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Abstract

Models of labor markets, money, and over-the-counter financial markets are often based

on continuous-time search by a continuum of agents. This paper presents a general for-

mulation of continuous-time random matching and its properties, which provide the first

supporting mathematical foundations for these search-based models. We allow matching

intensities to be directed by types and to depend on the current cross-sectional type distri-

bution, covering a wide range of existing applications. The agents’ types form a continuum

of independent continuous-time Markov chains. Agent-level type changes can be caused by

random mutation, random matching, and random break-up. We show that the exact law of

large numbers applies, and thus that the cross-sectional distribution of agent types evolves

deterministically, according to an explicit ordinary differential equation. We also provide

conditions for a stationary cross-sectional distribution of agents’ types.
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1 Introduction

Because of its tractability, continuous-time independent random matching among a continuum

of agents is a popular modeling framework for a wide variety of applications in economics.1

This literature commonly assumes that agents search continuously over time for trad-

ing partners, independently of each other. The intensity with which an agent of a given type

contacts counterparties of another given type can be specified or determined endogenously.

The origins of this general approach can be traced to monetary and labor-market models of

the 1970s.2 This approach was subsequently applied to models of over-the-counter financial

markets, general macroeconomics, and other areas of economics. Throughout, the research lit-

erature has exploited the intuitive idea that independence should, by the law of large numbers,

lead to a deterministic cross-sectional (population) distribution of agent types. While this is

a natural approach, none of this literature has shown the existence and required properties of

the underlying continuous-time dynamic matching models. This paper provides the first math-

ematical foundations for this general modeling approach and for the associated deterministic

aggregate behavior. In particular, we prove the existence of continuous-time random search

models among a continuum of agents for the first time, demonstrate key properties that have

commonly been relied upon in the literature, and show new properties that link individual-level

behavior in these models to population-level behavior.

Our basic model, to be formalized later, begins with an atomless measure space of agents

and a finite set of agent types. We construct a joint agent-probability space on which the

agents’ type processes form a continuum of independent continuous-time Markov chains, re-

specting properties derived structurally from random type mutation over time, pair-wise ran-

dom matching between agents, and random match-induced type changes. Using the exact law

of large numbers, we show that the cross-sectional distribution pt of agents’ types at time t is

deterministic and satisfies an explicit ordinary differential equation. We also show that there

is an initializing cross-sectional distribution of types for which the population’s cross-sectional

1See, for example, Diamond (1993), Diamond and Yellin (1990), Hellwig (1976), Rupert, Schindler, and
Wright (2001), Shi (1996), Shi (1997), Trejos and Wright (1995) and Zhou (1997) in monetary theory; Ace-
moglu and Shimer (1999), Battalio, Samuelson and Huyck (2001), Flinn (2006), Hosios (1990), Kiyotaki and
Lagos (2007), Mortensen (1982), Moscarini (2005), Mortensen and Pissarides (1994), Postel-Vinay and Robin
(2002), Rogerson, Shimer and Wright (2005), Shi and Wen (1999), and Shimer (2005) in labor economics; Duffie,
Gârleanu, and Pedersen (2005), Hugonnier, Lester and Weill (2018), Lagos and Rocheteau (2009), Lester, Ro-
cheteau and Weill (2015), Üslü (2019), Vayanos and Wang (2007), Weill (2008) in over-the-counter financial
markets; Benäım and Weibull (2003), Currarini, Jackson and Pin (2009), and Hofbauera and Sandholmb (2007)
in game theory; and Amador and Weill (2012), Börgers and Sarin (1997), Hopkins (1999), and Duffie, Malamud
and Manso (2009) in social learning theory. The same sort of “ansatz” is also applied without mathematical
foundations in the natural sciences, including genetics and biological molecular dynamics, as explained by Bomze
(1983), Eigen (1971), and Schuster and Sigmund (1983).

2See, for example, Hellwig (1976) and Mortensen (1978).
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type distribution pt is constant over time.

A key primitive of the model is the matching intensity function θ, which specifies the

conditional mean rate θkl(pt) at which an individual agent of current type k at time t is matched

to some agent of type l. This matching intensity is allowed to depend on the cross-sectional

distribution pt of agents’ types, subject to minor technical conditions. This accommodates the

“matching-function” approach that is popular in labor economics.3 A second key primitive is

the probability distribution ςkl of the new type of a type-k agent that is induced by a match

with a type-l agent. Finally, ηkl ∈ [0,∞) is a primitive specifying the intensity with which any

type-k agent mutates on its own to type l. Mutation allows for random changes over time in

an agent’s preferences or productivity, among other type properties.

In many practical applications, for example in labor markets, once two agents are

matched they may form a long-term relationship rather than immediately break up. For in-

stance, when a worker and a firm meet, they may form a job match. At this point, the worker

might stop or slow down searching for new jobs until he or she becomes unemployed again.

This is a key aspect of the standard Diamond-Mortensen-Pissarides (DMP) model, as discussed

by Diamond (1982). We incorporate enduring forms of matches in Appendix A.4

Appendix B provides illustrative applications, drawing from Diamond (1982) for the

standard DMP model in labor economics and from Duffie, Gârleanu, and Pedersen (2005) for a

typical model of over-the-counter financial markets. Like all earlier works on continuous-time

search, these two papers describe the matching ideas and relevant results intuitively without

showing the existence and properties of the underlying dynamic matching model. Our two

illustrative applications are intended to show how easily our general models can provide the

micro foundations for continuous-time search in various settings with or without enduring

partnerships.

Proofs of the results on the exact law of large numbers and stationarity for a general

continuous-time random matching model, as stated in Propositions A.1 and A.2, are given in

Appendix C. In Appendix D, we briefly explain ideas of the proofs of our existence results in

Theorems 2.1 and A.1. Given their complexity, detailed proofs of Theorems 2.1 and A.1 are

provided in an on-line-only supplement, Duffie, Qiao and Sun (2020).

3For a survey, see Petrongolo and Pissarides (2001).
4To this end, for any pair (k, l) of agent types, we introduce the probability ξkl that an enduring partnership

is formed at the time of a match. If formed, this partnership ends at a time with arrival intensity ϑkl.
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2 The Basic Model and Results

The set of agents is specified by an atomless measure space (I, I, λ). Without loss of generality,

the total mass λ(I) of agents is 1. The set of states of the world is given by a probability space5

(Ω,F , P ). A key modeling concern is that for any continuum of random variables, independence

and joint measurability with respect to the usual product space (I × Ω, I ⊗ F , λ ⊗ P ) are in

general not compatible. For applications such as ours, one can work instead with a Fubini

extension (I × Ω, I � F , λ � P ), which extends the usual product probability space while

retaining the Fubini property, allowing a change in the order of iterated integrals.6

Let S = {1, 2, . . . ,K} be a finite set of agent types and ∆ be the set of probability

measures on S (which can be viewed as the simplex in the Euclidean space RK). The time

domain R+ is the set of non-negative real numbers with its Borel σ-algebra B. The parameters

of the model are the initial cross-sectional distribution p0 ∈ ∆ of agents’ types and, for any k

and l in S:

(i) A mutation intensity ηkl ∈ [0,∞) for k 6= l specifying the intensity at which any type-k

agent mutates to type l.

