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ABSTRACT

This paper studies the role of the firm in incomplete markets. Stock market equilibria
are shown to exist generically in economies with “smooth”'prefe:rences and production
sets. vThe set of equilibrium allocations is generically infinite. The stochastic setting is
described by an arbitrary event tree. At each state and date agents trade on markets for
spot commodities, common stocks, and other general securities. The goal of share value
maximization by firms is shown to be generically strictly sub—opftimh:l in equilibrium for all
but (at most) a single shareholder. The Modigliani-Miller Invariance Principle, showing
the irrelevance of the financial policy of the firm, is re-examined in the light of incomplete

markets.*
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§1. Int'roduction
The firm plays several fundamental roles in a stock market economy:

(i) by virtue of its production possibilities, the firm augments the goods available for
consumption,

(ii) through common stock valuation, the firm affects t/he distribution of wealth among
agents, and

(iii) via the dividend processes marketed as a firm’s equity, debt, and other corporate issues,
the firm augments the set of consumption processes that agents can finance by trading
over time on security and spot markets.

The last role, typically called spanning, is absent in a standard complete markets com-

petitive model, and is the focal point of this paper. Our model of an economy comprises

agents with smooth preferences, firms with smooth production sets, spot commodity mar-
kets, and security markets for common stocks and other assets. A stock market equilibrium
is defined roughly as follows. Taking prices as given, firms make production choices and
security trades maximizing the market value of their common shares; agents choose secu-

Tity .t;ading strategies and spot consumption strategies maximizing utility. The system is

in eqﬁilibrium if all spot commodity and security markets clear. Excluding from the set

of economies a subset whose parameters form a closed set of measure zero, we reach the
following conclusions.

(1) Equilibria exist.

(2) If the number of securities is large enough to provide full spanning at some prices,
there is only a finite number of equilibrium allocations, each being Pareto optimal, and
shareholders unanimously support the production goal of share value maximization.

(3) Without a sufficient number of securities for spanning, (i) no equilibrium allocation is
Pareto optimal, (ii) the number of equilibrium allocations is infinite if and only if at
least one of the securities is a firm’s common share, and (iii) the production goal of
share value maximization is strictly sub-optimal for all shareholders, except perhaps
one.

(4) Regardless of spanning, the issuing or trading of securities by a firm kas no effect on
the firm’s share value. This includes the indirect effect of dividends and price changes

* from securities held by the firm which themselves hold shares of the firm, and so on.
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DeMarzo (1986) has subsequently shown, in the context of our security valuation model,
that the trading of securities by firms has no effect on equilibrium shareholder utility,
yielding a full version of the Modigliani-Miller Theorem in this general incomplete
markets stochastic framework. It remains the case, of course, that shareholders are not

generally indifferent to the issuance of new securities by the firm.

The remainder of this section is a discussion of these results and their antecedents in the
literature. Sections 2 through 8 formulate the model and state the results more carefully.

Proofs of theorems are collected in Section 9.

Existence of Equilibria

We first consider the question of existénce of competitive equilibria. Since the span of
markets changes both with spot prices and with the production choices of the firm (not to
mention its firancial policy), standard fixed point analysis has been applied with limited
success. Even with a short sales limitation on portfolios, Radner (1972) did not resolve the
existence issue with production in his model of a sequence of markets. Grossman and Hartv
(1979) show existence in the Radner setting with limited short sales and the assumption
of a single commoedity. Burke (1986) shows existence with a short sales restriction and
multiple commodities under additional regularity assamptions on production sets. Without
a short sales restriction, Hart (1975) has shown that equilibria do not generally exist, even
under the smooth preference assumptions of Debreu (1972) that we adopt in this paper.
Hart’s counterexample is based on a collapse in the span of securit'y markets at certain
“bad” spot prices. After Hart’s paper, attention was focused on models with purely finan-
cial securities [Werner (1984), Cass (1984), Duffie (1985)] or purely numeraire securities
[Geanakoplos and Polemarchakis (1985), Chae (1985)], or toward showing that bad spot
prices are relevant only for an exceptional set of economies, a program of generic existence.
In the pure exchange model, McManus (1984), Repullo (1984), as well as Magill and Shafer
(1984, 1985) show generic existence provided there is a sufficient number of securities to po-
» _tentially span complete markets. Duffie and Shafer (1985a, 1985b) extend generic existence
to the case of an insufficient number of securities for full spanning, still in a pure exchange
setting. This paper extends our work to include production, exploiting the fact that a

smooth production economy and its pure exchange version have homotopic excess demand
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functions. [Homotopic functions have the same fixed point index.] We gradually extend
the generality of our basic model, finally showing generic existence for smooth stochastic
stock market economies with incomplete markets, security trading by firms, unrestricted or
linearly restricted portfolio formation, purely financial securities (such as bonds), real secu-
rities (such as commodity futures contracts), and mixturés of these security types, including
mutual funds. We have not extended existence to securities whose dividends are general
non-linear functions of spot commodity prices, such as stock options, commodity futures
options, defaultable corporate debt issues, and so on. [See Polemarchakis and Ku (1986)
for a counterexample in a special sense.] The proofs, located in Section 9, make extensive
use of differential topology, introduced to the study of general economic equilibrium by
Debreu (1970,1972,1976). We use the approch of Balasko (1975), studying the properties of
the projection map on the space of economies and their equilibria (the “equilibrium mani-
fold”) into the space of economies. Existence follows from an application of mod 2 degree
theory along the lines of Dierker (1972), whereby the projection map on a closely related.

“psendo-equilibrium” manifold is onto.

Multiplicity and Optimality of Equilibria

Debreu’s (1970, 1972, 1976) demonstration that smooth exchange economies with com-
plete markets generically have a finite set of equilibria has been extended to producﬁon
econoiies [Smale (1974), Fuchs (1974), Kehoe (1983)]. With incomplete markets and purely
financial securities, Geanakoplos and Mas-Colell (1985) as well as Cass (1985) showed that
the set of equilibrium allocations is generically infinite. For illustration, with S states of the
world (in the second period of a two period model) and = purely financial assets, Geanako-
plos and Mas-Colell showed that the set of equilibrium allocations generically has a subset
equivalent (topologically) to an (S — 1)-dimensional ball! Speaking generically, we show
that stock markets play a special role in the multiplicity of equilibria. With » real (rather
than purely financial) assets, the set of equilibrium allocations is finite if and only if none
of these assets is a common stock. If even one of these n assets is 2 common stock, the set

of equilibrium allocations again has a subset homeomorphic to a ball in R5-",

In one of our examples, the entire (one-dimensional) set of equilibrium allocations is

strictly Pareto ordered. Even before Hart’s (1975) examples, it was known that incom-
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plete stock market equilibria can be Pareto inefficient. For a sample of early studies of
this problem, some of which give conditions for optimality or constrained optimality, we
cite Diamond (1967), Jensen and Long (1972), Stiglitz (1972), Leland (1973), Dréze (1974),
Ekern and Wilson (1974), Gevers (1974), and Merton and Subrahmanyam (1974). Even
a cursory examination of this literature or of the first order conditions for optimality in
incomplete markets will leave the reader unsurprised at our proof of generic Pareto ineffi-
ciency of incomplete markets equilibria. Although Grossman and Hart (1979) showed that
Grossman’s (1977) Social Nash Optimality property carries over to stock market equilibria
if firms have appropriate objectives, they make it quite cleé.r that this optimality property
is not especially normative, and that firms must collect each shareholder’s marginal rates

of substitution in order to implement Social Nash Optimal equilibria.

Beginning with Arrow (1953), the fact that repeated trade of a sufficient number of
securities can dynamically span the entire consumption space and thus allow fully Pareto
optimal equilibrium allocations has been shown in various settings by Guesnerie and Jaffray
(1974), Friesen (1974), Kreps (1982), McManus (1984), Repullo (1984), Magill and Shafer
(1985), Nermuth (1985), and Duffie and Huang (1986). The basic premise in this paper
is that the securities are too few in number to provide complete spanning. Of course it is
trivial that if re-allocations and production changes are constrained to the subspace M of
consumption bundles that can be traded via security and spot markets, then an equilibrium
is Pareto optimal in this constrained sense. This follows from the observation that the allo-
cation is an Arrow-Debreu equilibrium allocation for the economy restricted to the marketed
consumption space M. Given strong linearity restrictions on production sets, this is the
idea behind Diamond’s (1967) demonstration that stock market equilibria are constrained
efficient (in an appropriate sense). With a slightly stronger sense of constrained optimality,
however, Geanakoplos and Polemarchakis (1985) show that pure exchange economies have
generically inefficient equilibrium allocations in incomplete markets. This result (probably)
carries over easily to production economies. Frankly, we are unsure about where next to

look in a study of constrained optimality of stock markets.

Shareholder Agreement

We work with the basic premise that a shareholder takes prices as given and agrees
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with the production choice of a firm if, given unilateral control of the firm, the shareholder
would maximize his or her own utility with the same production choice. The classical
decentralization properties of the competitive market mecharism in complete markets are
krown to include unanimous shareholder agreement with market value maximizing produc-
tion choices. Unanimity follows from the simple observation that, if prices are taken as
given (the competitive assumption), then a firm affects a shareholder only to the extent
of the sharcholder’s wealth, which is a strictly monotone function of the firm’s value. The
firm thus maximizes the optimal utility of any locally non-satiated shareholder if and only
if the firm maximizes its own market value. This neat coincidence of goals via the price
mechanism does not carry over to incomplete markets. Indeed, in a smooth economy, mar-
ket value maximization is strictly sub-optimal for any shareholder restricted by the span
of markets. Again, the reasoning is simple. The first order conditions for maximization
of a firm’s market value are precisely that the marginal effect of any change in production
on the value of the firm is zero. A value maximiziﬁg firm can therefore move the span of
markets in a direction strictly favorable to a shareholder with zero marginal effect on the
shareholder’s budget. The shareholder will thus prefer that the firm change its production
choice. Using Hart’s (1979b, 1979a) terminology, the “wealth effect” of a production change
is always locally dominated by the “consumption effect”.at a production choice maximizing
the firm’s vaiue. "This depends on smoothness, of course, and the wealth effect may domi-
nate if the firm’s value-maximizing production choice occurs at a sufficiently sharp kink in
the production frontier. We provide the details in Section 4, using the fact that sharehold-
ers are generically restricted by tﬁe span of markets in equilibrium to conclude that market
vilue maximization is generically strictly sub-optimal for every shareholder, except perhaps

one.

Our conclusion must be reconciled with a long history of literature showing unanimity
among shareholders even in incomplete markets. In some of the literature [Diamond (1967),
Ekern and Wilson (1974), Radner (1974), Leland (1974)] the firm cannot affect the span
of markets, and the reasoning of the complete markets case can be applied to deduce
unanimity. Other papers base unanimity on some particular verison of the “competitive
assumption,” taking something more than prices, or other than prices, as given By agents.

