that
n+An—1
o> Gubu (K dw (U (5°) = D &b (K 1)0k () At| = o(At).
r=n €S les

Hence, Equation (E.30)) implies that

P (Bi(t+ At) = (K. 1) | Bi(t) = (k, J)) = Zﬁkl%l(k,»l/)@kl (P2) At + o A1),
les

which implies agent ¢’s transition intensity for her expanded types from (k, J) to (k’,1') at time

t to be Q. ryk1)(P(t)) as in Case 3 of Table 1.

Part 6: Fixanyi € I, t € Ry, k, k' € S with k # k" and P (8;(t) = (k,J)) > 0. The purpose
of this part is to verify that agent i’s transition intensity for her expanded types from (k, J) to
(k',J) at time t is given in Case 4 of Table 1.
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For any At € Ry, let n, An € *N such that 7 € monad(t) and % € monad(At). By

Equation (E , we have
P (B;(t + At) )] Bi(t) = (k, J)) == Py (B340 — (1) | B = (k)

Lemma says that the probability for agent ¢ to change her extended type twice in the time
interval [t,t + At] is at level of At?. Hence, we have

P (Bi(t+At) = (K, J) | Bi(t) = (k, J))
= Py (Brmrian - (k:’, J),X§”+3A" — X =1 B = (kD) +O(AR). (E31)

For any k; € S and m,m’ € {3n,3n+1,...,3M?} with m > m/, let
By ={w € Q: Bl (w) = (ki, J), X" (w) = X" (w), 7" (w) = (k, 1)}

and O, = {w € Q: X" (w) = X™(w)}. Then B}, is the event that 7" = (ky,J), 3" = (k, J)
and there is neither mutation, nor matching, nor break-up for agent ¢ between 3n-th step and
(m—1)-th step; C}, is the event that there is neither mutation, nor matching, nor break-up for
agent i between m’-th step and m-th step. In particular, when the event C, happens, agent

i does not change her extended type between m’-th step and m-th step. It is clear that
By ={weQ:fMw) = (ki,J), " (w) = (k, J)} N Co . (E.32)

If the events (523” = (k, J)) and (XE"HA" — Xf’” = 1) happen, agent ¢ can become
an agent with extended type (k/, J) via mutation, or matching (without entering an enduring
partnership) by the end of step 3n+3An (since a single agent does not involve in the break-up
of a long-term relationship). Equation can be expanded as follows:

P (Bi(t + At) J)| Bi(t) = (k,J))
= P (5§"+3A" = (k’, J), H§"+3A” A =1, XA X1 | B — (k)
R (BT = (), NPAR N 1 XA 1| B = (k, )
+ 0(At?). (E.33)
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The first term in the right hand side can be expanded as follows:

Py (B?n+3An _ (k/, J)’ﬁi?erBAn _ ﬁ?n _ LXi?m—i-?)An X3n -1 ‘ 5 k‘ J))

n+An—1
1 A A
= Y R(BE NGRS B = (k)
r=n
n+An—1

= Y [m(BE B = k) R (ChAn B
n+A_n—1

= X [B(B =W | Chn (B = k) R (Ch| B = (k)

r=n

et o)
By Equation (E.1) and Lemma (i), we obtain that

By (/331”“ Iy cgn (B =k, ))
= B (B?"“:(k',J)»cg;m (B = (v, 1))
. <ﬂ3’”+1 (K, J,1) | C3 (B;’"“ = (k, J, 1)))
= B (ﬁ?”““ (K, J,1) | B = (k J1)>
(Bt = ) | B = ()

where the last identity follows from the step of random mutation for matched agents in the

construction of the dynamic matching model. Then, the above identities imply that

Py (BngrBAn _ (k?,, J), E[Z;‘)n+3An _ ﬁ?n =1, X?nJrBAn _ XZSn -1 ’ Bf}n _ (k, J))

= e (a3 = ) B (e )] o

Now, we estimate the difference

n+An—1
Py (B?n+3An _ (k‘/, J), ﬁfn—l—?»An o ﬁz?m _ LX?n—i—SAn o XlSn =1 } B?n _ (k, J)) o Z ﬁkzk’

n+An—1

< Z Mok

r=n

Py (Cin| 8" = (k) Ro (e | BEFY) =1
We can obtain from Lemma that

Po (O3 B2 = (1)) Po (3| B
< Ka>6(r") <1 Ka>2(3"+3An3T1) _6K(r—n)a _ 2K(3n+3An—3r—1)a
i .

>

1— — ~e M e

M

M
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Then, it follows from the above inequalities that

n+An—1
Py (B?n—&—f&An _ (k/, J), f{fm—i{iAn - f{23n =1, X?n—i—?pAn X3n -1 } 5371 _ ) Z nkk’
< n+§1 a (1 _ 6K(r—n)a 72K(3n+3An—3r—1)&)
< —_ —e M e M
r=n M
~ At (1 e 0K
= O(A).

Therefore, we obtain the following estimation

Py (B?nJr?)An _ (/{7[, J), ﬁ?n+3An _ IfIZ3n _ 1’X?n+3An _ XzSn -1 ’ B?n — (k, J))

n+An—1

Next, we need to estimate the second term on the right hand side of Equation . The
proof for such an estimation is very close to the proof in Part 5. For the sake of completeness
and readability, we present the detailed proof below.

The second term on the right hand side of Equation can be expanded as follows:

Py (Bgn—i-?)An — (k/, J)7 Ni?m-l-?)An _ me =1, Xz?m-‘rf%An _ an =1 ‘ I@Em _ (k, J))

n+An—1

= Z ZPO <<B3r+3 (k‘/ J)) N Bzz"JrQ N Cgi)‘);zngAn ’ Bl?m — (kﬁ, J))
r=n €S
n+An—1

- Z Z [Po <(ﬁ3r+3 (¥, J)) N B+ ’ G — (k:,J))
r=n €S
P (s (/83”3 (K.) 0 B+
nt+An—1

= Z Z [ (63r+3 ’B3r+2) P, (B]:gm | B = (k:,J))

r=n_leS
E (C:»??i:?“ (53”3 (K, 7)) N Bl 2]
It follows from Equations (E.2) and (E.32)), and Lemma [E.F| that
Po (B2 = (W.0) | BY )
= R (B = )| (B = (kD) n 05 n (B = (k)
= R (B = W) | (B2 = (k1)) N O (B = (k)
- B (/337"+3 (K, J,1) | B2 = (k,l,l))
= (1= &u)u(t),
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where the last identity follows from the step of random type changing with break-up for matched
agents (without entering an enduing partnership) in the construction of the dynamic matching

model. Then, the above identities and Equation (E.32)) imply that

Py (B?n—l—SAn _ (k/, J)’ Ni3n+3An o NZ?m _ LX?TL—}—?;AH - XZSTL -1 ‘ Bfm _ (k‘, J))

n+An—1
= Z Z (1 — &)éma(k (BST’LQ | B = (k, J))
r=n €S
Fo (Can | (B2 = (.)) 0 BY )
= "+§IZ [(1 — &) (k') Py (53”2 (k1) | C5t (Bf’” = (k, J)))
r=n_ €S

Py (Gt B3 = (1)) Ro (C5n | (B340 = (,0)) 0 B +2) [E.36)
Fix any sample realization w1 € Q¥ *1 such that 52"+ (w? 1) = (k,J). By the definition
of b, we know that h?”Jrl (w? 1) =1, and ﬁ?T“ (w3, wgpq2) =1 for any waryo € Qgria.

Hence, these facts together with Lemma imply that
)le U3r+1 (p ) - Ry (BSH—Q = (k1) ’ cIr+ln (Bz?m _ (k:,J)))‘
G (U (7)) = Ro (8742 = () | €0 0 (B30 = (k, ) )|

g (U (5) = Po (8742 = (e, L 1) [ O3 0 (B = (kD)) )|

1 1
M3P, (C’;’;H (637“4-1 (k, J, 1)>> + M2
1 1

Mmﬂﬁﬂﬂ@eme+MT

By Lemma P < cartt ’ﬁ?’” = )) > 0. Then we have P ( cIr+in <B3" = (k, ))) > 0.

It is clear that P (C’?‘?’;H N (ﬁf’" = (k, ))) is not infinitesimal, which implies that

1 1
MRy (Cit o (Bn = (k) M
Therefore, we obtain the following estimation

(U37"+1 (5 )) Py (53r+2 (k, 1) {ng—i-l n (/6311 — (k, J)>)’

which implies

2
i (E.37)

(ﬂ3r+2 (k, 1) ‘037"—1—1 <[§§n _ (k,J)))

- 2
S le (UST-H (,00)) + W
a2
- M  M?*
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It follows from the above inequality that

”*f—lz [(1 — &) (K) Po (33’”” = (k,1)| G5/ (Bf’” = (K, J)))
: IZ (05’2“ | 63" = (k, J)) Py (CgfifA” | (55’”3 = (K, J)) N Bg;”)}
- "*21 ;(1 — &) (K" Py (B?’r“ = (kD |Cot N <B;3" = (k, J)))‘
= Mﬁf12:Ul—&w@mwﬂbQ%”Zz(hn\qgﬂm(}mz<th)
dmgi%HM?szo%G%ﬁm/@?“=WJDm$ﬁﬁﬂ
< n+§_lz (]\Z + z\j2>

r=n €S
(1= R (G5 [ B2 = (ko)) Py (Cgn | (B3 = (W) N BYT2)). (E.38)

It follows from Lemma [E.§] that

Po (G| B = (o) Bo (O | (80 = 0, 0) 0 B )

Ka 2(3r—3n+1) Ka 2(3n+3An—3r—3)
> 1—— 1—-——
M M

2Ka(3r—3n+1) 2Ka(3n+3An—3r—3)
~ e M e M
~ 6—6KﬁAt. (E39)

Then, Equations (E.38)) and (E.39) imply that

n+An—1

S S0[(=Edu) R (B2 = (k1) | Gt (B = (k, )
r=n S
Py (G| B = (ko)) Po (G2 | (8370 = (W, ) n B+ |
n+An—1
— Y Y= &atk)R (B = (k)| G5 0 (B2 = (k)
r=n_ leS
n+An—1 ) a 9 B
5 Z K (M + ]\42> (1 - e—GKaAt)
< Ka(1— e KR Ay
= O(A#?). (E.40)
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By Equations (E.36) and (E.40)), we have the following estimation

Py (B?n-i-?)An _ (k/, J)7 Ni?m-i-BAn _ Nzi’m =1, X?n—i—BAn XSn —1 ‘ ,Bgn _ k‘ J))

n+An—1

= > Y- (B = (D | O3 (B = (k)
r=n les
+O(At). (E.41)

It follows from Equation (E.37)) that

n+An—1
> 1= &Ky (U (6%)
r=n les
n+An—1 . A
> (=GP (672 = (k1) [ CRt (B3 = (m)))‘
r=n_[€S
n+An—1 )
< Z Z 1 — &)
r=n les
< AnK o (E.42)

which is an infinitesimal and can be absorbed into the term O(At?). Therefore, Equations

(E.41)) and (E.42)) imply that

Py (Bgn+3An _ (k,, J), Ni3n+3An - Nz?m _ LX?n—l—?;An o XZSTL -1 ‘ Bfm _ (k, J))

n+An—1
— Z Z 1 — gkl gkl qk:l (UgT—H (NO)) + O(At2) (E43)
r=n €S

Equation implies that 5, = E(p) ~ E(5**). By Lemma UL (%) ~

E (537"*1). By the continuity of 8y;, we obtain the following estimation

n+An—1
DD (= G)dm (K (U (%)) =D (1 = &) Gru (k) 0rs (1) At
r=n leS les
1 . n+An—1 1 An
SN} zz;*(l —&Gasu) | Y 27 O (O (5°) = "0 (B (7)) 57
S r=n
1 A n+An—1
S WAL S =&am®) DY [0 (E (7)) — 0w (B (5*))]
les r=n
K n+An—1 i . ~3n
S X ; "0 (B (57)) — "0 (E (")) ] -

Fix any An’ € Ty such that —”/ is infinitesimal. Lemma implies that ||E (~3T’+1)

E(ﬁgn) |loo is infinitesimal for any r between n and n + An'. By the continuity of 6,

33



"0 (E (5° 1)) — *0 (E (5°))| is also infinitesimal. Then, we obtain that

K n+An'—1
TS e (€ (571 — 0 (B (57)] = 0.