(ii) A continuous matching intensity function θkl : ∆ → R+ specifying the intensity θkl(p)

with which any type-k agent is matched to some agent of type l, whenever the current

cross-sectional agent type distribution is p ∈ ∆. This function satisfies the mass-balancing

requirement pkθkl(p) = plθlk(p) that the total aggregate rate of matches of type-k agents

to type l agents is of course equal to the aggregate rate of matches of type-l agents to

type-k agents. We also require Lipschitz continuity7 for the mapping pkθkl(p) from ∆ to

R, for each k and l in S.

5We follow the convention that a probability space or other measure space such as (I, I, λ) or (Ω,F , P ) is
countably additive.

6See Doob (1937, 1953), Judd (1985) and Uhlig (1996) on the measurability issue associated with a continuum
of independent random variables. We apply a resolution of this issue that is based on the Fubini extension in
Section 2 of Sun (2006). A probability space (I×Ω,W, Q) extending the usual product space (I×Ω, I⊗F , λ⊗P )
is said to be a Fubini extension of (I×Ω, I⊗F , λ⊗P ) if for any real-valued Q-integrable function g on (I×Ω,W),
the functions gi = g(i, · ) and gω = g( · , ω) are integrable respectively on (Ω,F , P ) for λ-almost all i ∈ I and on
(I, I, λ) for P -almost all ω ∈ Ω; and if, moreover,

∫
Ω
gi dP and

∫
I
gω dλ are integrable, respectively, on (I, I, λ)

and on (Ω,F , P ), with
∫
I×Ω

g dQ =
∫
I

(∫
Ω
gi dP

)
dλ =

∫
Ω

(∫
I
gω dλ

)
dP . To reflect the fact that the probability

space (I × Ω,W, Q) has (I, I, λ) and (Ω,F , P ) as its marginal spaces, as required by the Fubini property, this
space is denoted by (I × Ω, I � F , λ� P ).

7A mapping ψ from a subset X of an Euclidean space to another Euclidean space is said to be Lipschitz
continuous if there is a positive real number C such that for any x, x′ ∈ X, ‖ψ(x)−ψ(x′)‖ ≤ C‖x−x′‖, where ‖·‖
is the usual Euclidean norm. This Lipschitz continuity condition on pkθkl(p) (which is weaker than the Lipschitz
continuity of θkl) accommodates the general labor-market matching functions used in the standard DMP model.
For this, see Subsection B.1 below. The Lipschitz continuity of pkθkl(p) leads to a Lipschitz condition on the
ordinary differential equation in Equation (2.2), which guarantees the uniqueness of the solution of the ordinary
differential equation with a given initial condition; see Footnote 9 below.

4



(iii) A probability distribution ςkl ∈ ∆ of the new type of a type-k agent that is induced by

a match with a type-l agent. For expositional simplicity, we denote ςkl ({r}) as ςklr or

ςkl (r).

The main solution objects of our model are, for any agent i, state ω, and time t, the

agent’s type α(i, ω, t) and the agent’s last partner ϕ(i, ω, t). As a matter of definition, if by

time t agent i has never been matched, then ϕ(i, ω, t) = i. Thus, ϕ(i, ω, 0) = i. These solution

objects form functions α : I × Ω× R+ → S and ϕ : I × Ω× R+ → I.

For agent i, we let α(i) denote her type process and let α(i, t) denote her type at time

t. Our objective is to model all agents’ type processes, as well as the random mutation,

random matching, and matched-induced type changes, in a manner consistent with the given

parameters.

Because the counting processes for the cumulative number of mutations and matches of

any agent i have an intensity, all of α(i, t) and ϕ(i, t) are piece-wise constant in t. Without

loss of generality, we can therefore take these processes to be right-continuous with left-limits

(RCLL).8

Let Nikl be the counting process for the number of matches by agent i, when of type k,

to an agent of type l, and let Ni =
∑

k,l∈S Nikl be the counting process for the total number of

matches by agent i. That is, Ni(t) is the cumulative number of matches by agent i up to time

t. The n-th matching time dni of agent i is thus sup{t ∈ R+ : Ni(t) < n}. At a finite matching

time dni , agent i is by definition matched to agent ϕ(i, dni ). Let Θkl(t) be the cumulative total

quantity of matches of agents of any given type k with agents of another given type l by time

t. That is, Θkl(ω, t) =
∫
I Nikl(ω, t) dλ(i).

Next, we define a mapping R from ∆ to the space of K ×K matrices by

Rkr(p) = ηkr +
K∑
l=1

θkl(p)ςklr for k 6= r, and Rkk(p) = −
∑
l 6=k

Rkl(p). (2.1)

For a type-k agent and at a given cross-sectional distribution p of agent types, Rkr(p) can

be viewed as the intensity of transition to a type r 6= k that stems from both mutation and

match-induced type changing.

8That is, for P -almost all ω ∈ Ω and any t ∈ R+, there exists ε > 0 such that α(i, ω, ·) are constant on
(t− ε, t) and [t, t+ ε), and likewise for ϕ(i, ω, ·).
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We will show that the ordinary differential equation (ODE)9 defined on ∆ by

dx(t)

dt
= x(t)R(x(t)) (2.2)

governs the evolution of the expected cross-sectional type distribution. Further, we will use the

exact law of large numbers to show conditions under which the cross-sectional type distribution

is deterministic almost surely and therefore solves the same ODE (2.2).

We will also provide natural conditions under which the initial condition for the pop-

ulation cross-sectional distribution coincides with the initial probability distribution of each

agent’s type, in which case the path of each agent’s type distribution coincides with the path

of the cross-sectional type distribution.

For given parameters (p0, η, θ, ς), a continuous-time independent dynamical system D
with random mutation, random matching, and match-induced type changes is defined by (α,ϕ)

with the following properties:

1. The type α(i, ω, t) is (I � F)⊗ B-measurable.10

2. The cross-sectional type distribution pt at time t is defined by

ptk = λ({i ∈ I : α(i, t) = k}),

and has the specified initial condition p0 = p0.

3. For each agent i, the type process α(i) is a process in S whose transition intensity11

at time t to any type r, given α(i, t) 6= r and cross-sectional type distribution pt, is

Rα(i,t),r(pt).

4. The agents’ stochastic type processes {αi : i ∈ I} are pairwise independent. That is, for

any i, j ∈ I with i 6= j, αi and αj are independent.

5. When some agent i is matched to some agent j, agent j is also matched to agent i. That

9We note that the r-th component of pR(p),

∑
k∈S

pkRkr(p) =

K∑
k=1

[
pkηkr +

K∑
l=1

pkθkl(p)ςklr

]
,

is Lipschitz continuous, by the Lipschitz continuity of pkθkl(p). Hence the ordinary differential equation in
Equation (2.2) has a unique solution with a given initial condition, as noted in Footnote 7.