For example, the “perfect competition” assumption of Ostroy (1980) and Makowski (1980,
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1983) has the effect that shareholders take the span of markets as given independently of the
firm’s production choice. Again, unanimity follows from the complete markets reasoning.
Diamond (1967), Dréze (1974), as well as Grossman and Hart (1979) derive unanimity
not for value maximization, but for “pseudo-value” maximization,” where the “pseudo-
prices” are share-weighted sums of agents marginal rates of substitution. Here, a “utility
taking” competitive assumption is invoked. Several papers exploit a “large number” of firms,
meaning either a sequence of economies with a growing number of firms or a measure space
of firms. The spirit of these models is that a small firm can affect market clearing prices
or allocations only negligibly, so that the consumption effect of a production shift can be
dominated by the wealth effect. A measure space of negligible firms in our model would not
overturn our rejection of unanimity for value maximization. Although the impact of a small
firm on equilibrium prices or allocations is negligible, its effect on the span of incomplete
markets is not. For illustration, a shareholder unable to hedge a random endowment risk
may wish that a firm alter its production choice purely for puri)oses of providing a better
hedge, and the effect on the span of security markets is independent of the size of the
firm. Indeed, rejection of value maximization holds a fortiori with negligibly sized firms,
since the contribution of a small firm to the wealth of a shareholder is negligible, even
without smoothness, and the consumption effect of production changes will dominate the
wealth effect. [One should also see Rubinstein (1977) on a related point.] Our approach is
not comparable with Hart’s (1979b), however, for Hart compares sequences of equilibrium
allocations as the numbers of agents and active firms diverge, rather than examining a
particular agent’s attitude to a particular ﬁfm’s choice in a particular economy. Under
conditions, Hart reaches the opposite conclusion that the wealth effect dominates, and
thus that unanimity prevails. The unanimity results of Bester (1982) and Haller (1984),
also relying on a “large number” of firms, are quite special. They assume mean-variance
utility, an absence of future random endowments, and exogenously distributed future spot
prices (independent of production choices.) In that setting, unanimity follows from the

absence of any incentive for an agent to change the span of the markets. Leland (1978)

and Satterthwaite (1981) derive unanimity under special conditions and partial observation

of the state by shareholders. Kreps (1983) has surveyed the spanning and enanimity issue

more carefully.




The Dividends and Arbitrage—Valuation of Inter—-Dependent Securities

We will be considering the financial policy of the firm. This issue is traditionally framed
in terms of the debt-equity decision and the corresponding dividend pelicy. Of course, a
firm may implement a given financial policy by trading in sccurity markets. For example, a
firm may borrow or lend in bond markets to accelerate or smooth dividends. More generally,
firms trade the shares of other firms; in fact, they occasionally buy their own common shares.
Similarly, certain securities such as mutual funds are set up purely to generate dividends
by trading in other securities. This poses an obvious simultaneity question: “How does one
determine the dividends and prices of securities that invest in one another”? In a static
setting, for example, suppose n securities generate internal cash flows corresponding to a
vector 6 € IR®. For example, 6, could be the market value of the commodities produced by
firm k. Further, suppose that the portfolios of securities held by securities are given by an
n X n matrix v, where v;; is the number of shares of security & held by security j. [Firm k
has repurchased some of its shares from shareholders, for example, if and oniy if e # 0.]
Then the total vector A € IR® of dividends paid by the n securities must sol\ve the equation
A = 6§ 4+ yA. A unique solution exists if and only if I — v is non-singular, in which case
A= (I — ~)~16. The story is much richer in an incomplete markets stochastic setting. Our
result is Lemma 2 of Section 6. Then, given a stochastic process A for dividends, we study
restrictions on a security price process 7, such that (=, A) is arbitrage-free, meaning that one
cannot generate a positive cash flow from security trading without a positive investment.
Proposition 3 is a finite-dimensional extension of results by Rubinstein (1976), Ross (1978),
and Harrison and Kreps (1979), showing that (x, A) is arbitrage-free if and only if every

security’s price is some fixed strictly positive weighted sum of its future dividends.

The Modigliani—Miller Theorem

Broadly stated, there are two major implications of the Modigliani-Miller theory in
competitive linear markets, by which we mean markets with price taking and free portfolio
formation (no short sales restrictions, transactions costs, or taxes). First, the current market
value of a firm’s share is independent of its financial policy. Second, if the span of markets
is fixed, the shareholders of a firm are indifferent to the firm’s financial policy. In Section

7 we re-examine and re-affirm these implications, with emphasis on a formal model of the
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financial policy of the firm and on the role of the fixed-market-span assumption.

We use our construction of arbitrage-free dividends and prices for interdependent se-
curities. Allowing the firm to adopt a general security trading strategy, we then confirm the
intuition that a firm cannot change its market value by trading securities. This is the case
even in incomplete markets and even if one accounts for the impact of changes in the future
dividends and prices of the firm on the dividends and prices of other securities that hold
shares of the firm, and the feedback effect on the firm itself through its holdings of other
securities, and so on. [This inciudes re-purchases by the firm of its own stock.] Of course,
a firm can also implement a financial policy by issuing new securities, the policy form orig-
inally considered by Modigliani and Miller (1958) when they showed that the issuance of
debt has no effect on the total value of the firm. Whether the value received from the sale

of (defaultable) bonds is paid immediately to the original shareholders as a dividend, or

~ is re-invested (financially) elsewhere, this has no effect on the initial cum dividend equity

value of the firm. This argument holds all other prices fixed and assumes that the issuance
of debt does not affect the range of feasible production choices. Of course, with credit
limitations or limited liability restrictions, which we do not model, the issuance of debt or
trading of securities could allow a firm to undertake a production project of higher present
market value than would otherwise be possible. [This bald observation hardly constitutes
a satisfactory model of financial policy, which is still considered to have a relatively unex-
plained role.] Our arguments also implicitly use perfect foresighvt on the part of investors as
to the dividends of defaultable securities. That is, a corporate bond that defaults in some
states of the world is taken as such, and not as riskless. Further, bondholders understand
the entire financial policy of the firm, including any sale of “new debt” in some future states
of the world, which would generally rednce the market value of previously issned defaultable
debt. [The alternative to this perfect foresight assumption is a so—called “me-first” rule, as

shown by Fama and Miller (1972) and Fama (1978).]

As to the effect of financial policy on shareholders, we point out that, generically,
shareholders find the span of incomplete markets a binding constraint. This yields the
obvious conclusion that shareholders are not indifferent to the financial policy of the firm if
it can change the span of markets (which is typically the case in incomplete markets). We

provide a trivial example of the impact of financial innovation by the firm. DeMarzo (1986)
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has gone beyond this and such earlier work as Stiglitz (1974), however, in showing that
shareholders are indifferent to the trading of existing securities by firms. Anything the firm
- can do by trading securities, agents can undo by trading securities on their own account.
Indeed, any change of security trading strategy by the firm can be accomodated within
. a new equilibrium that preserves consumption allocations. Hellwig (1981) distinguishes

“ sitnations in which this is not the case, such as limited short sales.

$2. The Basic Equilibrium Problem in Incomplete Markets.

This section includes the definition of an economy and its equilibria in a two period
- model with uncertainty over the state of nature in the second period. We will later extend
the basic problem in several directions.
‘; There are £ commodities consumed at time zero and in each of S states at time one,
:malécing for the consumption space £ = IRY5+1) For any z € L, let z, € IR! denote the
time zero consumption bundle and z1(s) € IR® denote the time one consumption bundle in
state s, for 1 < ¢ < S. For any spot price vector p € £ and any consumption plan z € L,
‘let p; oz, € IRY denote the vector of state-contingent spot market values of z,, with s-th

element p1(8)-z1(s). Let L4 = Rifi“). An economy is defined by a collection
(i, 0'), (%), (0)), 1<i<m, 1<j<m,

where u; L4y — IR is a utility fanction, w' € £44 is an endowment vector, Y; C Lis a
production set, and §;; > 0 is the share of firm j endowed to agent ¢, for firms 1. < j < n
and agents 1 < ¢ < m. By convention, ) _; 0;; = 1 for all j.

For the basic model, we allow agents to trade only in markets for spot commodities
and the shares of firms. Later we extend the model to allow trade in additional securities in
zero net supply, such as bonds, forward contracts for commodities, and so on. We will also
extend to a stochastic setting with sequential trading. These generalizations do not affect
* the basic results.

‘Firms take as given a market valuation function v : £ — IR mapping each production
cho_i;ce y € Y; to the initial cum dividend market value v(y) of firm j. We assume the free
forfﬁation of portfolios by agents, corﬁplete spot markets, and ex-dividend trading of firm

shafres at time zero. Given a spot price vector p € L, the absence of arbitrage in security
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markets then implies (as shown in the more general stochastic setting of Section 6) the

existence of a state—price vector q € Ri + such that
v(y) = vep(¥) =po-yo+¢-(p1oy1), ¥€Y;, 1<j<n (1)

For pt;duction choices y = (y%,...,y™) € L" of the = firms and a spot vector p € L, let
V(p, y1) denote the S x » matrix whose j-th column is p, Dy{. A portfolio v € IR" of firms’
shares thel{ yields the state contingent dividend vector V(p, y;)v € IR®. Given a state price
vector g, a spot price vector p, and production choices y = (y1,...,¥"), agent ¢ thus faces
the problem:

max _ ui(z) (@)

2€£++,7€R"
subject to:

o (To—wh) + (15 = 0:)vep(¥’) — vipo - 9 <O
J

pra(z1 — i) < V(p,3)7.
Firm j takes p and ¢ as given and solves, i possible, the market value maximization
problem '

;‘3}5 vgp(y)- _ (3)

A éollectioﬁ ((z%,7%), (%), p, ¢) is an equilibrium for the given economy provided
(a) (%, ') solves problem (2) for each agent 1,
(b) 9’ solves problem (3) for each firm j,
(c) Xyot —w' =397, and
(d) 32;v; = 1 for each firm j.

§3. Basic Equilibrium Theorems

This section states sufficient conditions for the generic existence of equilibria. The
conditions are mainly directed toward smooth well-behaved demand and supply functions.
We /use the w;)i;d smooth to describe functions with as many continuous derivatives as
requir_éd for ouf ;;proofs, and adopt the following “smooth preference assumptions” of Debreu
(1972). For all 4, |

(U.1) u is;’smootfh,
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(U.2) Du;(z) € L4 for all z in £, (strict monotonicity),

(U.3) for all z in L4y, h7 D?uy(z)h < O for all b # O satisfying Du;(z)h = 0 (differentiably
strictly convex preferences), and

(U.4) {z € L+ :ui(z) > u;(T)} is closed in £ for all T in £, (a boundary condition).

For convenience, we define a state-complete subspace to be a vector subspace of £ equiv-
alent to IIS_ ,IRY*) for some subset of £(s) > 0 different commodities used in production
out of the £ available for consumption in state s or at time s = 0,0 < s < S. Substituting a
state-complete subspace for £ in condition (P.3) below makes for a weakening of the strong
assumption of Gaussian curvature on production sets.

(P.1) Yj is closed, convex, and intersects L4,

(P.2) p-Y; is bounded above for all p in £, and

(P.3) as a subset of some state-complete subspace £(j), the boundary of Y; is a smooth
manifold with non-zero Gaussian curvature.

As Hart (1975) has shown by counterexample, we must avoid the singularities induced
in security demands when the rank of the dividend matrix V(p,y;) changes. As p and y
approach such a singularity, two securities become closer and closer substitutes, and only
short sales restrictions can guarantee the existence of an equlibrium. In order to guarantee
generic existence, we will perturb Y; by a translation # € £(j) in order to generate the
production sets

Y/ =Y;+{¥}, 1<j<n,
fort=(,..., 1) e T =1]] ; L(5)+. This perturbation preserves the existence of smooth
supply functions satisfying (P.1)-(P.3) and is continuous in any of the usual topologies
placed on production sets, such as the topology of uniform C™ convergence on compacta of
the associated distance function (Mas-Colell (1985)).
The word generic is taken throughout to mean: for all parameters in the stated set,

except for a closed subset of Lebesgue measure zero.