By the Spillover Principle, we know that for any e € R4, there exists 6 € R4y such that for
any An € Ty with st (%) < 4, the standard part of

K n+An—1
~o 2 O (E(ETT) = 0w (E(5™))]

is less than e. Therefore, we can claim that

n+An—1
Z Z(l — &) (K (UFT (%)) — Z(l — &) (k)01 (5r) At| = o(At).
r=n leS les

Hence, Equation (E.43) implies that

P (Bfer?)An _ (k,, J)’ Ni3n+3An o Nl?m _ 1’X?n+3An - Xl3n -1 ‘ B;?n _ (k, J))

= > (1= &)ou (K0 () At + o(At). (E.44)
€S

By Equations (E.35)) and (E.44]), we can obtain that

P (Bi(t+ At) = (K, J)| Bi(t) = (k, J))
_ PO (B?n—&-{&An _ (k’l, ,]), f{i?m—&-SAn - ﬁl?m _ LX—Em—&-SAn o le?m -1 ‘ Bl?m _ (k‘, J))
+PRy (Bé’m-i-?)An — (k/, J)’Ngm—&%An _ N?n _ 1’X§n+3An _ X{?n -1 ‘ BlSn — (k?, J)) + O(AtQ)

= Mt + > (1= &)se (k)0 (1) At + o(At),
les

which implies that agent i’s transition intensity for her expanded types from (k,J) to (k',J)
at time ¢ is indeed Q1 7)) (D(t)), as given in Case 4 of Table 1.

E.5 Proofs of Lemmas [E.1l — [E.10

The proof of Lemma is given in Subsection In order to prove Lemmas —
some additional lemmas are presented in Subsection[E.5.2] Lemmas[E.2]— are then proved

in Subsections - respectively.

E.5.1 Proof of Lemma [E. 1]

The proof consists of three steps. In the first step, we (randomly) choose a set Ay of agents

among the type-k single agents, which is to be matched with type-I agents. We require that the
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cardinality |Ag;| of Ay is even and |Ag| = |Aj|, which allow the agents in Ay and Ay to be
matched. The second step is to randomly match the agents in Ay and Ajg. In the third step,

the random matching obtained by combining the match of agents in those groups is shown to
satisfy Lemma (i), (ii) and (iii).

Step 1: For each k € S, let I, = {i € I : a°(i) = k,7°(i) = i} be the set of type-k agents

who are initially unmatched. Let

Qo = {(Akl)k’leg Yk, 1,1 € S, Ak C I, |Ag| is the largest even integer

less than or equal to |I;|qy;, Ax and Ayy are disjoint for different [ and l’.}

Note that p, ; is the proportion of agents of type k& who are initially unmatched, which implies
that |I| = Mﬁkj. Hence, we have |Ii|q,, = Mﬁqukl = Mp,;qy = |lilqy. Then for any
(Ak)kes € Qo, |Agi| = |Ai| for any k,1 € S. Let pg be the counting probability measure on
(Q0,.Ag), where Ay is the power set of Q.

Step 2: For any fixed wy = (Ai)k,ics € o, we consider partial matchings on I that match
agents from Ag; to Ajp. We only need to consider those sets Ag; which are nonempty. For each
ke S, let Q7 be the set of all the full matchings on Ay, and p;) the counting probability
measure on 7. For k,l € S with k < [, let ;7 be the set of all the bijections from Ay to
Ay, and ) the counting probability measure on €;P. Let € be the set of all the partial
matchings from I to I. Define Q7° to be the set of ¢ € ;, with

(i) the restriction ¢|y = 7°|y, where H is the set {i : 7°(i) # i} of initially matched agents;
(i) {i € I : ¢(i) =i} = I\ (UL, Agy) for each k € S;
(iii) the restriction ¢|4,, € Q) for k € S;
(iv) for k,1 € S with k <1, ¢|a,, € Q.

(i) means that initially matched agents remain matched with the same partners. The rest is
clear.

Define a probability measure p7° on €y such that such that

(i) for ¢ € Q7°,
1y () = 1T 157 (Dl ay,);

1<k<ISK, A #0

(i) ¢ ¢ Q77 ui®(¢) = 0.
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The purpose of introducing the space Q;° and the probability measure p7° is to match the

agents in Ay to the agents in Aj; randomly. The probability measure ;7°

is trivially extended
to the common sample space €21.

Define a probability measure Py on €2 = €y x ; with the power set F{ by letting

Po ((wo, w)) = po(wo) x pi° (wi)-

O(r(i,w)) if n(i,w) #i

J if m(i,w) = 1.
Denote the set {(wo,w1) € Q= wo € Qo, w1 € 0} by Q. The definition of Py indicates

that P, (Q) =1.

For (i,w) € I x Q, let 7(3, (wo,w1)) = wi(?), and ¢(i,w) = {

Step 3: It is clear that 7 is a random matching and satisfies part (i) of the lemma. For any
k,l€ S andw € Q, we have A ({i € I : (i) =k, ¢°(1) = J, g(i,w) = 1}) = [Aul “gince | Agi| is

M
the largest even integer less than or equal to |I;|q,,;, we have |[Ay| — |Ix|q,; | < 2. Hence,
. . . . X Ap| ] 2
Mo ({iel:aG@) =k ¢"G)=J gli,w)=1}) — :“A— x < —,
’ 0 ({ (i) g (1) g(i,w) }) kale’ IV: I qkl %

which implies part (iii) of the lemma.
It remains to prove part (ii). Fix any 4,7 € I with i # j, 7°(i) = i and 7°(j) = j; denote
a%(i) and a’(j) by ki and ko respectively.

We start with the first inequality in part (ii). By the construction above, we have

Py (mi =37) = Po ({((Ar)kes,wi) 11 € Apikys § € Apghy, wi(i) = 7}).

Let A= {(Ag)kics i € AkykyrJ € Akyky - Then, the definition of Py implies that

. A . ‘
Po(mi=4)= > po((Ar)res) P HRIES (0 (1) = ).
(Aki)k1es€A
When ki # ko, for any (Agi)kics € A, we know that
A . . 1
i S (i) = §) = o
‘ k1k2’

When ki = ko, for any (Ag)kics € A, we have

(Ak)k,ies . . 1 2
i " (w (1) = 4) = < )
! ( ( ) ) ’Ak1k2’ -1 ‘Akle‘

since |Ag,k,| > 2 for any (Ag)kies € A. Then, it is clear that M(lAkl)k’les(wl (1) =j) < IATZM
172

always holds for any (Ag)k1es € A. Therefore, we can obtain that

. 2
Py(mi=j) < > o ((Arkies) Al
(Akl)k1es€A 1

2 . .
= A ‘,uo ({(Akt)rtes 1% € Akky, J € Akoky })
1R2

2
|Ak1k2‘

o ({(Ar)ries : 1 € Agyry ) -
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Let M} and my; be the cardinality of I and Ay respectively. Let (Z) = b!(aaiib)! denote

the binomial coefliecient. Then we have

My, —1
PO (ﬂ_i = .]) < 2 (mkll;_l) = 2 k1 ky = 2 = 2
T Mgk, (mj\flecQ) My My My, Mp,

where the last identity follows from the fact that M Pr g = k| = My, .

Next, we prove the second inequality in part (ii). Assume that p, ; > L. We have

M3

My, —1
. . (mkfilfl) meq 1y
Po(g(i) = l) = po ({(Ar)ries =0 € Ay }) = (0) ~ My,

Myl
It is clear that Py(g(i) =11) < M&iﬁlll = qy,;,- Note that
Po(g(i)=l) > W = G, — ]Vil
Terty — 2 2 Gty — %
M Pl J M3
Then, we have
Uy, — —7 < Polg(i) = 1) < gy, (E.45)

A2
3

It remains to prove the third inequality in part (ii). We make the further assumption

that p, ; > M% . When ki # ko, we obtain that
Po(g(i) =11,9() =1l2) = po({(Arrses 11 € Aty J € Akaln})
(1) G2 ™)
m -1/ \m —1
= ]E\}l;l 13\24152 = Po(g(i) = 1) Po(g(j) = l2)-

(et ) G2
Equation (E.45|) implies the following inequalities:
. . 2 2 4
When ki = ks but 1 # I, we have

My, —2
(mk1l1 7§}mk112 71)

Gy )
MEq1q5MEq 1y

Po(g(i) = 11,9(j) = l2) = po({(Ar)ke5 1 € Apy1y,J € Apip}) =

@ is the multinomial coefficient. It is clear that

where (%) = gy

M1, M1, < M1y (mk1l2 + 1)

Po(g(i) =11,9(j) =l2) = My, (M, —1) — M,f

1 1
< Qi e, T lellm < Gty Gyt + Vo
1

k1

qklllqklb + m S Qk111Qk1l2 + m
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On the other hand, we can obtain that

Moy 1y Mooyl
Mkl (Mkl - 1)
(Mquk111 - 2) (Mlﬂqklzg —-2)
N Mkl Mk1
2 2
2> Gy Tty — M Ay, — Eqkllz
1 1
4
2 Gy Tty — M
1
4
= g1, 9kq15 — W
k1
4

> Qrey 1y Aoyl — M%'
3

By combining the above inequalities, we have

4 . . 1
Thoy 1y Doyl — 17 < Po(g(i) =11,9(5) = 12) < Qoy1, Uyt + I7Ek

When ki = ko and 1 = l9, we can obtain that

()
Po(g(i) = 11,9(7) = 1) = po({(Art)ktes : ,J € Apiy }) =

It is clear that

. , (M1, (M, — 1) _ My 2
P frd l fry l = < 101 < .
0(9(i) = 11,9(j) = l1) My, (My, — 1) = M,f > G
1
On the other hand,

(mklh)(m’ﬁh — 1) > (Mqu’ﬂh B 2) (Mquklll B 3)
Mk1 (Mkl — 1) - Mk Mk

1 1

>02, _ i > 02 2
Z Qg1 M, Ag11y = iyl M% :
1

Therefore, we obtain that

5 . .
Gty — e < Po(g(d) =11, 9(j) = la) < a7 ;-

3

Myl -2

M .
(mklil )

(E.A7)

(E.48)

By combining Equations (E.46)), (E.47) and (E.48)), we know that for any (k1,11), (k2,l2) € S?,

5 . ) 1
Tiey 1y Dhegly — 7] < Po(g(i) =11,9(5) = 12) < Qoy1, Uity + I7Ek

3
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E.5.2 Some additional lemmas

The following lemma demonstrates the identity of E**" " 532 and T} (P33 (wPn3)).

Lemma E.11. For any n € Ty, w32 € Q3" 73, we have
Ew3n*3ﬁ3n—2 =T (ﬁ3n—3<w3n—3)) )
Proof. Fix any n € To, w3 € Q33 and (k,l,7) € S. For any (k',I',7') € 8, let
B i€ 1 B3ty — (1,10},

It follows from the definition of 5"~ that

w3n—3 ~3p—2 ~3n—2/, 3n—2 w3n—3
[ Pkir sy Priy (W )dQ%, o
3n—2

_/ 1
Q3n2M

(B2 2)dQs," s

i€l

_ ;4 DS / L, (B2 (P 2)) A5’

Qs
(k” l’ /)GS EB;’,?Z;’L,B 3n—2

- = Y Y e (e = k).

(k” l’ ’)ES ZEBZ’?; ; 3

When [ € § and r = 0, we have

B = = Y (AR = (1,0))

M
K €S ;- pudn—3
EBk’l’O
= M
M, 1'ES ;- pwdn—3
EBk’l’O
_ ~3n— 3 ~ ~
= Z Prig (W )Ukk/mlf

Kl'es
= [Tl( ke 3( 3n_3>)]kl0'

When [ = J and r = 1, we have

3n3

w33 ~3n—2
E PrJ1

o (B W) = (k1))

k es w3n—3
€8y

- =3 Y i

k'eS w3n—3
ZEBk,J1

= Z P (W)
kes
= [Tl (~3n 3( 3n_3))]kJ1'
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By the construction of the mutation step and the definition of /5’3”_2, it is clear that
3n—3 .9, _ - _
B o = 0= [T (0@ ) [y (E.51)
3n 3 . ~ —
BV py = 0= [T (p W 3))]kJO‘ (E.52)

The identity E‘*’3n_3ﬁ3”_2 =T (53”_3(w3"_3)) then follows from Equations 1) l ,
(E.51)) and (E.52) =

The following lemma shows the relationship between E<"~* 53"~ and T, (PP 2 (wP2)).

