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or sequential trade. Then we show, in the multiperiod setting, that the market value of
a security may be treated as the potential of its dividend, and show several properties
that derive from this characterization. Finally, we demonstrate the existence of an “eigen-
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1s its discounted mean future payoff. The fixed discount factor is the spectral radius of
the valuation operator, the reciprocal of the smallest possible fixed rate of return on any

security.
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Price Operators: Extensions, Potentials, and the Markov Valuation of Securities

1. Introduction

A price operator is a function f mapping a vector space M of assets of some sort into a

vector space L of market values. We treat N as a vector space of possible assets, A C N as

the subset of actually traded assets, and M = span(A) as the marketed subspace, achieved
by linear combinations of traded assets. Typically L is a vector space of functions on a
set B representing the state of the economy. For an asset m € M, the function f(m) € L
- states the market value of m as a function of the state, [f(m)](£) in state £. By the usual
linearity of market valuation, a price operator is linear. A price operator f is arbitrage-free
if positive: f(m) is positive whenever m is positive. We will first state conditions under
‘which an arbitrage-free price operator f on the marketed subspace M can be extended
to an arbitrage—free price operator on the entire space N of possible assets. This, in
turn, permits one to represent f, for example, as a conditional expectation operator. This
extension may be useful for such purposes as characterizing price operators as an evolution
family or semi-group of operators in a multi-period setting [7], and in generalizing the
connection between optimality and absence of arbitrage found by Kreps [13] to a multi-
period or rational expectations framework. We will apply the extension to a Markovian
setting in the latter part of the paper to show that the market value of a security is the
potential of its dividend under the valuation semi-group. Making this connection allows
one to apply a large body of results from potential theory to the problem of asset pricing.
For example, the Complete Maximum Principle implies that if Security A is worth more
than Security B in states of the economy for which ‘B pays dividends, then A is worth
more than B in every state. The Resolvent Equation gives a direct connection between the
time-rate of preference and security price in a Lucas [14] or Merton [15] style economy. We
also see that the reciprocal of the spectral radius of the valuation operator is the smallest
possible rate of return under which the current value of a security may be treated as the

expected future discounted payoff of the security, under some probability assessments.

The remainder of the paper is divided into two parts. The next section studies the op-
erator extension problem. Section 2.1 reviews several classical results on linear extensions;

Section 2.2 presents the basic price operator extension problem; the main extension results
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are Theorems 3 and 4 of Section 2.3. Section 3 applies the results of Section 2 to the con-
nections between asset pricing in a multi-period setting and potential theory. The direct
connection is made in Section 3.1. The role in this connection played by Markov processes
is outlined in Section 3.2. Finally, Section 3.3 shows how one can price assets merely by
discounted expected payoffs under a spectral radius discount rate and under expectations
given by “eigenprobabilities,” a kind of steady—state Arrow—Debreu prices. Many readers,
particularly those interested mainly in Markovian security valuation, may wish to proceed

directly to Section 3.

- 2. Price Operator Extensions

2.1. Background

We first review a classical extension result commonly known as the Hahn-Banach Theorem.
For convenience, we temporarily let L denote the vector space R, the real-line. We let
M denote a vector subspace of a vector space N. A map p : M — L is sublinear if
plz +y) < p(z) + ply) for all = and y in M, and p(az) = ap(z) for all @ > 0 and z in M.
A function F : N — L is an extension of a function f: M — Lif F(z) = f(z) for all z in
M.

THEOREM (HAHN-BANACH). Suppose f is an L-valued linear form on M and p is a
sublinear L-valued form on N such that f(z) < p(z) for all z in M. Then f has a linear
extension F : N — L such that F(z) < p(z) for all z in M.

As a corollary, any continuous linear functional on a vector subspace of a locally convex
space, for example a normed space, has a continuous linear extension to the whole space.
If M is ordered by the positive cone N4 and the original functional f: M — L is positive
on My = M N Ny, we usually want a positive extension F, meaning F(z) > 0 for all z in

N4 . A simple condition is given by the well-known Krein-Rutman Theorem:

THEOREM (KREIN-RUTMAN). Suppose N is a locally convex space and M Nint{N,)
1s not empty. If f is positive, linear, and continuous on M then f has a positive continuous

Iinear extension F': M — L. If N is normed, the extension is norm-preserving.