Thecorem 1. Suppose utility assumptions (U.1)-(U.4) and production assumptions
(P.1)-(P.3) apply. Then, for generic (w,t) € LT x T, there exists an equilibrium for the

incomplete markets economy ((u;,w"), (Yj‘), (6:5))-
Theorem 1 is a special case of Theorem 2, which is stated after the following simple example.
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Example. To illustrate our results we consider an example with m = 2 agents, ¢ = 1

commodity, S = 2 states, and » = 1 firm. The utility functions are
wi(2) = £n(zo) + Aitn(21(1)) + Botn(21(2), = € Ly,
for some ' € IR% ., i € {1,2}. The production set is
Y={y€Ll:9<0, 1320, y1-31<—y}-L;.

All of our assumptions (P.1)~(P.4) and (U.1)—-(U.3) are satisfied. Taking the state price
vector § = (1,1) and normalizing the spot price vector p € £, by choosing po = 1, the

market value maximizing production choices are

Yo=—p1 p1/4

yl(s) =pi(8)/2, s€ {112}'

The initial market value of the firm is thus p-y = p; - p1 /4.
Problem (2) of agent i is reduced to choosing the fraction v* of the firm to hold. The
first order condition: for optimal 7* is

~P-y =% Y Fim(s)  _
wo+7v(Wo—p-y)+0ip-y wi(8) + yi(s)?

]

Substituting the market value maximizing y yields

-p1- M Bapr(s) =0, ie€{1,2}. (*)

Ko (Vi) PR CETETE

We note that 4! + 42 = 1 implies spot market clearing, and that the set of equilibria is
therefore equivalent to the set of (p3, 7%, ¥2) solving the two equations (*) and v = 1— 1.
By the usual transversality argument, the set of solutions is generically a one-dimensional
manifold.

Distinct (p1, 7*, 7?) and (p;, 7*, 7°) solving () and 7' + v? = ¥ + 72 = 1 correspond
to distinct allocations for the agents. To see this, suppose not. Then p; = p,, for otherwise
the corresponding production choices y and ¥ differ. Furthermore p;y! = 5,7* for otherwise

the corresponding consumption choices z; and Z; differ. Thus vt = F2.
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Special Case: Let w' = (1,0,0), A + g5 =1, and §; = 1/2 for i € {1,2}. Then (%) reduces

to —
. ‘ = 4",
e pl,./z —ﬂl./'ﬁ.ﬂ?:o, ie{1,2}.
1+(%—12-)P1'P1 L

Taking 7°> = 1 — 7' and solving for p; - p; and 7', we have ' = 1/2 and p, - p; = 8/3.

Thus the set of spot price vectors p; > 0 on the circle of radius v/8/3 is in one-to-one

correspondence with the set of equilibrium coﬂsumption allocations.

{

o
2

-
u
1
Figure 1. Equilibrium Utilities for g = §2.

We graph the equilibria in terms of the monotonic transformation of utility
wi(z) = %), ie{1,2).

The graph of equilibrinm utilities for ,31‘ = f? is shown in Figure 1. In this case, the
equilibria ire strictly Pareto ordered! The graph of equilibrium utilities for g* = (3, %)
and 2 = (%, %) is shown in Figure 2 as the set of non-zero solutions to the cubic equation
zf + @d = ku2a? for a scalar k. Only v{n pbint_ A in Figure 2, does agent 2 agree with
the production choice of the firm. [It also hhppené that A is the point of highest utility
for agent 2 on the graph.] Similarly, ageni lisin .a:;greement with the firm’s choice oniy at

point B.
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Figure 2. Equilibrium Utilities fot%ﬂl'% p?

Mulitplicity and Optimality of Equilibria

In order to study the determinacy of equilibrium allo,czitions in an appropriate setting,
we introduce assets a* € IRS!, 0 < k < ny < n, in zero net supply, where a*(s) € R! is the
commodity bundle paid by asset k in state s. The remaining n; = n — ny > 0 securities are

firms’ shares, as before. We let
V(p,(y1,0)) = (p1o9} |-+ |progl* |proal|- - | p1oa™?)

denote the corresponding S x n dividend matrix. Given a state price vector ¢ € IRS + and
a spot price vector p € L4, the initial market value of the asset a* is ¢ - (pue*). Problem
(2) is amended to read '

max w;(z) 2!
. i(z) (2

subject to

po-(zo—wé)+z[(7j—0ij)vqp(yj)—7jpo-é$]+ > ma-(oet) <o

j=1 ok =’n§i+1

pro(zy — Lv'l) < V(P, (yl’af))7'
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The conditions (a)-(d) defining a collection ((:c", ), (¥%), p, q) to be an equilibrium for an
economy ((u:i,w'), (¥;), (6:;), a) are otherwise changed only by adding the condition:

() ;7 =0forn;+1<k<m.

We allow the case n; = 0 of pure exchange or n; = n (of pure stock markets) for comparison,

asking the reader to make the obvious notational adjustments for these cases.

Theorem 2. Suppose utility assumptions (U.1)-(U.4) and production assumptions
(P.1)-(P.3) apply. Then there is an open subset E of LT x T x IR***2 whose complement

has Lebesgue measure zero such that, for each (w,t,a) € E,

(1) there exists an equilibrium for the economy ((u;,w*), (Y}), (8:5), a),

(2) ifn > S, the set of equilibrium allocations is finite,

(3) if ny = 0 (pure exchange), the set of equilibrium allocations is finite,

(4) if ny > 1 (production) and n < S, the set of equilibrium allocations contains a set
homeomorphic to a ball in R5—™,

(5) if n > S, every equilibrium allocation is Pareto optimal, and

(6) if n < S, every equilibrium allocation is not Pareto optimai.

Thgx proof of Theorem 2 is given in the final section of the paper. In the following
section we define and prove an additional generic property:
(7) Ifn < S, for any equilibrium, all shareholders (except possibly one) of any firm disagree

with maximization of the firm’s market value.

- In Sections 7 and 8 we extend this existence result to general stochastic economies.

§4. The Production Goals of the Firm

We adopt the usual competitive assumption that agents take prices as given. With
incomplete markets, this includes both the spot commodity price vector p and the state
price vector ¢, both of which we fix for this discussion. We also fix the production choices
y*, k # 7, of all firms other than a particular firm j, with vg,(y*) > 0. The value of problem
(2') can then be written as the fanction U;; : Y; — IR defined by U;;(y’) = ui(z'), where z*
solves problem (2'). [We define U;;(3?) to be —oo if the market value of 3’ leaves an empty
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budget feasible set for i.] A production choice 3’ € Y; is defined to be optimal for agent
if 37 solves the problem

max U (v). | (4)
We first recall the optimality of market value maximization in complete markets; using
none of the regularity assumptions (U.1)—(U.4) or (P.1)-(P.3) for this result, whose proof
is obvious.
Proposition 1. Suppose span (V(p,(y1,2))) = IR® (complete markets). For any firm j
and any agent i, if y/ solves the market value maximization problem (3), then y’ is optimal
for agent i. Suppose, moreover, that 6;; > 0 and u; is locally non-satiated. Then 3’ is

optimal for agent 1 if and only if y° solves (3).

In other words, assuming only locally non-satiated preferences, the unique production ob-
jective supported by any shareholder in complete markets is market value maﬁmization,
a case of unanimity. This result is completely overturned (generically) in incomplete mar-
kets equilibria. To show this, we begin by demonstrating that a firm and an agent agree
on market value maximization only when the incompleteness of markets is not a binding
constraint on the agent.

Proposition 2. Suppose u; satisfies (U.1)-(U.4) and Y; satisfies (P.1)-(P.3). If (z*,)
solves (2') with v} # 0 and 3’ solves (3) and (4), then z' also solves the complete markets
problem

max u;(z) subject to vg(z — w' = Tpliy*) <0. (2)
T€Ly s

PROOF: Let N C L denote a neighborhood of 3’ small enough that U : ' — R is a smooth
function when defined by
U(y) = maxe 5, k¢ wi(2)

subject to the constraints of problem (2'), holding 7; fixed at 7; We can assume without
loss of generality that ¢ = (1, 1,..., 1). We calculate p = DyU(yj)T to be pp = v8;;po and

Pu(s) = (—v(7} — 65) + A );m(s),  1£s<S,

where v and X € JRS are the Lagrange multipliers for problem (2'). By Lemma B.1 of the
final section, we can write the market value maximizing production choice of firm j as a
smooth function g : £, — Y; of spot prices. Since y?(p) solves (4), we have

Uy’ (#')) < U (p))
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for all p' in a neighborhood of p. It follows that U o 3’ : £, — IR has a local maximum
at p, implying that DyU(yj(p))Dpyj(p) = 0. Then ]’J‘TD,,yj(p)ii = 0, but by the second
order conditions for market value maximization (Lemma B.4 (4)), this can only be true if
' 7§V = 7;:/\, for all s. Since 7_;: # 0, we have v = A,, 1 <8< S. An examination of the first
order conditions for problem (2') then shows that z* solves the first order conditions for the

complete markets problem (2”). |

We say that shareholder i disagrees with market value maximization by firm j at

(', 7)), (%), p, q) if 7;: # 0 and if 3’ does not solve both (3) and (4).
Corollary. Theorem 2 holds with appended property (7).

PrOOF: This follows from Proposition B.4 (2), which shows that, generically in equilibrium,
the market subspace constraint is binding, so that the equilibrium solution 2* to problem

(2') does not solve the corresponding complete markets problem (2"). §

Given an absence of unanimity for maximization of market value, 'it may be prudent
to extend our existence results to a general class of objective functions for the firm. Aside
from the fact that perturbing a production set induces a full rank perturbation of dividends
(Lemma B.3), the only preperties of the firm’s objective that we actually use in our existence
proof are the smoothness of supply functions, homogeneity in prices, and positive market
value. Thus an extension of our existence results to a general class of production objectives

that includes market value maximization is quite conceivable.

§5. Stochastic Equilibria with General Securities

In this section we extend our existence result for incomplete markets to the general
stochastic setting of Debreu (1959), Chapter 7, incorporating zero net supply securities of
various types. The extension is along the lines of the pure exchange model of Duffie and

Shafer (1985b).

The Event Tree

The model of uncertainty is an event tree, a directed graph (Z, .A) consisting of a set
E = {¢€%,...,6H} of H vertices (or “nodes”) and a set A C E x Z of arcs (or “branches”).

If (& 7) is an arc, we may think of { as the “state-date pair” that uniguely precedes 7.

We denote this precedence by writing ¢ = 7—. The root vertex ¢! is distinguished as
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the unique vertex without a pfedecessor, A walk is a sequence 7y,...,n of vertices in =
with the property that (9;, 7:41) € A, 1< i< k-1 A cycleis a walk 5,,...,m with
7% =M1, k# 1. An event tree is such a directed graph without a cycle. The successors of
a vertex ¢ € Z, denoted Z(¢), is the set of vertices with the property that there is a walk
from ¢ to 7. In other words, Z(§) is the sub-tree with root vertex &. The vertices with the
same unique predecessor £ can be ordered and denoted &;,...,{+x. The integer k is the

outdegree of ¢£. We refer to Figure 3 for illustration.