Lemma E.12. For anyn € Ty, w31 € Q371 we have

~3n— - ~3n— _ 2K
Hp3n l(w?m 1)—T2 (p3n 2(w3n 2)) Hoo < ﬁ

Proof. Fix any n € Ty, w2 € Q32 and (k,l,r) € S. When [ € S and r = 0, it is clear that

for any w1t € Q371 with w31 = (w3"_2,w3n,1),

~3n—1

o (w3n—1) — 52711072((&}371—2) — [TQ (ﬁ3n—2(w3n—2))]kl0 . (E.53)

When [ € S and r = 1, it follows from Lemma (iii) that for any ws,—1 € Q3n—1,

52?171("‘)3 ) [TQ( 57" 2w 3n_2))]kll}

‘ﬁi?l 1 52312(&)37172)@“ (ﬁ3n72(w3n72))‘
< —. E.54
< - (E:54)

When [ = J and r = 1, we have for any ws,_1 € Q3,_1,

P (@) = [T 2™ )]
— Z P Hw® ) — Z [To(7"" (W™ )] 1
= res
2K
o (E.55)
M

When [ € S and r = 0, by the construction of the matching step and the definition of

53”*1, it is clear that for any ws,_1 € Q3,_1,
G 1) = 0 = [T (7P 2 2)] - (1:50)

By Equations (E.53)), (E.54)), (E.55) and (E.56[), we have,
2K

H ~3n— 1( 3n—1) _ T2 (ﬁ?m—2(w3n—2)) Hoo < ﬁ

for any w3n~1 € Q31

The identity of E~™" " 3" and T} (p*"~Hw?® 1)) is proved in the next lemma.
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Lemma E.13. For anyn € Ty, w31 € Q371 we have
3n—1 _« U _
E¥ pdn — T3 (p3n 1(w3n 1)) )

Proof. Fix any n € Tg, w1 € Q31 and (k,l,7) € S. For any (k',I',7') € 8, let

w3n—1

Bk,"l’ ;= {Z € I: B,?n_l( 3n— 1) (:IC/ l/ )}

It follows from the definition of 3" that

3n—1

~ -~ 3n—1
B = /Q A (P dQs.
3n

1 ~ 3n—1
= — ) 134:(38)dQy,
i (s

il

= ]\1% > > / L (B2)dQs,"

Q
(k’ l/ ,)ESzGB;:/Sl?/l 3n

- = Y Y e (A=)
(k'Vr)eS By

When [ € § and r = 0, we have

3n—1 _ 3n—1 ~
B = = Y o (B = (k,1,0))
IGB;’Z?)" !

Z S (B = k)

k/ ZIGS Bw3” 1

k1
= fio @A = k) + >0 A @ eerdwr (k1)
k' l'eS

- [T3( 51 (w 3n71))]k10. (E.57)
When [ = J and r = 1, we obtain that
3n—1 _ 3n— -

B pn = S (B =)
ZGB‘]:E? 1

Sy e (B = k)

k’ JeS ;o gwin—1
€B g

UZ > e (B =)

k' VES e guin—1

k'171
_ /327};1( 3n— 1)+ﬁi% 1( 3n—1 1_19kl Z 5%111 71)&/1/@/1/(/@1)
kK'leS
= [T3(~3n 1( Sn_l))]kjl' (£.58)
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By the construction of the type changing with break-up step, and the definition of 33”,

it is clear that

B =0 = [T (77w ]y s (E.59)
B o = 0= [Ts (5 (@*™) ] 0 (E.60)
The identity B« 5" = Ty (5°"(w?*1)) is then implied by Equations (E.57), (E.58), (E.59)

and (E60). =

The following lemma shows that the cross-sectional expanded type distribution p™
the end of step m can be approximated by U (p").

SM2K(K+1)
NI

Lemma E.14. Let ¢g = . For anym € {1,2,...,3M?}, let

= {w™ e Q™ [ (W™) = U)o > €0},
where & is defined in Lemma . Then, for any m € {1,2,...,3M?}, we have Q™ (V™) < ¢.

Proof. Fix any n € Ty. For the mutation step in period n, fix any w33 € Q3773. Let

3n

cv —{(Z])EIXI i< g, w3 3(, 3”*3):‘7'}.

For any 4,j € I such that i # j and 73" 3(i,w?3) #£ j, and any (k,l,7) € S, it is clear
that 1le(5~?”*2) and 1klr(,6~’?"*2) are independent on (an_Q,ggn_z,ngn 23). Therefore, such
independence and the definition of C*""~" imply that

3n—3 _ _ 3n—3
Var® pi’fr 2 = va¥

(5")

i€l

2 q q
lEI (l’,j)eowdn_d
1 -1 2 M1
N
M2 4 2 24
1
2M
It follows from the Chebyshev Inequality and Lemma that

3n—3 1
08 (||p3” 27 () [l > — )
3n—3 - _ 3n—3 _ _
_ o8 <||p3“ I M)

8 (| s3n—2 8n=3 _3n_9 1
ZQ?)n?(‘k?r —EY oa, 2A>

M3

T (B + ]\j Z Cov <1klr(ﬁ~?n_2)a 1klr(5§m—2)>

IN

(k’l7,r) S

IN

1
K(K+1)ﬁ= -
M



Let W32 = {w?72 € Q%2 . || g% 2(w®"2) = T (5°"3(w?"7?)) ||oo = ﬁ} It is clear that

n— n— w3n— n— n— n—
Q3 2(W3 2) — /Q3 B an A <”p3 2 Tl ( ~3 3) Hoo > M )dQB 3
K(K +1)

< 22T E.61
S = (E.61)

Wl

For the random matching step in period n, Lemma indicates that for any w?"~! €
QBn—17

~3n— - 3n_ _ 2K
Hp?m 1(w3n 1)—T2 (p3n 2(w3n 2)) Hoo < ﬁ

It is then clear that the set
1
M

}

W3n—1 — {w?m—l c Q3n—1 . Hﬁ3n—1(w3n—1) - T2 (ﬁ3n—2(w3n—2)) ||oo >

W=

is empty. Hence, we have

n— n— w?’ ~3n— ~3n—
@ = [ (1 -1 () e

All > A2 =0. (E.62)
M3

For the type changing with break-up step in period n, fix any w31 € Q3"~1. Let

3n—1

c” ={(i,j) € I x I :i<j, #" 1i,w™ 1) = j}.

For any i,j € I such that i # j and #%" 1(i,w 1) % j, and any (k,I,7) € S, it is clear that
lklr(ﬂf’") and lklr(ﬁ?”) are independent on (3, &3, Q‘éjsnil). Therefore, we have

3n 1 3n—1 1 ~
Var® pi?T = Var® — E 1k (513 ")
i€l

1kzlr 3”) + ]\; Z Cov (1klr(/6 ) 1klr(/83n)>

2
S (i,j)eC*" 1

Lzl 2 M1
]\2/2,614 M2 24
1

IN

20
It follows from the Chebyshev Inequality and Lemma that

3n—1 5 1
05 (np 1 (Y ||mzm>

3n—1 _ 3n—1 _ 1
- o (||p3“—Ew P2 1)

3

~ 3n—1~ ]_
< (A AR
(k,l,r 2
1
77 K(K+1
< 2K(K+1)2L = (AT ).
7 Ms
M3
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Let W3 = {w% € Q%+ ||5°"(w™) — T3 (p*" 1w 1)) [|oc > ﬁ} It is clear that
3

QSn(WSn) _ /an_ Q%,:;nfl (Hﬁ T3( ~3n— 1) ”oo > Mé) QSn 1

< KExD (.63)
M3

For any m € Ty, let

= {w™ e Q™ :w™ € W™ for some m’ between 1 and m}.

By Equations (E.61), (E.62) and (E.63), we have

W< 3 Qrw < M”j\f” ~ e

Fix any m € {0,1,...,3M?} and w™ ¢ W'". We have

17™ (™) = U7 (7)o

<A™ = UR ™ @) oo + U E™ W™ ) = UP(6°) oo
< UL F @) = UE ) oo

j=1
- Smen o (e )|,

By the definition of M, we know that ﬁ < &3p241- The fact that w™ ¢ W leads to w’ ¢ WY
3
for any j € {0,1,...,m}, which implies that

17 (@) — U (71w lo < M1 < Eonpenn.

3

By Lemma [E:2] we have
17™ (™) = U7 (7" oo

m—1
Z £3M2+1—j
=0

m—1

< M2§0 < o,
Jj=

IN

which implies that w™ ¢ V™ = {w™ € Q™ : |p™(w™) — U(3")]|lec > &}. Since w™ is
an arbitrarily fixed element in Q™ \ W', the fact that w™ ¢ V™ implies that V" C W' .
Therefore, we have Q™(V™) <¢y. =

3n—2

The following lemma shows that, when w is not in V372, M ~15 is a lower bound

for the population of single type-k agents after step 3n — 2.
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Lemma E.15. Foranyn € {1,2,...,M?}, w32 ¢ V32 gnd k € S, we have 927}12( 3n=2y >
N
M™15.

Proof. : Fix any n € Tg = {1,2,...,M?}. When n = 1, our convention is that U} is the
identity mapping, and hence we have
3n=3( ~0 ~0
DT = Do = DAk
keS keS keS
Note that p) ; > 515 for any k € S. Therefore, it is clear that >, ¢ [Uf"_g(ﬁo)]k > o
When n > 2, the definition of 75 implies the following identities:

DO = 20 [T (076"

kes kes
= Y 0 =&u)Sr®UT Ok + D Dww e (BT () wevo
Kk UES kKIS
) 0P e
kes
= > =& U e+ D DU ) ko + D _IUT () k-
K ies KIS kes

By the definition of Y and f, we know that 0 > ﬁ and ékl <1- ﬁ for any k,l € S. Then,

we can obtain that

SO ),

keS
1 - ) - ~ — ~|
> o | 2 T+ Y 0T ero + Y _[UP Tk
kK'\l'eS K les kes
1
- M2

Therefore, D, ¢ [Uf”_3(ﬁ0)]kjl
Note that 7, > ﬁ for any k,l € S by its definition. The definition of T} implies that

—= for any n € Ty.

for any k € S,

[ (7)o = [1?.(lff" "ON]in
1

- Z [USn 3(~0)]1J1 Mk = M2 Z U3n 3 )]m ME
les les

Fix any w?" =2 ¢ V372, We have ||5°"2(w®"2) — U 2(3°)||so < &0, which implies that

AW ) 2 U2 en o = 577 — 1
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~ 3 3
Note that M > 3, §3p211 < §-1 = MTlfM and M > ( 1 ) > (i> > M3MY Tt is clear

§3M2+1 571

that £ < Therefore, we have

~ 1
<giand M55 < o < g < oA

<
‘14 2]\14
M 3

M27

i

11 1 1
~3In—2/, In—2 _
P W) 2 3 T o T oA 2

which is the required inequality in the lemma. =

The following lemma provides an approximation of the matching probabilities at step

3n — 1 using parameter q.
Lemma E.16. For anyi,j € I withi # j, w3 2 ¢ V32 and k1,11, ko, 1o € S, ifB?”*2 (w3"_2) =
(k1,J,1) and B?"J (wgn_g) = (kg, J, 1), then

1

Q5 (G2 = 1) = g, (P2 (072)] <

—_
=
©l=

Q3n 1 ( 6"t =) — G, (ﬁgn_Q (w3n_2))’ <=,
Mo

n-2 A R Y A _ 1
Q‘éﬁq (gzn 1 ’g;’m 1_y 2) = Gty (an 2( 3n— 2))qk2l2 (p?m 2(w3n 2))) < T
—2 . . . 2 e _ 1
Qté)sl(?nl J.§ 3nl l)_qkl(psn 2(3n 2))q22(p3n 2(w3n 2))‘§M3’

. . a_ _ . 3 _ 1
Q@ =1 =) =y (07 ) i, (6 ()| <

Proof. Fix any i,j € I with i # j, w32 ¢ V32 and ky,l1,ko,lo € S. Assume that
B2 (wPnm2) = (ky, J,1) and G372 (wP72) = (g, J, 1).

By Lemma|E.15 we have pinjf (w3=2) > ﬁ > ﬁ, and ﬁzzjf (w¥=2) >
It follows from Lemma [E.1] that

>

ol

_1
M% M

Next, we consider the case that agent ¢ is not matched. We can obtain

‘Q‘:ﬁ’f (Q?nfl =J)— dr, (ﬁ3n—2 (w:’m_z))‘

= ZQSn L@ =) - Zﬁklzl (772 (w*7?))

hes hLheSs

2K<2K1<2K1<2K1< 2K 1L _ 1 1
= = N N ~ = ~ — = S = , all
M3 MsMs Mz Ms MM yrs T (max{Ka,3})?" yys T pe

IN
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‘Q33n 2 ( -1 _ 14 Agn 1_ l2> — G, (ﬁSn—Z (w3n—2)) Gt (ﬁ3n—2 (w3n—2)))

Z Q33" 2 ( Z:m 1_y ,ggm 1_ ) _ Z Gt (ﬁ:’m—z (w3n—2)) Gt (5371—2 (w3n—2))‘
res res
5K < 5K 1 < 5K 1 5K 1 5K 1 1

- < — < —.
M3 NS Ms M3 Ms - MMM s T (max{Ka,3})* yr5 T s

It remains to consider the case that agents ¢ and j are not matched. We have
3n—=2 (- 3n—1 A31 A (=3n—2 ( 3n—2\) s (~3n—2( 3n—2
Q) (9 =g =) = (5 (@) i, (572 (P2

ZQ:&;" 12 ( ?n L_ g A3n 1_ /> Zq o2 3n—2)) Gt (ﬁ3n—2 (w3n—2))|

'eS 'eS
5K2 _ 5K2 1 _ 5K2 1 - 5K2 1 - 5K2 1 1
M3 NS Ms Mz Ms . MMM yrs T (max{Ka,3})?" s T Afs

The proof is thus completed. =

The following lemma strengthens Lemma [E.4] by providing a sharper bound, which will
be used in the proof of Lemma below.