10As usual, (I � F)⊗ B denotes the product σ-algebra of I � F and B.
11That is, the conditional probability of the event (α(i, t + ∆t) = r) given α(i, t) and pt, divided by ∆t goes

to Rα(i,t),r(pt) as ∆t goes to zero. Following Brémaud (1981), for each k and r 6= k, letting Cikr denote the
counting process for the cumulative number of transitions of agent i from type k to type r, a martingale Mikr

is defined by Mikr(t) = Cikr(t)−
∫ t

0
1{α(i,s)=k}Rkr(ps) ds.
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is, for any agent i, for P -almost all ω ∈ Ω, if the n-th matching time dni (ω) is finite, then

we have ϕ(ϕ(i, dni (ω)), dni (ω)) = i.

The following theorem presents the general existence and properties of a continuous-

time independent dynamical system with random mutation, random matching and random

type changing.

Theorem 2.1. For any given parameters (p0, η, θ, ς), there exists a Fubini extension (I×Ω, I�
F , λ � P ) on which is defined a continuous-time independent dynamical system D with these

parameters such that:

(1) For P -almost all ω ∈ Ω, the realized cross-sectional type distribution pt(ω) at any time t

is equal to the expected cross-sectional type distribution p̄t, which solves Equation (2.2).

(2) For each agent i, the type process α(i) is a continuous-time Markov chain12 in S whose

transition intensity at time t from any state k to any state r 6= k is Rkr(p̄t). The

probability distribution pi(t) of the type of agent i at time t thus satisfies the ODE13

dpi(t)

dt
= pi(t)R(p̄t).

(3) For P -almost all ω ∈ Ω and for any types k and l, at any time t the cumulative total

quantity Θkl(ω, t) of matches of agents of type k with agents of type l is equal to its

expectation E(Θkl(t)) and grows at the rate p̄tkθkl(p̄t).

(4) For P -almost all ω ∈ Ω, the cross-sectional type process αω is a Markov chain in S with,

at any time t, the same generator (transition intensity matrix) R(p̄t).

(5) There exists a probability distribution p∗ on S such that p∗R (p∗) = 0.

(6) For any p∗ ∈ ∆ satisfying p∗R (p∗) = 0, the dynamical system D with parameters

(p∗, η, θ, ς) has p∗ as a stationary type distribution. That is, with probability one the

realized cross-sectional type distribution pt is p∗ at any time t and the transition intensity

matrix R(p̄t) is constant and equal to R(p∗).

Property (3) can be used to compute the volumes of specific sorts of transactions, such as

financial trades, the velocity of circulation of money, quantities of job matches and layoffs, and

so on. Property (4) implies, in principle, the ability to empirically recover the full stochastic

12For the definition and properties of a continuous-time Markov chains with time-dependent transition inten-
sities, see, for example, Stroock (2014).

13This ODE is known as the Kolmogorov forward equation. See, for instance, Stroock (2014). The matrix
R(p̄t) is known as the “generator” of the associated Markov chain.
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evolution behavior of agents’ life-time type processes (including all sample-path moments) by

observing the cross-sectional distribution of sample paths of agents’ types in the single given

observed state of the world.
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APPENDICES

In these appendices, we first consider random matching with enduring partnerships, then

present some illustrative applications, and provide proofs of Propositions A.1 and A.2. The

proof of Theorem A.1 is complex. For the convenience of the reader, we provide in Appendix

D a sketch of its proof. A separate on-line-only supplement, Duffie, Qiao and Sun (2020),

provides detailed proofs of Theorem A.1 and of the remaining results in Section 2.

A Random Matching with Enduring Partnerships

When a pair of agents stays together for some amount of time after matching, one needs to keep

track of the types of the agents and their partners. For this purpose, we introduce a special

symbol J to represent “no-match” and the notion of extended types. Let Ŝ = S× (S ∪{J}) be

the set of extended types. An agent with an extended type of the form (k, l) has type k ∈ S
and is currently matched to some agent of type l in S. If an agent’s extended type is of the

form (k, J), then the agent is “unmatched.” The space ∆̂ of extended type distributions is the

set of probability distributions p̂ on Ŝ such that the probability p̂kl at (k, l) is the same as the

probability p̂lk at (l, k) for all k and l in S. A time is an element of R+, the set of non-negative

real numbers, with its Borel σ-algebra B.

The main objects of our model are α : I × Ω × R+ → S, π : I × Ω × R+ → I, and

g : I × Ω × R+ → S ∪ {J} specifying, for any agent i, state ω, and time t, the agent’s type

α(i, ω, t), the agent’s current partner π(i, ω, t), and the partner’s type g(i, ω, t). As usual, let

α(i) (or αi) and g(i) (or gi) denote the type processes for agent i and her partners; let α(i, t)

(or αit) and g(i, t) (or git) denote the random types of agent i and of the partner of agent i

at time t, respectively; and let αt and gt denote the respective mappings α(·, ·, t) and g(·, ·, t)
on I × Ω. Our objective is to model the type processes α and g, as well as random matching

between agents in a manner consistent with given parameters for independent random mutation,

independent random matching among agents, independent random break-up for matched pairs,

and independent random type changes at each matching and break-up.

The parameters of the model are the initial extended type distribution p̂0 ∈ ∆̂ and, for

any k and l in S:

(i) The mutation intensity ηkl ∈ R+ for k 6= l with which any type k agent mutates to type

l.

(ii) A matching intensity function θkl : ∆̂ → R+, specifying the intensity θkl(p̂) with which

any type-k agent is matched with a type-l agent, if the cross-sectional agent extended

type distribution is p̂ ∈ ∆̂. This function is continuous and satisfies the mass-balancing
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requirement p̂kJ · θkl(p̂) = p̂lJ · θlk(p̂), that the total aggregate rate of matches of type-k

agents to type l agents is of course equal to the aggregate rate of matches of type-l agents

to type-k agents. We also require the functions p̂kJθkl(p̂), k, l ∈ S from ∆̂ to R to be

Lipschitz continuous.14

(iii) The enduring probability ξkl ∈ [0, 1] that a match between a type-k agent and a type-l

agent causes a long-term relationship between the two agents after their match, where

ξkl = ξlk.

(iv) σkl ∈M(S×S) specifying the probability distribution of the new types of a type-k agent

and a type-l agent who have been matched, conditional on the event that the match

causes an enduring relationship between them, where σkl ((k
′, l′)) = σlk ((l′, k′)) for any

k′, l′ ∈ S.

(v) ςkl ∈ M(S) specifying the probability distribution of the new type of a type-k agent

who is matched with a type-l agent, conditional on the event that there is no enduring

relationship (the match is dissolved immediately).

(vi) The break-up intensity ϑkl ∈ [0,∞), which is the mean rate at which an existing long-term

relationship between a type-k agent and a type-l agent is broken, where ϑkl = ϑlk.

For simplicity, we assume that when an enduring match between a type-k agent and a

type-l agent is eventually broken, these agents emerge with new types drawn independently

with the probability distributions ςkl and ςlk, respectively.