Figure 3. Event Tree Notation

The Markets

There are complete spot markets for £ commodities at each vertex £ in =. For any
integer k > 1, let D;, denote the space of IR*-valued functions on Z. Our consumption space
is thus £ = Dy, treated equivalently as IRH! with the obvious co-ordinate identifications.

We refer to any function on Z as a “process”, and cite Section 7 of Duffie and Shafer
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(1985b) for the equivalence with a traditional probabilistic model of stochastic processes
and information filtrations.
For any spot price process p in D, and any consumption process z in Dy, let poz € D,

denote the real-valued process defined by
[paz)(§) = p(&) - 2(¢), (€E.

That 1s, poz is the process of spot market values required to purchase z at each vertex.

A purely financial security is an element 6 of D;, a claim paying 6(¢) units of account
(say “dollars”) at vertex £. A real security is an element d € D, paying the bundle of
commodities d(¢) € IR at vertex ¢. A security is a pair (6,d) € D; x D, with purely
financial component § and real component d.

Agents take as given a collection (6x,dr), 1 < h < k, of k securities. For each £ € 5,
we let 6(¢) = (61(€),...,6,(¢)) € R* and we let d(¢) denote the £ x k matrix whose h-th
column is d,(€). A security price process # € Dy is also taken as given by agents, with
x(§) E IR* denoting the vector of market values of the k securities at vertex ¢, before the
securities have paid their dividends (or cum dividend). A security trading strategy is a
function v : Z' — IR*, where ' = Z|J{¢°} is the event tree formed by adjoining a pre-
trade vertex £0 = €1 to Z. That is, v(¢) is the pre-dividend portfolio of securities held by

strategy v at vertex £. Let I denote the space of security trading strategies.

Given securities (6p,d), 1 < b < k, a spot price-process p, and a security price process -

7, a trading strategy v € I' generates the dividend process 67 € D; defined by

67(€) = (€) - [6(6) + p(&) A + [7(€-) = ¥(O) - x(€), £ €E

The right hand side of this expression is the sum of the spot market values of the dividends

paid to v at £, and the market value of the portfolio of securities sold by v at £.
Equilibrium
A stochastic economy may now be summarized by a collection

(B, A), (wi, '), (Y3), (6:5), (6n,dn)), 1<i<m, 1<j<m, j+1<h<KE,

20



where (Z, A) is an event tree, ((u;,w*), (Y;), (6;;)) is a standard Arrow-Debreu production-
exchange economy for the consumptibn space £L = Dy, and (6p,dp), j+1 < h <k, isa
collection of securities held in zero net supply. Without security trading by firms, the first
n securities are defined by §; = 0 and d; = 9,1<j<n, where 37 € Y; is the production
choice of firm j.

A state price process ¢ € (D1)+4+ and spot price process p € L4 are taken as given
by agents and firms. The price process of any purely financial security is then determined
by the operator Ay : D; — D, defined by

BO1©) = 75 3 anb(a), ¢ seDn.
n€=(£)
For example, if ¢ = 1, then A, assigns the price of a purely financial security at any vertex ¢
to be the sum of its dividends in the sub-tree Z(¢). We can also design a state-price process
g so that [A;(6)](¢) corresponds to the conditional expected sum of future dividends at £
under a given probability measure, as shown in Section 7 of Duffie and Shafer (1985b). The

given k securities are priced according to A, by
T, = Ag(6p +pody), 1<h<E (6)
Taking ¢ and p as given, firm j chooses 37 € Y; to solve the problem
max ve(y) = D 9(E)p () - 9(8), (7
vev; ¢e=
maximizing its initial share value =;(¢). By the usual principle of dynamic programming,
this is equivalent to maximizing the market value 7;(£) at every vertex ¢ in Z, taking

preceding production choices as irrevocable. To see this, we let ¢ = C(y1, y2, £) be defined

for any »; and y, in £ and any vertex £ in =, by

c(m) = y1(n), n&E(E)
c(n) = y2(n), 7 € E(&).

We could call C(y1, y2, &) the continuation of y; by y2 at £. If 3’ solves (7), then at any ¢

in =, 3/ solves the {—continuation problem

max g(mp(n)-y(n) subject to C(y%, y, &) € Y;.
=0
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If this were not true, then there exists ¢ € = and § € £ such that z = C(y7, %, §) € Y;

and

vp(2) = D g(mp(n)-Tn)+ Y, a(mp(n) - ¥ (n) > vp(v),
n€=(€) ng=(¢)

but this contradicts the fact that g’ solves (7). Thus a production plan that maximizes
initial share price always maximizes share price.

Given a spot price process p € L., a state price process ¢ € (D;)4+4, production
choices 3’ € Y;, 1 < j < n, and the pricing convention (6), a pair (z,7) € L34 xTis a
budget feasible plan for agent i provided §” > po(z — w') and 7(£‘°)j =65 1L£;5;<
n; (¢%); =0, n+1<j<k. Abudget feasible plan (z,7) is optimal for i if there is no
budget feasible plan (z',4') for i such that u;(z') > u;(z).

An equilibrium is a collection ((z*, '), (#), ¢,p),1 <i<m, 1< j< n,such that:
(a') for each agenti,(z*, v} is an optimal plan given g, p, and (3’);

(b')  for each firm j, 37 solves the market value maximization problem (7);
(c') Yiat-wt= > ¥,

(@) ;76 =1 1<j<n, £€E and

(€)  Timnm@=0, j+1<h<k ¢€E

Theorem 3. Suppose utility assumptions (U.1)-(U.4) and production assumptions
(P.1)-(P.3) apply. Let § € (D1)4+4+ be any given state price process. Then, for generic
(w,t,d) € LT x T x L*¥—™, there exists an equilibrium of the form ((z*,7"), (), T, p) for

the stochastic incomplete markets economy
((EaA)a (u;,wi), (th)’ (eij)a (6h’dh))’ 1 _<. i S m, 1 S .7 S n, ] +1 S h S k.

Theorem 3 contains Theorem 1 as a special case. The proof is given in Appendix C, based
largely on the proof of Theorem 1 and on the stochastic exchange model of Duffie and Shafer
(1985b). In Section 8 we extend this result by allowing security trading by firms and by

allowing for linear restrictions on portfolio formation.

§6. The Simultaneous Determination of Dividends of Interdependent Securities

To study the problem of how securities that “invest” in one another may have their

dividends and prices simultaneously determined, we generalize the definition of a security
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to a triple (d,6,7) € £ x D; x T with y(¢°) = 0. [A security is not “endowed” initially
with holdings of other securities.] Given a spot price process p € L, a state price process
q € (D1)44, and k such securities, (§7,d7,49), 1 < j < k, we will first verify the existence
of security dividends and prices underl a non-singularity condition. If it exists, the total
dividend paid by security j is defined by A7 = §/ + pod’ + 6"j, where of course 6" € D,
is defined simultaneously with 57" for b # j. Let A € D be defined by A(¢); = AI(¢);
87 € Dy, be defined by 67(§); = 67j(§); 6 € D; be defined by 6(¢); = 67(¢); and pad € Dy
be defined by [pod](¢); = (pod?)(¢). We then have

A=6+pod+ 6§ (8)

whenever 67 is well-defined. Let 4 € ¥ be defined by letting v(¢) denote the k x k matrix
with (j, h)-element 47(£),. Let > denote the binary order on Z defined by 5 > £ <= ¢ €
E(&)(“n follows £”), and > denote the corresponding strict order. We let I denote the k x k
identity matrix. ‘

Lemma 2. Suppose I — (&) is non-singular for all ¢ € Z. Then, for any (p,q) € Dy x D,
the vector dividend process A of (8) and the vector price process * = A,(A) are uniquely

defined. In particular,

A®€) = (I = 7€) (€-) + Dl(pod)(€) + 6(8)]

=€ E) - (T WD), e ®)
) >

Proor: We will define A inductively by (9), starting from terminal vertices in =, moving
from ¢ to {_ through the tree, and using the definition of A,. For terminal ¢ (that is,
outdegree (¢) = 0), the second term of (9) is null, and the first term is well defined by the
assumed nonsingularity of I — v(£-). By the definitions of 67 and A,,

51(6) = 7(O)la() + 5O + [1E-) - 1O T %A(n),
. nxé

where a(¢) = (pod)(¢) + 6(¢), ¢ € E. Thus

51(6) = 2 ae) + (N + 1(e) v Y L Ao,
n>§
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which implies that

51(6) = [T - ()] 7(6—)a(£)+['r(£—)—7(5)]23%-A(n) .
n>-€

This relation combined with (8) yields (9) and 7 = A,(A). @

Arbitrage Valuation
Let A € Dy and © € D; denote, respectively, a given dividend process and a given
security price process. As formulated in Section 5, a security trading strategy v € T

generates the dividend process §7 € D; defined by

87(&) = 1(§) - AQ) + [v(¢-) = (8] - x(§), E€E.

For generality, we restrict security portfolios at each vertex in Z to some given linear sub-
space of IR*, and let ® C T denote the resulting linear subspace of admissible trading
strategies. This allows us to include, for instance, securities such as futures, options, and
bonds, which are typically are available for trade only during fixed intervals of time before
expiry.

A pair (7,A) € D, x Dy is arbitrage-free if y € ©, 67 > 0, and 67 # O imply that
v(€L) - w(£') > 0. That is, (7, A) is arbitrage-free if there is no admissible trading strategy
generating positive dividends with non-positive initial investment. We next show that our
pricing convention 7 = A,(A), for some strictly positive state price process ¢ € (D1)4+, is
natural and without loss of generality.

Proposition 4. If 7 = A,(A) for some ¢ € (Dy)44, then (7, A) is arbitrage-free. Con-
versely, if © = T (unrestricted security trading) and (w=,A) is arbitrage-free, then there

exists a state-price process ¢ € (Dy)44 such that = = A (A).

PROOF: The first implication is obvious. For the second, let M = {67 : v € T} C D,
and let ¥ : M — R be the linear functional on the “marketed subspace” M defined by
P(67) = y(¢1)-x(£). By the definition of arbitrage-free, 9 is strictly positive. By Stiemke’s
Lemma [Mangasarian (1969)], there exists a strictly positive linear extension ¢ : D; — R
of ¢. Let ¢ € (D1)4++ Iepresent ¥ by d}(&) = 25634(5)5(5)- We will get a contradiction
if, at some 5 € E and for some security j, we have x(9); > [A,(A)](n);. In this case,
let v denote the trading strategy: ¥(§) = 0,9 > & v(mr = 0, h # j; ¥(n); = —1; and
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v(€) = ¥(n), € > 0. This strategy generates dividends —A(n); + 7(n); at node n and A(¢);
at any £ > 5. Thus the initial cost of this strategy is

P(67) = g(m)[-Am); + =(n);] - > ¢(&)AE); = (n);a(n) — g(m)[Ag(2)])(n); > 0.

£

However ¢(67) > 0 is impossible since v(¢1) = 0. |

Within an event tree context, this result is a generalization of the resuit by Harrison and
Kreps (1979) on “equivalent martingale measures.” For related literature in other settings,

we cite Rubinstein (1976) and Ross (1978).