Lemma E.17. For anyic I, k,l € S, n € Ty, and F3"2 € F3"=2 such that
((63” 2= (k,J, 1)) OFB"_Q) > 0, we have

P (Bt = (kL 1) | (872 = (k2. 1)) 0 F72) — gy (UF257))|

< 2¢q n 1
Py (B2 = b)) N F3=2) - M

Proof. Fixanyi € I, k1€ S,n €Ty, and F37~2 ¢ F3-2 such that Py ((53” 2 — (k,J, 1)) n F3"*2) >
0. Let a = (k,J,1), b= (k,l,1), and

A= {w3n—2 c Q32 . Bfmfz( 8n=2) _ (k, J, 1)} A F3n—2.
We know that Q3" "2(A) = Py(A) > 0. It is clear that
R3n— 23n— n— 3n—2 n— n—
R (Bt =b] (B2 =a)nF?) = QM o e (7 1_b)dc23 :

= an 3 / Qs (@t = 1) dQ .
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By Lemmas and [E.16], we have

P, <5§n—1 _ b‘ (B?n—Q _ a) A F3n—2> _ MAqkl (ﬁSn—Q (w3n—2)) dQ3"2

G =) — i (7 (@) Qi

w
< -
T Q@ 2(A) Janven—

1 w 3n—1 A ~3n—2 3n—2 3n—2
G fy [ @ =) = (2 ()| a0

- Q3n—2(V3n—2) N QSn—2(A\V3n—2) 1
- Q3n72(A) Q3n72(A) M%

< €0 n 1
— QSn—Q(A) ~

M5
By the definition of V3"~2 in Lemma we know that ||p%"2(w=2) — U™ 2(5°) |0 < &
for any w372 ¢ V312, By Lemma we have |q,, (5°"2(w*"72)) — Gy (UP2( ()] < ¢
for any w32 ¢ V372 Tt follows from Lemma [E.14] that

(USn 2( )) _ an_lz(A) Adkl (ﬁ3n72 (w3n72)) dQSan
1

< G o P~ (5 () g

1 ~ 3n—2/~0\) _ ~ ~3n—2 3n—2 3n—2
G ooy 0 (OF260) — i (72 ()@

Q3n72(v3n72) QSan(A\V3n72)

(E.64)

S o T gy
< anii%(A)‘i‘g—l- (E'65)

By Equations (E.64) and (E.65]), we have

Py (Bt = ()| (B2 = (e, 2, 1)) 092 = Gy (UF2(57))|

= |P <5Z§3n—1 — b’ (B?n—2 _ a) n F3n72> _ 1/A% (ﬁBn—2 (wsn—Q)) dQ3" 2

@A)

A n— ~ 1 ~ ~on— n— n—
i (U 2) = gaa (772 () a@

260 1
< + - +&-
= Q3 2(A) s =
2 1

< 0 6,

(<ﬂ3” 2 = (k, J, 1)) ﬂF3"—2) M

which completes the proof. =

The following lemma improves the upper bound in Part (ii) of Lemma

48



Lemma E.18. Foranyi € I, n €Ty, a,be S, and F3"2 € F3~2 such that
Py ((BZ?’"_Q = a) N F3”_2> > 0, we have

(3 =] (=) )=o)

4Keg n 2K

o ((Bfm_? = a) N F3n—2) oy T

IN

Proof. Fixanyi € I,n € Ty, a € S, and F3"~2 € F3"=2 guch that Py ((B?’”_Z = a) N F3”_2> >
0. When ﬁ?’” 2 = (k,1,0) for some k,l € S, agent ¢ is already matched at the mutation step
of 3n — 2. Thus, her expanded type at step 3n — 1 does not change with probability one. In

other words, we have for any b € S,
Py </é?n_1 =b| (B?n—Q _ a) A F3n—2> — P, (B?n—l =b| Fn=2 = a) 7 (E.66)

which implies the inequality in the lemma. Since Py ((5’?"*2 = a) NF 3"_2> > 0, it is not
possible for a to be (k,J,0) or (k,l,1) for any k,l € S. Hence, we only need to consider a =
(k,J,1). In this case, if b is neither (k, J, 1) nor (k,[, 1), then we must have Py <B§"*1 = b) =0,
which implies the identity in Equation . Therefore, the inequality in the lemma holds
again. Thus, it remains to consider b = (k, J,1) or (k,[,1).

Let b = (k,l,1). It follows from Lemma that

o (Bt = (k) | (B = (k1)) 0 E2) = iy (UF(5)|
2¢q n All 4, and
Py (B2 = (b, g 1)) N Fon=2) s

IN

P (Bt = (e L 1) | B2 = (1)) = i (U2

2¢ 1
0 + — +&1.

Py (B2 = (k,J,1)) M

IN

By combining the above two inequalities, we obtain that

‘Po <B~?n—1 = b| (B?n—? _ a) A F3n—2> —p (B?n—l = b| G2 = a)’
4 2
= €0 + 1 + 26—17
Py ((Bz?me — a) ) F3n72) Moo

which implies the inequality in the lemma.

IN
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Assume b = (k, J,1). Then, we have
’P (53” L= (k1) | (Bf’“—? - a) mF3"—2> (63” L= (k1) | B2 = a))

<ﬂ3" L= (k)| (B2 =a) N F2) - ZP (Bt = L)) B2 = a)

4K€0 + 2K

< - 7
Py ((5?”—2 - a) n F3n—2> M

Hence, the proof is completed. =

+2KE_ .

The following lemma is Part (i) of Lemma
Lemma E.19. For anyi €1, a,b € S, n e Ty, and F3"3 € F3=3 such that
Py ((Bfmé} = a) N F3"_3) > 0, we have

P (3;3”_2 =b] (B?”_g = a) N F3"‘3> =P (55’%—2 —p| s = a) _

Proof. Fixanyi € I,a,be S, n € To, and F37—3 ¢ F37=3 guch that Py ((BE’"*‘ = a) N F3”_3) >
0. Let
D1 — {w3n—3 e Q?m—3 . Bfn73(w3n—3) — a} N F3n—3.

We know that Py(D1) = Q3 3(D;) > 0. By the construction of the mutation step at period

n, it is easy to see that
Py (B:mq —b| (B{SnfS _ a) n FSn—3>
/ Q3n 2 »Bgn 2 =0)dQ>?

Q3n 3
. Ba d 3n—3
Q3n—3(D1) /D1 bdQ
= Bab7
where
ﬁklllﬁkzlg lfa = (k]-’k;270)7b: (l17l270)
Bap = ﬁklll ifa:(k17J71)7b:(llaJ71)
0 otherwise.

By taking F3" =3 to be Q3"~3 | we have
Py (Bf’"—? =b| B3 = a) — By,
Therefore, the identity in the lemma follows. =
The following lemma is Part (iii) of Lemma
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Lemma E.20. For anyi €1, a,b € S, ne Ty, and F3"~ 1 € F3~1 such that
Py ((Bf’"_l = a) N F3”_1> > 0, we have

P (B;”" =b| (Bfm—l - a) n F3"—1> - P (B;”" =b| Bt = a> .

Proof. Fixanyi € I,a,be S,n € Ty, and F3"~1 € F37~1 guch that P, ((Bf’”*l = a) N F3”_1> >
0. Let
Dl — {w3n—1 c Q3n—1 :B?nfl(w?)n—l) — CL} N F3n—1.

By the construction of the type changing with break-up step at period n, it is clear that
P, (B?m =b| (3%—1 _ a) A F3n—1)
an 1 / Q3n 6371 = )ngn_l

_ 3n—1
B Q?’”*l( 1)/D Bapd@

= B,
where ) X

1—ﬁk1k2 if a = (kl,kg,(]),b: (kl,kg, )
'léklbqglkg(ll) if a = (kl,kQ,O),b = (ll,J 1)

Bab _ ék1k25;k1k2(ll?l2) if a = (kl,kQ, 1),b = (l 12, )
(1 = &kyky )y (1) if @ = (K1, k2,1),0= (1, J,1)
1 if a = (k1,J,1),b= (ky, J,1)
0 otherwise.

\

By taking F3"~1 to be Q*"~1 | we have
Py (Bfm =b| Bt = a) — By,
Hence, we obtain the identity in the lemma. =

The following lemma provides an upper bounded for the probability with which two

agents are matched at the m-th step.

Lemma E.21. For any i,j € I withi # j and 70 # j, and m € {0,1,...,3M?}, we have
N . 2m
Py (7" = j) <meo + ——1-
15

Proof. Fix any ¢,j € I with ¢ # j. It is clear that the inequality holds when m = 0. Suppose

the inequality holds when m = m/. It is easy to see that

Py (7 =) = R (77 = m =) + B (A = gAY £ )

< R (& =)+ R (R = gAr £ 5). (E.67)
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If m" = 3n — 3 or 3n — 1 for some n € Ty, it is clear that P, (fr;”/“ =7, frlm/ =+ j) = 0. Then,
Equation (E.67) and the induction hypothesis imply that

) 2m’ + 2
Py (77 =) < Ry (/7 =) < (' + Do+~

15

If m’ = 3n — 2 for some n € Ty, we have
Py (R = G £ §) = R (77 = o w =)
Let A2 = {w32 € %2 #3772 (w37=2) = j}. Then, we obtain that
Py (7" = 4. & # J)
= [ L@ = g
3n

3n—1 _ 3n—2 3n=2, .3n—1 . 3n—2
= / Lgnfl (ﬂ-zn )dQ " +/ Q%Jn,1 (ﬂ-in = j)dQ "
A3n—2N|3n-2 ABn—Q\V3n—2

_ _ _ 3n—2 , _ . _
Q3n 2 (A?m 2mv3n 2) _‘_/Agn s “gnfl (7[-?" 1 :j)dQ3n 2.

IN

=2 ¢ A3n=2 if 7r3" 2(w3=2) #£ j, it is clear that Qgsn 12( f’" V=) =o; if

A2 (W) =, Lemma 1| (ii) implies that Q4" * (73" = j) < ———2— Tt follows

Mp 3n—2( 3n—2)J

For any w

from Lemma that for any w32 ¢ V32 and k € S, we have pzf}lQ( 3n=2y > N1,
Therefore, Lemma [E.14] leads to

PO( m+1 _ja T #])
Q3n72 (A3n72 ) V3n72) + Q3n72 (A3n72\v3n72)

2
< €0+A714.

15

2

~ ~ 1

15

IN

The above inequality and Equation (E.67)) together with the induction hypothesis imply that

! . 2 2m’ + 2
P0<m+1 )SP()(?Tlm :j>+€0+,\714§(m/+1)60+A714.
15 M5

By induction, we have

. . 2m
PO(Wm:])ﬁmﬁo—Fﬁ
15

for any m € {0,1,...,3M?}. =

E.5.3 Proof of Lemma [E.2l

First, we work with T;. Since T3 is continuous on A, there exists a strictly increasing continuous

bijection v1 on Ry with v1(0) = 0 such that ||T1(3)=T1(7)||ee < v1(]|7—7||oo). for any p, 7' € A
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(which is called a modulus of continuity of the function Tl)m

For Ty, T3, ¢, we can derive their modulus of continuity in the same way. By taking the
maximum, we can get a strictly increasing bijection v on R, which is a common modulus of
continuity for all these mappings.

Let £&1 = W and w be the inverse function v=! on Ry. Let & = min (w(£_1),& 1),
&n = min (w(fm,l), f#) for any m € {1,...,3M?}. Hence, it is clear that 3M2¢,,, < & < &4
for any m € {1,2,...,3M? + 1}.

Fix any m € {—1,0,...,3M?}, and j, 7 € A with |5 — 7||oc < &Emy1. Then, we know
that [|p — §'|lcc < w(&n). The fact that v is a strictly increasing bijection on Ry implies that

v(|p— ' llso) < &m- Since v is a common modulus of continuity for 71, T, T5 and §, we obtain

that for any r € {1, 2, 3},

I7(5) = Tr (7)o < &m, and [14(p) — 4(7)lloo < &m,

which completes the proof.

E.5.4 Proof of Lemma [E.3

Fix any m € {0,1,...,3M?}. Let V™ = {w™ € Q™ : ||[;"™(w™) — UT*(7°)||oo > &} By Lemma
we know that Py (V™) < €.

Then we can obtain that

EG™) — U ()
~ | [ - oren aen|

< [ - Ui
< [ - @Ol [ - 0Pl
3M2K(K +1 1
< e0té<etéa1= ]\éé ) N MM
3SM?K(K +1) 1 3M?(K +1)?
= M M S M
MM MM MM

Let B1(M) = BMP(K41)2 It is clear that limp; oo B1(M) = 0.

