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ABSTRACT

This paperstudiesthe role of the firm in incompletemarkets.Stockmarketequilibria

are shown to exist generically in economieswith “smooth” preferencesand production

sets. The set of equilibrium allocationsis generically infinite. The stochasticsetting is

describedby an arbitrary eventtree. At eachstate anddateagentstradeon marketsfor

spot commodities,common stocks, and other generalsecurities. The goal of sharevalue

maximizationby firms is shown to be genericallystrictly sub—opltimalin equilibrium for all

but (at most) a single shareholder.The Modigliani—Mifier InvariancePrinciple, showing

the irrelevanceof thefinancial policy of the firm, is re—examinedin the light of incomplete

markets.*
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~1. Introduction

The firm plays severalfundamentalroles in astockmarketeconomy:

(i) by virtue of its productionpossibffities, the firm augmentsthe goods available for

consumption,
/

(ii) through common stock valuation, the firm affects the distribution of wealth among

agents,and

(iii) via thedividend processesmarketedasafirm’s equity, debt,andothercorporateissues,

the firm augmentsthe set of consumptionprocessesthat agentscanfinanceby trading

over time on securityandspot markets.

The last role, typically called spanning, is absentin a standardcompletemarketscom-

petitive model, and is the focalpoint of this paper. Our modelof an economycomprises

agentswith smoothpreferences,firms with smooth productionsets,spot commoditymar-

kets, andsecuritymarketsfor commonstocksandotherassets.A stockmarketequffibrium

is defined roughly as follows. Taking prices as given, firms make productionchoicesand

security tradesmaximizing the marketvalue of their commonshares;agentschoosesecu-

rity trading strategiesand spot consumptionstrategiesmaximizing utility. The systemis

in equilibrium if all spot commodity and securitymarketsclear. Excluding from the set

of economiesa subsetwhose parametersform a closed set of measurezero, we reachthe

following conclusions.

(1) Equilibria exist.

(2) I. the numberof securitiesis largeenoughto provide full spanningat some prices,

thereis only afinite numberof equilibrium allocations,eachbeingParetooptimal, and

shareholdersunanimouslysupportthe productiongoal of sharevaluemaximization.

(3) Without asufficient numberof securitiesfor spanning,(i) no equilibrium allocationis

Paretooptimal, (ii) the numberof equilibrium allocationsis infinite if andonly if at

leastoneof the securitiesis a firm’s commonshare,and (iii) the productiongoal of

sharevalue maximizationis strictly sub—optimalfor all shareholders,exceptperhaps

one.

(4) Regardlessof spanning,the issuing or trading of securitiesby a firm has no effect on

the firm’s sharevalue. This includesthe indirect effect of dividendsandpricechanges

from securitiesheld by the firm which themselveshold sharesof the firm, and soon.
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DeMarzo(1986)hassubsequentlyshown,in thecontextof our securityvaluationmodel,

that the trading of securitiesby firms hasno effect on equilibrium shareholderntffity,

yielding a full version of the Modigliani—Miller Theoremin this general incomplete

marketsstochasticframework. It remainsthe case,of course,that shareholdersarenot

generallyindifferent to the issuanceof newsecuritiesby the firm.

The remainderof this section is adiscussionof theseresultsand their antecedentsin the

literature. Sections2 through 8 formulatethe model andstatethe resultsmore carefully.

Proofsof theoremsare collectedin Section9.

Existenceof Equilibria

We first consider the questionof existenceof competitiveequffibria. Since the spanof

marketschangesbothwith spot prices andwith the productionchoicesof the firm (not to

mention its financial policy), standardfixed point analysishasbeenapplied with limited

success.Even with ashort saleslimitation on portfolios, Radner(1972)did not resolvethe

existenceissuewith productionin his modelof asequenceof markets. GrossmanandHart

(1979) show existencein the Radnersetting with limited short salesand the assumption

of a single commodity. Burke (1986) shows existencewith a short salesrestriction and

multiple commoditiesunder additionalregularityassumptionson productionsets. Without

ashort salesrestriction,hart (1975) hasshownthat equilibria do not generallyexist,even

under the smoothpreferenceassumptionsof Debreu (1972) that we adopt in this paper.

Hart’s counterexampleis basedon a collapsein the span of security marketsat certain

“bad” spotprices. After Hart’s paper,attentionwas focusedon modelswith purely finan-

cial securities[Werner (1984), Cass(1984), Duffie (1985)] or purely numerairesecurities

[Geanakoplosand Polemarchakis(1985), Chae (1985)], or toward showing that bad spot

prices are relevantonly for an exceptionalset of economies,aprogramof genericexistence.

In the pure exchangemodel, McManus(1984), Repullo(1984), as well as Magifi andShafer

(1984, 1985)show genericexistenceprovided thereis asufficient numberof securitiesto po-

tentially spancompletemarkets.Duffie andShafer(1985a,1985b) extendgenericexistence

to the caseof an insufficient numberof securitiesfor full spanning,stifi in apure exchange

setting. This paper extendsour work to include production, exploiting the fact that a

smoothproductioneconomyand its pureexchangeversionhavehomotopicexcessdemand
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functions. [ilomotopic functions have the samefixed point index.] We gradually extend

the generalityof our basicmodel, finally showing genericexistencefor smoothstochastic

stockmarketeconomieswith incompletemarkets,securitytradingby firms, unrestrictedor

linearly restrictedportfolio formation, purely financial securities(suchasbonds), realsecu-

rities (suchas commodityfuturescontracts),andmixturesof thesesecuritytypes,including

mutual funds. We have not extendedexistenceto securitieswhose dividendsare general

non-linearfunctions of spot commodity prices, such as stock options, commodity futures

options, defaultablecorporatedebt issues,and so on. [See PolemarchakisandKu (1986)

for acounterexamplein aspecialsense.] The proofs, locatedin Section9, makeextensive

useof differential topology, introduced to the study of generaleconomic equffibriurm by

Debreu(1970,1972,1976).We usethe approchof Balasko(1975), studyingthe propertiesof

the projection mapon the spaceof economiesand their equilibria (the “equilibrium mani-

fold”) into the spaceof economies.Existencefollows from an applicationof mod 2 degree

theory along the lines of Dierker (1972), wherebythe projectionmap on a closely related.

“pseudo—equilibrium” manifold is onto.

Multiplicity andOptimahity of Equilibria

Debreu’s(1970, 1972, 1976)demonstrationthat smoothexchangeeconomieswith com-

plete marketsgenericallyhavea finite set of equilibria has beenextendedto production

economies[Smale(1974), Fuchs(1974), Kehoe(1983)]. With incompletemarketsandpurely

financial securities,GeanakoplosandMas-Colell (1985) as well as Cass(1985)showedthat

the set of equilibrium allocationsis genericallyinfinite. For ifiustration, with Sstatesof the

world (in the secondperiodof a two periodmodel) andn purely financial assets,Geanako-

pbs andMas-Colell showedthat the set of equffibrium allocationsgenericallyhasasubset

equivalent(topologically) to an (S — 1)—dimensionalball! Speakinggenerically,we show

that stockmarketsplay a specialrole in the multiplicity of equffibria. With n real (rather

thanpurely financial) assets,the set of equilibrium allocationsis finite if andonly if none

of theseassetsis a commonstock. If evenoneof thesen assetsis acommonstock,the set

of equffibrium allocationsagainhasasubsethomeomorphicto aball in R5”.

In one of our examples,the entire (one-dimensional)set of equffibrium allocationsis

strictly Paretoordered. Even before Hart’s (1975) examples,it was known that incom-
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plete stock market equilibria can be Pareto inefficient. For a sample of early studiesof

this problem, someof which give conditions for optimality or constrainedoptimality, we )

cite Diamond(1967), Jeu~senandLong (1972),Stiglitz (1972), Leland(1973), Drèze(1974),

Ekern and Wilson (1974), Gevers (1974), and Merton and Subrahmanyam(1974). Even

a cursory examinationof this literature or of the first order conditionsfor optimality in

incompletemarketswifi leave the readerunsurprisedat our proof of genericParetoineffi-

ciency of incompletemarketsequilibria. Although GrossmanandHart (1979)showedthat

Grossman’s(1977) Social NashOptimality propertycarriesover to stockmarketequilibria

if firms have appropriateobjectives,they makeit quite clearthat this optimality property

is not especiallynormative,and that firms must collect eachshareholder’smarginal rates

of substitution in order to implementSocial NashOptimal equilibria.

Beginning with Arrow (1953), the fact that repeatedtrade of a sufficient numberof

securitiescan dynamicallyspan the entire consumptionspaceand thus allow fully Pareto

optimal equffibriumallocationshasbeenshownin varioussettingsby GuesnerieandJaffray

(1974), Friesen(1974), Kreps (1982), McManus(1984), Repullo (1984), Magifi andShafer

(1985), Nermuth (1985), and Duffie and Huang (1986). The basicpremisein this paper

is that the securitiesaretoo few in numberto providecompletespanning.Of courseit is

trivial that if re-allocationsand productionchangesare constrainedto the subspaceM of

consumptionbundlesthat canbe tradedvia securityandspotmarkets,thenan equilibrium

is Paretooptimal in this constrainedsense.This follows from the observationthat the allo-

cationis an Arrow-Debreuequilibrium allocationfor the economyrestrictedto the marketed

consumptionspaceM. Given stronglinearity restrictionson productionsets,this is the

idea behindDiamond’s (1967) demonstrationthat stockmarketequffibria are constrained

efficient (in an appropriatesense).With aslightly strongersenseof constrainedoptimality,

however,GeanakoplosandPolemarchakis(1985) showthat pureexchangeeconomieshave

generically inefficient equilibrium allocationsin incompletemarkets.This result (probably)

carries over easily to productioneconomies. Frankly, we are unsureabout wherenext to

look in astudy of constrainedoptimality of stockmarkets.

ShareholderAgreement

We work with the basicpremise that a shareholdertakesprices as given and agrees
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with the productionchoiceof a firm if, given unilateralcontrol of the firm, theshareholder

would maximize his or her own utility with the sameproduction choice. The classical

decentralizationpropertiesof the competitivemarketmechanismin completemarketsare

known to includeunanimousshareholderagreementwith marketvaluemaximizingproduc-

tion choices. Unanimity follows from the simple observationthat, if prices are taken as

given (the competitiveassumption),then a firm affectsa shareholderonly to the extent

of the shareholder’swealth, which is astrictly monotonefunction of the firm’s value. The

firm thus maximizesthe optimal utility of any locally non-satiatedshareholderif andonly

if the firm maximizesits own market value. This neat coincidenceof goals via .the price

mechanismdoesnot carry over to incompletemarkets. Indeed,in asmootheconomy,mar-

ket value maximizationis strictly sub-optimalfor any shareholderrestrictedby the span

of markets. Again, the reasoningis simple. The first order conditions.for maximization

of a firm’s marketvalue are preciselythat the marginaleffect of any changein production

on the value of the firm is zero. A value maximizing firm can thereforemove the spanof

marketsin adirection strictly favorable to ashareholderwith zero marginaleffect on the

shareholder’sbudget.The shareholderwill thus prefer that the firm changeits production

choice.Using Hart’s (1979b, 1979a)terminology,the “wealth effect” of aproductionchange

is alwayslocally dominatedby the “consumptioneffect”.at aproductionôhoicemaximizing

the firm’s value. This dependson smoothness,of course,and the wealth effect may domi-

nate if the firm’s value-maximizingproductionchoiceoccursat asufficiently sharpkink in

the productionfrontier. We providethe details in Section4, usingthe fact that sharehold-

ers aregenerically restrictedby the spanof marketsin equilibrium to concludethat market

valuemaximizationis genericallystrictly sub-optimalfor everyshareholder,exceptperhaps

one.

Our conclusionmust be reconciledwith a long history of literatureshowingunanimity

amongshareholdersevenin incompletemarkets.In someof the literature [Diamond (1967),

Ekern and Wilson (1974), Radner(1974), Leland (1974)] the firm cannot affect the span

of markets, and the reasoningof the complete marketscase can be applied to deduce

unanimity. Other papersbaseunanimity on some particular verison of the “competitive

assumption,”taking somethingmorethan prices,or other thanprices, asgiven by agents.