14As noted earlier in Footnote 7, this Lipschitz continuity condition, which is weaker than the Lipschitz
continuity of θkl, accommodates general labor-market matching functions as in Subsection B.1 below. The
Lipschitz continuity of p̂kJθkl(p̂) leads to the Lipschitz condition on the ordinary differential equation in Equation
(A.1), which guarantees the uniqueness of the solution of the ordinary differential equation for the cross-sectional
extended type distributions.
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Table 1: Transition intensities

from

to
(k′, l′) (k′, J)

(k, l)
ηkk′ δl(l

′) + ηll′ δk(k
′) ϑkl ςkl(k

′)

Case 1: mutation Case 2: break up

(k, J)

∑K
r=1 θkr(p̂) ξkr σkr(k

′, l′) ηkk′ +
∑K

r=1 θkr(p̂)(1− ξkr)ςkr(k′)

Case 3: enduring matching Case 4: mutation, or matching without enduring

Note that δk(k
′) in Case 1 is one for k = k′ and zero for k 6= k′. Given the parameters

above and any extended type distribution p̂, it is easy to derive the desired transition intensities

listed in Table 1. For example, in Case 2, an agent with extended type (k, l) may break up

with the partner and become an agent with type (k′, J), the corresponding transition intensity

is ϑklςkl(k
′). Let Q(p̂) be the transition matrix described in the table above. For any (k, l) ∈

Ŝ, it is easy to verify that the function
∑

(k′,l′)∈Ŝ p̂k′l′Q(k′,l′)(k,l)(p̂) from ∆̂ to R is Lipschitz

continuous, using the Lipschitz continuity of p̂kJθkl(p̂).

For given parameters (p̂0, η, θ, ξ, σ, ς, ϑ), a continuous-time independent dynamical sys-

tem D̂ with enduring partnerships, if it exists, is a triple (α, π, g) defined by the properties:

1. α(i, ω, t) and g(i, ω, t) are (I � F) ⊗ B-measurable. The stochastic processes αi and gi

are right-continuous with left limits (RCLL), a standard regularity property of stochastic

processes, found for example, in Protter (2005). For any t ∈ R+, π(·, ·, t) (also denoted

by πt(·, ·)) is a random matching on I × Ω in the sense that: (i) πt(·, ·) is a measurable

mapping from (I×Ω, I�F) to (I, I) and (ii) for any ω ∈ Ω, the mapping πωt(·) = π(·, ω, t)
is an involution on I, that is, for any i ∈ I, πωt (πωt(i)) = i; and is measure-preserving,

that is, for any A ∈ I, λ
(
π−1
ωt (A)

)
= λ(A). For any i ∈ I and t ∈ R+,

g(i, ω, t) =

α(π(i, ω, t), ω, t) if π(i, ω, t) 6= i

J if π(i, ω, t) = i
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for P -almost all ω ∈ Ω.

2. The cross-sectional extended type distribution p̂(t) at time t is defined by

p̂kl(t) = λ({i ∈ I : α(i, t) = k, g(i, t) = l}).

Let p̌(t) be the expected cross-sectional extended type distribution E (p̂(t)). For any agent

i ∈ I, the extended type process (α(i), g(i)) of agent i is a continuous-time Markov chain

in S × (S ∪ {J}) whose generator (transition-intensity matrix) at time t is Q (p̌(t)).

3. For each i, j ∈ I with i 6= j, if agents i, j are not matched at time zero, then the extended

type processes (αi, gi) and (αj , gj) are independent.15

The exact law of large numbers (Theorem 2.16 of Sun (2006)) will be used to show

that the cross-sectional type distribution p̂(t) is deterministic almost surely, and equal to its

expectation p̌(t), which is a solution of the following ordinary differential equation

dp̌(t)

dt
= p̌(t)Q (p̌(t)) , p̌(0) = p̂0. (A.1)

We are now ready to state the general existence of a continuous-time independent dy-

namical system with random mutation, random matching, random type changing and random

break-up.

Theorem A.1. For any given parameters (p̂0, η, θ, ξ, σ, ς, ϑ), there exists a Fubini extension

on which is defined a continuous-time independent dynamical system D̂ with these parameters

such that the initial cross-sectional extended type distribution is p̂0 with probability one.

A proof of this result is in our online supplement, Duffie, Qiao and Sun (2020). For the

convenience of the reader, we also provide a sketch for the proof in Appendix D.

In the next two propositions, we state the properties of a continuous-time independent

dynamical system with random mutation, random matching, and random match-induced type

changing, and random break-up. Appendix C contains the proofs of both results.

Using the exact law of large numbers, Part (1) of the next proposition shows that

the cross-sectional distribution of agent types evolves deterministically, according to Equa-

tion (A.1). Part (2) implies, in principle, the ability to empirically recover the full stochastic

evolution behavior of agents’ life-time type processes (including all sample-path moments) by

observing the cross-sectional distribution of sample paths of agents’ types in the single given

observed state of the world.
15If agents i, j are matched at time zero, then it would not be possible for (αi, gi) and (αj , gj) to be independent

because the agents may break up jointly with a given intensity.
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Proposition A.1. Let (p̂0, η, θ, ξ, σ, ς, ϑ) be the parameters for a continuous-time independent

dynamical system D̂ with enduring partnerships. Then we have the following properties.

(1) For P -almost all ω ∈ Ω, the realized cross-sectional extended type distribution p̂(ω, t) at

any time t is equal to the expected cross-sectional extended type distribution p̌(t) = E(p̂(t)),

which satisfies Equation (A.1).

(2) For P -almost all ω ∈ Ω, the cross-sectional extended type process (αω, gω) is a continuous-

time Markov chain with, at any time t, the transition intensity matrix Q (p̌(t)).

The following proposition shows the general existence of a stationary cross-sectional

distribution of agents’ types.

Proposition A.2. (1) There exists a probability distribution p̂∗ on Ŝ such that p̂∗Q (p̂∗) = 0.

(2) For any p̂∗ ∈ ∆̂ satisfying p̂∗Q (p̂∗) = 0, a continuous-time independent dynamical system

D with parameters (p̂∗, η, θ, ξ, σ, ς, ϑ) has p̂∗ as a stationary extended type distribution.

That is, with probability one, the realized cross-sectional extended type distribution p̂(t)

at any time t is p̂∗, and all of the relevant Markov chains are time homogeneous with a

constant transition intensity matrix Q(p̂∗).

B Illustrative Applications

This appendix provides two illustrative applications of our results, providing mathematical

foundations for typical models of labor and financial markets.

B.1 The Diamond (1982) model of labor markets

In the literature on continuous-time search with enduring partnerships, often used to study

labor markets, a common assumption is that unmatched agents (unemployed workers and

vacant positions) have matching opportunities described by independent Poisson processes.

Already matched agents break up with specified intensities. Our illustrative application here

is the model of Diamond (1982).

The agents are workers and firms. Each firm has a single job position. Our results

for continuous-time random matching with enduring partnerships provide a foundation for the

equilibrium employment rate as a result of job search with frictions.

The type space of the agents is S = {W,F}, where W and F represent workers and firms

respectively. The sizes of the populations of workers and firms are L and K respectively.

Frictions in the labor market make it impossible for all the unemployed workers to

find jobs instantaneously. The quantity of new job matches is governed by a continuously
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differentiable mapping (U, V ) 7→ g (U, V ). That is, the aggregate matching rate of unemployed

workers and vacant jobs is g (U, V ), where U and V are the populations of unemployed workers

and vacant firms respectively. Clearly, the population of employed workers is L−U = K − V ,

and g(0, V ) = g(U, 0) = 0. When a firm and a worker meet, they form a (long term) job

match with probability one. Furthermore, each matched job-worker pair faces a randomly

timed separation at an exogenously specified intensity b.