MM M

"Given a continuous function f from a compact metric space (X, dx) to a metric space (Y, dy), f admits a
(global) modulus of continuity w in the sense that w is a function from Ry to Ry with lim;—o w(¥) = w(0) = 0,
and for any z,2’ € X, dy (f(z), f(z')) < w(dx(z,z')). Since the range of f is compact, we can assume with
loss of generality that w is a bounded function on R;. Following the wikipedia entry “Modulus of continuity”
(https://en.wikipedia.org/wiki/Modulus_of_continuity), let w'(t) := % Qt [supg<y <, w(s’)] ds for t > 0 and
w'(0) = 0. Then, it is easy to verify that w’ is increasing and continuous on Ry. Let @(¢) := w'(t) + ¢ for any
t € R4, which is a modulus of continuity for f that is a strictly increasing continuous bijection on R .
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E.5.5 Proof of Lemma [E.4]

By Lemmam E.17, for any i € I, k,l € S, n € Ty and F3"2 € F3"=2 such that

<<B3n 2 = (k, J, 1)) N F?’"_Q) > 0, we have

[P (Bt = (e L 1) | (B2 = (k1) 0 F72) = g, (U2

2€p

= (k, J, 1)) N F3”*2) i

~

M

Ol

(0

6M2K(K+1)

Note that 2¢5 = .
M3

1 1
< 573 and T
M3 rd

[P (Bt = (el 1) | (B2 = (, 1) N FP72) = e, (U

1 1
MEPy (5772 = (b, J,1)) 0 Fon-2) T

which is the required inequality in Lemma [E.4]

E.5.6 Proof of Lemma [E.5

+&1.

79

+& = % + W < 555 It is then clear that

)|

Parts (i) and (iii) of Lemma have been shown in Lemmas and respectively.

Fix any i € I, a,be S, n € {1,2,...,M?}, and F3"2

€ F3=2 guch that

By <<BS’”_2 = a) N F3”*2) > 0. Lemma [E.18| indicates that
‘Po (Bgn—l —b| (B?n—Z _ a) n F3n72> — P (B?n—l =b| B2 = a)‘
4K 2K
< . <0 + 28 4 oKke .
P, ((5?"*2 - a) N F3n—2) Ma
_ o _ 3M2K(K+1) 3
Note that M > max{Ka,3}, (-1 = ATy €0 = e and M > (£3M2+1) >
M3M™  Then we can obtain that
12M?K?(K +1) _ 24M° _ 24M°  24M° 1
4Key = A(l Jr)S 1> TS 7 < s
M3 3 MM M M

2K

2M
1 +2Kf—1 <
Mos

MMM

2M AM

Therefore, we have

(it ol (2 =)
1 1

+ FYSR
MRy (B2 =a) npon-2) - M2

<

which is Part (ii) of Lemma
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E.5.7 Proof of Lemma [E.6

For a random variable f and an event G on €2, we shall use (from now onwards) the simplified
notation (f = a,G) to represent the event (f = a) N G that event G happens while f takes
value a.

We need to provide a sequence of estimations {c, }1<m<3p2 such that for any i € I, any
m,my € {0,1,...,3M?} with m > m;, any expanded types a,a; € S, and any Fimr1 € .F;-ml*l,

we have

Fix any 4 € [ and m € {1,2,...,3M?}. When m = 1, it is clear that ¢; can be taken to be 0.
Suppose that we have already defined c¢,,, we need to define ¢y, 1 using cp,.
Fix any mq, mg with m+1 > m1 > mo, and expanded types a, a1, a2. We first consider

the case when m > my. It is clear that

Fo (BimH =a,f" = alsz‘ml_l) Py (Bzml = a1>
- ZPO <Bg’n+1 = aaB;‘m = b’BZml = al,Fimlfl) Py (anl _ CL1> .

besS

Let A={be§: Ry (B =b 3" =a, F™71) >0} We hav

Py (Bt = a B = o B By (B = )
= YA (F =ad =egn o) R (5 = o)

beA

— SR (A —a B = b — e B

beA
Py </§Zn =b, " = alyFiml_1> Py (Blml = al) .

Let B=Y .4 P (Blm+1 =a ’ B =b, /B;nl = al) Py <5~Zm =, Blml — al,Fiml_l) P, (Blm _ al) ‘
We can obtain that
‘Po (BZ”H =a,B" =a, B = az) 50 (ﬂszl = a1> —B‘

— Z ‘P{) (B{”H =al B =b, M = al,Fimlfl) o (Bimﬂ —u ’ B =b,fm = a1>‘

beA
x P (Bzm =b,p" = abFimlfl) Py (BZ"I = al) .

8When A is empty, we follow the convention that summation over an empty set is zero.
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By Lemmas [E.18] [E.19[ and [E.20, we know that for any m € {1,2,...,3M?}, and b € A,

‘PO (B?H:a\@m:b,@ml :al,Fim1—1> — P, (Blmﬂza\@":b)‘

4 2
< K = ~m610 my—1 -+ 25—1 + == ) and
Po(B" =b,6"" = a1, F;""") M

[Py (Bt = a| B = b B = ar) = o (B = a| B =)

4 2
< K 6om1 +26 4+ — |-
Po(ﬁm = b, ,8 = al) M3

It follows from the above inequalities that

’Po (Blm-u — a,BZml = Gl,B,an = a2> Py (B:nl — al) —B‘
- Z’P()(Bimﬂza‘g?:b?ﬁ;m:al,Fiml_l)_p0</5>2m+1:a‘ﬁ~lm:b)
A

be
R (Bt =a| B =) — R (B = a| B = b B = 1)
X P (5 =b,/" = 1,Fz-m171) Po( T = a1>

IN

460 2 460 2
K = = +26 1+ —5+ = = + 261+ =
beZA <Po<ﬂm=b>6ml —a ) T R —n g —a) M1>

x Py (5 = b, ™ = ay, F™™ 1) P (B;.m:al)

2 2
< ZK<460+2£ 1+ —1 +4eo+261 + A1>
beA M M

< 2KXK +1) <860 AE 4 ];1) . (E.68)

1
The induction hypothesis implies that for any b € S,

P (B =0, B = an, M) Ry (B = an) = Ro (B =0, B = an) Ro (B = ar, B 1) | <
Then, we can obtain that

B =R (Bt =, B = i) R (B = an, P

B3R (B =a| A =05 = a) o (B = 0.5 =) Po (B = ar, )

beA
< ZPO (Bszrl = a‘@m =b,6" = al) ‘Po (B b, B = ay, F™~ 1) Py (Blml = a1>
beA
Py (B = b, 5 = ) By (B = Y
< 2K(K +1)epm < 2K3(K + 1)ep,. (E.69)
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By Equations (E.68) and (E.69)), we have

By (B = 0, B = ) (B = )

—Fy (5{”“ =a, " = al) Py (Bzm = alan‘ml_l)‘

4
< 2K*(K +1) <4§1 + 8¢p + — +cm) .
M3
If m =my and Py (Bzm =aq, Fl-mlfl) = 0, then it is clear that

PO <B;’I’L+1 :a)Bl‘Tnl :alvﬁ;"ml_l> PO (B’;’nl :(11)

= R (B?H =a,f™ = a1) Py (Bzml = ahFimlfl) .

If m = m; and P, (B,m =a, Fiml_l) > 0, then it follows from Lemma
that

(E.70)

(E.71)

E.18

E.19[ and

[P (Bt =a] B = an, ) = Ry (B! = a| B = )|

AK 2K
< 0 4T oK,
Py (B =, FMTY) AL

Therefore, we can obtain that

[P (B = 0. 3 =, ) By (B = )
_PO (/B;n—i_l - auB;‘rnl = (Ll) PO (B;nl == a17P¥m1_1>‘
— ‘PO (Blm—i_l = Q ‘ anl = al,Fimlil) — PO (Bim'—i_l = Q ‘ BZTLl = CL1)‘

Py (Bzml = abﬂml_l) Py (Blm = a1>

AK 2K _ .
< R S soke | R (B = BT R (B =)
Py (/JTLI =ay, F/™ ) Mo
2K
< 4K60—|— +2K§,1.

~ 1
9
By Equations (E.70), (E.71)) and (E.72), we can define ¢y,+;1 to be
4
2K*(K + 1) <4§_1 + 8y + — + cm>
Mo

so that c;,+1 has the desired inductive property.

Next, we use induction again to prove that for any m € {1,2,...,3M?},

4
em < 22K (K 4 1)%m <4§_1 + 8¢y + — 1) .

Mo»o

o7

(E.72)

(E.73)



Note that ¢; = 0. It is clear that this inequality holds for m = 1. Suppose that this inequality

holds for m = m’ > 1. Then we have

4
Cm/y1 = QKQ(K+1> (45_1+8€0+M1 +Cm/>
9
4 ’ / / 4
< 2K%*(K +1) <4gl + 860 + — 1> 4 2P AL A2 (o q)2m (451 + 860 + — 1)
9 9
<

/ ! / 4
22m +2K4m +4(K+1)2m +2 <4§—1 +8€0+ Ml) .

9

Hence, Equation (E.73|) holds. Let Bo(M) = 96M? f12M? (K+ 1)6M2 (4571 + 8¢g + #) Since
9

. 1 _ 3M2K(K+1) v 1 3 1 3 3MM s
£ = T €0 = T and M > (7€3MQ+1) > £ > M , it is clear that

lim o0 Ba(M) = 0.

E.5.8 Proof of Lemma

Fix any i,j € I with #) # j. It follows from Lemma that for any m € {0,1,...,3M?},

Py (7" = j) < meo + ﬁ Recall that M > max{Ka,3}, M > M3M" and ¢; = %qﬂl)
15 3
We can obtain the following estimation

. . 2m
Py (7" =j) < meo+ —7

15

23MPK(K +1) | 6M

< 3M . -
- WE N
3M2M2M  6M?
< BMP—— —
3 M3
24MS  24M6 1
< ~1 Al A1
M3 Ms Mes
24M6 1 24 1 1
< Py il vy Wy a
M2 Mé M= Ms Mt

For any m € {0,1,...,3M?}, let FIP={w™ € Q™ : 77" (w) = j}; then we have Py (F[j”) < ﬁ
6
We need to provide a sequence of estimations {d,}o<m<sp2 such that for any m €

{0,1,...,3M2}, aj,a3 € S, and e Fland ijfl € ]7]7”71, we have
‘Po (fﬁm = alvﬂ}m = a27Fim_1,F]m_l)

—P (BZ” = ay, Fim_1> Py (B]m = ay, ij_l)‘ < dpm. (E.74)

Fix any m € {0,1,...,3M?}. When m = 0, we can take dy to be 0. Suppose that we

have already defined d,,, we need to define d;,+1 using d,,.
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Fix any a1, as,bi,by € S, Fim_1 e F™ 1 and F]m_l € f'}n_l. We first estimate the

(2

following difference

[P (Bt =, B+t = an, B = by, B = b, F L )

“Ry (B = an, B = by, FPY) R (B = a0, B = b, )]
For notational simplicity, we let
A= {wm QM Br =by, B = bg} NE A E
A ={WmeQm: Bt =b}nFE" T,
A" ={wm e Q™ B = by N FL
We can obtain that
Py (Bml = al,B;nH = a, " = bb@}" = b%ﬂm_l?ﬂm_l)

= [ @ (A = A = ) a@n,

We first consider the case when m = 3n — 2 for some n € Ty, that is, the m + 1 step is
the matching step in the n-th period. We start by assuming b; = (k,7,0). When B{” = (k,1,0)
for some k,l € S, agent ¢ is already matched at the mutation step in the n-th period. By the
construction of the finite-agent dynamic matching model, paired agents do not change their

expanded types in the matching step. When a1 # (k,[,0), it is clear that
Py (Bt = a0, B = an, B = (8 1,0), B = by, "L B
= R (Bt = an B = (6, 1,0), F"7) Ry (Bt = ag, B = ba, F 1) = 0. (B.T5)

When ay = (ka l7 0)7 and PO (/B;m = (k;) la 0)7/3‘;71 = b2, Fimil, F]mil) = 0, the inductive hypoth—

esis implies that
Py (B = (k,1,0), F"~) Py (B = b, F"™") < di.
We can then obtain
‘P (5m+1 (k,1,0), BT = ag, B = (k,1,0), B = by, "1, FI"™ 1)
Py (Bt = (e, 1,0), B = (,1,0), F" 1) P (B = an, B = bo, )|

= R (B =an B = (6, 1,0), F" ) R (B = a3, B = bo, )

8 (/Sg.m = (k,1,0), Fimfl) Py (B;ﬂ — by, ij*l) <dyp. (E.76)

IN
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When a1 = (k,1,0), Py (Bgn — (k,1,0), B = b2,F;m—1,F;”—1) > 0, we have

PO (B,;'rn+1 = al;B]T.n+1 = Q/Q,B’v;n = (k,l70)75~;n = bz’Fimfl’F]mfl)
= R (B = an B = (k,1,0), B = b, F" L F )
= B (B}nJrl = ay |Bzm = (k,l,O),Bjm - bg,ﬂmfl,}?’Jmfl)

PO <B;m = (kv l> O)a B]m, = b2> F@'m_la F]m_1> .
It follows from Lemma [E.18] that

’PO <Bﬂm+1 = az| 5" = (k,1,0). 7" :b%Fz‘m_laFam_l) — P (B;nﬂ = az| B’ 262)‘
4Keg IK

- 3 3 +—7 +2K¢_ 1, and
Py (ﬁ;m = (k,l,o),,@]m = b2’Fimfl’}7Jm,1) IV

[Py (Bt = aa | B = bo, F") = Ry (B! = aa | B = o)
4K 2K
— €0 + — +2K£,1.
P, (ﬁjm - 52,ij—1> M