For example, the “perfect competition” assumptionof Ostroy(1980) andMakowski (1980,
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1983)hastheeffect that shareholderstakethespanof marketsasgiven independentlyof the

firm’s productionchoice. Again, unanimityfollows from the completemarketsreasoning.

Diamond (1967), Drèze (1974), as well as Grossmanand Hart (1979) derive unanimity

not for value maximization, but for “pseudo-value” maximization,” where the “pseudo-

prices” are share-weightedsums of agentsmarginal ratesof substitution. Here, a “utffity

taking” competitiveassumptionis invoked. Severalpapersexploit a “largenumber”of firms,

meaningeither asequenceof economieswith agrowingnumberof firms or ameasurespace

of firms. The spirit of thesemodelsis that asmall firm can affect market clearingprices

or allocationsonly negligibly, so that the consumptioneffect of a productionshift can be

dominatedby the wealtheffect. A measurespaceof negligible firms in our modelwould not

overturnour rejectionof unanimityfor valuemaximization. Although theimpact of asmall

firm on equilibrium prices or allocationsis negligible, its effect on the spanof incomplete

marketsis not. For ifiustration, ashareholderunable to hedgea randomendowmentrisk

may wish that a firm alter its productionchoicepurely for purposesof providing abetter

hedge, and the effect on the span of security marketsis independentof the size of the

firm. Indeed,rejection of value maximizationholds a fortiori with negligibly sized firms,

since the contribution of a small firm to the wealth of a shareholderis negligible, even

without smoothness,and the consumptioneffect of productionchangeswill dominatethe

wealth effect. [Oneshould also seeRubinstein(1977) on a relatedpoint.] Our approachis

not comparablewith hart’s (1979b), however,for Hart comparessequencesof equilibrium

allocations as the numbersof agents and active firms diverge, rather thanexamining a

particular agent’sattitude to a particular firm’s choice in a particular economy. Under

conditions, Hart reachesthe oppositeconclusion that the wealth effect dominates,and

thus that unanimity prevails. The unanimity resultsof Bester (1982) and Hailer (1984),

also relying on a “large number” of firms, are quite special. They assumemean-variance

utility, an absenceof future randomendowments,and exogenouslydistributedfuture spot

prices (independentof production choices.) In that setting, unanimity follows from the

absenceof any incentivefor an agent to changethe span of the markets. Leland (1978)

andSatterthwaite(1981)derive unanimityunderspecialconditionsandpartial observation

of .the stateby shareholders.Kreps (1983) hassurveyedthe spanningandunanimity issue

morecarefully.
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The Dividends and Arbitrage—Valuationof Inter—DependentSecurities

We wifi be consideringthe financialpolicy of the firm. This issueis traditionally framed

in terms of the debt-equitydecision and the correspondingdividend policy. Of course, a

firm mayimplementagiven financialpolicy by trading in securitymarkets. For example,a

firm mayborrowor lendin bondmarketsto accelerateor smoothdividends.More generally,

firms tradethesharesof otherfirms; in fact, theyoccasionallybuytheir own commonshares.

Similarly, certain securitiessuch as mutual funds are set up purely to generatedividends

by trading in othersecurities.This posesan obvioussimultaneityquestion: “How doesone

determinethe dividendsand prices of securitiesthat invest in one another”? In a static

setting, for example,supposevi securitiesgenerateinternal cashflows correspondingto a

vectorö E 1R”. For example,6,~could be the marketvalueof the commoditiesproducedby

firm k. Further, supposethat the portfoliosof securitiesheld by securitiesaregiven by an

vi X n matrix ~y,where7jk is the numberof sharesof securityk heldby securityj. [Firm k

hasrepurchasedsomeof its sharesfrom shareholders,for example,if andonly if 7kk ~ 0.]

Thenthe total vectorI.~E R~of dividendspaid by the n securitiesmustsolve the equation

= i5 + ~ A uniquesolution exists if andonly if I — ~yis non-singular,in which case

= (I — 7~’ö.The story is much richer in an incompletemarketsstochasticsetting. Our

result is Lemma2 of Section6. Then, given astochasticprocess~ for dividends,we study

restrictionson asecuritypriceprocess~r,suchthat(ir, z~)is arbitrage-free,meaningthatone

cannotgeneratea positivecashflow from securitytrading without apositive investment.

Proposition3 is afinite-dimensionalextensionof resultsby Rubinstein(1976), Ross(1978),

and Harrison and Kreps (1979), showing that (ur,~) is arbitrage-freeif andonly if every

security’sprice is somefixed strictly positiveweightedsum of its future dividends.

The Modigliani—Miller Theorem

Broadly stated, there are two major implications of the Modigliani-Mifier theory in

competitivelinear markets,by which wemeanmarketswith pricetaking andfree portfolio

formation(noshort salesrestrictions,transactionscosts,or taxes). First,the currentmarket

valueof a firm’s shareis independentof its financial policy. Second,if the spanof markets

is fixed, the shareholdersof a firm are indifferent to the firm’s financial policy. In Section

7 we re-examineand re-affirm theseimplications, with emphasison a formal modelof the
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financial policy of the firm andon the role of the fixed-market-spanassumption.

We useour constructionof arbitrage—freedividendsand prices for interdependentse-

curities. Allowing the firm to adoptageneralsecuritytnt.dingstrategy,we thenconfirm the

intuition that a firm cannotchangeits marketvalue by trading securities.This is the case

evenin incompletemarketsandevenif oneaccountsfor theimpact of changesin the future

dividendsand prices of the firm on the dividendsandprices of other securitiesthat hold

sharesof the firm, and the feedbackeffect on the firm itself through its holdings of other

securities,andso on. [This includes re—purchasesby the firm of its own stock.] Of course,

a firm can alsoimplementa financialpolicy by issuing new securities,the policy form orig-

inally consideredby Modigliani and Mifier (1958) when they showedthat the issuanceof

debthasno effect on the total value of the firm. Whether the value receivedfrom the sale

of (defaultable)bonds is paidimmediately to the original shareholdersas a dividend, or

is re-invested(financially) elsewhere,this hasno effect on the initial cum dividend equity

valueof the firm. This argumentholdsall otherpricesfixed andassumesthat the issuance

of debt does not affect the range of feasible productionchoices. Of course, with credit

limitations or limited liability restrictions,which we do not model, the issuanceof debtor

tradingof securitiescould allow a firm to undertakeaproductionproject of higher present

marketvalue than would otherwisebe possible. [This bald observationhardly constitutes

asatisfactorymodel of financial policy, which is still consideredto have a relativelyunex-

plained role.] Our argumentsalsoimplicitly useperfect foresighton thepart of investorsas

to the dividendsof defaultablesecurities. That is, acorporatebond that defaultsin some

statesof the world is takenas such,andnot as riskless. Further,bondholdersunderstand

the entire financialpolicy of thefirm, includinganysaleof “new debt” in somefuturestates

of the world, which would generallyreducethe marketvalueof previouslyissueddefaultable

debt. [The alternativeto this perfectforesight assumptionis a so—called “me—first” rule, as

shownby Famaand Mifier (1972) andFama(1978).]

As to the effect of financial policy on shareholders,we point out that, generically,

shareholdersfind the span of incompletemarketsa binding constraint. This yields the

obviousconclusionthat shareholdersarenot indifferent to the financialpolicy of the firm if

it can changethe spanof markets(which is typically the casein incompletemarkets). We

provideatrivial exampleof the impactof financial innovation by the firm. DeMarzo(1986)
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has gone beyondthis andsuch earlier work as Stiglitz (1974), however,in showing that

shareholdersareindifferent to the trading of existingsecuritiesby firms. Anything the firm

can do by trading securities,agentscan undo by trading securitieson their own account.

Indeed,any changeof security trading strategyby the firm can be accomodatedwithin

anew equilibrium that preservesconsumptionallocations. Hellwig (1981) distinguishes

situationsin which this is not the case,suchas limited short sales.

§2. The Basic Equilibrium Problemin IncompleteMarkets.

This sectionincludes the definition of an economyand its equilibria in a two period

model with uncertaintyover the stateof naturein the secondperiod. We wifi later extend

th.e basicproblemin severaldirections.

Thereare £ commoditiesconsumedat time zero and in eachof S statesat time one,

making for the consumptionspaceI. = JR!(S~~)•For any x E L, let z0 E JR’ denote the

time zeroconsumptionbundleandx1(s) E JR1 denotethe time oneconsumptionbundlein

states, for I < s < S. For any spot price vectorp E £ andany consumptionplan x E C,

let Prc,x1 E JR5 denotethe vectorof state-contingentspot market valuesof z1, with s—th

elementpr(s) . x1(s). Let ~ = Rf~I~’~.An economyis definedby acollection

((ui,~ (1~),(O~~)),I <i < m, 1 <j <n,

where u, : ~ —~ JR is autility function, i~ E ~ is an endowmentvector, ~ C C is a

productionset, and O~,� 0 is the shareof firm j endowedto agenti, for firms 1. < j < n

andagentsI < j < m. By convention,~, O~j= I for all j.

For the basic model, we allow agentsto trade only in marketsfor spot commodities

and the sharesof firms. Later we extendthe model to allow tradein additional securitiesin

zero net supply, such as bonds,forward contractsfor commodities,andsoon. We wifi also

extendto astochasticsetting with sequentialtrading. Thesegeneralizationsdo not affect

the basicresults.

Firms takeas given amarketvaluationfunction v : C —~ 11? mappingeachproduction

choice~ Yj to the initial cum dividend marketvaluev(y) of firm j. We assumethe free

formation of portfolios by agents,completespot markets,andex-dividend trading of firm

sharesat time zero. Given aspot price vectorp E C, the absenceof arbitrage in security

10



marketsthen implies (asshownin the more generalstochasticsetting of Section 6) the

existenceof a state—pricevectorq E ~ such that

v(y)vqp(y)~po.yo+q.(p10~l1), yEY~,I<j<n. (I)

For productionchoicesy = (y1,.. . , ~j”) E C” of the n firms andaspot vectorp E C, let

V(p,Yr) denotetheSx n matrix whosej—th column is p1~y~.A portfolio 7 El/?” of firms’

sharesthenyields thestatecontingentdividendvector V(p,~i)i’ E J/?S~Givenastateprice

vector q, aspot price vectorp, andproductionchoicesy = (y’,... , y”), agenti thusfaces

the problem:

max tt~(z) (2)
zE~+*,7E1i’~

subjectto:~

Po . (z0 — 4) + >(~~‘— Ojj)vqp(y’) — 7jPo . ~ <0 )

pi o(x1 — ~4)< V(p,y’)~.

Firm j takesp and q as given andsolves,if possible,the marketvalue maximization

problem

max vqp(~/). (3)
yEY,

A collection ((xt, 72),(y’),p, q) is an equilibrium for the given economyprovided

(a) (x~,y~)solves problem (2) for eachagenti,

(b) y3 solvesproblem (3) for eachfirm j,
(c) ~ — = >J y~,and

(d) ~~7J= I for eachfirm j.

§3. Basic Equilibrium Theorems

This section statessufficient conditions for the generic existenceof equilibria. The

conditionsaremainly directedtoward smoothwell—behaveddemandandsupply functions.

We use the word smoothto describefunctions with as many continuousderivativesas

requiredfor our~prooTh,andadoptthe following “smoothpreferenceassumptions”of Debreu

(1972). For all :~

(U.I) vi, is~smooth, -
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(U.2) Du1(x) E C++ for all x in C++ (strict monotonicity),

(U.3) for all x in ~ hTD2u2(x)h<0 for all h ~ 0 satisfyingDu8(x)h= 0 (differentiably

strictly convexpreferences),and

(U.4) {x E C++ : u~(x)� u1(x)} is closed in C for all ~ in C++ (a boundarycondition).

For convenience,wedefineastate-completesubspaceto be avectorsubspaceof C equiv-

alent to ll~’_.~1R1(8)for somesubsetof i(s) > 0 different commoditiesusedin production

out of the £ availablefor consumptionin states or at time s = 0, 0 ~ s <S. Substitutinga

state-completesubspacefor C in condition (P.3)below makesfor aweakeningof the strong

assumptionof Gaussiancurvatureon productionsets.