The condition that N, has interior is strong, but can be weakened by applying the

following definition.



Subspace Positive Intersection Property (SPIP). Suppose M is a vector subspace of an
ordered vector space N. Then (M, N) has SPIP if, for each z in N, there exists y in M
such that z + y > 0 if and only if there exists z in M such that z+ z < 0.

LEMMA. If M Nint(Ny) # 0 then (M, N) has SPIP.

The proof is simple. We can then weaken the Krein-Rutman conditions as follows.

THEOREM (MONOTONE EXTENSION). Suppose, for any ordered vector space N and
vector subspace M of N, that (M, N) has the subspace positive intersection property.

Then any positive linear L-valued form on M has a positive linear extension F : N — L.

A proof may be found in Day [6].

2.2. Operator Extensions

Now we attempt generalizations of the results in the last section for f a linear functional
(L = R) to f a linear operator mapping a subspace M of a vector space N into a general
vector space L. For most applications in a Markovian setting, L = N. For example, let
N denote a vector space of real-valued functions on a set {2. A security, in a two-period
setting is identified with a function = in N, where z(w) denotes the payoff of the security
in state w at the next period. If A is the subset of securities actually available for trade
and there is free formation of portfolios (linear combinations) of securities, then M =
span(A) is the marketed subspace of portfolios, a vector subspace. Let B denote the set of
“current” states of the world; in a Markovian setting we take E = 2. The market value
f(z) of portfolio z is [f(x)](§) in current state { € E. We treat f(z), then, as an element
of a space L of real-valued functions on E, and f as an operator mapping M into L. By
the linearity of market valuation, f is linear. There are {at least) two particular reasons
we may want a positive linear extension of f to the full space N of possible securities.
First, one may want to draw conclusions similar to Kreps’ [13] on the relationship between
the extension of price functionals, “viability” (in his language, the existence of optimal
choices), and absence of arbitrage. Second, we may wish to obtain a representation of f
as a “conditional expectation operator,” along the lines of Harrison and Kreps [10]. Duffie
and Garman [7], for example, apply the results of this paper to an intertemporal security

market setting, showing that lack of arbitrage implies that the valuation operators between
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successive dates compose and extend to an evolution family of operators, or a semigroup in
the stationary case. In a rational expectations economy, the image space L could be viewed
as the the space of functions on E measurable with respect to the sigma-algebra generated

by the join of all “private information” sigma-algebras.

Of course, in the setting we present, one can always obtain a real-valued linear ex-
tension of [f(-)](&) separately for each “state” £, but there is no reason to believe that
the resulting “extension” F is “measurable”, in the sense that [F(z)](-) is a measurable

function on E, which is a key property for most purposes.

The existence of a positive operator extension of f depends on property of L or N
known as order completeness. In fact, order completeness is both necessary and sufficient
under other weak regularity conditions. An ordered vector space L is order complete if it
has the following property: [Let A C L be a subset such that there exists z € L witha < =
for all @ in A. Then A has a least upper bound, a vector y € L such that ¢ < y for all a in
A and no other vector z <y with this property.]

The lineal closure of a subset A of a vector space L is the set of z in L such that there
exists y in A with {az+(1—a)y,a € (0,1]} C A. A subset A of L is lineally closed provided
A and the hineal closure of A coincide. Of course, if a subset of a topological vector space
is closed, it is lineally closed. (But not necessarily the converse!) We will stipulate in some
of the following results that N4 or Ly is lineally closed. This is certainly the case for any
foreseen application.

A vector space L has the Hahn-Banach extension property if the Hahn-Banach The-
orem stated in Section 2.1 (for L = R) is true for any vector space N and vector subspace
M C N. A vector space L has the Monotone Extension Property if it obeys the Monotone

Extension Theorem (stated in Section 2.1 for L = R.)