In Diamond (1982), the total population size L+K of workers and firms is not assumed

to be one. In order to stay with our convention that the agent space has total mass one, we can

rescale without loss of generality. Viewed in terms of our model, the fraction of unemployed

workers is p̂
WJ

= U/(L + K) and the fraction of vacant firms is p̂
FJ

= V/(L + K). The

corresponding parameters are given as follows. There is no mutation in this model, so η
WF

=

η
FW

= 0.

Matching occurs only between unemployed workers and firms with vacant jobs. For

matching intensities, we define

θkl(p̂) =



g((L+K)p̂
WJ

, (L+K)p̂
FJ

)
(L+K)p̂

kJ

if (k, l) = (W,F ) or (F,W ) and p̂
kJ
> 0

∂g
∂U

(
0, (L+K)p̂

FJ

)
if (k, l) = (W,F ) and p̂

WJ
= 0

∂g
∂V

(
(L+K)p̂

WJ
, 0
)

if (k, l) = (F,W ) and p̂
FJ

= 0

0 otherwise.

It is obvious that θWF is continuous for p̂WJ > 0. Since g (0, (L+K)p̂FJ) = 0, it is clear that

lim
p̂WJ→ 0

g
(
(L+K)p̂

WJ
, (L+K)p̂

FJ

)
(L+K)p̂

WJ

=
∂g

∂U

(
0, (L+K)p̂

FJ

)
.

Hence, θWF is also continuous when p̂
WJ

= 0. The continuity of θFW follows the same proof.

It is easy to see that for any p̂
WJ

,

p̂
WJ
θWF =

g
(
(L+K)p̂

WJ
, (L+K)p̂

FJ

)
(L+K)

.

Since g is continuously differentiable, we know that p̂
WJ
θWF is Lipschitz continuous. Similarly,

we have

p̂
FJ
θFW =

g
(
(L+K)p̂

WJ
, (L+K)p̂

FJ

)
(L+K)

.

Hence, the mass-balancing requirement and the Lipschitz continuity condition are satisfied.
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For enduring-relationship probabilities, we define for any k, l ∈ S,

ξkl =

1 if (k, l) = (W,F ) or (F,W )

0 otherwise.

The match-induced type-change probabilities are

σkl(k
′, l′) = δk(k

′)δl(l
′)

and

ςkl(k
′) = δk(k

′).

The mean separation rates are

ϑkl =

b if (k, l) = (W,F ) or (F,W )

0 otherwise.

Proposition A.1 (1) implies that with probability one, the realized cross-sectional ex-

tended type distribution p̂(t) is the same as the expected cross-sectional extended type distri-

bution p̌(t), which satisfies Equation (A.1). In the notation of this example, with probability

one,

dp̂
WF

(t)

dt
=

∑
(k,l)∈Ŝ

p̂kl(t)Q(k,l)(W,F ) (p̂(t)) (B.1)

= p̂
WJ

(t)Q(W,J)(W,F ) (p̂(t)) + p̂
WF

(t)Q(W,F )(W,F ) (p̂(t))

= p̂
WJ

(t) θ
WF

(p̂(t))− p̂
WF

(t)Q(W,F )(W,J) (p̂(t))

=
g
(
(L+K)p̂

WJ
(t), (L+K)p̂

FJ
(t)
)

(L+K)
− b p̂

WF
(t).

By Equation (32) in Diamond (1982), we can let

f(E,L,K) = g(U, V ) = g(L− E,K − E),

where E is the size of the population of employed workers. It is then clear that with probability

one, the realized quantity E(t) of employed workers at any time t is (L+K) p̂
WF

(t). Further,

L − E(t) = (L + K) p̂
WJ

(t) and K − E(t) = (L + K) p̂
FJ

(t). Equation (B.1) can then be

expressed as
dE(t)

dt
= f(E(t), L,K)− bE(t), (B.2)
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which is Equation (22) in Diamond (1982).16

B.2 Over-the-counter financial markets

Our second illustrative application is the model of over-the-counder financial markets of Duffie,

Gârleanu, and Pedersen (2005). There are two classes of agents, investors and marketmakers.

Each agent consumes a single nonstorable consumption good that is used as a numéraire. In

Duffie, Gârleanu, and Pedersen (2005), the masses of investors and marketmakers are each 1.

In order to stay within the simplex ∆ of agent masses stipulated by our basic model, without

loss of generality we rescale these two type masses to 1/2.

Investors can hold 0 or 1 unit of the asset. A fraction s of investors are initially endowed

with 1 unit of the asset. An investor is characterized as an asset owner or non-owner, and also

by an intrinsic preference for ownership that is high (h) or low (l). A low type switches from

low to high with intensity λu, and switches back with intensity λd.

The type space is thus S = {ho, hn, lo, ln,m}, where the letters “h” and “l” designate

the investor’s intrinsic preference, “o” and “n” indicate whether the investor owns the asset

or not, and “m” indicates a marketmaker. Marketmakers never change their type. When a

high-preference non-owner meets an low-preference owner, they endogenously choose to trade

the asset, generating a change of types for each. Other investor-to-investor matches generate

no trade, thus no type changes. Trades generated by contact with a marketmaker will be

characterized shortly.

Investors meet by independent random search, as follows. At the successive event times

of a Poisson process with some intensity parameter λ, an investor contacts another investor

chosen at random, uniformly from the entire investor population. Thus, letting

µk(t) =
pk(t)

pho(t) + phn(t) + plo(t) + pln(t)
= 2pk(t)

denote the relative fraction of investors (among all the investors) of type k at time t, the

intensity with which any given investor contacts an investor of type k is λµk(t). In Duffie,

Gârleanu, and Pedersen (2005), contact is directional, in the sense that the event of a type

k investor contacting a type r investor is distinguished from the event of a type r investor

contacting a type k investor. Thus the total meeting intensity for specific type-k investor with

some type-r investor is θkr(p(t)) = 2λµr(t) = 4λpr(t). This directional-contact formulation

implies that the derived matching intensity function θ automatically satisfies the mass-balance

16Since f and b are the matching and mean separation rates respectively, Equation (B.2) was claimed intuitively
in Diamond (1982) without showing the existence and properties of the underlying dynamic matching model.
Our results in Appendix A provide a rigorous micro foundation for the continuous time search ideas in Diamond
(1982), and prove the existence of the desired dynamic matching model and the validity of Equation (B.2).

19



condition. Directional contact also allows in principle for a difference in the terms of trade

in the asset bargaining outcome, depending on which of a pair contacts the other, but that

difference plays no role here.

Each investor also contacts some randomly drawn marketmaker at the event times of a

Poisson process with a fixed intensity of ρ. When a type-hn investor meets a marketmaker, the

community of marketmakers may be experiencing an excess of buyer contacts relative to seller

contacts. Marketmakers are able to instantly lay off their trades in the inter-dealer market,

but do not absorb excess order flow into their own accounts. In that case, each marketmaker

rations trade by randomizing whether it quotes a price that is acceptable to the contacting

investor. Specifically, at contact with a marketmaker, a type-hn investor trades successfully

with probability min(phn,plo)
phn

(and becomes a type-ho investor), which implies that the intensity

for her successful search with a marketmaker is ρmin(phn,plo)
phn

. Similarly, the intensity for a

type-lo investor to search successfully for a marketmaker to trade is ρmin(phn,plo)
plo

.