(P.1) 1’, is closed,convex,and intersectsC+,

(P.2) p~Y~is boundedabovefor all p in C++, and

(P.3) as a subsetof somestate-completesubspaceC(j), the boundaryof 1~is a smooth

manifold with non-zero Gaussiancurvature.

As Hart (1975)hasshownby counterexample,we must avoidthe singularitiesinduced

in securitydemandswhen the rankof the dividend matrix V(p,y~)changes.As p andy

approachsuch a singularity, two securitiesbecomecloser and closer substitutes,andonly

short salesrestrictionscan guaranteethe existenceof an equlibrium. In order to guarantee

generic existence,we will perturb Yj by a translationi~E C(j) in order to generatethe

productionsets

17=1~+{t.~},1<j<n,

for i = (i’,... ,V’) E 7 fl~C(j)±.This perturbationpreservesthe existenceof smooth

supply functions satisfying (P.1)—(P.3) and is continuousin any of the usual topologies

placedon productionsets,suchas the topology of uniform CT convergenceon compactaof

the associated distance function (Mas-Colell (1985)).

The word generic is taken throughout to mean: for all parametersin the statedset,

exceptfor a closedsubsetof Lebesguemeasurezero.

Theorem 1. Supposeutility assumptions(U.1)-(TJ.4) and productionassumptions

(P.1)-(P.3) apply. Then, for generic(as,~)E C~x 7, there exists an equilibrium for the

incompletemarketseconomy((vi~,w~),(YJ),(O~~)).

Theorem I is a special case of Theorem 2, which is stated after the following simple example.
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Example. To illustrate our results we consider an example with m = 2 agents,£ = I

commodity, S= 2 states, and n = I firm. The utffity functions are

u~(x)=tn(zo)+fl~tn(xi(I)) +fl~tn(xi(2)), zE ~

for some I~’E ~ I E {l,2}. The production set is

Y={yEC:yo<0,yi�0,yi.yi<—yo}—C+.

All of our assumptions(P.l)—(P.4)and(U.1)—(U.3) aresatisfied. Taking thestateprice

vector ~ = (I, I) and normalizing the spot price vector p E C++ by choosingPo = I, the

market value maximizing production choices are

Yo_pi.p,/4

z’,(s) =p,(s)/2, SE {1,2}.

The initial market value of the firm is thus p . = p, . p,/4.

Problem (2) of agent i is reduced to choosing the fraction ~‘ of the firm to hold. The

first ordercondition for optimal ~‘ is

P~1JYo ~ fl~i,(s) —0
w~,+ 7’(Yo — . y) + 0p . y L.~wi(s) + Y,(8)’f’ —

Substituting the market value maximizing IF yields

~+ ~ ~ ~ 0, iE {I,2}.

We note that ~‘ + 72 = I implies spot marketclearing, and that the set of equilibria is

thereforeequivalentto the set of (p’, .~1,72) solving the two equations(*) and 72 = I —

By the usual transversality argument, the set of solutions is generically a one-dimensional

manifold.

Distinct (p,, 71, 72) and (i,, ~ ~) solving (*) and 71+72 = ~1 ~ = I correspond

to distinct allocations for the agents. To see this, suppose not. Then Pi = ~,,for otherwise

the correspondingproductionchoicesy and~idiffer. FurthermoreP17’ = ji,y’ for otherwise

the correspondingconsumptionchoicesx1 and~, differ. Thus 71 = .71
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SpecialCase: Let ~ = (1,0,0), fl~+fl~= I, and O~= 1/2 for i E {I,2}. Then (*) reduces

to
p~. pi/2

I + (~ —

- flL+~13L0 iE {I,2}.

Taking 72 = I — ~‘ and solving for p, . p, and 7~, we have 7’ = 1/2 andp, . p, = 8/3.

Thus the set of spot price vectors p, >> 0 on the circle of radius~ is in one-to-one

correspondencewith the set of equilibrium consumptionallocations.

U
2

U.
I

Wegraph the equilibria in terms of the monotonic transformation of utifity

ii~(x)= e”~, i E {I,2}

The graph of equilibrium utilities for ~3’ = ,32 is shown in Figure 1. In this case, the

equilibria are strictly Pareto ordered! The graph of equilibrium utilities for /3’ = (~,~)
and $2 = (~,~)is shown in Figure 2 as the set of non-zero solutions to the cubic equation

-+ ~I = k~i~)i~for a scalar k Only at point A in Figure 2, does agent 2 agree ~‘uth

the production choice of the firm [It also happens that A is the point of highest utility

for agent 2 on the graph.] Similarly, agentlis in agreementwith the firm’s choiceonly at

point B.

14

Figure 1. Equilibrium Utilities for /3’ =



U
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- U

Figure 2. Equffibrium Utifities for fi’ � ~32 . 0 )

Mulitpllcity and Optimality of Equilibria

In order to study the determinacyof equilibrium allocationsin an appropriate setting,

we introduce assetsa~’E R~1,0 ~ k ~ ~ n, in zeronet supply, where a”(s) � J/?t is the

commoditybundlepaidby assetk in states. The remainingn1 = n — n2 � 0 securitiesare

firms’ shares,as before. We let .

V(p,(yj,a)) = (pi~yfl...lp,oy~’IP,oalI...Ipioanz)

denote the corresponding Sx n dividend matrix. Given a stateprice vector q E R~ and

aspot price vectorp E C++, the initial marketvalueof the asseta~’is q . (pDa1’). Problem

(2) is amended to read

max n,(x) (2’)
xE~++, ~Efl”

subject to

P0 (x0 — w~)+~ [(7., — O,.,)vqp(y’)— 7.,po + ~ q (pea”) � 0
j=1 . k=n~+1

p,o(x~—.~4)� V(p, (y,,a))7.
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The conditions (a)—(d) defining acollection ((z~,
7

i), (yi), p, q) to be an equilibrium for an

economy ((u~,w~),(1’), (O~j),a) are otherwise changed only by adding the condition: 0

(e) >~7L=0forn,+1<k<n.

Weallow the case n1 = 0 of pure exchange or n1 = vi (ofpurestockmarkets)for comparison,

asking the reader to make the obvious notational adjustments for these cases.

Theorem 2. Supposeutility assumptions(U.l)—(U.4) and production assumptions

(P.l)—(P.3)apply. Then thereis an opensubsetE ofC~x 7 x JRSmfl2 whosecomplement

has Lebesguemeasurezero such that, for each(w, i, a) E E,

(1) there existsan equilibrium for the economy((u~,w1),(Yf), (O~~),a),

(2) if n ~ S, the set ofequilibrium allocationsis finite,

(3) if n1 = 0 (pureexchange),the set ofequilibrium allocationsis finite,

(4) if vi, � I (production)and n < S, the set of equilibrium allocationscontains a set

homeomorphicto a ball in JR5”,

(5) if n ~ 5, everyequilibrium allocation is Paretooptimal, and

(6) if n <S, everyequilibrium allocation is not Pareto optimal.

The proof of Theorem 2 is given in the final section of the paper. In the following

section we define and prove an additional generic property:

(7) If n < 5, for anyequilibrium, all shareholders(exceptpossiblyone)ofanyfirm disagree

with maximizationof the firm’s marketvalue.

In Sections 7 and 8 we extend this existence result to general stochastic economies.

§4. The Production Goalsof the Firm

We adopt the usual competitiveassumptionthat agentstake prices as given. With

incomplete markets,this includesboth the spot commodity price vector p and the state

price vectorq, both of which we fix for this discussion.We alsofix the productionchoices

?~k ~ j, of all firms otherthanaparticularfirm j, with vqp(vj’) � 0. The valueof problem

(2’) canthenbe written as the function Ujj : Yj —~ ii? definedby U,~,(y1)= u~(x~),wherez1

solvesproblem(2’). [We define U~~(yi)to be —oo if the marketvalueof ~j2 leavesan empty
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budgetfeasibleset for I.] A production choice y’ E l~is definedto be optimal for agenti

if y’ solvesthe problem

maxU,,(y). (4)
yEY,

We first recall the optimality of market value maximization in complete markets,using

none of the regularity assumptions(U.I)—(U.4) or (P.1).—(P.3)for this result, whose proof )

is obvious. 0

Proposition 1. Supposespan (V(p, (IF’~a))) = JRS (completemarkets). For anyfirm j
and anyagent i, if y’ solvesthemarketvaluemaximizationproblem(3), theny~is optimal

for agent i. Suppose,moreover, that 0,, > 0 and vi, is locally non-satiated. Then ~‘ is

optimal for agent i if and only if y’ solves(3).

In other words, assumingonly locally non-satiatedpreferences,the uniqueproductionob-

jective supportedby any shareholderin completemarketsis market value maximization,

acaseof unanimity. This result is completelyoverturned(generically)in incompletemar-

kets equilibria. To show this, we begin by demonstratingthat a firm and an agentagree

on market value maximization only when the incompletenessof marketsis not abinding

constrainton the agent.

Proposition 2. Supposevi, satisfies(U.l)—(U.4) and Y~jsatisfies(P.l)—(P.3). If (~,7’)

solves(2’) with ~ 0 and ~i’ solves(3) and (4), then~ also solvesthe completemarkets

problem

max u~(z) subject to vqp(z— Ek0~ky~’)~ 0. (2”)

PRooF: Let J~/C C denoteaneighborhoodof y’ small enoughthat U : Al —~ R is asmooth

function when definedby

U(y’) = max,7k,k�, u~(z)

subjectto the constraintsof problem (2’), holding 7j fixed at ~ We can assumewithout

loss of generalitythat q = (1, 1,..., 1). We calculate~ = D~U(IF~)Tto be ~o= vO,,p0 and

= (—v(’y~— 0,,) + )t87~)pi(s), I < s < S,

where ii and A E JRS are the Lagrangemultipliers for problem(2’). By LemmaB.1 of the

final section,we can write the market value maximizing productionchoiceof firm j as a

smoothfunction y~: C++ —~ Y~of spot prices. Since lI’(P) solves (4), we have

<U(~r’(p))

17



for all p’ in aneighborhoodof p. It follows that U o : C++ —~ JR has a local maximum

at p, implying that D~U(IF~(p))D
9

IF’(p) = 0. Then ~TD~yi(p)~ = 0, but by the second

order conditions for marketvalue maximization (LemmaB.4 (4)), this can only be true if

= 7jA8 for all s. Since 7~~ 0, we have ii = A
3

, 1 <s < S. An examinationof the first

order conditionsfor problem(2’) thenshowsthatz~solvesthe first orderconditionsfor the

completemarketsproblem(2”). I

We say that shareholder i disagreeswith market value maximization by firm j at

((x1,7~),(y~),p,q)if ~ ~ 0 and if y’ doesnot solve both (3) and (4).

Corollary. Theorem2 holds with appendedproperty (7,).

PROOF: This follows from PropositionB.4 (2),which showsthat,genericallyin equilibrium,

the marketsubspaceconstraintis binding, so that the equilibrium solution z~to problem

(2’) doesnot solve the correspondingcompletemarketsproblem(2”). I

Given an absenceof unanimity for maximizationof market value, it may be prudent

to extendour existenceresultsto ageneralclassof objectivefunctionsfor the firm. Aside

from the fact that perturbingaproductionset inducesafull rankperturbationof dividends

(LemmaB.3), the only propertiesof the firm’s objectivethat we actuallyusein ourexistence

proof arethe smoothnessof supply functions, homogeneityin prices, andpositive market

value. Thus an extensionof our existenceresultsto ageneralclassof productionobjectives

that includesmarketvalue maximizationis quite conceivable.

§5. StochasticEquilibria with GeneralSecurities

In this section we extend our existenceresult for incompletemarketsto the general

stochasticsetting of Debreu(1959), Chapter7, incorporatingzero net supply securitiesof

various types. The extensionis along the lines of the pure exchangemodel of Duffie and

Shafer (I985b).

The Event Tree

The model of uncertaintyis an event tree, adirected graph(~,A) consistingof aset

= {~1,.. . , ~ of H vertices(or “nodes”) and aset A C x E of arcs (or “branches”).