THEOREM. Suppose L is an ordered vector space whose positive cone is lineally closed.

Then the following conditions are equivalent.

(i) L is order complete
(ii) L has the Hahn-Banach Extension property

(111) L has the Monotone extension property.
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This statement is highly simplified from a similar result of Day [6], his Theorem VI,
3.1. and tells us that even under the favorable “subspace positive intersection property”
there is no guarantee of a positive linear extension of the market valuation operator unless
L is order complete. This is strong. For example, the space C3(f2) of bounded continuous
functions on a normal topological space {2 is order complete if and only if  is extremally
disconnected (each open subset of  has open closure). In effect,  must be discrete. For
(M, M, ) a o—finite measure space, however, all of the spaces L?(p), 1 < g < oo, are order
complete. The o-finite restriction is weak: (M, M, p) is o-finite provided M is the union
of a countable set of its measurable subsets, each of finite measure. In particular, any
Euclidean space is o-finite (Lebesgue measure), as is any finite measure space for example,
a probability space. We will be focusing on L°(p) since that is a natural space for Markov
processes [11]. This is the space of essentially bounded measurable real-valued functions on
(M, M, ). The o-finite restriction can be weakened to localizable, as defined by Schaefer
(18, p. 157].

2.3. Main Extension Results

An ordered vector space L is a lattice if every set {z,y} of two elements = and y of L has a
least upper bound, denoted z V y. For example, the spaces Cy(€2) and L(p), 1<g< o0
described in Section 2.2 are lattices, with fV g = {max{f(w),¢(w)}, w € 2}. The space
C1[0,1] of differentiable functions on [0,1] is not a lattice because the least upper bound

of two differentiable functions need not be differentiable.

A Banach space L that is a lattice is a Banach lattice provided the function z — zt =
z V 0 is continuous. The function spaces Cy(€2) (supremum norm) and L?(p) are examples
of Banach lattices. A Banach lattice L with the property |zVy ||=]z] V ||y ]| forall z
and y in Ly is an abstract M-space, or AM-space. If the unit ball of L has a least upper
bound, say ¢, then e is the unit of L. An example of an AM-space with a unit is L(p);

there are many other examples, for instance Cy({2). The unit of both L*°(u) and Cy(€1) is

the constant unity function. The following famous result will soon be used:

THEOREM 1. If L i1s an AM-space with unit then L is isomorphic with the space
C(K) of continuous functions on a compact topological space K. If, in addition, L is order

complete, then K Is extremally disconnected.
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This result, due more or less to Kakutani [18, pp. 104-108], is the basis of the following
result. First we note that a vector subspace of a lattice is a sublattice if a lattice under the

same ordering.

THEOREM 2 (SCHAEFER). Suppose M is a closed sublattice of a Banach lattice N, and
L is an order complete AM -space with unit. Then any positive linear operator f : M — L

has a norm preserving positive linear extension F : N — L.

For a multiperiod application, the norm preserving property of this extension is im-
portant, and we will strive for it in the following.! It is implicit in the statement of
Schaefer’s result, and a useful property, that every positive linear operator on a Banach
lattice into a normed lattice is continuous, or equivalently, of finite norm. See [18, p. 84].
Unfortunately, and this is critical, it is extremely restrictive to assume that the marketed
subspace M of the space N of all possible securities 1s itself a lattice. That is, if port-
folios z and y are in M, there is no reason to believe that the portfolios with payoffs
{z V y)(w) = max{z(w),y(w)}, w € Q, is also marketed. A sufficient condition is that
all options and compound options are available for trade [12]. Thus, all of our remaining

results are not for M not a sublattice.

A vector subspace M of an ordered vector space N majorizes N provided, for each
n € N there exists m € M such that m > n. For example, if N = L>®(p), it is necessary
and sufficient for M to majorize N that there exists z € M and a scalar £ > 0 such
that £ > k. Because majorization implies the subspace positive intersection property, the

following result is a corollary to the Theorem of Section 2.2, but the proof is illustrative.