Then, the above inequalities imply that
‘PO <B]m+1 = aQ,Bzm = (k,l,O),B;” = bz,ﬂmfl,ijfl)
_R (B;”H —ay | B = b2> By (Bgﬂ — (k1,0), B = by, FP Y, ij_lﬂ
= R (B = aal B = (k. ,0), B = bo, F Y ) = Py (B4 = aa | B = ) |
PO (B;’Vl = (k7la0)7ﬁ~]ﬁb = bg,Fim_l,ij—l)

2K
< 4K60 +

~rl
9

+2K¢& 1, and

‘Po (B;.”Jrl = ag, B} = bz,ij—l) iy <Bjm+1 = a4y | 7 = b2) Py <B]m _ bg,ij‘l)‘
= | (5 = alBy = b ) = B (B =B = o) [ B (B = b, E )

2K
4Key +

~rl
9

IN

+2KE .
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By the above two inequalities and the inductive hypothesis, we can obtain that

‘P (Bm“ (,1,0), 37" = ag, B} = (k,1,0), B = bg,Fim_l,Fm_l)
—Py (B = an, B = (,0,0), F ) Po (B = az, By = b, B 1)‘
= ‘Po (5}”*1 = ag, B = (k,1,0), 3" = by, ", Fm—1>
_Py (B;”“ — az | B = )PO (Bm— (k,1,0), BT = by, "~ F7~ 1)‘
[Py (B = az By = b)) Po (B = (. 1,0), B = by, F"1 F)
~Ry (B = az | By =) Po (B = (k1.0), ") Py (B = b, FJm—l)‘
+ ‘Po (Bt = a2 | B = bo) R (B = (k,1,0), F"7) Py (B = bo, B )

=Ry (B = (e, 1,0), ") Py (B = o, B = b, P 1)‘
2K

~

IA

4K€0 =+

2K
L 2KE +d + 4K e + — + 2KE_,
9 Ms
4K
= 8Kep+ —-

~rl
9

+AKE | + dy. (E.77)

Next, we assume that by = (k,J,0) or (k,l,1) for some k,l € S. It is clear that
Py (5;” = bl) = 0. Then we have

PO (B:n+1 — a175~;n+1 — aQ’B;n b17,3 — bQ,Fm 1 Fm 1)

_ 0 (E.78)

One can exchange the positions of ¢ and j to obtain exactly the same estimations as
in Equations (E.75), (E.76), (E.77) and (E.78)), when i is replaced by j, and the conditions
on by are restated on be. Thus, for the matching step, it remains to consider by = (k1,J, 1)
and by = (kgo,J,1) for some ki,ko € S. In this case, if ay is neither (k1,J,1) nor (ki,l,1)
(I € S), then we must have P, (BZ”H = a1, 3" = by, Fim%) = 0, which implies the identities
in Equation . By the same reason, Equation also holds when as is neither (kg, J, 1)
nor (ko2,1,1) (I € S). Hence, we only need to consider a; = (k1,1,1) and ag = (ko,l2,1) for
some ly,ly € SU{J}.

In this paragraph, we work with a; = (k1,01,1), as = (ko,l2,1), by = (k1,J,1), and
by = (ko,J, 1) for some ky,ko € S, and l1,ls € SU{J}. The inequalities in Lemma give

symmetric treatment the cases for [ € S or I = J. For the simplicity of applying this lemma, we

introduce the notation gy to represent gy in the rest of the proof for Lemma[E.7] By Lemmas
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[E-14) and [E.16] we have

‘P <5m+1 — 4y, B = a9, B = by, B = by, FL 1)
| e, (7 (7Q"
= ‘ / ST (B = a1, B = 09) = G, (57, (5 ) d@m‘
[ @B = 00 B = ) i ()i (7| 4@ + Q)

1
< —1 +e. (E.79)

9

Next, we estimate the difference
‘/A@klzl(ﬁm)%gb(ﬁm)de — Po(A)dpyr, (UT(5%)) Gty (Ulm(ﬁo))‘
< /A|‘jklll(ﬁm)‘jk212(ﬁm) = Gpyry (UT(B") G, (UT(R7)) ] dQ™
< /A\vm |Gkt (P gty (B™) = gty (UT(B°)) gy (UT(2°)) | Q™ + Q™(V™)
= Vi 57, (O G ()] Q"

+ / sty (U)ot (™) = gty (U () sy (U (F))] dQ™ + Q7 (V™)
AV

A

- / ‘qulll p ) qklll (Ul ){ de
A\Vm
4 / (Gt (™) — o, (U7(°) | dQ™ + Q™ (V™).
A\Vm

By Lemma for any w™ ¢ V™, we have || (w™) — U (5")||sc < €. Lemma implies
that for any w™ ¢ V'™,

(ﬁm(wm)) - qklh (Ul )} < §-1 and ‘qkzlz m(wm)) - qk‘zlz (Ul )| < &1

It follows from the above inequalities and Lemma that

\ [ s ") 77)9Q™ = oA, (U7 (U{”(ﬁo))‘
< 21 +e (E.80)

By Equations (E.79) and (E.80]), we have

‘PO (B:nJrl = ai, B;n+1 — a2’ B’Zn = bl)B‘;n — b27 Fimfl’ F]"rnfl)

—Po(A)dy, 1, (U1m(50>) Tl (Ulm(ﬁo))‘ =

(E.81)
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It follows from Lemmas [E.14] and [E.T6 that

Py <ﬂ~§n+1 = a1, B" = by, F"~ 1 / Gy, (P de‘
— am—+1 — _ d m
m—l—l B CLl qklll Q
< / \Qmﬂ (B = a1) — iy, (7 m)\ aQ" +Qm(v™)
ANYm™
1
< —— +¢p. E.82
M% 0 ( )
Next, we estimate the difference
[ 500" = P, (076
< /A/ |Gyt (™) = Gy, (UT(2°))] dQ™
< / ‘éklll ,0 ) qk1l1 (Ul )‘ de + Qm(vm)
Al\vm

It follows from Lemma that for any w™ ¢ V™ ||p™(w™) — UM (5°)||oo < &. Lemma

implies that for any w™ ¢ V'™, (") (W™) = Gy, (Ulm(ﬁo))} < ¢_4. It is then obvious that

‘/ Ay, (P) — Po(A’ )1, (U1( ))‘
< St (E.83)

By combining Equations (E.82)) and (E.83)), we have

By (B = 0, B = b, B = Po(A)dy, (UF%)|

1
< 2¢ 4+ — +&_1. <E84)
M3

Equation (E.84)) states an inequality for a general agent i, which can be restated for agent j as

follows:

By (Bt = a, B = b, Y1) = Ro(A )iy, (UF(71))

1
< 24— + -1, (E.85)
Mo
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Based on Equations (E.84) and (E.85|), we can obtain that

[P (Bt = an, B = by, ") R (B! = a2, B = by, B
—Po(A") Po(A") gty (UT(2%)) sy (U7 (7))
< |RB = ar B = b FP R = a0, B = b, )
Py ()i, (UF(5")) Po(B = an, B = b, )|
+ [P (A1, (U () Po(F] ! = a2, B = ba, )
—Po(A") Po(A") G, 1, (UT(5°)) eyt (UT (7)) |

= ‘PO(B;n—H = Blm = by, Fim_l) o PO(A/)dklll (U{n(ﬁo))’
+ \PO(B;”“ = ag, B = b, FY) = Po( A"}ty (U7 (7)) |
< dep + + 2€_, (E86)

~ 1
g
The induction hypothesis indicates that |Py(A) — Py(A")Py(A”)| < d,,. By Equations (E.81))
and (E.86)), we have
’PO (Bzmﬂ = a1, B = ag, B = by, B} = bQ,Fz‘mfl,P}mfl)
-Py (B;"H =ay, " = bl,Fim_1> Py (5}”“ =ay, B = b2,Ff1_1>‘
[ Po(A)disty (U (7)) (UT(5)) — Po(A) Po(A" ity (U (5 (U (7))

3
+6eg + —5 +4&1
Mo

IN

9

3
< |Po(A) — Py(A")Py(A")| + 660 + o +4¢_4

3
< beg+ —F +4E1 + dm. (ES?)
Mo

By Equations (E.76)), (E.77) and (E.87), we know that for m = 3n—2, and for any a1, ag, b1, bz €
S, F e 7 and FM e BN

‘PO <B~Zn+1 = a1’ B;n+1 = CL2, BZTL = bl)B‘;n — b2’ Fimil, F]f'rn71>

4K
< 8Key+

~rl
9

+AKE | + dy. (E.88)

Next, we consider the case when m = 3n — 3 for some n € Ty, that is, the m + 1 step is

the mutation step in the n-th period. Let

Mgty Moty i @ = (K1, k2,0),b0 = (I1,12,0)
Bap = My, if a = (k1,J,1),b=(l1,J,1)

0 otherwise.
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By the construction of the mutation step in the finite-agent dynamic matching model, we know

that if #7"(w™) # j, BI(w™) = by, B (w™) = by,
e (B = a4y, BT = ag) = Qi (BT = 1)@ 11 (B! = a2) = Byyay Bhyas-

Recall from the beginning of this proof that Fj7' = {w™ € Q™ : #]"(w) = j} and Py (ET) <

E.14) that
MT1T
‘P <5m+1 =a 7/3m+ =ay, " = 51,5 = by, F"1 S 1) — Py(A)By,a, Bysas,
S / ’Qm+1 5777'"!‘1 5m+1 - 02) - BblaleQ(lQ de
= / ‘Bb1a1Bb2a2 - Bb1a1Bb2a2 ’ de
A\(Fmuvm)
+/ )Qm—i—l IBerl = a, B;nJrl = a2) - Bblale2a2 de
AN(FmUV™)
1
< R(FFUV™) < PB(F) + P (V™) < I + €. (E.89)
6

By the construction of the mutation step in the finite-agent dynamic matching model again,

we have

PU(Birn+l = al,B;{n = blaFimil) = PO(A/)Bb1a17 and
Py(B)"*! = ag, B = by, F]" ') = Po(A") Boya,-

It follows from the above identities, the induction hypothesis ‘PO(A) — Po(Dil)Po (Dgz))‘ < dp,
and Equation (E.89) that

‘Po (5{"“ = a1, B = a9, B = b, B} = b27Fim_17FJm_1>

—B (BZ”H = ay, B = by, F"~ 1) P (Bjmﬂ = ap, B}" = b2,F]m71) ‘

1
< ‘PO(A)Bblalezaz - P0<A/)Bb1a1 PO(A”)Bbzaz‘ Mi + €0
11
1
= ‘Po(A) — P()(A/)Po(A”)} Bbl(lleQ(lQ + - + €
M1t
1
< ot —1 +dm (E.90)

6
It remains to consider the case when m = 3n — 1 for some n € Ty, that is, the m 4+ 1
step is the type changing with break-up step in the n-th period. Though the proof of this part

is similar to the case of the mutation step, we present a full proof for the sake of completeness.
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Let

'1_1§k1k2 ifa—(kl,kg,(]),b:(kl,kg, )
Des by e (11) if a = (k1,k,0),b = (I, J,1)
Cy = éklszfklkz(ll,b) if a = (k1,k2,1),b = (I1,12,0)
(1- £k1k2)<k1k2(l1) if a = (ki,ko,1),b=(l1,J,1)
1 if a = (k1,J,1),b = (k1,J,1)
0 otherwise.