If (~,,~)is an arc, we may think of ~ as the “state-datepair” that uniquely precedesi~.

We denotethis precedenceby writing ~ = vj..... The root vertex ~ is distinguishedas

18



the uniquevertex without a predecessor.A walk is asequenceia,.. . , i~ of vertices in

with the property that (nj, ijj+,) E A, I � i � k — 1. A cycle is a walk ih,. . . ,‘lk with

= ‘li, k ~ I. An eventtree is such a directed graph without a cycle. The successorsof

a vertex ~ E E, denoted (a), is the set of vertices with the property that there is a walk

from ~ to i~. In other words, ~(~)is the sub-tree with root vertex ~. The vertices with the

same unique predecessor ~ can be ordered and denoted ~i, ... ~ The integerk is the

outdegreeof ~. We refer to Figure 3 for ifiustration.

There are completespot marketsfor £ commoditiesat eachvertex ~ in E. For any

integerk � 1, let Dk denotethe spaceof 1R1’—valuedfunctionson ~. Our consumptionspace

is thus C = D1, treatedequivalently as iRIit with the obviousco-ordinateidentifications.

We refer to any function on as a “process”, and cite Section 7 of Duffie and Shafer

)

0)

0)

ci.

Figure 3. Event Tree Notation

The Markets
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(1985b) for the equivalence with a traditional probabilistic model of stochastic processes

and informationfiltrations.

For any spot price process p in Dt andanyconsumptionprocessx in Dt, let pox E

denotethe real-valuedprocessdefinedby

[pex](~)= p(~). x(~), ~ E

That is, pox is the processof spot marketvalues required to purchase x at each vertex.

A purely financial securityis an element6 of D,, aclaim paying 6(e) units of account

(say “dollars”) at vertex ~. A real security is an elementd E D1 paying the bundle of

commoditiesd(~)E JRt at vertex ~. A securityis a pair (6,d) E D, x D1 with purely

financial component6 and real componentd.

Agents take as given a collection (öh,dh), 1 ~ h ~ k, of k securities. For each~ � E,

we let 6(e) = (6,(e), ...,
6

k(’~))E JR~’and we let d(~)denotethe £ x k matrix whose h-th

column is dh(~).A securityprice processx E D~is also taken as given by agents, with

~r(~)E JRk denotingthe vector of marketvalues of the k securities at vertex ~, before the

securities have paid their dividends (or cum dividend). A securitytrading strategy is a

function 7 : ~‘ —~ R”, where ~‘ = U{~°}is the event tree formed by adjoining a pre-

trade vertex ~ = ~ to E. That is, ~(~)is the pre-dividend portfolio of securitiesheld by

strategy~ at vertex ~. Let r denotethe spaceof securitytrading strategies.

Givensecurities(6,,,dh), I < h < k, aspot priceprocessp, andasecuritypriceprocess

ir, a trading strategy~ E r generatesthe dividend process6~E D, definedby

= y(~) [6(e) +p(~)Td(~)]+ [7(~....)— ~y(~)] ~r(e), ~E a

The right handside of this expressionis the sum of the spot marketvaluesof the dividends

paid to 7 at ~, and the marketvalueof the portfolio of securitiessold by 7 at ~.

Equilibrium

A stochasticeconomymaynow be summarizedby acollection

((~,A), (vi~,w1),(Y~),(O~~),(öh,dh)), 1 ~ I < m, I � i <vi, j + I � h ~ k,
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where(~,A) is an eventtree, ~ (Y~),(0,,)) is astandardArrow-Debreuproduction-

exchangeeconomyfor the consumptionspaceC = Dt, and (oh,dh), j + 1 < h < k, is a )

collection of securitiesheld in zeronet supply. Without securitytrading by firms, the first

n securitiesare definedby Oj = 0 andd, = y~,I <j < vi, whereIF’ � Y, is the production

choiceof firm j.

A stateprice processq E (Di)++ andspot price processp E C++ are takenas given

by agentsand firms. The price processof anypurely financial securityis thendetermined

by theoperatorAq : —~ D, definedby

= —~j ~ q(i)6(i~), ~E E, 6� D1.

‘~E~(e)

For example, if q 1, then Aq assignsthe priceof a purely financial security at any vertex ~

to be the sum of its dividendsin the sub-treeE(~).We can alsodesignastate-priceprocess

q so that [Aq(b)](~)correspondsto the conditional expected sum of future dividends at ~

underagiven probability measure,as shownin Section7 of Duffie andShafer(1985b).The

given k securities.are priced accordingto A,, by

7rhAq(Oh+PDdh), 1<h<k. (6)

Taking q andp as given, firm j chooses~,‘ E I’~to solve the problem

maxvqp(y) ~ q(e)p(~)~y(e), (7)
-‘ )

maximizingits initial sharevalue7rj(~’).By the usualprinciple of dynamicprogramming,

this is equivalent to maximizing the market value xj(~)at every vertex ~ in ~, taking

precedingproductionchoicesas irrevocable.To see this, we let c = C(y,, Y2, ,~)be defined

for anyy, and 112 in C and any vertex ~ in ~, by

= IFiOl), ‘i~ ~(~)

c(i)=112(7l), i~�~(~).

We could call C(IFi, IF2, ~)the continuationof yi by 112 at ~. If y’ solves(7), then at any ~

in E, y~solvesthe a—continuationproblem

max ~ q(i~)p(~).y(ij) subjectto C(y~,y, ~)E 1~.
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If this were not true, then thereexists ~ E and~i � C such that z = C(y3, ~, ~) E Y~,

and

vqp(z) = ~ q(i~)p(r,).jj(i~)+ >
but this contradicts the fact that IF’ solves (7). Thus a productionplan that maximizes

initial shareprice alwaysmaximizesshareprice.

Given a spot price processp � C++, a state price processq E (D,)++, production

choices11i E 1~,I < ~ < n, and the pricing convention(6), apair (z,7) E C++ x F is a

budget feasibleplan for agent i provided O~� po(x — ~ and 7(~°),= Ojj, I < j <

vi; 7(~°)j= 0, n + I <j < k. A budgetfeasibleplan(x, 7) is optimal for I if thereis no

budgetfeasibleplan (x’, ~‘) for I such that u1(x’) > u~(x).

An equilibrium is a collection ~ (y~),q,p), I � I < m, I < j < vi, such that:

(a’) for eachagenti, (x’,
7

i) is an optimal plan given q,p, and(y’);

(b’) for eachfirm j, IF’ solvesthe marketvaluemaximizationproblem (7);

(c’) ~::~~ — = ~, y1,

(d’) E17~(~)=I, I<j~n, ~EE,and

(e’) ~y,(~)=0, j+I~h~k, ~

Theorem3. Supposeutility assumptions(U.l)-(U.4) and productionassumptions

(P.l)-(P.3) apply. Let ~ � (D,)++ be any given stateprice process. Then, for generic

(w,t,d) E C~x Tx Ck_~~,thereexists an equilibrium of theform ~ (y’),~,p)for

thestochasticincompletemarketseconomy

((~,A),(u~,w~),(17), (O~~),(Oh,dh)), I < I < m, I < ~ < vi, i + 1 < h < k.

Theorem3 containsTheoremI as aspecialcase.The proofis given in AppendixC, based

largely on theproofof Theorem1 andon the stochasticexchangemodelof Duffie andShafer

(1985b). In Section 8 we extendthis result by allowing security trading by firms and by

allowing for linear restrictions on portfolio formation.

§6. The Simultaneous Determination of Dividends of Interdependent Securities

To study the problem of how securities that “invest” in one anothermay havetheir

dividendsand prices simultaneouslydetermined,we generalizethe definition of asecurity
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to a triple (d,0, ~)E C x D1 x 1’ with 7(~°)= 0. [A security is not “endowed” initially

with holdings of other securities.] Given a spot price process p � C, a state price process

q � (D,)++, and k such securities,(6i,di,7~),I < j � k, we wifi first verify the existence

of securitydividendsand prices under a non-singularitycondition. If it exists, the total

dividend paid by securityj is defined by & = 6’ + pod’ + 51’, where of course 0~~’E D1

is defined simultaneously with 0~Y’ for h � j. Let ~ � Dk be defined by ~ =

6~)’E Dk be defined by 6’~~= 61’(~);0 � D,, be defined by 0(~)~,= 0.’(~);andpod� D,,

be definedby [pod}(~)~= (pod’)(~).We thenhave

L~=O+pod+O7 (8)

whenever~a is well-defined. Let 7 � r” be definedby letting 7(e) denotethe k x k matrix

with (j, h)—clement7’(~)h.Let >- denotethe binary order on definedby ~ >- ~ ~ ,~E

~ follows a”), and >- denotethe correspondingstrict order. We let I denotethe k x k

identity matrix.

Lemma 2. SupposeI— ~(~)is non-singularfor all ~� E. Then, for any (p,q) � Dt x D1,

the vectordividendprocess~ of (8) and the vectorprice process7 = Aq(~)are uniquely

defined. In particular,

= (~I - ~]‘7(~) + I)~(pod)(~)+ 6(e)]

+ [I — 7(E—)I’~7(~—)— 7(e)]~ ~(ii), e � a (9)

PROOF: We will define i~ inductively by (9), starting from terminal verticesin E, moving

from ~ to i,... through the tree, and using the definition of A,,. For terminal ~ (that is,

outdegree(~)= 0), the secondterm of (9) is null, and the first term is well defined by the

assumednonsingularityof I — 7(e..4. By the definitions of 57 and A,,,

0 07(e)= .7(~)~a(~~)+ 51(~)}+ [y(~_)— 7(e)]>

wherea(~) (pod)(~)+ O(~), ~ � ~. Thus

= 7(~_)~a(~)+ 57(e)]+ [7(~—)— 7(~~ ~(‘i)’
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which implies that

67(e)= [I — ~ 7(~~_)a(~)+ [y(~_)— ~(~)]>~

This relation combinedwith (8) yields (9) andx = Aq(L~).5

Arbitrage Valuation

Let L~� Dk and 7 � Dk denote,respectively,a given dividend processand agiven

security price process. As formulated in Section 5, a security trading strategy 7 E I’

generatesthe dividend process57 E D, definedby

67(e) = 7(e)~ + [7(’~—)— 7(e)]~7(e), ~�

For generality,we restrict securityportfolios at eachvertex in to somegiven linear sub-

spaceof JRk, and let 0 C F denotethe resulting linear subspaceof admissible trading

strategies. This allows us to include, for instance,securitiessuch as futures, options,and

bonds,which aretypically are availablefor tradeonly duringfixed intervalsof time before

expiry.

A pair (x,~)� Dk x Dk is arbitrage-free if7 � 0, O~� 0, and 51 � 0 imply that

7(,~1). 7r(.~’)> 0. That is, (7, ~) is arbitrage-freeif thereis no admissibletrading strategy

generatingpositivedividendswith non-positiveinitial investment.We next show that our

pricing convention7 = A,,(z~),for some strictly positivestateprice processq � (D,)++, is

naturalandwithout loss of generality.

Proposition 4. If 7 = Aq(~)for someq � (D,)++, then (7,~) is arbitrage-free. Con-

versely, if 0 = F (unrestricted security trading) and (x, L~)is arbitrage-free, then there

exists a state—priceprocessq � (D,)++ such that x = A,,(~).

PROOF: The first implication is obvious. For the second,let M = {61 : 7 � F} C D1,

and let ~ : M ~ R be the linear functional on the “marketedsubspace”M definedby
= 7(~’)~~(e’).By the definition of arbitrage-free,~‘ is strictly positive. By Stiemke’s

Lemma [Mangasarian (1969)], there exists astrictly positive linear extension ~‘ : —* R

of ~&. Let q � (D,)++ represent~ by ~‘(6) = ~ We wifi get acontradiction
if, at some i~E ~ and for somesecurity j, we have 7(77), > [A,,(z~)](77)~.In this case,

let ~ denotethe trading strategy: 7(e) = 0, ,i ~- ~ 7(77)h = 0, h ~ j; 7(77)j = —I; and
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7(e) = ‘y(~),~ >- ~. This strategygeneratesdividends—z~(~~)~+ x(77)~at node77 and
at any~ >.- 77. Thus the initial cost of this strategyis )

= q(77)~—~(77)j+ 7(77)j] — >q(~)~(e)1= 7(77)1q(77)— q(77)~A,,(~)](77)1> 0.
~ >-,?