§7. The Modigliar.i-Miller Theory and Incomplete Markets

In order to investigate the financial policy of the firm, as suggesied in Section 1, we
expand the set of decisions of firm j to include a security trading strategy g € T', as well
as a production plan y € Y;. By assumption, the initial endowment of securities to firm j
is zero, or A(¢1) = 0. With a limited Lability restriction, the firm must choose a trading
strategy B generating a positive dividend process AY = pay + 68 > 0. For example, a
firm may wish to finance a large capital investment by borrowing on bond markets, rather
than collecting funds from shareholders via negative dividends. Given the usual assumption
0 € Y;, the limited liability restriction A/ > 0 can always be met by the plan (y, 8) = (0, 0).
For our general purposes, we will not impose limited liability except t6 note that doing so
would not generally affect our results.

Our first task is to show conditions under which the market value of the firm cannot be
affected by changes in its financial policy, Proposition I of the “Modigliani-Miller Theorem”.
We always assume that the firm takes a state price process ¢ and a spot price process p as
given, the “competitive” assumption. Barring arbitrage, the pricing of securities by a state-
price process is guaranteed by Proposition 4. Since markets are not generally complete, the
knowledge that securities will continue to be priced by a given state price process ¢ as the
span of markets changes is important in verifying the following result.

At a superficial level, it is trivial that the initial market value 7(£!); of firm j cannot
be affected by a change in the firm’s security trading strategy. Let ¢ : D; — IR denote the
functional assigning the initial market value [A,,(&)]({ 1) to any financial security § € D;. By
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buying or selling other securities, a firm merely pays ¥(6) in order to add § to its dividend
process, which adds to the market value of the firm before purchase cost by (6), leaving
a net effect on its initial cum dividend share price of zero. [This includes the effects of a
firm’s repurchase of its own shares.] While this is indeed the case, one must also consider
the impact of a change in the dividends generated by firm j on the prices and dividends of
other securities that hold shares in firm j, and the resultant feedback effect on firm j itself
through its holdings of the other securities, and so on. We affirm in the next proposition,
however, that the superficial argument yields the correct conclusion: the firm cannot change
its market value via financial policy.

Let us call a collection ¥ = (7%,...,9*) € T* of k security trading strategies consistent
if I — (&) is non-singular for all non-terminal ¢ € =. Then, given any spot price process p
and state price process g, a collection (6,d,v) = (§7,d7,4%), 1 < j < k, of securities has a
joint dividend process A = § + pod + 67 uniquely defined by (8) and a corresponding price
process ® = A (A) if and only if v is consistent (Lemma 2 ).
Proposition 5. Let p be a spot price process, q be a state price process, and (87,d7,v9),

1< j < k be a collection of securities. If v = (v*,...,7*) is consistent, then

[Ag(A))(E") = [Ag(8 + pd)}(€D).

To re-iterate, this states that the initial market value of a security is no more or less
than the market value of its own primitive dividends, independent of the security dividends
that it collects from and pays to other securities through time via purchases and sales of

securities.

ProoF: We collect all terms of the sum

1y _ 9(5)
[AL(A))(EY) = ; (72O

that involve the primitive dividend a(%) = 6(n)+ (pod)(n) for an arbitrary vertex 7. We re-
label the vertices along the path from (! topasn =9, na=19_, 13 =(9-)~,..., 9n = €.
For notational ease, let 4, = ¥(95), and let T,, denote the term in A(#,) that involves
a(m), 1 < n < N. Without loss of generality, we take ¢ = 1. Then the terms in
[Ag(A))(£Y) that involve a(n) are T3,...,Tn, where, by Lemma 2,

Ty =[(I = v2)" y2 + I]a(n),
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Tn =(I - '/n+1)—1(7n+1 - 7n)(T1 +--t Tn—l)r 2 S n S N~ 1’
Tn=-v(Ty+---+Tn-1),

using y(¢1) = 0. To complete the proof, we may show that Ty + --- + Ty = a(9), but this

follows from the recursion:
In+Tn-a+...+T1
=(I = ~)ITN-1+---+T1)
=(I =)l =) w = wv-1)Tv—z + -+ T+ (I = W) TNz + -+ T1)

= —w-1)Tn-2+---+T1)

=(I = 12)l(I = %2)™*72 + Ila(n) = a(n).

This completes the proof, since 7 is arbitrary. §

The effect of issuing new securities on the market value of the firm is also easily modeled.
Financial policy is value neutral, by our definition, if for any security (6, d, v), any spot price

process p, any state price process ¢, and any financial security 6 € Dy, we have
Y(6 +pod+ 67— 8) + 9(6) = ¥(6 + pod), (10)

where 9 : D; — IR is the initial market value function § — [A,(6)](¢'). Relation (10)
states that the initial market value of the security (6,d,~) after issuing 6, plus the market
value ¥(6) received for the sale of 6, is merely the original value of the security, which is
independent of the security trading strategy v. But relation (10) is perféctly trivial given
Proposition 5, since 9 is linear and (¢1) = 0.

We can summarize our progress on the Modigliani-Miller theory by asserting that
financial policy, including both the issuing and trading of securities, is neutral for the initial
market value of the firm in competitive linear markets, complete or incomplete.

Our second area of concern is the effect of financial policy on the welfare of share-
holders. Based on the model of simultaneous arbitrage—free valuation of interdependent
securities constructed in Section 6, DeMarzo (1986) has subsequently shown that any reg-
ular security trading strategy adopted by firms leaves the agents’ budget feasible consump-

tion sets invariant. Hence, so long as firms trade only the securities already available to
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agents, agents are indifferent to these trades. It is simple, however, to construct exam-
ples in which the utility of any price-taking shareholder is strictly improved by issuing
a new corporate security appropriately tailored to the shareholder’s hedging needs. Let
T € argmax,¢(p,),, %i(z) st 1,!1(pl:l(.z —w')) = 0. That is, T is an optimal choice for §
ignoring the market sban constraint. If the market span constraint is actually binding, then
the constrained optimal choice z* for ¢ is by definition strictly inferior, or u;(z*) < u;{T).
By costlessly issuing the corporate security § = po(Z — w*), a firm strictly improves the
allocation of shareholder ¢, taking prices as given, since ¢ can then finance the consumption
choice T by purchasing one share of § and holding it. This is budget feasible since 9(8) = 0.

Of course, we do not propose that firms issue such a tailor-made security for each
agent. Even taking the equilibrium price p as fixed, the cost of issuing securities is not zero.
We merely make the observation that financial policy does affect shareholders when the
incompleteness of markets is binding, which is generically the case in incomplete markets
equilibria (Proposition B.4 (2)). This also raises the issue of whether the firm, by virtue
of its access to capital markets and ability to market new securities at low cost relative to
individual agents, has a special role to play in adding new span to markets. To quote a well

known textbook of corporate finance,

“Proposition I [The Modigliani-Miller irrelevance principle] is violated when
financial managers find an untapped demand ard satisfy it by issuing something
new and different. The argument between MM and the traditionalists finally boils
down to whether this is difficult or easy. We lean toward MM’ view: finding
unsatisfied clienteles and designing exotic securities to meet their needs is a game

that’s fun to play but hard to win.” [Breley and Myers (1984), p. 372]

Most of our current knowledge of the process of financial innovation is anecdotal [Sandor
(1973), Silber (1983)]. In this paper we have said little about the role of the firm as a

financial innovator beyond the obvious fact that it matters.

§8. A General Existence Theorem

We expand the definition of an economy to a collection

((E’ A)("'i’ wi)s (YJ)’ (oij)a (6h, dh)a @, ﬂ)a
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t € {1,....m}, j€{l,...,n}, b € {n+1,...,k}, where (Z,.4) is an event tree,
((wi,w'),(Y;),(6:;)) is an Arrow-Debreu production economy, © C T' is an admissible se-
curity trading space, and f € O is a vector of trading strategies with #(¢°) = 0. The
definition of an equilibrium ((xi, ), (%), q, p) is as given in Section 5, with the exception
that A = 6 + pod + 6%, when uni;luely defined by (8), is substituted for the total dividend
vector A = 6 + pod throughout.

Theorem 4. Suppose assumptions (U.1)-(U.4) and (P.1)-(P.3) apply. Then, for
generic (w,1,6,d,8) € LT, x T x D'l""' X Lk=m x Dk, there exists an equilibrium for the
economy ((Z, A), (u;,w'), (Y_,-'),(O.-j),(&h,dh),@,ﬂ).

The proof is a straightforward extension of the proof of Theorem 3 and results in
Duffie and Shafer (1985b). Genéric B suffice since I — B(£-) is generically non-singular.
The proof proceeds by first taking the case # = 0, and by using the arguments in Duffie
and Shafer (1985b) that allow the generaliztion from the complete trading strategy space
I' to an admissible subspace ©®. Then the Version of the Modigliani-Miller Theorem in
DeMarzo (1986) allows us to substitute any regular 8 and to adjust agents’ securify trading
strategies to an equilibrium with the same real allocation. We allow perturbations in the
purely financial components (63 ) of securities, since some security (ds, 65 ) may for structural
reasons have dj = 0 (e.g. a nominal bond), and we would not naturally perturb its real

.component.

$9. Proofs of Theorems

A. The Grassmannian Manifold

We review how one can treat the space G, s of n-dimensional subspaces of IR® as a
compact smooth manifold without boundary of dimension n{S —n). For1 < n < S, a
particular subspace L in G, s is induced by a full rank (S — n) x S matrix A according
to L = {y € RS : Ay = 0}. This defines an equivalence relation ~ on the space X of
full rank (S — n) x S matrices by: A ~ B if A and B induce the same subspace. We
can then identify G, s with X/ ~ endowed with the quotient topology. The statement

“A € L”, for a matrix A in X, means A induces I € G, 5. We also take the following

Grassmannian differentiable structure for G, s. Let X denote the set of permutations of
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{1,2,...,S}. For each o in I, let P, denote the S X S permutation matrix corresponding
to 0. Let W? = {L € Gn,5 : 3E € R(S—™"; [I | E)P, € L}. For each.c in I, we define
oh Wy — RE="n by [T 2(D)P, € L.
Lemma .1.  The collection {(W},¢3) : 0 € L} is an atlas for G, s making G, s
a compact C manifold without boundary of dimension n(S — n).
This is Fact 3 of Duffie and Shafer (1985a). We will also have occasion to use the
following fact from Duffie and Shafer (1985b).
Lemma .2. Direct sum from G, s, X Gy s into Gy, 4n 5,45 is smooth.
The following is a trivial consequence of our definitions.
Lemma .3. SupposeV is an S X n matrix with [I | ¢?(L)]P,V =0 for someo € ¥
and L € W?. Then span (V), the span of the columns of V, is a subspace of L. IfV is of
full rank, then span (V)= L.

B. Proof of Theorem 2
We first claim the existence of a smooth value-maximizing supply function for each
firm.
Lemma B.1. Under assumptions (P.1),(P.2), and (P.3), there is a smooth function
y/ : Ly, — L with the properties, for all p € L4,
(1) {¢/(p)} = argmax p-
(2) p- Dy’ (p) =0,
(3) D,y (p) is positive semi-definite, and
(4) T Dpy?(p)p > O for all p € L of the form p = (Agpo, \p1(8), ..., Asp1(S)) # 0 with
X € IRS*! having M\x # A; for some j and k in {0,1,...,S}.
Proor: This is a consequence of Propostions 3.5.3 and 3.5.4 of Mas-Colell (1985), and the

surrounding discussion there. B

Without loss of generality for our proofs, we can treat 7 as the interior of ; £(j)+.
Fixing the functions y(-),...,y™(-) defined by the previous lemma, we define Q : Rx 7 x
Lyy — L™ by Q(a, t,p) = (ay*(p)+1,...,09™ (p)+1"!). For t € T and o € R, let Y* =
oY +{'},1<j < na.