PROPOSITION 1. Suppose L is an order complete vector space with a lineally closed
positive cone, If N 1s an ordered vector space majorized by a vector subspace M, then any

positive linear operator f : M — L has a positive linear extension.
PROOF: Let p: N — L denote the function defined by

p(z) =inf{f(y): <y, yeEM}, =z€N.

1 We recall that the norm || f || of an operator f : M — L on a normed space (M, || - ||ar)
into a normed space (L, || - ||1) is sup{]| f(m) ;|| m ||m< 1}.
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Then p is sublinear and the Hahn-Banach extension property applies because L is order
complete (See Section 2.2). Thus f has a p-dominated linear extension F : N — L.

Because, for any ¢ € N4, F(—z) < p(—z) =0, F is a positive linear extension. [

There is not a hint of a norm preserving argument to be gotten from this proof. The
following result has thus been developed. This result heavily exploits the properties of the
Markov setting, N = L, and the properties of an order complete AM-space with unit. A
special case is N = L = L (), which is precisely the setting most suited to the security

valuation problem in a multiperiod setting.

THEOREM 3. Suppose L is an order complete AM-space with unit, M is a vector subspace
of L, and f is a continuous positive linear operator on M into L. Then f has a positive

norm preserving linear extension F : L — L.

PROOF: First, by Theorem 1 of this section we can treat L as the space C(K) of continuous
functions on a compact extremally disconnected topological space K. [The proof proceeds
identically without this transformation for the case L = L°(u), 1 a o-finite measure, which

is the principal application.]

Let p : L — L denote the sublinear form:
plz) =l f || «t, =zelL.

[That p(az) = ap(z) for a > 0 is obvious. Since (z + y)t < 2t + yT, sublinearity is then
trivial.] Now f(z) < p{x) for z € M follows by positivity of f and the definition of p. Thus,
simce L is order complete, f has a p~dominated linear extension F : L — L by the theorem
of Section 2.2. The extension is positive since, for any ¢ € Ly, F(—z) < p(—z) = 0. The

extension is norm-preserving since, for any z € L,

| F(z*) = F(z7) ||

max{[| F(z*) ||, [| F(z7) I}
max{|| p(z™) ||, | p(z7) |I}
max{|| f Il «* I, I £ 1=~ I}
171 max {f ¥, [ =7 |1}

s FALER R

| F(=)

I IA A

This completes the proof. §
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One of the conditions of Theorem 3 is that f is continuous. We note that this is

automatic if M is a closed sublattice, as noted earlier, or under the following condition.

LEMMA 1. Suppose L is an AM-space with unit majorized by a vector subspace M. If
f 1s a positive linear operator on a vector subspace M of L into a normed ordered vector
space Y then f is continuous.

PROOF: Let y € M be such that y > e, where e is the order unit of L. Then, for any
z € M of norm less than or equal to unity, || f(z) || <|| f(y) || by positivity of . §

This is actually a special case of a much more general result. See Schaefer {17, p. 230]. Of
course a more general result is obtained under the subspace positive interaction property,

but the proof is less clear.

LEMMA 2. Suppose N is a Banach Lattice and M is a vector subspace of L such that
(M, N) has the subspace positive intersection property. If f is a positive linear operator
on M into a normed vector lattice L, then [ is continuous.

PROOF: By the Theorem of Section 2.2, f has a positive linear extension F : N — L. But

any such operator F is continuous since N is a Banach Lattice. Thus f is continuous. §

We also have an extension result for the case N # L. An operator P between normed
spaces 1s contractive if continuous and of norm less than or equal to unity. An operator
P is a projection if the composition P2 = P o P is equal to P. We will make use of the

following techmnical result.

PROPOSITION 2. Suppose L 15 an order complete AM-space with unit e and Ly is a closed
vector sublattice of L containing e. Then there exists a positive contractive projection

P : L — Ly whose range is Lyg.

This Proposition is Corollary 2, p. 110 of Schaefer [18]. We then have our second

extension result.