However ~,(o7)> 0 is impossiblesince7(~.)= 0. I
)

Within an eventtreecontext,this result is ageneralizationof the resultby Harrisonand

Kreps (1979) on “equivalentmartingalemeasures.”For relatedliteraturein other settings,

we cite Rubinstein(1976) and Ross(1978). -

§7. The Modigliani—Miller Theory and IncompleteMarkets

In order to investigatethe financial policy of the firm, as suggestedin Section 1, we

expandthe set of decisionsof firm j to include a securitytrading strategyfi E F, aswell

asa productionplan IF � 1~.By assumption,the initial endowmentof securitiesto firm j

is zero, or /3(~..)= 0. With a limited liability restriction, the firm must choosea trading

strategy ~ generatinga positivedividend process~‘ = p0~+ 6~� 0. For example, a

firm may wish to financea largecapital investmentby borrowingon bond markets,rather

thancollectingfundsfrom shareholdersvia negativedividends. Giventhe usualassumption

0 E 1~j, the limited liability restriction& � 0 can alwaysbe metby the plan(y,~)= (0,0).

For our generalpurposes,we will not imposelimited liabffity excepttO notethat doing so

would not generallyaffect our results.

Our first taskis to show conditionsunderwhich the marketvalueof the firm cannotbe

affectedby changesin its financialpolicy, PropositionI of the “Modigliani-Mifier Theorem”.

We alwaysassumethat the firm takesastateprice processq and aspot price processp as

given, the “competitive” assumption.Barringarbitrage,the pricing of securitiesby astate-

priceprocessis guaranteedby Proposition4. Since marketsarenot generallycomplete,the

knowledgethat securitieswifi continueto be priced by agiven stateprice processq as the

spanof marketschangesis importantin verifying the following result.

At asuperficial level, it is trivial that the initial market value ~r(~’), of firm j cannot

be affectedby achangein the firm’s securitytrading strategy.Let ~b: —+ JR denotethe

functionalassigningtheinitial marketvalue[A,,(o)](~’)to anyfinancial security0 � D1. By
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buying or seffing othersecurities,a firm merelypays ~(0) in order to add 0 to its dividend

process,which adds to the marketvalue of the firm before purchasecost by ~(0), leaving

a net effect on its initial cum dividend shareprice of zero. [This includesthe effects of a

firm’s repurchaseof its own shares.] While this is indeedthe case,onemust also consider

the impact of achangein the dividendsgeneratedby firm j on the prices anddividendsof

othersecuritiesthat hold sharesin firm j, andthe resultantfeedbackeffect on firm j itself

through its holdingsof the other securities,andso on. We affirm in the next proposition,

however,that thesuperficialargumentyields the correctconclusion:the firm cannotchange

its market value via financialpolicy.

Let uscall acollection 7 = (71,.. . , ~ � P of k securitytrading strategiesconsistent

if I — ~y(~)is non-singularfor all non-terminal~ E E. Then, given any spot priceprocessp

and stateprice processq, a collection (0,d, 7) = (01,d1,7’), 1 < i < k, of securitieshas a

joint dividend processz~= 0 + pod+ 0~uniquely definedby (8) andacorrespondingprice

processx = Aq(~)if andonly if 7 is consistent(Lemma2 ).

Proposition 5. Let p be a spotprice process,q be a stateprice process,and (02,d1,7.7),

I ~ j ~ k be a collection ofsecurities. If ~ = (~‘, ... , .yk) is consistent,then

= [A,,(0 +pod)](~’).

To re-iterate, this states that the initial market value of a security is no more or less

thanthe marketvalueof its own primitive dividends,independentof the securitydividends

that it collects from andpays to other securitiesthrough time via purchasesandsalesof

securities.

PROOF: We collect all termsof the sum

[A,,(~)](~’)= ~

/

that involve the primitive dividend a(77) = O(77)+(pod)(77)for an arbitraryvertex‘7. Were-

label the verticesalongthepathfrom ~ to 17 as~ = 11, ‘12 = 11...., 77~= (~....)....,..., ~ =

For notational ease,let 7,, = ~ and let T,, denotethe term in ~ that involves

a(771), I < n ~ N. Without loss of generality, we take q 1. Then the terms in

[Aq(~)](~)that involve a(’7) are T1, . . . ,TN, where, by Lemma2,

T1 =~(I — 72)’12 + I]a(’7),
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T,, (I — 7n+iY’(7n+i — y,,)(T1+ ... + T,,_1), 2 < n ~ N — 1,

TN=-7(T1+.~.+TN_1), 0

using7(e) = 0. To complete the proof, we mayshow that T1 +.. + TN = a(’7), but this

follows from the recursion:

TN + T4~_1+... + T1

=(I-7N)(TN_1+...+Tl) 0

— 7N)~(I — 7NY’(7N — 7N_1)(TN_2 + ... + Ti)] + (I — 7N)(TN_2 + ... + 7’1)

-(I— 7N—1 N—2 1

— 72)~(I— 72)_172+ I]a(’7) = a(’7).

This completesthe proof, since~ is arbitrary. I )

The effect of issuing new securitieson the market value of the firm is also easily modeled.

Financial policyis valueneutral, by our definition, if for anysecurity(0,d, 7), anyspotprice

process p, any statepriceprocessq, and any financial security 5 E D~,we have

- IL’(O +pod+07 —S)+ ~‘(6) = ~&(0+pod), (10)

where ~‘ : D1 —+ 1/? is the initial market value function S i—~ [A,,(0)](~’). Relation (10)

statesthat the initial marketvalueof the security (0,d, 7) after issuing ~, plus the market

value ~(5) received for the sale of 5, is merely the original value of the security, which is

independent of the security trading strategy 7. But relation (10) is perfectly trivial given

Proposition 5, since ~‘ is linear and 7(e)= 0.

We can summarize our progress on the Modigliani-Miller theory by asserting that

financialpolicy, including both the issuingand tradingof securities,is neutralfor the initial

market valueof the firm in competitivelinear markets,completeor incomplete. 0

Our second area of concern is the effect of financial policy on the welfare of share- 0

holders. Basedon the model of simultaneousarbitrage—freevaluation of interdependent

securitiesconstructedin Section6, DeMarzo (1986) hassubsequentlyshownthat any reg-

ular securitytradingstrategyadoptedby firms leavesthe agents’budgetfeasibleconsump~

tion sets invariant, Hence, so long as firms trade only the securities already available to
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agents,agentsare indifferent to thesetrades. It is simple, however, to constructexam-

ples in which the utility of any price—taking shareholderis strictly improved by issuing

a new corporatesecurity appropriately tailored to the shareholder’shedging needs. Let

~ � argmax~~(D~)~÷u,(x) s.t. ?,b(po(x— w’)) = 0. That is, ~ is an optimal choicefor i

ignoring the market span constraint, lithe market span constraint is actually binding, then

the constrained optimal choice x’ for i is by definition strictly inferior, or u1(x~)< u~(~).

By costlesslyissuing the corporatesecurity 0 = po(~— ~ a firm strictly improves the

allocation of shareholder i, taking prices as given, since i can then finance the consumption

choice ~ by purchasing one share of 6 and holding it. This is budget feasible since ~&(~‘)= 0.

Of course, we do not propose that firms issue such a tailor-made security for each

agent. Even taking the equilibrium price p as fixed, the cost of issuing securities is not zero.

Wemerely make the observation that financial policy does affect shareholders when the

incompleteness of markets is binding, which is generically the case in incomplete markets

equilibria (PropositionB.4 (2)). This also raisesthe issueof whether the firm, by virtue

of its accessto capital marketsandabifity to marketnew securitiesat low cost relative to

individual agents,hasaspecialrole to play in addingnewspanto markets.To quoteawell

known textbookof corporatefinance,

“Proposition I [The Modigliani-Mifier irrelevanceprinciple] is violated when

financial managers find an untapped demand and satisfy it by issuing something

new and different. The argument between MMand the traditionalists finally boils

down to whether this is difficult or easy. We lean toward MM’s view: finding

unsatisfied clienteles and designing exotic securities to meet their needs is a game

that’s fun to play but hard to win.” [Breley and Myers (1984), p. 372]

Most of our current knowledgeof the processof financial innovation is anecdotal[Sandor

(1973), Silber (1983)]. In this paper we havesaid little about the role of the firm as a

financial innovator beyondthe obviousfact that it matters. 0

§8. A GeneralExistenceTheorem

Weexpand the definition of an economy to a collection

((~,A)(u~,w~), (Yj), (Oil), (Oh, dh),0,fl)
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I � {I,. ..,m}, j � {1,...,vi}, h � {n + 1,...,k}, where (~,A) is an event tree,

((~~,w~),(1~),(O11))is an Arrow-Debreuproductioneconomy,0 C I” is an admissiblese- )

durity trading space, and /3 � 0 is a vector of trading strategieswith fl(~°)= 0. The

definition of an equffibrium ~ 7’), (y.7),q,p) is as given in Section 5, with the exception

that ~ = 0 + pod+ ~$, when uniquely defined by (8), is substituted for the total dividend

vector Z~= 0 +pod throughout.

Theorem 4. Supposeassumptions(U.1)—(U.4) and (P.l)—(P.3) apply. Then, for

generic(w, 1, 0,d, /3) � £~+x Tx D~”~x ~ x D~,there exists an equilibrium for the

economy((E,A),(u~,w~),(YJ),(O~1),(0h,dh),0,/3).

The proof is a straightforwardextension of the proof of Theorem 3 and results in

Duffie and Shafer (I985b). Generic /3 suffice since I — ~ is generically non-singular.

The proof proceeds by first taking the case /3 = 0, and by using the argumentsin Duffie )

andShafer (1985b)that allow the generaliztionfrom the complete trading strategy space

I’ to an admissiblesubspace0. Then the Version of the Modigliani—Mifier Theoremin

DeMarzo(1986) allows usto substituteanyregular /3 and to adjust agents’ security trading

strategies to an equffibrium with the same real allocation. We allow perturbations in the

purely financialcomponents(Oh)of securities,sincesomesecurity(4, Oh) may for structural

reasonshavedh = 0 (e.g. anominal bond), and we would not naturally perturb its real

component.

§9. Proofsof Theorems

A. The GrassmannianManifold

We review how one can treat the spaceG,,,5 of n—dimensionalsubspacesof JR5 as a

compactsmooth manifold without boundaryof dimension n(S— n). For 1 < vi < S, a

particular subspaceL in G,,,~is inducedby a full rank (S — n) x S matrix A according

to L = (IF � JR5 : Ay = 0}. This defines an equivalencerelation on the spaceX of

full rank (S — n) x S matrices by: A B if A and B induce the same subspace. We

can then identify G,,,5 with X/ endowedwith the quotient topology. The statement

“A � L”, for a matrix A in X, meansA inducesL � G,,,5. We also take the following

Grassmanniandifferentiablestructurefor G,,,5. Let E denotethe set of permutationsof
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{ 1,2,.. . , S}. For eacha’ in E, let F,,. denote the Sx S permutation matrix corresponding

to ci. Let W = {L � G,,,g : ~E � 1R~5’~’~)”;[I I ElF,,. E L}. For eacha’in E, we define

—+ JR(~”)” by [I I ç~(L)]P~,.� L.

Lemma .1. Thecollection {(W, ço”~): o• � E} is an atlas for G,,5 makingG,,,5
a compactC manifold without boundaryof dimensionn(S— n).

This is Fact 3 of Duffie and Shafer (1985a). We will also have occasion to use the

following fact from Duffie andShafer(1985b).

Lemma .2. Direct sumfrom G,,,5, x G,,,g into G,,,+,,,g,+s is smooth.

The following is a trivial consequenceof our definitions.

Lemma .3. SupposeV is an Sx n matrix with [I ç~(L)]P,,.V= 0 for somea’ E E

and L � W,,.~.Then span (V), the span of the columns of V, is a subspaceof L. If V is of

full rank, thenspan(V) = L.