Lemma B.2.
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(1) Q is smooth.

(2) For a > 0,{Q%(a,t,p)} = arg max, gye: P 2.

(3) Fora>0and any t€ 7, p-Q¥(a,1,p) > 0.

PRrROOF: Properties (1) and (3) are obvious. We note that

arg max p~z=(arg max p-z)+{tj}
z€aY¥;4{ti} z€aY;

= . A
o (arginea)ip z> + {t}
This and Lemma B.1 imply property (2). B

Let A = IR*?5! denote the space of assets. The S x n dividend matrix function
corresponding to the supply function Q is the map V : Ly xRXT xA— IR°" defined by
Vip,a,t,0) = V(p,(Q(a,t,p)1,a)). Let P = {(p,t,8,0) € Ly X T X Ax IR :V(p,a,1,0a)
is full rank } . '

Lemma B.3. V is a submersion and P is open in £, X T X A x IR with null
complement.

PROOF: Let V denote the space of S x n matrices of full rank, an open subset of IRS®
with null complement. We note that P = 7-1(17). First, suppose that £(j) = £ for
all j. Then the derivative Dt,aV(p,a,t,a) has the block diagonal Sn x nf matrix form
diag (P(1),...,P(S)), where P(s) is the » x nf matrix diag (p1(s)7,...,p1(s)T). Since
P> 0, Dt,,,V has rank Sn. If £(j) is a general state-complete subspace, the j—th row of
P(s) has some (but not all) of the elements of p,(s)7 replaced by zeros. Thus the rank of
the derivative is Sn in general, implying that V is a submersion. Therefore P is open with

null complement. [

Having the required properties of the supply function @, we turn to the demand fanc-

tions. Let G* : £,y x Ryy — L4 be defined by
Gi(p’ w) = arg [max ’lt,'(:l:) st p-z= w]_
z

Let ¢ : £44 x £, 4 x[0,00) X T — L be the total endowment function for agent i, defined
by ef(w',p,a,1) = W' + Ej 0:;Q%(a,t,p), a smooth function. For any & € {0,...,5}, let
Fi:Liy xGrsxLypy x[0,00)x T — L4, be defined by Fi(p, L,w*,a,1)

= arg [max ui(x) s.t. p- (I - ei(wi’p; a)t)) =0, pn D(x - ei(wi’p’ a’t)) € L]
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We note that F} is smooth on its domain. [Since @ is smooth, the calculations are the
same as for Fact 5 of Duffie and Shafer (1985a).] Let R = {r e RS : 7, > —-1,1 < s < S},
and for any p € £ and any r € R, let (p,7) € L be the vector p' with pj, = p, and
1(8) = (14 7,)p1(8), 1 £ s < S. Let Q = LT, denote the space of endowments. For any
ke {o,..., S},b consider the excess demand function Z; : QX T X IR XLy XRX G5 — L
defined by Zp(w,t,a,p,r, L)
m m
=G'((p,r),14p-Y_0;Q (o, 1,p)) + Y _ Filp, L,w,0,0) = ) €f(w',p, 0, 1).
j

i=2 i=1
Lemma B.4. Consider the conditions:
(4) Zp(w,t,a,p,r,L)=0,
(B) relL,
(C) span(V(p,a,t,a)) C L,
(D) (p,r)-w!=1,and
(E)
n m m :
G'(p, ), (p,7) W+ Y 01;Q (e, 1,0)) + Y Fi(p Lo, 0, 1) = Y €i(w',p,0,1) = 0.
j=1

=2 =1

Then [(A) and (B) and (C) ] < [(B) and (C) and (D) and (E) ].

PROOF: In the case r = 0, this follows from Walras’ Law: p-w! = 1= p-Z}(w,1,a,p,7, L) =
0. H r # 0, we also use the fact that (p,r)-z = p-z whenever p;oz; € L since r € L. The
result then follows from “adding up”. |

Lemma B.5.  For any k, if {(wn,ln,@n,pPn,7n,Ly)} is a sequence converging to
(w,tya,p,7, L) € A x T X Ry X 8(Ly4 X R) X Gy,s with {p,r) # 0, then there exists a

coordinate j such that limsup, Zy(wn,tn,Qn,Pn, T, Ln); = +00.
PROOF: Property P.2 implies that the sequence {3, Q3 (an,tn,pn)} is either bounded
above or unbounded below. This claim therefore follows from Fact 4, part (5), of Duffie
“and Shafer (1985a). B
For each k € {0,...,S} and each o in ,let K* : L., x WE x T x A x R — IR(S=F)n
be defined by K{(p, L,t,a,e) = [I | p&(L)]P:V (p, a,1,0).

Lemma B.6.
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(1) Kk is smooth.

(2) Dt ,KE has rank (S - k)n.

ProOOF: Part (1) follows from the smoothness of the composition of smooth functions. Part
(2) is seen by taking derivatives with respect to #J(s),1 < j < n; and a¥(s), 1< j < na
for 1 < s < S — k. This derivative has the block diagonal form diag (P(1),...,P(S - k)),
where P(s) is given in the proof of Lemma B.3. [

We define a triple (p, 7, L) € L4 X RX Gy s to be a k—pseudo-equilibrium for (w,1,a) €
Qx 7T x Aif r € L* and if there exists a permutation ¢ in L such that K*(p, L,t,a,1) =0
and Zy(w,t,1,p,7,L) =0.

Proposition B.1.  For given (p,7,{,a,w) € L14 X R x T x A x Q, suppose that the
dimension of L = span(V(p,1,t,a)) is k and that (p,r) - w! = 1. Consider the assertions:
(A): (p,r, L) is a k-pseudo—equilibrium for (w,1,a),

(B): there exist (z*,7') € L44 x IR® fori € {1,...,m} such that ((z*,7"), Q(1,1,p),p,7)
is an equilibrium for ((u;,wi),(}’;-‘),(O;j),a), withg = (1,1,...,1) € RS, and
(C): ((p,7),0,L) is a k-psendo-equilibrium for (w,?,a).

Then: |

(1) (A)<=(B), and
(2) if ny = 0 (no production), then (A) & (B) & (C).
PROOF: (A) = (B) : Let z' = G'((p,7),1+p-%;61;Q(1,4,p)) and z* =
Fi(p, L,w',1,1) for 2 < i < m. We will prove conditions (a)-(e) of an equilibrium. By
Lemma B.4, we have spot market clearing, or condition (¢). By Lemma B.2(2), we have mar-
ket value maximization, or condition (b), since g = (1,1,...,1). Since V(p, (Q(1,1,p)1,a)) =
V(p,1,1,a), we know that z* = F,f(p, L,w*,1,1) if and only if there exists v* € IR® such
that (z*,') solves problem (2'). Let ~* be defined in this way for 2 < ¢ < m, and let 9! be
defined by

m
=1-) 9 1<j<m
=2
m
T4k =--Z7;,+k7 1<k < no.
. 1=2 ’

Then conditions (d) and (e) are satisfied. Since L is a linear space, and by spot market
clearing condition (c), we have p; o(z* — e*(w',p,1,1)); € L. Furthermore, since r € L,
we have r - [p1o(z! — e}(w!,p,1,t))1] = 0. Since (p,r) - w! = 1, it follows that z! =
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Fl(p,L,w',1,1). By spot market clearing clearing condition (c), we also know that (z?, 1)
satisfies the budget constraints of problem (2'). Thus (z*, ') solves problem (2'). We then
have condition (a) of an equilibrium.

(B) = (A4): By Lemma A.3, K¥(p, L,1,a,1) =0forsome 0 € £. Let v € R
and X € IR® denote the Lagrange multipliers for initial and terminal wealth, respectively,
for problem (2') of agent number 1 in the given equilibrium, and let r = A\/v. The first
order conditions for problem (2') then imply the result.

Ifn, =0, (A) & (B) & (C): It suffices to show that (4) & (C). [The
notation here will include ¢ purely as a formalism.] By Lemma A.3, we must only show
that, for n, =0,

Zy(w,t,1,p,7,L) =0 & Zp(w,t,1,{p,r,),0,L) = 0. €3]
First, since r € L* implies that span [V (p,1,1,a)] = span [V({p,7),1,1,a)], we have
no(z—w) €span(V(p,a1)) <= (p,7)19(z — ') € span(V(({p, 1), 01)).
Furthermore, since r € Lt and p, o(z — w'); € L, we have
pe(z =)= (pr) (3= ) = = (pro(z - w)y) = 0.
Thus:F,f(p, L,w', 1,1) = F{({p,r), L,w',1,1). Of course
G ({(p. 1) (P} -w') = G ((5,0),(5,0) - ),

where p = (p, r). Thus (x) holds. [

For each k € {0,...,5} we define Z¥ : @ X T x L44 x Grs — L by Z0(w,1,p,L) =
Zy(w,t,1,p,0,L). Let h : R — [0, 1] be smooth and satisfy k(a) = 0,a < 0, and k(a) =
lL,a > 1. We also define Z* : @ x 7T x RX L4y X Gp s — L by Z%(w,t,a,p, L) =
Zn(w,t, h(a),p,0, L).

Lemma B.7. ForZ=2"or7 = Z(';,

(1) Z is smooth and
(2) D1Z = -1I.

PROOF: Since the composition of smooth functions is smooth, part (1) is a consequence
of Lemma B.2(1) and of Facts 4 and 5 of Duffie and Shafer (1985a). Part (2) is a trivial

calculation. |
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For each k € {0,...,S} and each 0 € T, let J¥ = £,, x WF xQ x T x A and
Hio: JJ,‘ — £ x IR(5=F)" be defined by

Hio(p, L,w,t,0) = (Z§(w,1,p, L), KX(p, L,1, 6,1)).
Let H*:J* x R — L x IR(S‘")"‘be defined by
H(p, L,w,t,0,0) = (2*(,1,p, L, @), K*(p, L, 1, 0, h(a))).
Finally, for each agent i € {2,...,m}, let Hi :Jf — L x B(Sf")" x IR°—* be defined by

H}id(p’L’w)t’a) =

J

(Hko'(]” vavt) a)’ [Ilsolg'(L)]PO’plm G'(php . wi +p- ZO'JQJ(17t?p))1 - UJ;]) °
For each k € {0,...,S} and 1 € {2,...,m}, let

& ={(p,L,w,1,8) € L4y XGrs xAxT x A: 30 € £: Hyolp, L,w,t,a) =0}
& ={(p,L,w,1,a) €Ly X Gr s xAXT x A:30 € T : Hi (p,L,w,t,a) =0}
&= {(p,L,w,t,a,a) € £++ X Gn,S xOxTx.Ax R:30 € Ztﬂ*(p,L,w,‘t’a,a) =0},

Lemma B.8. For any k € {0,...,5S} and i € {2,...,m}, the sets £, £} and £* are

smooth boundaryless manifolds, with

dim & =(S — k)(k —n) + D
dimé& =(S —k)}k-n—-1)+D

dim £ =D +1,

where D = dim (2 x T x A).
Proor: Taking £, first, we begin by showing that O is a regular value of H;,. We have
D,ZP D2} )

D nHie =
(wt,t)dk ( 0 D.K*

The rank of DH,, is thus at least £(S + 1) + (S — k¥)n by Lemmas B.6 and B.7. But this
is the dimension of the range manifold £ x IR(S=F)» By the preimage theorem, H Py 01(0) is
therefore a submanifold of J* of dimension [(S+1)¢+(S = k)k+ D}~ [(S+1)¢+(S—k)n] =
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(S — k)(k - ») + D. By definition, H; }(0) = J} N &. Since {W} : o € T} is an open cover
of G s, we have shown that & is a subm‘anifold of the stated dimension.
The calculations for £* are almost the same. For £}, the result follows from the same

arguments once we have shown that

rank (Dwf[flso’é(L)]Papx o [G‘(p,p Wi p Y 05Q0(1, 1)) - w'i] ) =S5-k

J

Without loss of generality, we take o = id, the identity permutation. Let E = ¢¥,(L), and
for any s € {1,...,S — k}, let p, : L4+ — IR be defined by

s
pa(wi) = pl(s) : [Gi(% w(wi)) - wi]l(s) + Z E.shpl(h) * [Gi(p’ w(wi)) - will(h)’
h=S—k+1

 where w(w') =p-w'+p- 2 0;;Q7(1,1,p)). We must show that rank(A4) = S — k, where
A = Dgi(p1(w?),.-., ps—k(w)). We have

D,ips(w') = Bipg
ij(h)ﬂd(wi) = Bapl(h)T7 h # s,
Dw:(a)ps(wi) = (B‘ - l)pl(s)T’

where.