Viewed in terms of our model in Section 2, the corresponding parameters are given as

follows. The type mutation intensities are, for any k and r ∈ S such that k 6= r,

ηkr =


λu if (k, r) = (lo, ho) or (ln, hn)

λd if (k, r) = (ho, lo) or (hn, ln)

0 otherwise.

For matching intensities, we have for any k and r ∈ S,

θkr(p) =



4λpr if k, r ∈ {ho, lo, hn, ln}

ρmin(phn,plo)
phn

if k = hn and r = m

ρmin(phn,plo)
plo

if k = lo and r = m

2ρmin(phn, plo) if k = m and r ∈ {hn, lo}

0 otherwise.

It is obvious that the mass-balancing requirements for θ as well as the Lipschitz continuity

for the mapping pkθkr(p) are satisfied. When a type-hn investor meets a type-lo investor or

finds successfully a marketmaker to trade, the type-hn investor, having purchased the asset,

becomes a type-ho investor. Likewise the type-lo investor becomes a type-ln investor. Thus,
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we have for any k, r, k′ ∈ S,

ςkr(k
′) =


δho(k

′) if k = hn and r ∈ {lo,m}

δln(k′) if k = lo and r ∈ {hn,m}

δk(k
′) otherwise.

Then we can derive the following transition intensities as listed in Equation (2.1):

R(ho)(lo)(p) = λd

R(hn)(lo)(p) = 0

R(lo)(lo)(p) = −λu − 4λphn −
ρmin(phn, plo)

plo
R(ln)(lo)(p) = 0

R(m)(lo)(p) = 0.

The evolution of the fraction of type-lo agents is thus governed by (with probability one)

dplo(t)

dt
= pho(t)R(ho)(lo) (p(t)) + plo(t)R(lo)(lo) (p(t))

= λd pho(t)−
(
λu + 4λ phn(t) +

ρmin(phn(t), plo(t))

plo(t)

)
plo(t)

= λd pho(t)− λu plo(t)− 4λ phn plo(t)− ρ min(phn(t), plo(t)).

Because µk(t) = 2pk(t),

dµlo(t)

dt
= λd µho(t)− λu µlo(t)− 2λµhn(t)µlo(t)− ρ min(µhn(t), µlo(t)), (B.3)

which is Equation (3) of Duffie, Gârleanu, and Pedersen (2005). The remaining population-

distribution evolution equations of Duffie, Gârleanu, and Pedersen (2005) follow similarly. Sim-

ilar to the remark in Footnote 16, while Equation (B.3) was claimed in Duffie, Gârleanu, and

Pedersen (2005) intuitively without showing the existence and properties of the underlying

dynamic matching model, the verbal description of continuous time matching as in Duffie,

Gârleanu, and Pedersen (2005) can be formulated and proved by our model and results in

Section 2, which lead to a rigorous derivation of Equation (B.3).
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C Proofs of Propositions A.1 and A.2

C.1 Proof of Proposition A.1

For any i ∈ I, ω ∈ Ω and t ∈ R+, let β(i, ω, t) = (α(i, ω, t), g(i, ω, t)) be the extended type

of agent i with sample realization ω at time t. For any t > t1 > · · · > tn > 0, ∆t > 0,

(k, l), (k′, l′), (k1, l1), . . . , (kn, ln) ∈ Ŝ with (k, l) 6= (k′, l′), we have

λ� P
(
βt+∆t(i, ω) = (k′, l′), βt(i, ω) = (k, l), βt1(i, ω) = (k1, l1), . . . , βtn(i, ω) = (kn, ln)

)
=

∫
I
P
(
βt+∆t
i (ω) = (k′, l′), βti(ω) = (k, l), βt1i (ω) = (k1, l1), . . . , βtni (ω) = (kn, ln)

)
dλ

=

∫
I
P
(
βti = (k, l), βt1i = (k1, l1), . . . , βtni = (kn, ln)

)
P
(
βt+∆t
i = (k′, l′)

∣∣βti = (k, l), βt1i = (k1, l1), . . . , βtni = (kn, ln)
)
dλ

=

∫
I
P
(
βti = (k, l), βt1i = (k1, l1), . . . , βtni = (kn, ln)

)
P
(
βt+∆t
i = (k′, l′)

∣∣βti = (k, l)
)
dλ.

Because the transition intensity matrix Q(p̌t) at any time t of the Markov chain βi does not

depend on i ∈ I, so does the conditional probability P
(
βt+∆t
i = (k′, l′)

∣∣βti = (k, l)
)

. Let

P
(
βt+∆t
i = (k′, l′)

∣∣βti = (k, l)
)

= Q(k,l)(k′,l′) (p̌(t)) ∆t+ o(∆t).

Since Q(p̌t) is the transition intensity matrix, we know that o(∆t) divided by ∆t converges to

zero whenever ∆t goes to zero. Hence, we obtain that

λ� P
(
βt+∆t(i, ω) = (k′, l′), βt(i, ω) = (k, l), βt1(i, ω) = (k1, l1), . . . , βtn(i, ω) = (kn, ln)

)
=

∫
I
P
(
βti = (k, l), βt1i = (k1, l1), . . . , βtni = (kn, ln)

) (
Q(k,l)(k′,l′) (p̌(t)) ∆t+ o(∆t)

)
dλ

= [λ� P (A)]
[
Q(k,l)(k′,l′) (p̌(t)) ∆t+ o(∆t)

]
,

where

A = {(i, ω) : βt(i, ω) = (k, l), βt1(i, ω) = (k1, l1), . . . , βtn(i, ω) = (kn, ln)}.

Therefore, we have

λ� P
(
{(i, ω) : βt+∆t(i, ω) = (k′, l′)}

∣∣ A) = Q(k,l)(k′,l′) (p̌(t)) ∆t+ o(∆t). (C.1)

Note that Equation (C.1) also holds in the case when n = 0, which means that

λ� P
(
{(i, ω) : βt+∆t(i, ω) = (k′, l′)}

∣∣ βt(i, ω) = (k, l)
)

= Q(k,l)(k′,l′) (p̌(t)) ∆t+ o(∆t). (C.2)
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By Equations (C.1) and (C.2), we know that β, when viewed as a stochastic process with

sample space (I × Ω, I � F , λ� P ), is a Markov chain with time-t transition intensity matrix

Q (p̌(t)). By the Fubini property, it is clear that the distribution of βt is p̌(t). Therefore, p̌(t)

satisfies the ordinary differential equation (A.1).

For any agent i ∈ I, let Bi = {j ∈ I : P (π0(i) = j) > 0} , which is the set of agents

j ∈ I who could be matched with agent i with positive probability at the initial time. It

is then clear that Bi is finite or countably infinite, and has λ-measure zero (because λ is

atomless). By property (3) of the continuous-time independent dynamical system D̂ with

enduring partnerships, we know that for any j /∈ Bi, the extended type processes βi = (αi, gi)

and βj = (αj , gj) are independent. Hence, the stochastic processes βi, i ∈ I satisfy the condition

of essential pairwise independence in the sense that for each i ∈ I, βi and βj are independent

for λ-almost all j ∈ I.