\

By the construction of the type changing with break-up step in the finite-agent dynamic match-
ing model, we know that if #7"(w™) # j, BI"(w™) = by, B (w™) = by,

e (B =y, B = ag) = Qi (BT = a1) @i 11 (B! = a2) = Chyay Chyas-

Lemma implies that

[P (Bt = an, Bt = g, B = by, B = bo, "™ F" 1) = Po(A)Cya, Gl

< / ‘Qerl ﬁm+1 17ﬁ;‘n+1 = (12) - Cb1a1cb2a2 de
- /A\(FmUVm) ‘Cblalcb2a2 - Cb1a1 Cbzaz ’ de

+/ )Qm—i—l ﬁerl = ay, Bjerl = a2) - Cbla10b2a2 de
AN(Fmuvm)

1
< R(FRUV™) < By(FIN + Ry(V™) < =1t (E.91)

5
By the construction of the type changing with break-up step in the finite-agent dynamic match-

ing model again, we have

Po(B"! = a1, B = by, F/" ') = Py(A')Chya,, and
PO(B;H—H = a276;'n = bo, ij—l) = PO(AH>Cbza2'
By the above identities, the induction hypothesis ’PO(A) - Po(Dél)Po (DZQ)’ < dm, and Equa-
tion (E.91f), we obtain that
‘PO (/B;nJrl = alaBerl = a275~1m = bl7B]T'n = b27FimilaF]m71>

- (BZ”H = ay, B = by, F"~ 1) P (Bjmﬂ = ap, B}" = b2,FJm_1> ‘

1
< ‘PO(A)Cblalcbzaz - P0<A/)Cb1a1 PO(A//)Cbmm‘ + M; + €
6
1
= ‘PO(A) — Po(A/)Po(A”)} Cb1a1 Ob2a2 + 7]\2; + €o
6
1

1
6
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By combining Equations (E.88|), (E.90), (E.92), we obtain that

’PO <ﬁ~§n+1 =ay, B = ag, B = by, B} = b2,Fzm_17FJm_l>

_PO <B”£TL+1 = alaB;n = bl)ﬂmil) PO (/B‘;TLJrl = anB;ﬂ = bZaij71>‘

AK
< 8Keg+ — +4KE | + dp. (E.93)

~rl
9

Fix any F/" € F". There exist Fj; ' € F/"~! for b € S such that F" = (J,c5 ((Bzm = b) N E-?_l) :

Similarly, for any fixed F/" € FJ", there exist Fjy~' € F;"~! for b € S such that F/" =
UbeS’ <<5~;" = b) N Fjrl’f_1> . Therefore, by Equation (E.93|), we can obtain that

}PO (Bzm+1 = al?B]T'n+1 = a27FZim7F‘jm)
—F (5{”“ = CL17Fim) P (B]er = a2,F}n>)

< Z ‘PO (B{nﬂ = al,B]mH =ap, A" = th}” = 527142271,1*??;1)
b1,bo€S
- (Bimﬂ = a1, B = blaFirlﬁil) P (5}”“ = ay, ff" = bZ’FjTZL;l)’

4K
< 4K*(K 41)? <8K60 + e +4K¢ 1 + dm> : (E.94)
9

Thus, we can define d,, 11 to be 4K?(K + 1)? <8Keo + % +4KE& 1+ dm>.
9
Next, we prove that for any m € {0,2,...,3M?},

4K
dp < 2MMKA(K 4 1)4m (81(60 + T + 4K§_1) . (E.95)

9
Since dy = 0, it is clear that Equation (E.95|) holds for m = 0. Suppose that Equation (E.95)

holds for m = m/. Then

4K
dpr 1 = AK?(K +1)? (8Keo + +4KE 1 + dm/)

~rl
9

4K ) ) ' 4K
< 4K*(K +1)? (8Keo +—+ 4K§1> 4 QMR RAMIR2 (g 1 yAm2 <8Keo +—+ 4K§1>
9 Moo
4m'+4 g-4m’+4 4m/+4 4K
S 2 K (K+1) 8K60+A71+4K§_1 .
Mo

Therefore, Equation (E.95) holds for any m € {0,2,...,3M?} by mathematical induction.

67



Fix any F/" € F[" and F[" € F[". Equation (E.94) implies that

|[Po (B O E]") = Po (EF") Po ()]

= Z PO (B;n+1:alaB;?l+1:a2’Fimaij)

al,ageg

- Y n (Bgﬂ“ _ al,Fim> Py (5;."“ = as, F]m)

al,ageg

< AK*(K +1)%dpmia
4K
< 4K2(K+1)2212M2+4K12M2+4(K+1)12M2+4 (8K60—|— — +4K§_1>
M3
4K
<

212M2+6K12M2+6<K + 1)12M2+6 (8[(60 + -+ 4K§_1> .

9

Let Bs(M) = 212M*+6 [r12M>+6( ¢ | 1)12M746 <8K60 + % +4K£_1>. Since £_; =
9

1
M]M]W )

. 3 3
€ = %(IKH) and M > L > () > M3MY it is clear that limy/_ee Bs(M) = 0.
s E3nmr241 §-1

Hence, Lemma is proved.

E.5.9 Proof of Lemma [E.§

Fix any i € I, m,Am € {0,...,3M?} and F™ € F™ such that m + Am < 3M?2, 57 is finite,
and Py(F™) > 0.

We first consider the case when m+Am = 3n—2 for some n € Ty. Fix any w33 € Q37-3,
Denote df’”_?’(w:s”*?’) and g?”—3(w3”*3) by k € S and [ € SU{J} respectively. If [ # J, by the
construction of the mutation step in the finite-agent dynamic matching model, we have

Qs <Xi3n72 = Xfm*g) = Tk = <1 - Ijj>2.

If I = J, we have
Ka Ka

2
dn=3 [ $3n—2 -3n—3 -
Q. (X = X )Z’?Ml—M2<1‘M> '

Let A3"—3 = (XE”—?’ - Xm) A F™. If Py(A%=3) > 0, then
PO(XZ;San — X?n73|Xé3n73 — sz’ Fm)
fA3n73 Q%J:i—; <Xi3n—2 _ X?n—?)) dQ3n73

PO (ASn—S)
s (1= 5)" g
— PO (ASn—3)

(-5
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Therefore, we obtain that

Py(X7"2 = XM F™)
= Py(X}"% = X[M|F™)Py (X2 = X3 X303 = X P
Ka

2
> Po(X" 0 = X[ E™) <1 - M> : (E.96)

If PO(XE’”_?’ = X[”, F™) =0, then the above inequality is trivially satisfied.

Next, we consider the case when m + Am = 3n — 1 for some n € Ty. Fix any w?" 2 ¢
Q%2 Denote & 2(w2) and §7" *(w?2) by k € S and | € S U {J} respectively. The
construction of the matching step in the finite-agent dynamic matching model and Lemma

allows us to claim that
Q) (Xt = X ) =1, il £,

3n—2 (530 1 3n-2 . Ka .
an_l (Xln >Xin )Squll§ﬁ7 lfl:J
I'eS
It is then clear that
3n—2 [ sa, NP . Ka
R G N ESED S VRS
leS

Let A3"—2 = (XZ?”"*Q - Xm) A F™. If By(A%2) > 0, then

PO(Xi?mfl _ X3n72|)2§n72 — sz’ Fm)
Jasns @7 (K1 = Xin2) a2

Py(A%n=2)
fuos (1 ) g
- PO(A3TL—2)

Ka
- (.
Hence, we can derive the following estimation
Py(X7" = X[ F™)
= Ry(XP"% = XP|FMR(XP T = X7 X0 = X P

> Py(XP? = XM F™) (1 - Ijj) . (E.97)

If ]30()2'1-3"72 = le, F™) =0, then the above inequality is trivially satisfied.
It remains to consider the case when m + Am = 3n for some n € Ty. Fix any w?"! €

Q3"=1. Denote @2 1(w? 1) and g2 1 (WP 1) and AT (W) by k€ S, 1 € SU{J}

69



and r € {0, 1} respectively. The construction of the type changing and break-up step in the
finite-agent dynamic matching model says that

3n—1

Q%" <X3” - X?”—l) =1, ifl=Jorr=1,

3n—1

Qs <X3” - Xf“*l) - (1 —ékl) >1- % if 1 J and r = 0.
Let A%~L = (X3~ = X) 0 F™. 1f Py(A4%~1) > 0, then
PR = X1 R = X,

Jasns @ (K = K1) ant
PO (Aanl )

Jasnr (1= 57) dQ*
- PO(ASn—l)

- 0-3)

Therefore, we obtain that
Py(XP" = X' F™)
R = X F™) By (R = XX X, )
> Py(X3l = Xm|Fm) (1 - %) . (E.98)
If PO(X?”_I = Xim, F™) =0, then the above inequality is trivially satisfied.
By Equations (E.96|), (E.97)) and (E.98), we can derive
Py(XEAm = X )

5 . Ka\?
> PO(Xim—i-Am—l _ XZm|Fm) <1 o >

. ) m+Am Ka 2
> p(km = X7 ] (1—)

m’'=m+1
< K&) 2Am
> (1- =2 :
- M

which is the required inequality in Lemma [E.8

E.5.10 Proof of Lemma [E.9

Fix any i € I, m, Am € {0,...,3M?} such that m+Am < 3M?2, 4 is finite and Py(F™) > 0.
It is clear that

Py (Kymeam - X > 2| P

m+Am—1

- Y n (Xm+Am X7 > LR =X, X = X Fm> . (E.99)
r=m+1
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Fixany r € {m+1,m+2,...,m+Am—1}. Assume that Py (X'[ = X{‘l +1, X1 = X’m,Fm) >
0. By Lemma we can obtain that

Py (KH8m = X7 | X7 = X714 1K = X )
Ka 2(m+Am—r) Ka 2Am
> 1—— > 1—-— )
M M
which implies that
Py (X7HAm X7 2 1| X7 = X7 1,87 = K )
Ka 2Am
< 1—(1—— .
< 1-(1-%7)
It follows from the above inequality that

Py (X8 K7 21, &7 = K77 41X = £ | )
= R (X K72 1| X = X7 1, X = & )

Py (X] = X741, X = X )

Ka 2Am R ) ) R
(1 - (1 - M> ) P (Xg‘ =X 4, X = x| Fm) . (E.100)

IN

When F, (er = X[_l +1, X1 = Xm,Fm) = 0, the above inequality is trivially satisfied.
Hence, Equations (E.99) and (E.100) together with Lemma imply that

IN

< (087

which is the required inequality in Lemma
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E.5.11 Proof of Lemma [E.10]

Fix any (k,l,r) € S. By the definition of p, we obtain that
& (5ram) - E (5,)
2 (45 s (1072 -2 (4 T (3
M i€l ' ' M ' '

1 ~ N
- E E ‘lklr (@HAm) — 1 (5{71)‘
M “

el

= ]\12 Z;Po (’]-klr (B?+Am) — Lgir (5{”)‘ = 1) : (E.101)

IN

For any w € €, if

1y (B;”+Am(w)) — 1 <5~Zm(w)>‘ =1, then XZ”+Am(w) > X(w). Thus,
we can obtain from Equation (E.101)) that

1 N -
B (") ~ B i)| < = >R (X727 > &)
i€l

By Lemma we have

Therefore, we can obtain that

Ka 2Am
)E (ﬁﬂiA’”) —E(p,)| <1- <1 - ) :
M
which implies that
. . Ka 2Am
B (4 ~ £ (") | < 1= (1- 37

Hence, Lemma [E.10] is proven.
F  Proof of Results in Section 2

The continuous-time random matching model with immediate break-up described in Section 2
can be treated as a special case of the model of random matching with enduring partnerships
in Appendix A by taking the enduring probabilities &; to be 0 for any k,l € S. It is natural
to define other parameters for the random matching model with enduring partnerships. For
any k, 1, k',l' € S, extend ), from its domain A to A by letting 6k (p) = Ori(p), ort (K',1")) =
0k (K" oy(l), 9k = 1, and my; and ¢ remain the same.

In Section 2, at any given time ¢, any agent ¢ has no partner with probability one.

It means that the process g is the constant J with probability one. Hence, we can obtain
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the properties and results on the type process « in Section 2 directly from the corresponding
properties and results on the extended type process (a,g) in Appendix A. In particular, the
transition intensity matrix R corresponds to Case 4 in Table 1. Properties 1, 2, 3 and 4 of the
random matching model D in Section 2, are also special cases of the corresponding properties
for the random matching model D in Appendix A, while Parts (1), (2), (4), (5) and (6) of
Theorem 2.1 are direct implications of Theorem A.1, Propositions A.1 and A.2. It remains to
verify Property 5 of the dynamical matching model I and to prove Theorem 2.1 (3).

To check Property 5 of the dynamical matching model D, we shall need to study the
properties of agents’ last partners. Let M be an unlimited hyperfinite integer in *Ny, as in
Subsection[E.4] Suppose that the hyperfinite dynamic matching model transferred from Section
E.2 has been constructed with #%(i) = i for each i € I. Fix any agent i € I and any standard
natural number n € N. For any w € (Q, let CZ? (w) be the n-th matching period of agent i. That
is, d?(w)—th period is the period when agent i’s n-th partner arrives. If the total number of
matching periods is less than n, we let d7(w) be J; otherwise 1 < d?(w) < M?. The real time

for the n-th matching of agent ¢ is defined by

M i gn m C e
M w) = st ( M ) if C{z (w) #J andAn o7 s limited
o0 if dif(w) = J or d"T(w) is unlimited

Recall that [tM] denotes the hyperinteger part of tM. For any w € Q and t € Ry, agent i’s
last matching period up to time ¢ is define by

#(w) = max{n’ € Ty : ﬁ?"l_l(wgnlfl) #iand n' < [tM]}

when the set {n’ € Ty : 7%?”/_1

defined to be J.
Next, we define the process ¢ for agents’ last partners. Fix any ¢ € I. For any w € ()

and t € Ry, let

(W' =1) # i and n/ < [tM]} is nonempty; otherwise, 7(w) is

L3t (w)—-1 cp At
, ;) (w) 7 (w)#J
@Z(w7t) = . . ~t
i if 7} (w) = J.