B. Proof of Theorem2

We first claim the existenceof a smoothvalue-maximizingsupply function for each

firm.

Lemma B.1. Under assumptions(P.1),(P.2), and (P.3), thereis a smoothfunction

C++ —~C with the properties,for all p � C++,

(I) {y’(p)} = argmax p.

(2) p. D~y’(p) = 0,

(3) D~y1(p)is positivesemi-definite,and

(4) pjT~pyl(p)p0j0> 0 for all ~ � C of the form ~ = (Aopo,Aipi(s),. . . , A5p1(S))� 0 with

A � JR5~’havingAk ~ A, for somej and k in (0,1, . . . , S}.

PRooF: This is aconsequenceof Propostions3.5.3 and 3.5.4 of Mas-Colell (1985), andthe

surroundingdiscussionthere. I

Without loss of generalityfor our proofs,we can treat T as the interior of ~C(j)+.

Fixing the functions IF~),...,Y~’(’)definedby the previouslemma,we defineQ : JRxTx

C++ —+ C” by Q(a,t,p) = (cvy’(p)+1’,...,ay~1(p)+1fh).Fort � T anda� JR,letIr =

aY,+{t’},I �j�vii.

Lemma B.2.
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(1) Q is smooth.

(2) Fora>0,{Qi(a,i,p)}=argmax~~y~p.Z. 0)

(3) Fora>Oandanyt�T, p.Q’(a,t,p)�O.

PRooF: Properties(1) and (3) are obvious. We notethat

argmax p’ z = (arg max p ‘ s”) + {L’} 0)
zEQY,+{~i} \ zEcxY

1
/

=a ~ +{t1}.
\ zEY

1
j

This andLemmaB.1 imply property (2). 5

Let A = JRn~S1 denotethe spaceof assets. The S x vi dividend matrix function

correspondingto the supply function Q is themapV: C++ x JRx T x A —~ 1R5” definedby

V(p,a,t,a) = V(p,(Q(a,t,p)i,a)). Let P = {(p,t,a,a) � C++ x Tx Ax JR : V(p,a,t,a)

isfullrank}.

Lemma B.3. V is a submersionand P is open in C++ x T x A x JR with null

complement.

PROOF: Let V denotethe spaceof S x n matricesof full rank, an open subsetof Rh”’

with null complement. We note that P = V”(V). First, supposethat C(j) = C for

all j. Then the derivative Dj,aV(p,a, t, a) has the block diagonalSn x nt matrix form

diag (P(I), . . . , P(S)), where P(s) is the vi x vii matrix diag (pr(s)”, . . . ,pi(s)~). Since

p >> 0, Dt,aV hasrank Sn. If C(j) is ageneralstate—completesubspace,the j—th row of

P(s) hassome(but not all) of the elem’entsof p1(s)T replacedby zeros.Thus the rankof

the derivativeis Sn in general,implying that V is asubmersion.ThereforeP is openwith

null complement. I

Having the requiredpropertiesof the supply function Q, we turn to the demandfunc-

tions. Let G’ : C++ x JR.H. ~ C++ be definedby

G’(p,w) = arg~maxv,(x)s.i. p’x = w].

Let e1 : C++ x C++ x [0, oc) x T —~ C be the total endowmentfunction for agenti, defined

by ei(wt,p,a, t) = w~+ >~O,,Q’(a,i,p), asmooth function. For any k � {0,.. . , S}, let

C++ x Gk,s x C++ x [0,oo) x T—+ C++ be defined by F~(p,L,w~,a,t)

= arg[maxu~(x) s.t. p. (x — ei(wi,p, a,t)) = 0, Pi o(x — ~ a, i)) � L].
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We note that F~’is smoothon its domain. [Since Q~is smooth,the calculationsare the

sameas for Fact 5 of Duffie andShafer (I985a).] Let 11 = {r E JR5 : i’~> —I, I < ~ < S},

and for any p � C and any r � R., let (p, r) � C be the vector p’ with P’o = Po and

p~(s)= (1 + r3)pi(s), I � ~� S. Let (1 = C~+denote the spaceof endowments.For any

k E (0,... , S}, consider the excess demand function Zk : ~1xTx lR..~.x C++ x 1?. x GkS—+ C

definedby Zk(~,t,a,p,r,L)

= G’((p, r), I + p’ ~ Oi~Q1 (a, t,p)) + ~ F~(p,L,w~,a, ~)— ~ e’(w1,p,a, t).

Lemma B.4. Consider the conditions:

(A) Zk(~,t, a,p,r, L) = 0,

(B) rEL1,

(C) span(V(p,a,t,a))C L,

(D) (p,r).w’=I,and

(E)

G’((p, r), (p,r) ~ + p ‘~ O~~Q1(a,t,p)) + F~(p,L,w~,a,t) — ~ a, t) = 0.

Then [(A) and(B) and (C)].~==~[(B) and (C) and(D) and(E)J.

PRooF: In the caser = 0, this follows from Wairas’ Law: p’~’= I ~ ~ L, a,p, r, L) =

0. Ifr ~ 0, we also usethe fact that (p,r).z =p’z wheneverp1oz1EL since r � L~.The

result then follows from “adding up”. I

Lemma B.5. For any k, if ~ is a sequenceconvergingto

(w,t,a,p,r,L) � ~Jx Tx JR+ x a(C++ x ‘R.) x Gk,S with (p,r) ~ 0, then there existsa

coordinatej such that limsup~Zk(w~,t~,a~,pfl,r~,Lfl)1= +00.

PROoF: PropertyP.2 implies that the sequence{~1Q1(a~,i~,p~)} is either bounded

above or unboundedbelow. This claim thereforefollows from Fact 4, part (5), of Duffie

and Shafer(I985a). I

For eachk � {0,...,S} andeachcoin E,let K~:C++ xW~xTxAxJR—+JR(5”)”

be definedby K,~(p,L,t,a,a)= [I I ço~,.(L)]P,,.V(p,a,t,a).

Lemma B.6.
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(1) K,~is smooth.

(2) D~,aK~has rank (S — k)vi. 0)

PROOF: Part (I) follows from the smoothnessof the compositionof smoothfunctions. Part

(2) is seenby taking derivativeswith respectto ti(s), 1 < j < n1 and a’7(s), I < j < vi
2

for I < s < S — k. This derivative has the block diagonal form diag (P(I),.. . , P(S—

whereP(s) is given in the proof of LemmaB.3. 5 0)

We defineatriple (p, r, L) � C++ x1~xGk,sto be a k—pseudo-equilibriumfor (W,t, a) �

11 x T x A if r � L~- and if thereexists apermutationci in E such that K~(p, L, t, a, I) = 0

and Zk(W,i,I,p,r,L)=0.

PropositionB.1. For given (p, r, t, a, ~)� C++ x R. x T x Ax 11, supposethat the

dimensionofL = span(V(p, 1, t, a)) is k and that (p,r) .~‘ = 1. Considerthe assertions:

(A) : (p, r, L) is a k—pseudo—equilibriumfor (w,1,a),

(B): thereexist (xi,7i) � C++ xJR” fori � {1,...,m} such that ((xi,_ui),Q(.1,t,p),p,’~)

is an equilibrium for ((u1,~),(YJ),(O~1),a),with ~ (1,1,.. .,I) � 1R5, and

(C): ((p,r),0,L) isa k—pseudo—equilibriumfor (W,f,a). 0

Then:

(1) (A) ~ (B), and

(2) if n1 = 0 (no production), then (A) ~ (B) ~. (C).

PRooF: (A) =~‘ (B) : Let x1
= G’((p, r), 1 + p ~ O~jQ3(1, 2, p)) and x~ =

F~(p,L,w~,1,1) for 2 ~ I < m. We will prove conditions (a)—(e) of an equilibrium. By

LemmaB.4, we havespotmarketclearing,or condition(c). By LemmaB.2(2), we havemar-
ket valuemaximization,or condition (6), since~ = (I, 1,..., 1). SinceV(p, (Q(I, i,p)1,a)) =

V(p,I,1,a), we know that x~= F,~(p,L,W~,1,t)ifand only if thereexists 7~� R” such

that (x1,yi) solvesproblem (2’). Let ~‘ be definedin this way for 2 < I < m, andlet 71 be

defined by

= l<j<n1

7~
1

+k ~7~,+k’ 1�k�n2.

Then conditions(d) and (e) are satisfied. SinceL is a linear space, and by spot market

clearingcondition (c), we havep~o(x’— e1(Wi,p,1,.t))l � L. Furthermore,since r � L~,

we have r [p1o(x’ — e’(w’,p, I,t))i} = 0. Since (p,r) ‘w’ = I, it follows that x1
=
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F~(p,L, W
1

,I, 2). By spot marketclearingclearingcondition (c), wealso know that (x1, 71)

satisfiesthe budgetconstraintsof problem(2’). Thus (x’, 71) solvesproblem(2’). We then

havecondition (a) of an equffibrium.

(B) =~ (A): By LemmaA.3, K~(p,L,i, a, I) = 0 for somea’ � E. Let ii� JR

and A � JRS denotethe Lagrangemultipliers for initial and terminal wealth, respectively,

for problem (2’) of agentnumber 1 in the given equilibrium, and let r = A/i’. The first

order conditionsfor problem(2’) thenimply the result.

If n1 = 0, (A) s~(B) * (C) : It suffices to show that (A) * (C). [The

notation herewill include 1 purely as a formalism.] By LemmaA.3, we must only show

that, for n1 = 0,

Zk(W,2,1,p,r,L)=0* Zk(W,i,I,(p,r,),0,L)=0. (*)

First, since r � L1 implies that span[V(p,I,2, a)] = span[V((p, r), 1,2,a)], we have

p1o(x_wi)i � span(V(p,ai)) ~ (p,r)io(z —W’)i � span(V((p,r),a1)).

Furthermore,since r � L~and P1o(x — W~)i� L, we have

p.(zwi)(p,r).(XWJ)—...r.(plo(x.wi)l) =0.

ThusF,~(p,L, W~,1,1) = F~((p,r), L, W~,1,2). Of course -

G’((p,r),(p,r).w’) =G1((p3,0),(p,0).w’),

where~5= (p, r). Thus (*) holds. I

For eachk � {0,...,S} we define Z~: ~l x Tx ~ x Gk,S —~ C by Zk°(w,2,p,L)=

Zk(w,t,I,p,0,L). Let h : JR —+ [0,1] be smooth andsatisfy h(a) = 0,a < 0, and h(a) =

I,a � I. We also define Z* : fI x T x JR x C++ x G~,5~ C by Z*(w,2,a,p,L) =

Z~(W,1,h(a),p,0,L).

Lemma B.7. For Z = or Z =

(1) Z is smoothand

(2) D~iZ=—I.

PROOF: Since the composition of smooth functions is smooth,part (I) is a consequence

of LemmaB.2(I) andof Facts 4 and 5 of Duffie andShafer(1985a). Part (2) is a trivial

calculation. I

34



0)

For each k � {0,...,S} and each a’ � E, let J~= C++ x W~x (1 x Tx A and

J~—~C x JR(S’_k)n be definedby - 0)

Hk,,.(p,L, w, 1, a) = (Z~(W,i,p, L), K~(p,L, 2, a, I)).

Let H : x JR C x JR(5”)” be definedby

H(p, L,W,1, a,a) = (Z*(W,t,p,L,a),K~”(p,L,t, a, h(a))).

Finally, for eachagenti � {2, . . . , m}, let HJ,~,.: J~—+ C x JR(5”)” x
111

5k be definedby

H~(p,L,w,i,a)=

(Hk~(P~L,w,1, a), [I~~(L)]P~pio [Gi(P~P‘Wi + p~~ Oi~Q1(1,2,p))~— w~])

For eachk � {0,...,S} and 1� {2,...,m}, let

= {(p,L,W,i,a) � C++ x GI,,S x 17 x Tx A: 3tr E E : Hk~(p,L,W,t,a)=0}

= {(p, L, W,1, a) � C++ x Gk,sx Il x T x A: 2cr � E : H~,,.(p,L, w, 1, a) = 0} 0)

= {(p, L,W,t,a,a) � C++ x G~,5x 17 x Tx Ax 1R: 2a’ � ~ : H*(p,L,w,i,a,a) = 0}.