By the exact law of large numbers in Theorem 2.16 of Sun (2006), we know that for

P -almost all ω ∈ Ω, the processes βω and β have the same finite-dimensional distributions

in the sense that for any 0 ≤ t1 ≤ · · · ≤ tn, (βt1ω , . . . , β
tn
ω ) and (βt1 , . . . , βtn) (viewed as

random vectors) have the same distribution. The finite-dimensional distributions of a process

determines whether the process is a Markov chain and also its transition intensity matrix. Thus,

for P -almost all ω ∈ Ω, βω is also a Markov chain with transition intensity matrix Q (p̌(t)) at

time t. So Part (2) of Proposition A.1 is proven. We also know that for P -almost all ω ∈ Ω,

βtω and βt have the same distribution at any time t, which implies that p̂(ω, t) = p̌(t). Hence,

Part (1) of Proposition A.1 is shown.

C.2 Proof of Proposition A.2

Part (1) of Proposition A.2: for any p̂, q̂ ∈ ∆̂, define a vector q̂Q(p̂) in RK × RK+1 by letting

[q̂Q(p̂)]kl =
∑

(k′,l′)∈Ŝ

q̂k′l′Q(p̂)(k′l′)(kl).

Since Q(kl)(k′l′) is continuous on ∆̂, and ∆̂ is compact, we can find a positive real number c

such that
∣∣cQ(kl)(k′l′)(p̂)

∣∣ ≤ 1 for any p̂ ∈ ∆̂, and (k, l), (k′, l′) ∈ Ŝ.

It is easy to see that p̂Q(p̂) = 0 is equivalent to the statement that f(p̂) , p̂ + cp̂Q(p̂)

has a fixed point p̂ = f(p̂).

Next we show that f is a function from ∆̂ to ∆̂. For this purpose, we need to show that

the values of f are probabilities and satisfy some symmetry condition for ∆̂. Note that

f(p̂)kl = p̂kl +
∑

(k′,l′)∈Ŝ

cp̂k′l′Q(p̂)(k′,l′)(k,l)
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=
(
1 + cQ(p̂)(k,l)(k,l)

)
p̂kl +

∑
(k′,l′)6=(k,l)

cp̂k′l′Q(p̂)(k′,l′)(k,l).

By the definition of Q(p̂), we know that Q(p̂)(k′,l′)(k,l) ≥ 0 if (k′, l′) 6= (k, l). The choice of c

implies that
(
1 + cQ(p̂)(k,l)(k,l)

)
≥ 0. Thus, [f(p̂)]kl ≥ 0 for any (k, l) ∈ Ŝ.

It is also easy to see that

∑
(k,l)∈Ŝ

f(p̂)(k,l) =
∑

(k,l)∈Ŝ

∑
(k′,l′)∈Ŝ

(
p̂k′l′ + cp̂k′l′Q(p̂)(k′,l′)(k,l)

)
=

∑
(k′,l′)∈Ŝ

∑
(k,l)∈Ŝ

(
p̂k′l′ + cp̂k′l′Q(p̂)(k′,l′)(k,l)

)

=
∑

(k′,l′)∈Ŝ

p̂k′l′ + cp̂k′l′
∑

(k,l)∈Ŝ

Q(p̂)(k′,l′)(k,l)


=

∑
(k′,l′)∈Ŝ

p̂(k′,l′) = 1,

where the last identity follows from the fact that
∑

(k,l)∈Ŝ Q(p̂)(k′,l′)(k,l) = 0. Hence, the values

of f are probabilities.

Fix any p̂ ∈ ∆̂, and k, l ∈ S. For any k1, l1 ∈ S with (k1, l1) 6= (k, l), we have

p̂k1l1Q(p̂)(k1,l1)(k,l) = p̂k1l1

(
ηk1kδl1(l) + ηl1lδk1(k)

)
(C.3)

= p̂l1k1

(
ηl1lδk1(k) + ηk1kδl1(l)

)
= p̂l1k1

Q(p̂)(l1,k1)(l,k).

By the mass-balancing requirement, and the symmetries of ξ and σ, we can obtain that

K∑
k′=1

p̂k′JQ(p̂)(k′,J)(k,l) =
K∑
k′=1

p̂k′J

K∑
l′=1

θk′l′(p̂)ξk′l′σk′l′(k, l)

=
K∑
k′=1

K∑
l′=1

p̂k′Jθk′l′(p̂)ξk′l′σk′l′(k, l)

=

K∑
l′=1

p̂l′J

K∑
k′=1

θl′k′(p̂)ξl′k′σl′k′(l, k)

=

K∑
k′=1

p̂l′JQ(p̂)(l′,J)(l,k).
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It follows from Equation (C.4) and the symmetry of ϑ that

p̂klQ(p̂)(k,l)(k,l) = −
∑

(k′,l′)∈Ŝ\(k,l)

p̂klQ(p̂)(k,l)(k′,l′)

= −
∑

(k′,l′)∈S×S\(k,l)

p̂klQ(p̂)(k,l)(k′,l′) −
∑
k′∈S

p̂klQ(p̂)(k,l)(k′,J)

= −
∑

(l′,k′)∈S×S\(l,k)

p̂lkQ(p̂)(l,k)(l′,k′) −
∑
k′∈S

p̂klϑklςkl(k
′)

= −
∑

(l′,k′)∈S×S\(l,k)

p̂lkQ(p̂)(l,k)(l′,k′) − p̂klϑkl

= −
∑

(l′,k′)∈S×Ŝ\(l,k)

p̂lkQ(p̂)(l,k)(l′,k′)

= p̂lkQ(p̂)(l,k)(l,k).

The above equations imply that

f(p̂)kl = p̂kl + c
∑

(k′,l′)∈Ŝ

p̂k′l′Q(p̂)(k′,l′)(k,l)

= p̂kl + c
∑

(k′,l′)∈S×S\(k,l)

p̂k′l′Q(p̂)(k′,l′)(k,l) + c
∑
k′∈S

p̂k′JQ(p̂)(k′,J)(k,l) + cp̂klQ(p̂)(k,l)(k,l)

= p̂lk + c
∑

(l′,k′)∈S×S\(l,k)

p̂l′k′Q(p̂)(l′,k′)(l,k) + c
∑
l′∈S

p̂l′JQ(p̂)(l′,J)(l,k) + cp̂lkQ(p̂)(l,k)(l,k)

= f(p̂)lk

Hence, f is a function from ∆̂ to ∆̂.

It is clear that f is continuous on ∆̂. By Kakutani’s Fixed Point Theorem, there exists

a p̂∗ ∈ ∆̂ such that p̂∗ + cp̂∗Q(p̂∗) = p̂∗. Therefore, p̂∗Q(p̂∗) = 0.

Part (2) of Proposition A.2: Assume that p̂∗Q(p̂∗) = 0. Since the function p̂Q(p̂) is

Lipschitz continuous in p̂, the ordinary differential equation in Equation (A.1) with the initial

condition p̌(0) = p̂∗ must have a unique solution p̂∗, and hence p̌(t) = p̂∗ at any time t.