Then, ¢}(w,t) is agent i’s last partner up to the [tM]-th period. Since 7}(w) = J means that

agent 7 has not been matched up to the [tM]-th period, agent i’s last partner is simply defined
to be herself in this case. Note that ¢}(¢) may not be RCLL. Recall that the set

. m
A; ={w' € Q: X™(W) is finite for any positive hyperinteger m such that i is finite}

has probability one as shown in the proof of Part 1 in Subsection [E.4l For any w ¢ A; and
t € Ry, define p;(w,t) to be 4; it is obvious that ¢;(w,t) is RCLL in ¢. Fix any w € A; and
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t € Ry. By the definition of A;, we know that agent ¢ matches finitely many times up to the
[(t + 1)M]-th period. For any ¢’ in the real time interval [0,t + 1], since ¢}(w,t’) is agent i’s
last partner up to the [t' M]-th period, we know that there exists 7,7 € I and € € R4 such
that ¢ (w,t') is j on (¢,t+€) and j' on (t — ¢, t). Define p;(w,t) to be j. For any t' € (¢,t+¢),
we know that ¢}(w,t”) is j for t” € (¢/,t + €). According to the definition of ¢, we obtain
that p;(w,t’) is still j for ¢’ € (t,t + €). Therefore, p;(w,t) is right continuous at real time
t. Similarly, for any ¢’ € (t — €,t), @i(w,t") is j' for ¢ € (¥',t). The definition of ¢ implies
that ¢;(w,t’) is j’ for ' € (t — €,t). Therefore, the left limit of ¢;(w,t’) exists at time ¢. For
simplicity, let ¢;(w,00) =i for any w € .

For any i € I, let B(i) = {w € Q : ¢ (¢ ({,w,d}'(w)),w,d(w)) = i}. It is clear that
{w e Q:d}(w) =00} C B(i). We are going to show that P(B(i)) = 1. For any N € Ty, let

By(i)={weQ: di(w)#J, 77 (6,w) =i, #37L (ﬁ?’d?(w* (i,w) ,w> = #3401 (4, )
for any n’ € Ty such that d?(w) < n’ < d?(w) + N}.

Then By (i) is the event that agent i and her n-th partner do not match in period czf +1, (f? +

2,..., a?? + N. The following lemma shows a relationship between By (i) and B(7).

Lemma F.1. For any N € Ty such that £} is limited and st (§7) > 0, By(i) C B(i).

Proof. Fix any N € T such that 4% is limited and st (£7) > 0, and any w € By(i). If w ¢ A;,
by the definition of ¢, ¢ (i, w, d(w)) = i. It is clear that

® (90 (iawa d?(w)) y W, d?(w)) =1.

d%\g[w) is unlimited, we have d}'(w) = co. By the definition of ¢, we have

If

@ ((P (ivwv d?(w)) y W, d?(w)) = 1.
(w)

Next, we consider the case when w € A; and dinT
CZ?(W) 7& J, 7%3”/71 (’i,W) =1,

is limited. Since w € By(i), we have

A (RO (1,0) o) = RO ()

for any n’ € Ty such that d*(w) < n’ < d?(w)+N. Therefore, for any t' € (dM(w), dM(w) + st (3)),
' (i, w,t') = 3 (W) =1 (i,w) and go/(fr?"i?(“’)_l (i,w),w,t") = i. By the definition of ¢, we have

37 (w) =1 (1,w) and <p(7%3‘2?(‘”)_1 (i) ,w,d}) =i, which implies

@(i7w7d?(w)) =
® (90 (i>w7 d?(w)) y W d?(w)) = 1.

Hence, we have w € B(i). By the arbitrary choice of w in By(i), we know that By (i) is a
subset of B(i). =
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The following lemma verifies Property 5 of the dynamical matching model D in Section
2, which says that for any agent 7, her partner’s partner at her n-th matching time d’ is agent

1 herself with probability one.

Lemma F.2. For anyi € I and n € N, we have ¢ (¢ (i,d}'),d}') =i P-almost surely.

Proof. Fix any i € I, n € N, and any N € Ty such that % is limited and st (%) > 0. It follows
from the definition of By (i) that

Po(By() = O3 Ro(dr=ra @) =A@ =17 G) =

jel reTy

for any n' € Ty such that d < n’ < d + N)

- S Y R (CZ;Z = 7L () = j)

j€l reTy
Po (#7710 = i7" (5) =
for any n’ € Ty such that cf? <n' < a?? + N | CZ? =r, Fir—1 (i) = j) .
It follows from Lemma [E.§ that

Py (7?3”/_1 (i) = i for any n' € Ty such that df <n/ <dP+ N | dr = r, 73771 (i)

Il
<.
N
Vv
o
g

Py (7%3”/*1 (j) = j for any n’ € Tg such that d < n' < d} + N ‘ A =r, 7%t (i) = j) Ze M
Then, we can obtain that
Py (7571 () = i, 7 (jow) =

for any n’ € T such that d <n’ < d + N |d} = r, 7% (i) = j)

Y

Py (7?3"/_1 (i) =i for any n’ € Ty such that d? < n’ <d?+ N ‘ dP =r, 7771 (0) = j)
+F (7%3"/_1 (j) = j for any n’ € Ty such that d? < n’ <d} + N | dr =r, 7571 (i) = j) -1

_6KaN

2 2e M —1.

Therefore, we can derive that

Py(B() 2 DN Ro(dr=r# (i) = ) (2075 —1)

jel reTy

__6KaN

= P0<J?%J><2e M —1).

It is clear that

py(ByG)u (i =7)) = Po(Ba)+ P (dF =)

> B (dg ” J) (26— e 1) + Py (dy - J) . (FD)
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Since(A?:J)g{wEQ:d?()—oo}and{weQ d(w) = oo} C
that (d’f =J ) C B(i). Hence, Lemmalmphes that By (i ( = ) B(i). Therefore,
by Equation (F.1)), we obtain that

C B(i), we know

Py (B(i) = Py (J;‘ ” J) <ze—% - 1) + Py <CZ$ - J) . (F.2)

If st (%) — 0, then (267 T 1) — 1, which implies that the right hand side of Equation

|D tends to Py (czf # J) + P (czzl = J) = 1. Therefore, we can claim that P (B(i)) = 1,
which implies that ¢ (¢ (¢,d}) ,d}') = i P-almost surely. =

For any k,l € S, and 1 < m < 3M?, the number of matches by agent i up to the m-step,
when of type k, to an agent of type [ is defined to be

Niy(w) = [{n € To: &5 M(w) =k, #7"H(w) #1, §7"(w) =1,3n — 1 < m}|.

The following defines the counting process for the number of matches by agent i, when of type

k, to an agent of type [:

N;[tM} if A;
Nua(uo,ty = { N ()€
Recall that ©(t) = [; Nig(w,t) dA(i) denotes the cumulative total quantity of matches of

agents of any given type k with agents of another given type [, by time t.
Finally, we are ready to prove Part (3) of Theorem 2.1.

Proof of Theorem 2.1 (3): Fix any ¢t € R, k,l € S, and non-negative standard integers
n and n'/. For any i,j € I with i # j (and thus 7%(i) = i # j), it is clear that the events
(]\Afi[;M} = n) and <N5’15M] =n' ) are in F; M) and ]-"j 3[tM] respectively. It follows from Lemma
[E.7] that
P (N%;M] =n, N;’EM} = n') =P (NE&M] = n) P (]\AT;SIEM} = n') .

Since A; has probability one, it is obvious that the events <le(t) = n) and < Njp(t) =n' )
are independent. By the arbitrary choices of n and n/, we know that the random variables
Niki(t) and Njp(t) are independent. By the exact law of large numbers (Corollary 2.10 in Sun
(2006), we have O (w,t) = EOy(t) for P-almost all w € Q.

Fix any At € Ry. Let n and n + An be the hyperinteger parts of tM and (t + At)M
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respectively. It follows from the Fubini property and the definition of ©y; that

1 (EOy(t + At) — EOy (1))

At
1 . -
= At/ (ENikl(t + At) — IENikl(t)> d\
I
1 - R
N /I (ENf;fzn+A”) —EN%?) dXo
1 n+An -
= — ]E(N?,n’_Nanl)d)\O
At n/§+1/1 tkl ikl
1 n+An
= A E (N - W) v
At n’§+1/l 2 7
1 n+An
— a2 [R(EE s =)
At o
1 n+An s
_ n' — &30/ —1 c3n/_9 B 3n/—92
B Atn,§+1/]/§23n/2 Sn/ -1 (Nikl — Ny ° = 1) dQ"" ~“dXo

n+An

3n’/—2 A ’_ ~ ’_ ’_

= 5 > [ et (R - A ) dveagn

n'=n+1 aosn 1
For any i € I and w®' =2 € Q3 =2\ V3 =2 if Bf’"/_Q(w‘g”/’Q) = (k,J) (i.e., BE’"/_Q(UJIS”I*?) =
k,J, 1)), then Lemma |[E.16| (1) implies that
( ) ) 9y p

3n/—2 i ’_ A ’_ 3n’ -2 2! _ N ! I
Qg (N =t = N2 =1) = @i (987 = 1) = (772 (0™72)) 4

if 3?”/_2@3”/_2) # (k,J), then the construction of the dynamic matching model implies that
§J27__12 <N5§;/—1 - Nzi’;,_Q = 1> = 0. By Equation 1) and Lemma [E.14] we can obtain that

é (EO(t + At) — EO (1))

1 n+An ,
3n' —2 r3n/ — ~3n/—2 !
8 o O (N N = 1) arga
n/:n—i-l Q3n 72\V37L -2 J7
n+An
Z / , B pif} -2 (w?m —2) dn (ﬁSn -2 (w3n —2)) dQ3"' 2
—) Q3n —2\V3n -2
n+An
Z / / /327} -2 (w3n —2) dni <ﬁ3n -2 (w3n —2)) dQP' 2
Q3n’—2
n'/=n+1
1 n+An
© B O )
n'=n-+1
n+An

Y E [ﬁzf;'*? (w3"'—2> O (53"/—2 (wf’m/—?))} . (F.4)

n'/=n+1

1R

12

L
At

12

|-

12
|
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Fix any An’ € Ty such that AW"I is infinitesimal. For any p € A, let p be the marginal probability
distribution of p on A. Let f be a real valued function on on A such that f (P) = PrsOki(p) for
any p € A. Then, it is clear that f is continuous on A.

It follows from Lemmas|E.3|and [E.14 - 4| that for any w3" € Q3\ V3 537 (w3n) ~ U (p°) ~
E4*". Since f is continuous on the compact set A, *f (~3”( 3”)) ~*f (Eﬁ3”) for any w3" €
Q3"\V3", Since f is continuous on the compact set A, it is bounded. Then, by Lemma

we have

|E*f(5°") = * f(EF*™)]

= | [ CoE =) ag

- / () = * FEF) dQ*| + / () — *FEF) dQ*n
Q3n\y3n Van

12

~

/ (L) —* FEF)) QP
Q3n\V3n

Fix any n’ between n + 1 and n + An’. The above equation implies that
E f<~3n 2) E f(~3n)N f( ~3n 2) *f(Eﬁgn)

By Lemma u |[Ef*" —2 — E3*"||o is infinitesimal. Since f is continuous on the compact
set A, we know that *f (E pn’ 2) —*f (]EpS”) is infinitesimal, which implies E * f ( 5’ 2)

E*f ( 3”) is also infinitesimal. By the definition of f, we can obtain that

n+An’ n+An’
> B0 () = S R 6 (5] = B[ "0 ()] (F.5)

n’—n+1 n/=n+1

As noted above, Lemmas and imply that for P-almost all w3” € Q3"
5371 (wi’)n) ~ Uir‘in (ﬁO) ~ Eﬁ3n,

which implies that p>" (w3”) ~ Ep3" for P-almost all w®® € Q3. Since prs0p(p) is also
continuous on A, Equation || implies that

n+An’
Y B0 (5 0)] = (BAY) 0w (B).

n’—n—i—l

It follows from Equation (E.8) that p(t) = Ep(t) ~ Ep>". Hence, we have

n+An'
> B[00 (62| = ra () 0 (1))

n’*n—i—l
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Note that prs(t) = px(t) and Ok (p(t)) = Ok (p(t)). By the Spillover Principle and Equation

(F.4), we obtain that
1 i .
dim = (BO(t + At) — EOu (1)) = pr(t)0n (5(2))

which implies that EOy,(t) is differentiable and %’f(t) =p(t)0k (p(t)). =
References

I. Karatzas and S. Shreve, Brownian motion and stochastic calculus, Second Edition, New York,

Springer, 1991.

P. A. Loeb and M. Wolff, eds. Nonstandard Analysis for the Working Mathematician, Second
Edition, Springer, Berlin, 2015.

Y. N. Sun, The exact law of large numbers via Fubini extension and characterization of insurable

risks, Journal of Economic Theory 126 (2006), 31-69.

79



	Proof of Theorem A.1
	Finite-agent static random partial matching with general matching probabilities
	Finite-agent dynamic matching model
	Properties of the finite-agent dynamic matching model
	Existence of continuous-time random matching
	Proofs of Lemmas E.1 – E.10
	Proof of Lemma E.1
	Some additional lemmas
	Proof of Lemma E.2
	Proof of Lemma E.3
	Proof of Lemma E.4
	Proof of Lemma E.5
	Proof of Lemma E.6
	Proof of Lemma E.7
	Proof of Lemma E.8
	Proof of Lemma E.9
	Proof of Lemma E.10


	Proof of Results in Section 2