THEOREM 4. Suppose L and N are AM-spaces with unit, the former order complete,
and f is a positive linear operator into L on a vector subspace M of N that majorizes N.

Then f is continuous and has a positive linear norm preserving extension F : N — L.

PROOF: As earlier, we can identify L with the space C(K) of continuous functions on

a compact extremally disconnected space K. Let £°°(K) denote the space of bounded
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sequences on K. Because K is extremally disconnected, we can treat C(K) as a closed
vector sublattice of £°°(K') with the constant unity function as its unit. By the previous
proposition, there is a contractive projection P : {°(K) — C(K).

For each t € K, the linear functional g : M — £>°(K) defined by

g(z) = [f(2)](t), zeM

is positive, and thus by Lemma 1 continuous of norm no greater than || f || . Because
M majorizes N, we know M N int(N4) is not empty. Thus, by the usual Krein—Reitman
Theorem (Section 2.1), ¢ has a norm-preserving positive linear extension @, : N — R. The
operator @ : N — {*°(K) defined by

[Qz](t) = Qiz, tE€K,

1s positive, linear, and of norm || f || . The composition F = P o @ is thus a positive linear

norm preserving extension of f. §

The conditions on N can be weakened, it seems. There is then a possible result on
strictly positive extensions of strictly positive operators, following the ideas in Kreps [13]

and Duffie-Huang [8].

3. Prices and Potentials

We now apply the extension results of the last section to show that the market value of a
security in a multiperiod setting may be treated as the potential of its dividend under an
extension of the single-period valuation operator. There may be a folklore concerning this
result, although I am not aware of a reference. At least in the context of a deterministic
growth economy, the idea might be fairly common knowledge. Aside from the intuition
afforded by connecting prices with the physical phenomenon of potentials, there is a body
of results from potential theory that may be of interest to asset pricing theorists. We will
take a small sample. A major post-war occupation of probabilists has been the drawing
of parallels between Markov processes and potential theory. This is evident, for example,
in the work of Blumenthal, Chung, Doob, Dynkin, Getoor, Hunt, and Meyer, to name a
few. Of course it is this parallel, combined with an assumption of Markovian uncertainty in
market models such as those of Merton [15], Lucas [14], Brock [3,4], Breeden [2], and Cox,

Ingersoll, and Ross [5], that creates the link between potentials and prices shown here. We
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will ignore probability theory for the moment, however, and illustrate that link directly.
Then we show several applications of potential theory to asset pricing. Finally, we bring in

Markov properties.

3.1. The Price-Potential Equivalence

Let L be a vector space of “assets”. A security is identified with its dividend, a vector d
in L. Typically, L is a space of real-valued functions on a “state” space Z, and d(z) is the
dividend paid in state z € Z. Similarly, the market value of a security is a vector p in L.
In the framework suggested, p(z) is the “price” of the security in state z. We call (p,d)
a price—dividend pair. Although there is no formal requirement to do ‘so, we will imagine
an infinite-horizon setting in which the market value p and dividend d of a security are
the same functions of the state at all times. Of course, by adding time to the state space,
we can convert to this interpretation even in time-dependent settings. For simplicity, we
take the convention that market values are pre-dividend, so that p(z) — d(z) is the value in
state z of a claim to p in the following period, which depends of course on the state in the
following period. Let 4 index the set of all securities and let M = span ({pa,a € 4}) denote
the marketed subspace of L. With post dividend trading, that is, any asset m € M can be
created as a portfolio o € RN of N securities in the form m = Zle Qnpr, where {1,... N}
indexes some finite subset of A. Let V : M — L denote the valuation operator, which maps
any marketed asset m € M to the required investment, or V(m) = EnNzl an(pn — dy),
where m = ZnN:1 Qnpr. In other words, [V(m)](z) is the market value of asset m in state
z. Of course V is a linear operator. Although there is some room for generalization, we take
the asset space L to be the space L® of bounded measurable functions on the state space
(Z,Z), treating functions equal almost everywhere as identical. We assume the underlying
measure space is o—finite. A Euclidean state space is an example.