S
B, = pi(s) Dy [Gi(p, w(w ()] + Y Eunpi(s)T Du[G(p, w(w)a(R)].
h=5—k+1

It follows that l
Blpg- (Bl - l)pl(l)T e Blpl(s)T ca Blpl(S - k)T ’ f

A=1| B,p] B,py(1)T cee (Bo=Dpi(8)7T ... B,pi(S - k)T

Bs_ipd  Bs—ip()T ... Bsapi(9)T ... (Bs—k = Dp(S—k)T
Since p > 0, rank(A) = S — k if and only if rank (B) = S — k, where
B, B-1 ... B ... By

Bg_, Bs_p ... Bs_p ... Bs_p-—1 (5—k)X(S—k+1)

It is easy to check that the rows of B are linearly independent. B
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Lemma B.9.  Each of the projection maps 7 : & — QxT XA, 7r;; : 8,:' — OxT xA,
and 7, : E* - U X T x A x IR is smooth and proper. .

PROOF: Projection is a smooth operation. For properness of =,, let X be a compact
subset of @ x 7 x A X IR, and let {(pa, Ln,wWn,%n,8,,@x,)} be a sequence in 77 1(X). Since
G, s and X are compact, {(L,,wn,t,,a,,05)} has a subsequence converging to a point
(L,w,t,a,a) € W? x X for some o € X. Since p, -wl = 1 for all n and since {wl} is
bounded, {p,} is bounded with a non-zero cluster point p € £, UDL, 4. But p ¢ 8L,
by Lemma B.5. Since H} is continuous, (p,L,w,t,a,a) € £*. Thus 771(X) is a compact
subset of £*. The same arguments show properness of z; and 1r,';. |

We take note of the following fact, which can be found in Hirsch (1976). Let f: X — Y
denote a smooth proper map between smooth boundaryless manifolds X and Y of the same
dimension, with Y connected. Then the number of points in the inverse image of a regular
value'y € Y, modulo 2, is in_dependent of y. This invariant, the mod 2 degree of f, is either
zero or one, and denoted deg,f. If the mod 2 degree of f is one, then the inverse image of
every point y in Y is not empty, for if f~1(y) is empty, then y is a regular value, and # f~(y)
is odd. By the previous results, 7, and x, are maps satisfying these conditions. In order to
demonstrate the existence of n—pseudo—equilibria for every economy (w,?,e) € @ x 7 x A,

we thus need only to show that deg,m, = 1.

Proposition B.2. deg,m, = deg,m, = 1.

ProOF: We first show that deg,7, = 1. To do this, we will find some (@,7,3,@) € 2 x T x
A x IR with a unique n-pseudo-equilibrium of the form (p,0, L), such that (@,1,7,@) is a
regular value of 7. This establishes #7,}(w,?,a,@) = 1 and therefore deg,7, = 1. Let
@ = 0 and choose p € £44 and (1,8) € T x A so that the last n rows of V(p, (11,d)) are
linearly independent. For all i,let o' = G'(p,1+p- >; 0=ij) i O,ij By choosing t
sufficiently small, we have @' € L4y for all i. We also have p-@T* = 1 by stnct monotoncity
of u;. For all ¢, let T* = G'(p,1 + >0 - t’) It follows that ((z), (1’ ),p) is a complete
markets contingent commodity market equilibrium for the economy ((u;,@*), (}’;"“), (0:;)).
Let L be the unique element of G, s spanned by the columns of V(p,(%;,@)). Since the
last » rows of V(P,(11,a)) are linearly independent, there is an (S — n) X » matrix E
such that [I | E] induces L and such that [I | E]JV(p,(1;,@)) = 0. This implies that
LeWwp. Since ' —w' — Zj G,ﬂj =0, it follows that T* = F:(3, L,@"*,1,1) for all i. Thus
(9,0, L) is an n—-pseudo-equilibrium for (,7,@,@). Since p}o(z* — ¢!(@*, ', 1,7)), € L' for
all (', L") € L44 X Gy s, it follows that T* is budget feasible for all (5',0, L’). Then, by
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Pareto optimality and the fact that G is unconstrained by the subspace L, (7,0, L) is the
unique n—pseudo-equilibrium with r = 0 for (w, 1, @, @).

It remains to show that (@,1,@, @) is a regular value of #,, which follows if
rank (D )\ Hiy(P, L,@,1,8,@)) = (S + 1) + (5 — n)n.
For notational convenience, we write E = ¢Z(L) for L € W}, and define:
Z(p,B,7) = Z*(p,(¢l)"(E), @, 1, @)
F(p’ E) = K?d(p’ (Soyd)—l(E)’i’Eaa)
H(p, E,%) = (Z(p, E,?), K(p, E))-

Since (¢2;, WD) is a chart on Gy, s, it suffices to show that D, g H(p, E,1) has rank (S +
1)¢ + (S — n)n. We have

DP—Z_(ﬁa -E-y i) DE—Z—(E —E_s i)

D,K(F) DsE(,E) |

Dp,EF(]—” Eai) =

We have shown that Fi(,L',w*,1,1)) = %* for all L' € Gy,,5. Thus DgZ(p, E,1) = 0. We
thus finish the proof of deg,7, = 1 by showing that Dg K (5, E) has rank (S — n)n and that
D,Z(P, E,1) has rank (S + 1)L

DpK (P, E)has rank (S - n)n : Let Vo denote the n X n matrix consisting of the last
n rows of V(,(11,@)). The derivative of K(p, E) with respect to any row vector of E,
evaluated at (7, E), is V. Thus DgK(p, E) can be given the (S — »)n x (S — n)n matrix
form diag (Vs, Va,...,Vs). Since rank (V2) = n, we have rank (Dg K (5, E)) = (S — n)n.

D,Z(P, E,1) has rank (S + 1)¢ : We must show that D,Z(p, E,1) is nonsingular. By
the continuity of this derivative in 7, and since 7 can be chosen arbitrarily small, it suf-
fices to show that D,,?(g‘a, E,0) is nonsingular. But this is the pure exchange case, and
nonsingularity is demonstrated in the proof of Theorem 1 of Duffie and Shafer (1985a).

We have demonstrated that deg,m, = 1. We finish by showing that =, and =, have the
same mod 2 degree. Their respective regular values form open sets with null complements
by Sard’s Theorem. Thus there exists some regular value (w,t,a,a) of 7, with @ > 1 such
that (w,1,a) is a regular value for x,. Since k(a) = 1 for a > 1, we have #r; (w,t,a) =

#r7 (w,t,0,0). §

For any (w,?,a) € @ x T x A, let E*(w,t,a) denote the set of k—pseudo—equilibria
(p,r, L) with rank (V(p,1,1,a)) = k, and let E¥(w,1,¢) = {(p,r, L) € E*(w,t,a) : r = 0}.
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Proposition B.3.  There is an open subset ! of F = Q2 x T x.A whose complement
is null having the property: For each (w,1,@) € F* there is an integer T > 1, a neighborhood
U C F* of (w,1,a), and smooth functions py : U — L,y and Ly : U — G, 5,1 <k < T,
such that, for all (w,t,a) € U, E}(w,1,a) = {(px(w,1,a),0, Ly(w,t,a)), 1 <k < T}
PrROOF: Let F denote the set of regular values of 7,. By Sard’s Theorem and the proper-
ness of r,, we know F is open with null complement. By the “Stack of Records Theorem”
[Guillemin and Pollack (1974)] and Proposition B.2, for each (w,?,@) in F, there is a neigh-
borhood U of (@,7,@) in F, an integer T > 1, and smooth functions 5, : U — £, and
Ly _TT — Gn,5,1 <k <T, such that, for all (w,?,a) in U:

() 77w, t,a) = {(Fr(w,1,8), L (w,t,8),w, 1,a),1 <k < T}, and
(i) for each k, there is a o* € ¥ such that Li(w,?,a) € W,as.

The proof is completed in almost the same manner as the proof of Theorem 2 in
Duffie and Shafer (1985a), so we only sketch out the remaining arguments. First, noting
that H,.x(Pp(w,t,a), Ix(w,1,8),w,,a) = 0 on U, we can differentiate with respect to w
and (Z,a) only, to see with the aid of Lemma B.8 that D, ¢ 0)p(w,1,a) is of full rank on
U. It follows that ¥ : U — Ly X T x A defined by ¥(w,t,a) = (5;(w,?,8),t,a) is a
submersion, 1 < k <T. By Lemma B.3,‘\Ilk'1(1’)' is open in U with null complement. Let
U= N<ker \I',:l(’P), and let p; and L; denote the restrictions of p, and L to U. By a

standard local to global argument, the set F! is constructed with the properties claimed.

We say the market subspace constraint is binding for agent i at ((w,t,a),p,r,L) €

FxLiy xRxGrysif

U Gi(p’p : wi +p- Zeiij(l,t,P)) > U (FI:(P> L,w" ]’t))) ’
. Jj ’

meaning that utility is strictly lowered when : is forced to keep the vector of spot values of

net exchange in the sub-space L.

Proposition B.4. There is an open subset 2 of F whose complement is null such
that, for all (w,t,a) € F2:

(1) E*(w,t,a) is not empty, and

(2) for all (p,r,L) € E*(w,1,a), the market subspace constraint is binding for all except

possibly one agent.
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PROOF: We showed in the previous proposition that E"(w,,a) is not empty for all (w,1,a) €
F. For each ¢ € {2,...,m} let F} denote the set of regular values of =!. For each
(w,1,a) € Fi, Lemma B.8 tells us that dim (7{)~*(w,1,8) < 0, implying that (% )~1(w,1,a)
is empty. Let F1(1) = (;5, F+. By construction of Hj_, each agent i > 2 finds the sub-
space constraint binding at any n-pseudo—equilibrium (p,0, L) for any (w,t,a) € F1(1). By
relabeling, we can let F(¢) denote the similarly constructed set for ¢ taking the place of
agent 1. Let F! = (\;5, F'(i). Finally, let 2 = F*(\F}, an open subset of F whose
complement is null. For any (w,t,a) € 2 and any (p,r,L) € E™(w,1,a), suppose there
are two agents, say 1 and 2, neither of whom find the market subspace constraint binding.
Then

G'p,1+p- Y 05;Q5(1,1,0) = G'((p, ), 1+p- ) 6:;Q7(1,1,p)),
; ;

implying that » = 0. But then (p, L,w,t,a) € (z2)"}(w,t,a), which contradicts the fact
that (x%)~1(w,1,a) is empty for all (w,t,a) € F} Cc F2. |

Lemma B.10. Suppose (p,r, L) is a k—pseudo—equilibrium for some (w,1,a) at which
some agent ¢ finds the market subspace constraint binding. Then the corresponding alloca-

tion is not Pareto optimal.