Lemma B.8. For any k � {0,...,S} and i � {2,...,m}, the sets4, £~and e* are

smoothboundarylessmanifolds, with

dim4 =(S—k)(k—vi)+D

dim~ =(S — k)(k — vi — I) + D

dime*=D+I,

whereD = dim(Il x T x A).

PRooF: Taking 4 first, we begin by showingthat 0 is a regularvalueof Hk,,.. We have

/7_~ ‘70 fl’70
I -‘-‘~‘‘-‘J, £Fg~~.l~=

0 ~

The rank of DHk~,. is thus at least t(S + 1) + (S — k)n by LemmasB.6 and B.7. But this

is the dimensionof the rangemanifoldC x JR(s_k)n,By the preimagetheorem,H~.j(0) is

thereforeasubmanifoldof J~of dimension [(S + 1)1+ (S— k)k+ D] — [(S+ 1)1+ (S— k)n] =
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(S — k)(k — vi) + D. By definition, Hj~(0)= fl 4. Since {W,~: ci E E} is an opencover

of Gk,s,we haveshownthat 4 is asubmanifoldof the stateddimension.

The calculationsfor E~’are almost the same. For t~,the result follows from the same

argumentsoncewe haveshownthat

rank (D~~~II~(L)]P~Plo~ _W~]) S—k.

Without loss of generality,we takeci = id, the identity permutation. Let E = c~(L),and

for any sE {I,...,S— k},let Pa: ~ ~ lRbedefined by

p,(wi) = pi(s) [Gi(p, w(wi)) — Will(s) + ~ E3~p~(h). [G~(p,w(wi)) —

h=S—k+1

whereW(Wi) p.Wi +p’>1O~1Q’(1,i,p)).We must show that rank(A) = S—k,where

A = ~ ,pg...k(w~)).We have

0 j ~ T

~ j — .‘-‘aPo

D~l(h)pa(w’)= B3p1(h)T, h �

DWi(8)pa(W’) = (Ba —

where~

~ Eahpl(S)TDw~G~(p,w(wi))i(h)].h=S—k+l

(B1 — i)~(
1

)T ... B1p1(s)T ... B~p1(S— k)T 0

(B3 — i)~
1

(
8

)T ... B~p1(S— k)T

Bs_kpl(I)T ... Bs_kpl(s)T ... (B,c_i~— 1)pi(S— k)T

(A) = S — k if andonly if rank (~)= S — k,

B1 B1-1... B1 ... B1

B3 B8 ...B31... B8

Bs..k

B3 = pi(s)TD~~Gi(P,w(Wi))l(s)] +

It follows that

B1p~

A B8p~’

Bg_k

Sincep>> 0, rank

B=

Bsk BS....k

where

B5_k — 1 ] (S—k)x(S—k+l)

It is easy to check that the rows of ~ are linearly independent. 5
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LemmaB.9. Eachoftheprojectionmapsx~: 4 17x Tx A, 7r~: —~ 17 x Tx A,

and 7r~ :e* ~1ZxTxAxJRis smoothand proper.

PRooF: Projection is a smooth operation. For propernessof 7r~,let X be a compact

subsetofI7 x T x Ax 11?, and let ~ beasequencein 7ç’(X). Since

G~,5and X are compact,~ has asubsequenceconvergingto a point 0)

(L,w, 1, a,a) � W,,.” x X for ‘some a’ � E. Sincep~‘w~= I for all vi and since {w~}is

bounded,{p~}is boundedwith a non-zerocluster point p E C++ U ÔC++. But p ~ 0C++

by Lemma B.5. Since H,~is continuous,(p,L,w,t,a,a) � ~. Thus 7ç’(X) is a compact

subsetof e*. The same arguments show properness of 7
k and ~ I

We takenoteof thefollowing fact,,whichcanbe found in Hirsch (1976). Let f : X —~ Y

denoteasmoothpropermapbetweensmoothboundarylessmanifoldsX andY of the same

dimension,with Y connected.Then the numberof pointsin the inverseimageof a regular

valuey� Y,modulo 2, is independentof IF’ Thisinvariant, the mod 2 degreeoff, is either

zero or one, anddenoteddeg2f. If the mod2 degreeof f is one, then the inverseimageof

everypoint yin Y is not empty,for if f’(y) is empty,thenIF is a regularvalue, and#f’(IF)

is odd. By the previousresults,ir~and~r..aremapssatisfyingtheseconditions. In order to

demonstratethe existenceof n—pseudo—equffibriafor everyeconomy(w,1, a) � 17 x T x A,

we thus needonly to show that deg27r~= 1.

PropositionB.2. deg27r~= deg2ir~= 1. 0

PROOF: We first showthat deg27r8 = I. To do this, we wifi find some~ � 17 x Tx

A x JR with auniquen—pseudo-equilibriumof the form (~,0,L),such that ~ is a

regular value of 2r~.This establishes#x:1(i~,~,~, ~) = I and thereforedeg2rr~= 1. Let

= 0 andchoose~ E C++ and(~,ii)� T x A so that the last vi rows of V(~,(~i,~)) are

linearly independent.For all i, let ~1’ = Gi(ji, I + p . ~ Oij~)— >~Oij?. By choosing~

sufficiently small, we have~ZY’E C++ for all i. We alsohavep .~Zi’= I-by strict monotoncity

of u,. For all i, let ~ = Gi(~,I + ~ O~ji ‘ i’). It follows that ((v), (~),j5)is acomplete

marketscontingentcommoditymarketequilibrium for the economy((u~,~ii),(Yr), (Os,)).

Let L be the unique elementof G~,5spannedby the columnsof V(ji, (~,ii)). Since the

last vi rows of V(ji, (i~,~))are linearly independent,there is an (S — n) x n matrix ~

such that [I I ~] induces L and such that [I I ~]V(ji, ~ ?i)) = 0. This implies that

� W~.Since ~ — ~ii — E~O~,j~!= 0, it follows that~‘ = ~ l,1) for all i. Thus
(ji,0,f0)) is an n—pseudo-equffibriumfor ~ SincepI1o(~i— ei(~i,pI,1,~))~EL’ for

all (p’, L’) � C++ x G~,5, it follows that ~i’~is budget feasible for all (p’, 0, L’). Then, by
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Pareto optimality and the fact that G’ is unconstrained by the subspace L, (ji, 0,) is the

unique n—pseudo-equilibrium with r = 0 for (~,~,~,~).
It remainsto show that (~°,~,~,~) is a regular value of 7r~,which follows if

rank ~ = (S + 1)1 + (S — vi)vi.

For notational convenience, we write E = ço~(L)for L � ~ and define:

Z(p, E, i) = Z*(p, (W~dY”(E),~, I, zi)

1k(p,E) = K~(p,(c~’dY’(E),1,~, ~i)

H(p, E,~)= (~(p,E,i),K(p, E)).

Since (co~d,W~)is a chart on G~,5, it suffices to show that ~ has rank (S +

I)t+(S—vi)n. We have

— — - D~Z(ji,E,i) DEZ(ji,E,~)
D~,EII(p,E,t)=

D~K(p,E) DEK(p,E)

We haveshown that F,~(ji,L’,~’,I,i))~i’ for all L’ � G~,5.Thus DEZ(ji,E,1) =0. We

thusfinish theproofof deg2ir8 = I by showingthat DEK(ji, ~) hasrank (S— n)n and that

D~Z(ji,E,i)hasrank (S + 1)t.

DEK(ji,E)has rank (S — vi)n : Let V2 denote the n x n matrix consistingof the last

vi rows of V (ji, (i3, ii)). The derivativeof K(p, E) with respectto any row vector of E,

evaluatedat (ji,~),is V2. Thus DEK(ji,E) can be given the (S — n)n x (S — n)n matrix

form diag(V2, V2,.. . , V2). Sincerank (V2) = vi, we have rank (DEi?(ji,~))= (S — vi)vi.

D~~(ji,E,i)has rank (S + 1)1 : We must show that D~Z(ji,E,i) is nonsingular. By

the continuity of this derivativein i, andsince 1 can be chosenarbitrarily small, it suf-

fices to show that D~Z(ji,E, 0) is nonsingular. But this is the pure exchangecase,and

nonsingularityis demonstratedin the proofof TheoremI of Duffie and Shafer(1985a).

We havedemonstratedthat deg27r~= I. We finish by showingthat 7r~and ir~havethe

samemod 2 degree. Their respectiveregular valuesform opensetswith null complements

by Sard’sTheorem.Thus thereexistssomeregular value(w,1, a, a) of 7r~with a ~ 1 such

that (W,t,a) is a regular value for ~r,,. Since h(a) = I for a ~ 1, we have#x:’(W,1,a) =

#x:’(W,1,a,a). I

For any (w, 1, a) � 17 x 7’ x A, let E” (w,2, a) denotethe set of k—pseudo—equilibria

(p,r,L) with rank(V(p,I,i,a)) = k, and let E~(W,1,a)= {(p,r,L) � E”(W,i,a) : r = 0}.
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PropositionB.3. Thereis an opensubsetF’ ofF = Il x Tx A whosecomplement

is null having theproperty: For each(~,1, ~)� F’ thereis an integerT � 1, a neighborhood

U c F’ of(wJ,i,~),and smoothfunctionsPk : U —~ C++ and L,, : U —+ G~,5,1< k <T,

such that, for all (w,1,a) � U, E0”(W,1,a) = {(pk(W,t,a),0,Lk(w,t,a)), I < k < T}.

PROOF: Let F denotethe set of regular valuesof x,. By Sard’s Theoremand the proper- 0)

nessof ~ we know F is openwith null complement.By the “Stack of RecordsTheorem”

[Guillemin andPollack (1974)] andPropositionB.2, for each(~,i,~i)in F, thereis aneigh-

borhoodU of ~ in F, an integerT � 1, and smooth functionsji1, : U ~ C++ and

Lk : U—* G~,s,I< k <T, such that, for all (W,t,a) in tT:

(i) 7ç’(W, t,a) = {(ji~(W, 1,a), iJk(w, 2,a), w, 1, a), 1 < k < T}, and

(ii) for each k, thereis a cr” � ~ such that Lk(W,i,a) � W,,.~.

The proof is completedin almost the samemanneras the proof of Theorem2 in

Duffie and Shafer (1985a),so we only sketch out the remainingarguments. First, noting

that H~~k(ji,~(W, 2, a),7~
k(W, 1, a),w, 2, a) 0 on 17, we can differentiatewith respectto W

and (2,a) only, to see with the aid of LemmaB.8 that D(w,j,a)ji~(W,1, a) is of full rank on

U. It follows that ‘I’j, : U —+ C++ x T x A defined by ‘P(W,t,a) = (ji~(W,1,a),t,a)is a

submersion,I < k <T. By LemmaB.3, ~‘(P) is openin U with null complement. Let

U = fl,<k<T ‘P~(P), and let Pk and Lk denote the restrictions of ji~andLk to U. By a

standardlocal to global argument,the set F1 is constructedwith the propertiesclaimed.

I

We say the marketsubspaceconstraint is binding for agent i at ((w,2, a),p, r, L) �

FxC++xlZ.xGk,sif

~ (Gi(P,P.Wi+P.~oI~Qi(I,2,P))~ > Ui (F~(p,L,W~,1,1))),

\ j /

meaningthat utility is strictly loweredwheni is forced to keepthe vectorof spot valuesof

net exchangein the sub-spaceL.

PropositionB.4. Thereis an opensubsetF2 ofF whosecomplementis null such

that, for all (W, 1, a) � F2:

(1) E”(W,t,a) is not empty, and

(2) for all (p, r, L) � E”(W, 1, a), themarketsubspaceconstraintis bindingfor all except

possiblyoneagent.