The valuation operator V is arbitrage-free if positive, that is, if any asset whose
payoff is positive in every future state requires a positive investment in every current state.
The valuation operator V is strictly contractive if || V | < 1, meaning that the maximum
possible payoff of any portfolio is strictly greater in magnitude than the required investment.
A sufficient (but far from necessary) condition is the existence of a scalar € > 0 such that,
for any price-dividend pair (p,d), we have p > d > e. If P : L — L is a positive operator,

©0

the potential operator associated with P is the operator G = } >°_ P™, where P" is the
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n-th power of P. [ For example, P2 = P(Pf).] The function Gf is the potential of any
feL.

PROPOSITION. Suppose the market valuation operator V is arbitrage-free and strictly
contractive. Then V has a positive strictly contractive linear extension P : L — L. The

market value p € L of any security is the associated potential Gd of its dividend d € L.

PROOF: Apply Theorem 3 of the previous section for the existence of a positive strictly
contractive linear extension P : L — L. Then, for any price-dividend pair (p, d), we have
p— d= Pp, implying

p=Pp+d=P(Pp+d)+d=---

N
= limN—oo (PN p+ Y. P"d>

n=1

= Gd,

since PNp — 0 in norm by the fact that || P ||< 1. §

The proof is nothing more than the usual Neumann series expansion of (I — P)™1,

An example of how potential theory may be applied to asset pricing is given by the

Complete Maximum Principle.

THEOREM (COMPLETE MAXIMUM PRINCIPLE). Let G denote a bounded potential op-
erator associated with a positive contractive operator P. For any g in Ly, h in L, and

positive scalar k, if k + [Gg](2) > [Gh](2) for all z such that h(z) > 0, then k + Gg > Gh.

PROOF: Since G is bounded, the associated kernel is proper in the sense of Meyer [16], p.
173. A positive function f € L is excessive if Pf < f. We note that k15 + Gg is excessive,
an easy lemma to prove. Then Theorem T27 of Meyer [16], p. 184, applies.

COROLLARY. Suppose the market valuation operator is positive and strictly contractive.
Let (p,d) and (g, f) be price-dividend pairs in L, with f positive. If k is a positive scalar
such that q(z) + k > p(z) whenever d(z) > 0, then ¢ + k > p.

The Corollary states that security A has a greater market value than security B in any
state of the economy provided the market value of A is greater than that of B in any

state in which the dividend of B is strictly positive. More generally, an excess in value by

12

N’



the indicated constant k is preserved. The connection between prices and potentials also
applies in continuous-time under continuity assumptions. For a continuous-time setting in
which the price-dividend pair (p, f) is invariant in time, under continuity assumptions we

would have the relationship

T
p=/ Vifdt+Vrp, T 20, (1)
0

/

where {V,} is the family of operators that map future to current market values. Relation
(1) was first suggested by Garman [9]. That is, V; : L — L is the operator that assigns
a current market value V;f to an asset that pays f(z) in state z at time ¢ in the future.
As argucd in Duffie and Garman [7], the family {V;} is a semigroup, meaning V, = V,V,
whenever s +t = 7. In that case, we take G to be the potential of the semigroup {V;} of

valuation operators, or
©Q
sz/ Vefdt, felL.
0

In order to establish (1), of course, one requires, in addition to the absence of arbitrage,

strong continuity conditions that are not required in discrete time.

3.2. Price Operators and Markov Processes

Whether in discrete or continuous time settings, as soon as one has positive contractive
price operators, there is also a Markov {(or sub-Markov) state process X under which the
current market value of a security is the total infinite horizon expected dividends of the

security. In discrete-time for example, if (p, d) is a price-dividend pair, we will have

oo

}:d(fc,)] , z€2Z,

t=0

p(z) = E,

where E, denotes expectation for Xy = 2. The discounting effect of security pricing Is
incorporated within the “killing rate” of the sub-Markov process X. For discrete~time,
one can simply define X to be the Z-valued process with probability transition function
@ on the state space Z defined by Q.(B) = [V(1p)}(2) for all B in Z, where V is a
norm preserving positive linear extension of the valuation operator. That is, @,(B) is the
conditional probability that XH—I € B given that X, = z. [See, for example, Dynkin [1]

for details.] In continuous-time, the semi-group of extended valuation operators {V;} is
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associated in the same way with some Markov process X under regularity conditions. See,
for example, Dynkin [1], Chapter 2. In that case, p(z (fo X, dt)