Therefore, p̂∗ is a stationary distribution.

D Sketch for the Proof of Theorem A.1

In this section, we briefly explain the ideas for proving Theorem A.1.17 The detailed proof of

Theorem A.1 is provided in an on-line-only supplement, Duffie, Qiao and Sun (2020).

The popular idea that a continuum of agents search continuously over time for trading

17Note that the existence result in Theorem 2.1 is a special case of Theorem A.1 with all the enduring
probabilities being zero.
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partners independently of each other is to model the situation that a large but finite number

of agents are matched with small probabilities at small time intervals without central coor-

dinations. Though such an idea of continuous-time independent random matching is widely

used intuitively, there has been no underlying mathematical model representing the idea. The

main purpose of this paper is to provide the first mathematical foundation for continuous-time

independent random matching.

We take the following approach for constructing a general model of continuous-time

independent random matching. First, we analyze a finite-period dynamic random matching

model with finitely many agents in Appendices E.1, E.2 and E.3 of the online supplement.

Then, using techniques in nonstandard analysis,18 we transform in Appendix E.4 such a finite

model to a limit model with infinitely many agents who are matched at each infinitesimal time

interval with infinitesimal probabilities, which leads to continuous-time independent random

matching.

It is difficult to work with a general dynamic random matching model with finitely many

agents. Since agent i being matched to agent j implies agent j being matched to agent i,

random matching with finitely many agents must induce correlations. Such kind of individual

level correlations also happens when a pair of matched agents breaks up with some probability.

A source of systemic correlations for all the agents come from the matching probabilities at each

time period, since such matching probabilities depend on the underlying cross-sectional type

distribution of agents which is random in the finite-agent setting. In order to obtain meaningful

approximate results, we provide delicate estimations in Appendix E.3 for the cumulative effect

of the correlations and randomness across multiple time periods. The advantage of working

with a limit model of continuous-time independent random matching is that such kind of

correlations and randomness disappears completely, which is convenient for applications to

economic models in various areas.19

In Appendix E.1, we construct a static random matching model with M̂ agents given

general matching parameters {qkl}k,l∈S , where M̂ is a finite positive even integer. Since we

allow enduring partnerships in our dynamic matching model, we need to consider a static

18For a comprehensive introduction to nonstandard analysis, see the first three chapters of Loeb and Wolff
(2015). Nonstandard analysis has been used to study continuous time stochastic processes such as Poisson
process in Loeb (1975), Brownian motion and Itô process in Anderson (1976), Perkins (1981), and Keisler
(1984), and Markov processes in Duanmu, Rosenthal and Weiss (2018). For applications of nonstandard analysis
to economics, see, for example, Brown and Robinson (1975), Khan (1974), Hammond (1999), and Anderson and
Raimondo (2008). In the proof of Theorem A.1 in Appendix E, nonstandard analysis is only used in Appendix
E.4.

19Economic models with many agents are also very popular in situations without the consideration of random
matching. For some recent developments, see McLean and Postlewaite (2002, 2004), Kalai (2004), Yannelis
(2009), Acemoglu and Jensen (2015), Bierbrauer and Hellwig (2015), Hammond (2015), He and Yannelis (2016),
Khan et al. (2017), Hellwig (2019) and Anderson et al. (2020) among others.
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random matching model with some agents being matched initially, which will be used in the

matching step of each time period. We assume that only single (i.e., initially unmatched) agents

will participate in the static matching considered here. Let Ik be the set of single agents with

type k, and |Ik| the number of agents in Ik. We first randomly choose a subset Akl in Ik to be

matched with type-l agents such that the number of agents in Akl (denoted by |Akl|) is taken to

be the largest even integer less than or equal to |Ik|qkl. Then, the probability of a type-k agent

to be matched with a type-l agent is |Akl|/|Ik|. As mentioned above, the matching outcome

is correlated due to the finiteness of the agent space. Another difficulty is that the matching

probability |Akl|/|Ik| is, in general, only an approximation of the matching parameter qkl (note

that qkl can be quite arbitrary). Since the static random matching model will be used in the

matching step of our dynamic matching model, the matching parameters/probabilities will go

to zero as the time length of each period goes to zero and the number of agents goes to infinity.

In Lemma 1, we provide delicate estimations of the (joint) matching probabilities to control

the cumulative effect in the dynamic matching model.20

In Appendix E.2, we develop a finite-agent dynamic matching model with M̂ agents and

M2 periods with M being a positive integer. The time length of each period is 1
M . In each

period, there are three steps. The first step is the mutation step, agents (single or matched)

change their types independently. The second step is the matching step, only single agents

take part in the static random matching described in Appendix E.1. The third step is the

type changing with break-up step, at which agents who were just matched in the last step may

enter into a long-term partnership with a given probability, and then experience type changes

according to specific type-changing probabilities. At this step, agents who have been matched

for more than one step may break up with a given probability, and change their types according

to some type-changing probabilities if they indeed break up.

In Appendix E.3, we present some properties of the finite-agent dynamic matching model

constructed in Appendix E.2, which will be used for the continuous time model in Appendix

E.4. In particular, Lemma E.4 provides a careful estimate on the difference between the

(conditional) matching probabilities and the corresponding matching parameters. Lemmas E.6

an E.7 show that the finite-agent dynamic matching model is approximately Markovian and

independent when the number of agents and number of periods are large enough. As mentioned

above, the proofs of those lemmas are difficult since we need to estimate very carefully about

the cumulative effect of the correlations and randomness across multiple time periods.

20Lemma 7 in Duffie, Qiao and Sun (2018) considered a static random matching model with infinitely many
agents. When such a result is interpreted in the large finite setting, it means that the difference between the
matching probability |Akl|/|Ik| and the matching parameter qkl is small. In the setting of this paper, we need
to consider the case that both the matching probability |Akl|/|Ik| and the matching parameter qkl are small,
which cannot be covered by the idea used in Lemma 7 of Duffie, Qiao and Sun (2018).
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In Appendix E.4, we turn to the study of the continuous time model of independent

random matching. By the Transfer Principle in nonstandard analysis, the finite-agent dynamic

matching model and its properties can be recast in the setting with a hyperfinite number of

agents and time periods. By rounding off some infinitesimals, we obtain a continuous time

random matching model with a standard atomless probability space as the agent space. Then,

we need to show that the continuous time random matching model as constructed satisfies

all the requirements stated in Appendix A. First, the Markov property and independence of

the continuous time model are proved, based on the approximate results in the finite-agent

model. It is difficult to show that the transition intensities are the same as listed in Table 1

above. In order to do this, we need to provide very subtle estimates on various cumulative

effects of infinitely many rare events for each of the four cases over infinitely many periods with

infinitesimal time length.21

21A discrete-time model of random matching with enduring partnerships is considered in Duffie, Qiao and
Sun (2018); see also Section 5 of Duffie, Qiao and Sun (2018) for a discussion of some related papers on more
specialized models of random matching in the static and discrete-time settings. Unlike the delicate analysis
associated with continuous-time random matching in this paper, there is no need to consider the cumulative
effect of multiple periods in the discrete-time model.
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