PRrROOF: This can be checked by comparing the first order conditions for the agents problems
with the first order conditions for Pareto optimality. [

Lemma B.11. Suppose (,1, @) is a regular value of v, and (3, L, w, 1,a) € =7 1(@,1,q).

Then there exists a ball B C IRS~™ and a one-to-one immersion ¢ : B — £, X R X Gn,s
such that, for all z € B, ¢(z) is an n~pseudo—equilibrium for (@,1,@).
ProoF: The hypotheses imply that (p, L) is, for some ¢ € I, a regular point of the function
Hool-,,@,1,8), or in other words, that D, 1 Hyo (P, L, ,1,a) has full rank. Let ¢ : G, s —
Gs_n,s be the diffeomorphism defined by (L) = L+, Let (W,r,0,1) be a chart on Gs_n,s
containing I* and (Ws,¢s) be a chart on Gy s containing L. For L € W, ¢~ Y(W,.),

relt <= [lea (WD) Por =0. (11)

Without loss of generality, suppose ¢’ = id. Then (11) is equivalent to r = (—@,(¢¥(L))rz, 72)
for any ro € RS, Let H : L14 X R X Gy,5 — £ x R~ be defined by

H(p’ T’L) = (Zn(w,i,l’p, T’L)’K:(p’ L’i7a_) 1))'

Let f: Lyy X Gp s x RS™™ — L x IRGS=™)" be defined in a sufficiently small neighborhood
of (,L,0) by f(p,L,r2) = H(p,(~¢o © $(L))r2,72), L). Any solution (p,L,72) to the
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equation f(p,L,r2) = O corresponds to an n-psendo equilibrium for (w,7,@). One can

readily verify that
D(p,L)f(ﬁ, f, 0) = D(’,,L)H(ﬁ, O,I) = D(p’L)H,w(ﬁ, f, w,1, a).

Earlier calculations show this derivative to be full rank, so by the Implicit Function Theorem
there exists a neighborhood A/ C IRS—" of zero and smooth functions 5 : N — Ly
and L : N — G,,s such that F(B(r2), L(r2),r2) = 0 for all , € N. Thus the function
¢: N = Ly x R’ x G, 5 defined by

¢ (r2) = (F(r2), (~¢a 0 P(I(r2)), 12), L(r2))-

is an appropriate one-to-one smooth immersion. [

Lemma B.12. Suppose n; > 1 (production). Let (p,r, L) and (p',r', L') be distinct k~
pseudo-equilibria for a given (w,1,a) € F, with rank (V(p,1,1,a)) = rank (V(p', 1,1, a)) =

k. Then the corresponding pseudo-equilibrium consumption allocations are distinct.

Proor:
Case 1: (p=17p'). If p=p' then L = L', sor # r', and therefore

Gl((])a T), 1 + p- Z Glej(l,l,p)) '7'é Gl((p’a T')al + pl ‘ Zolej(lv t,p')). (12)

Case 2: (p # p'). If (12) is not true, then (p,r) = v(p’,r') for some v € (0,00).
But {p,7) -w! = (p',r')-w! = 1 implies that » = 1. Thus p and p' are not colinear, and for

some state s, we know r, # r,. It follows that

Dok 2oy
vV hedl,... 1}
P1(8)n # p'l(é)h { }

Since @ = 3. Q’(1,1, p) solves the problem max{p-y:y € > Yj‘}, it follows from the
first order conditions for this problem that Q # Q' = ZJ-’ @i(1,t,p'). The consumption
allocations for (p,r, L) and (p',', L') are thus distinct. |}

We complete the proof of Theorem 2 merely by collecting our results. We take the
generic set E referred to in the statement of Theorem 2 to be the set F2 of Proposition
B.4. Part (1) of Theorem 2 is then a consequence of Proposition B.4 (1). Part (2) follows
from the fact that, for n > S, all pseudo—equilibria for (w,?,a) € F2 have complete markets
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(L = IRS), and therefore r = 0. We can then apply Proposition B.3. For part ‘(3), we
use the last part of Proposition B.1 as well as Proposition B.3. Part (4) follows from
Lemmas B.11 and B..l2. (The homeomorphism is constructed as the composition of the 1-1
immersion ¢ of Lemma B.11 and the 1-1 map between pseudo-equilibria and allocations
of Lemma B.12.) Part (5) follows from complete markets and the usual proof of Pareto
optimality with production. Part (6) follows from Lemma B.10 and Proposition B.4 (2).
The amended property (7), defined in Section 4, is proved as a corollary to Proposition 2,

using Proposition B.4 (2) again.

C. Proof of Theorem 3

We shall be extremely brief, as the main ideas are contained in Part B and in Duffie
and Shafer (1985b). First we fix the state price process § € (D;)44 to be § = 1. The
calculations are only slightly more complicated for arbitrary § € (D;)44. This leaves each

firm with the usual problem faced in a static Arrow-Debreu economy.
Let = = {n*,...,7"} denote the subset of H non-terminal vertices, those 5 € E with

v(n) = outdegree(n) > 0. For any a € D; and any 5 € g, let

a(n4) = (a(n41),- .-, 8(N4u(n))) € R,

Let IT : D; — IR¥-! be defined by II(a) = (a(ni),...,a(nf ) . We can assume without

loss of generality that Z is ordered so that, for some H < H ,
v(in) >k, VpeE ={r,...,n"}.

We let G* = Gio1) X -+ X Gryny and k = S5 min{v(y*), k}. Finally, we define
B:G* — Gypu_1 by '

B(Ly,...,Ly) =1 [Aq:l (R@Ll@...@[m@IRV(HH)@...@IRu(ﬁ))],

where P denotes direct sum and Aqil is the inverse image map corresponding to Az. This
construction is justified by the following intermediate result. Let x(7, ) denote the v(9) x k
matrix whose s-th row is w(74,).

Lemma C;l Let p € £;|.+ and ¢ = Q’(1,1,p),1 < j < n. Then g’ solves the

market value maximization problem (7) for Y. If =(n,) is full rank for each 1 € = then
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there exists ¥ € T such that (z,v) is an optimal plan for agent s if and only if

z = Fi(p, B[span(x(n})), - - -, span(x(n}))], &*, 1,1).

PrOOF: The first claim of this lemma follows ftom Lemma B.1. The second claim follows
from the proof of Lemma 1 of Duffie and Shafer (1985b). [}

Let {(W2,0%) : ¢ € ,(s)} denote the atlas for Gy ,() constructed in Appendix A,
1< h<H.Foreachh €{1,...,H}and g € I, (1), let K. C++x£:_+x£"‘"xR+xW: —
RM=kk pe defined by K2(p,t,dny, ..., di, 0, L) = [I | @*(L)]|P,m(n"), where

T = Aq_ (pDQj(O"i;p))’ 1 S.’ S n,
= Ag(8j +pod;), n+1<j <k
Let £ = E,(1) X -+ - X By(%), and for each o = (01,...,0n1) € T, let Wo = W} x-.-x WK .
For each 0 € L, let
Ho:Lpp X Wo x L0 x Ry x L5 x Q@ = £ x (REW=0F ... x RE(D-R)

be defined by

Ho(p,L1,..., Ly, t 0, dngs, ..., dx,w) = (Ha, Hp),
where
Hp = Z"w,t,a,p, B(L,...,Ly)]
and

Hp = (KL (p,t,dny1,-. dk @, L1),..., KX (p, 1, dny1, ..., di, @, Ly)),

with Z* defined as in Part B.

Proposition C.1.  For (p,L) € Lyy x Wy, if Ho(p,L,1,1,dnys,...,ds,w) = 0
and w(n4) Is of full rank for all 9 € E, then there> exists (z*,7%),1 < i < m, such that
{(z*,7"),(Q%(1,1,p)), 7, p) is an equilibrium for ((E,A),(u.-,w‘),(Yj‘),(e,-j),(éh,dh)).
PROOF: By Lemma A.3., the hypotheses imply that span (x(q%)) = L,, 1 < h < H. Let

o' = Ff (p,B(Ly,...,Ly)w',1,1), 1<i<m.
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By Lemma B.4 and linearity, 3, z° — ' = > Q7(1,1,p). By Lemma C.1, there exists
v* € T such that (z*,7) is an optimal plan for agent ¢, 2 < i < m. Let 4! € T be defined
for each £ € =’ by

HE=1-Y 7, 1<j<n,

1=2
m
=-Y 1@, n+1<j<k
=2
Then by lincarity and spot market clearing (z',4') is an optimal plan for agent 1. By

construction, markets clear. By Lemma B.2, firms solve the market value maximization
problem (7). §

Let £ = {(p, L,w,t,a,dny1,...,di) € L34 X G* x A x L3, x Rx LF™:
H,(p,L,t,a,dp41,...,dx,w) =0 for all ¢ € ¥ such that L € W,}
andlet K : £ = QX L}, X R X L*¥~" be the projection map defined by

k(p, Lyw,t,a,dpy1,...,dr) = (w,t,a,dpy1,...,di).

Lemma C.2.
(1) € is a smooth boundaryless manifold of dimension (m + k)H{ + 1,
(2) & is smooth and proper, and

(3) & has a regular value whose inverse image is a singleton.

PROOF: Since Z* and Kf,‘h are smooth, and by Lemma A.2, we know that H, is smooth.
To see that 0 is a regular value of H,,let b= (dn4q,...,di) € L£¥=* and note that

rank (D1 ¢4y Ho) = rank (diag [Dy1 2%, Dy iy K3, .. -, D(t,b)KZ{H]) .

It is easy to check that each of the diagonal blocks has maximal rank, and thus that
Dy1¢,5yHo has rank HZ+Z?=1(u(h)-— k)k. By the preimage theorem, H;1(0) is a2 smooth
submanifold of dimension (m + k)H{ + 1. Since {W, : ¢ € X} is an open cover of G*,
it follows that £ is a smooth manifold of the same dimension. The projection map « is
* of course smooth, and is proper by a proof almost identical to that of Lemma B.10. The
construction of a regular value of k with a unique inverse image point is by analogy with
the proofs of Proposition B.2 and Proposition 3 of Duffie and Shafer (1985b). [
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The proof of Theorem 3 is completed by direct analogy with the prooifs of Proposition
B.3 and B.4. That is, by the last lemma and the degree invariance result used in the proof
of Proposition B.3, every point in the range space of ¥ has a non-empty inverse image,
on which H, = 0 for some ¢ € X. By Proposition C.1, if H,(p, L,1,1,dn41,...,dx) = 0
and x(n4) is of full rank for all 9 € Z, we are done. But w(ny) is of full rank for generic
(w,1,d) by Sard’s Theorem and “perturbation” calculations analagous to those in the proof

- of Proposition B.4. [See also the proof of Theorem 1, Duffie and Shafer (1985b).]
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