39



PROOF: We showedin the previouspropositionthat E”(W, 1, a)is not emptyfor all (W, 1, a) E

F’. For each I � (2, ..., m} let F~denote the set of regular values of 4,. For each

(w, 2, a) � F~,LemmaB.8 tells usthatdim (7r,)”(w, 2, a) < 0, implying that (4,)~(w,2, a)

is empty. Let F’(I) = fl.>
2

Y~.By constructionof H~,eachagent i � 2 finds the sub-

spaceconstraintbinding at anyn—pseudo—equilibrium(p,0, L) for any (W,1, a) � F’(I). By

relabeling,we can let F’(i) denotethe similarly constructedset for i taking the place of

agent I. Let F,~’ = ~ F1(i). Finally, let F2
= F’ flF8

1, an opensubsetof F whose

complementis null. For any (W,t,a) � F2 and any (p,r,L) � E”(W,i,a), supposethere

are two agents,say I and 2, neitherof whom find the marketsubspaceconstraintbinding.

Then

G’(p, 1 + p~~ O~~Q3(I,i,p)) = G’((p, r), 1 +p ‘ >0,jQ3(I, 1,p)),

implying that r = 0. But then (p,L,W,1,a) � (7r~)’(W,2,a),which contradictsthe fact

that (4,)’(W,1,a) is emptyfor all (W,1,a) � F~’ C F2. I

LemmaB.1O. Suppose(p,r, L) is a k—pseudo—equilibriumfor some(w,2,a) at which

someagenti finds themarketsubspaceconstraintbinding. Then the correspondingalloca-

tion is not Paretooptimal.

PROOF: This canbe checkedby comparingthe first orderconditionsfor theagentsproblems

with the first orderconditionsfor Paretooptimality. I

LemmaB.11. Suppose(~,1, ~i)is aregular valueof~ and(ji, t~~ ~ i~)� 7ç”(~i,1, 1).

Then thereexistsa ball B C JR5” and a one—to—oneimmersionç~: B —+ C++ x R. x

such that, for all z E B, co(z)is an n—pseudo—equilibriumfor ~

PROOF: Thehypothesesimply that (ji, L) is, for somea’ � ~, a regular point of the function

~ ~ or in other words, that ~ hasfull rank. Let ~&: G~,5—~

G
5

_~,
5

be thediffeomorphismdefinedby t,b(L) = L~.Let (W~s,co,,.’)be acharton

containing L~’and (W~,ço~)be acharton G~,5containing ~. For L � W,,.fli,b’(W,,..),

r � L1 ‘4=~~ [I~ç~s(i,&(L))]P.,.sr= 0. (II)

Without loss of generality,supposea” = id. Then(11) is equivalent to r = (—co~s(i4’(L))r2,r2)

for any r2 � 1R5”’. Let H : £.~..i.x 1~. x G~,s—~ C x JR(S_n)n be definedby

H(p,r,L) = (Z~(~,i,1,p,r,L),K~”(p,L,i,~,1)).

Let I : C++ x ~ x R5” -~ £ x JR(5”’)” be definedin asufficiently small neighborhood

of (ji,L,0) by f(p,L,r2) = H(p,(—ç~,,~o t/’(L))r2,r2),L). Any solution (p,L,r2) to the
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equation f(p, L,r2) = 0 correspondsto an n—pseudoequilibrium for (fli, 1,~). One can

readily verify that 0)

D(~,L)f(ji,L,0) = D(~,L)H(ji,0,~E)= D(~,L)Hfl~(ji,10), ~, 1,~).

Earliercalculationsshowthis derivativeto befull rank, soby the Implicit Function Theorem

there exists a neighborhoodAl C JR5’.” of zero and smooth functions ~ : Al -~ C++

and L : Al —~ G~,5such that f(p~(r2),Z(r2),r2)= 0 for all r2 � Al. Thus the function

Al -~C++ x JR5 x G~,gdefinedby

w (r2) = (p~(r2),(—ç~,o ~/‘(L(r2)), r2), 10)(r2)).

is an appropriateone-to-onesmoothimmersion. I

Lemma B.12. Supposevi
1
� 1 (production). Let (p,r,L) and (p’,r’,L’) be distinct k—

pseudo—equilibriafor a given (w,2,a) � F, with rank (V(p,1,t,a)) = rank(V(p’,I,i,a)) =

k. Then the correspondingpseudo-equilibriumconsumptionallocationsare distinct.

PROOF:

Case 1: (p = p’). If p = p’ thenL = L’, so r ~ r’, and therefore

G’((p, r), I + p . > O~~Q’(I,L,p)) � G’(( p’, r’), I + p’ . > O,~Qi(I, i,p’)). (12)

Case 2: (p ~ p’). If (12) is not true, then (p,r) = v(p’,r’) for somev � (0,00).

But (p, r) ‘W’ = (p’,r’).w’ = 1 implies that ii = I. Thusp andp’ arenot colinear,andfor

somestates, we know r8 ~ r~.It follows that

Poh ,,~ Po,~ w
1-p,(s),, p,(s),,

Since Q = >~Q’(I, 1, p) solvesthe problem max{p IF : IF � ~ Yj}, it follows from the

first order conditions for this problem that Q ~ Q’ = ~,j Q~(1,1, p’). The consumption

allocationsfor (p, r, L) and (p’, r’, L’) arethus distinct. I

We completethe proof of Theorem 2 merely by collecting our results. We take the

generic set E referred to in the statement of Theorem 2 to be the set F2 of Proposition

B.4. Part (1) of Theorem 2 is then a consequence of Proposition B.4 (I). Part (2) follows

from the fact that, for n ~ 5, all pseudo—equffibriafor (W, 2, a) � F2 havecompletemarkets
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(L = 1R5), and thereforer = 0. We can then apply Proposition B.3. For part (3), we

use the last part of PropositionB.I as well as Proposition B.3. Part (4) follows from

LemmasB.I1 andB.12. (Thehomeomorphismis constructedas the compositionof the I-I

immersion ~ of Lemma B.I1 and the 1-1 mapbetweenpseudo—equilibriaand allocations

of LemmaB.12.) Part (5) follows from completemarketsand the usual proof of Pareto

optimality with production. Part (6) follows from Lemma B.I0 and PropositionB.4 (2).

The amendedproperty (7), definedin Section4, is proved as acorollary to Proposition2,

using PropositionB.4 (2) again.

C. Proofof Theorem3

Weshall be extremelybrief, as the main ideas are contained in Part B and in Duffie

and Shafer (1985b). First we fix the stateprice process~ E (Di)++ to be ~ 1. The

calculationsareonly slightly more complicatedfor arbitrary ~ E (D, )++. This leaveseach

firm with the usual problemfacedin astatic Arrow-Debreueconomy.

Let = {,~1,.. . , ,~“} denotethe subsetof Ii non-terminalvertices,those~ E with

zi(mj) outdegree(~j)> 0. For any a � D1 andany~ � ~, let

= (a(~~+i),. . . , a(r~÷,,~,7~))�

Let 11 : D, JR”’ be definedby 11(a) (a(~i~j.),...,a(~)) . We can assumewithout

loss of generalitythat ~ is orderedso that, for some71 < H,

v(~)>k, ~

We let G4
= Gk,~(,)x x Gk,~(~)and k = ~ min{v(mj”), k}. Finally, we define

B : —‘P Gk,H_, by

B(L,,...,L~)= ll~iç’ ~

where ~ denotes direct sum and is the inverse image map corresponding to A~. This

constructionisjustified by the following intermediateresult. Let ir(~j~)denotethev(~).x k

matrix whose s—th row is ir(,,+4.

Lemma C.1 Let p � C++ and y’1 = Q3(1,t,p), I < j ~ n. Then yJ solvesthe

marketvalue maximizationproblem (7) for 17. If x(mi+) is full rank for each i � ~, then
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thereexists7� F such that (z,7) is an optimalplan for agent i if and only if

z = F,~(p,B~span(7r(?4)),. ..,span(7r(7~))],Wt
,1,2).

PROOF: The first claim of this lemmafollows from LemmaB.I. The secondclaim follows
from the proof of Lemma1 of Duffie and Shafer(1985b). I 0)

Let {(W~,ç~): a’ � E~(h)} denote the atlas for Gk,,~(h) constructed in Appendix A,

I <h <7-LForeachh�{l,...,71}andcr� E~(h),letK,~ :C++xC~~xCk_t~xR+xW~—4

JR(V(h)_k)k be definedby K~(p,2,d~+l,...,dk,a,L)= [II c~L)]P,,.rc’(i4),where

lrj =A~(poQ3(a,1,p)), I <j <n,

=A~(öj+pod~), vi+I<j<k.

LetE=(,)x’.’xE.~),andforeachci=(cil,...,ci~t)� E,1etW~=W~,x...xW~.

For eachci � E, let

~ x W~x ~ x 1R~x Ck_~Ix 17 —# C x (JR(P(1)k)k x x JR(~)~)k)

be definedby

where

HA = Z*~W,t,a,p,B(L,,...,Lfl)]

and

“B = ~ ,dk,a,L,),..., ~ ,dk,a,L~)),

with Z* defined as in PartB.

Proposition C.1. For (p,L) � C++ x W~,if ~ = 0

and 7r(i~+)is of full rank for all ~ E ~, then there exists(x1,7$),I < I � m, such that

((xi,7i),(Qi(I,i,p)),~,p) is an equilibrium for ((E,A),(u~,wi),(Yjt),(O~j),(5h,dh)).

PROOF: By LemmaA.3., the hypothesesimply that span (7r(4)) = Lh, I < h � 71. Let

= F,(p,B(L,,...,Ln),Wi,1,t), I <I < m.
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By Lemma B.4 and linearity, ~, Xi — W~= ~ Qi(1,1,p). By LemmaC.1, there exists

~ E F such that (X~,
7~

)is an optimal plan for agenti, 2 < I � m. Let 7~E I’ be defined

for each~ � E’ by

7j(~)=I-~7~), 1 �i� vi,

i—2 n+1~j~k.

Then by linearity and spot market clearing (z’,7’) is an optimal plan for agent 1. By

construction,marketsclear. By Lemma B.2, firms solve the marketvalue maximization

problem(7). I

Let ~ = {(p, L,w,’t,a,d~+,,...,dk) � C++ x G* x 17 x C~+x JR x

H~(p,L,1,a,d~+i,...,dk,W) = 0 for all a’ � ~ such that L E W0.}

andlet ic : e —~ 17 x C~+x JRx ~ be the projection map defined by

K(p,L,W,2,a,d~+,,...,dk)= (W,1,a,d~+,,...,dk).

Lemma C.2.

(1) E is a smoothboundarylessmanifoldofdimension(m + k)H1+ 1,

(2) K is smoothand proper, and

(3) K hasa regular valuewhoseinverseimageis a singleton.

PROOF: SinceZ* andK~are smooth,andby LemmaA.2, we know that H,, is smooth.

To see that 0 is a regular valueof H,,, let b (d~+1, dk) � Ck_~~and note that

rank (D(~~,t,b)H~)= rank (diag [Dw1Z*,D(j,b)K~l,...,D(~b)K~j).

It is easy to check that each of the diagonal blocks has maximal rank, and thus that

hasrankHt+E~.,(v(h)—k)k.By the preimagetheorem,H;’(0)is asmooth

submanifoldof dimension(m + k)H~+ I. Since {W,, : a’ � E} is an open cover of G*,

it follows that e is a smoothmanifold of the samedimension. The projectionmap K 1S

of coursesmooth, and is properby aproof almost identical to that of LemmaB.I0. The

constructionof a regular value of K with auniqueinverseimagepoint is by analogywith

the proofs of PropositionB.2 and Proposition3 of Duffie and Shafer(1985b). I
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The proofof Theorem3 is completedby direct analogywith the proofsof Proposition

B.3 andB.4. That is, by the last lemmaand the degreeinvarianceresult usedin theproof

of Proposition B.3, every point in the range space of ic has a non-empty inverse image,

on which H,, = 0 for some a’ � E. By PropositionC.I, if H,,(p,L,i,I,d~+,,.. . ,dk) = 0

and 7r(i~+) is of full rank for all ~ � ~, we aredone. But x(~+)is of full rank for generic

(W, 1, d) by Sard’sTheoremand“perturbation” calculationsanalagousto thosein theproof

of PropositionB.4. [See also the proofof Theorem1, Duffie andShafer(1985b).]
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