We have shown that one can begin with security valuation and obtain a corresponding
sub—Markov process X under which the market value of a security is the expected total
dividends to be paid. A likely equilibrium foundation for this type of Markov pricing is
an underlying Markov process X. For example, in a discrete-time Markov economy, let
P be the sub-Markov transition operator associated with an underlying Z--valued state
process X and let p € (0,1) denote the discount rate of the single or representative agent,
whose marginal utility for consumption is given by a strictly positive function v € L, or
v(z) = Zu(c(z),2), where ¢ : Z — Ry denotes the aggregate consumption function and
u : RxZ — R denotes the time and state additive differentiable utility function of the agent.
Let A: L — L denote the operator mapping any p € L to vp = {v(2)p(z),2z € Z}. Then
the valuation operator is given by V = A~'pPA. See, for example, Lucas [14], who calls
this the Stochastic Euler Equétion. However V is not generally strictly contractive unless
v is bounded away from zero. But pP is strictly contractive, has some bounded potential
operator G, and the market value of a security with dividend d € L is p = A™1G,Ad.

The same approach applies in continuous time. Let {P;} denote the semigroup of the

underlying Z-valued Markov process X. Utility is given by

U(c)=E (/Ooo e_”'u(chXt)dt) .

Let G, denote the p-potential of {P,}, meaning G, = [;° ¢~ **P,dt. See Meyer [16], pp.
187-201 and Dynkin [1}, Chapter 2. Again the equilibrium market value, relative to the
consumption numeraire, of a security paying dividend d € L in a single or representative

agent equilibrium can be nothing other than p = A~1G,Ad. More explicitly,

p(z) = E, [ /0 ” e""v(X,)d(X,)dt] ,

where E, denotes expectation for starting point Xo = z € Z. If A™! is bounded, that
is, if marginal utility for aggregate consumption is bounded away from zero across states,
then A7'G,A is bounded and we can “design” a new sub-Markov process X with the
same state space Z under which the value of a security paying dividend d € L is merely

kE(f, d (X,)dt), where k is a scaling constant which we can take to be || A=! || || A ||. This
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18 the sub-Markov process X defined by the contraction semi-group {i—A‘lPtA}. That
this 1s indeed a contraction semi-group can be checked from the definition given by Dynkin
[1, p.22]. That there corresponds a sub-Markov transition function can be confirmed from
Theorem 2.1 (p.51) of Dynkin [1], provided {P;} is itself well-behaved in the sense of
that theorem. Finally, the existence of a corresponding sub-Markov process X is given
by Theorem 3.2, p. 85 of Dynkin [1], again assuming the underlying process X satisfies

mintmal regularity conditions.

For any scalars p > 0 and y > 0, we have the resolvent equation (for continuous—time):
G, =Gy+ (v —-p)G4G,.

This allows us to deduce, for instance, how the rate of time discount in the preferences of
the agent affects the market value of securities. For éxample, if the agent’s discount rate
changes from 7 to p, the value of a security claiming dividend d changes from p = A~1G,Ad
top=p+{(y—p A G,G,Ad. The corresponding discrete-time resolvent equation can
be deduced from Meyer [16], p. 201. We could also think of p as the “killing rate” of the
underlying Markov process. The probability of survival of the agent over an interval [0, T|

is then e 7T,

3.3. Eigen—probability—prices

The curious title of this section comes frém a connection between the spectral radius of
an (extended) valuation operator V : L — L and financial rates of return. The relation
Af =V f, for some scalar X # 0, and non-zero f in L means that f is an eigenfunction and
A 1s an eigenvalue for V. (See, for example, the appendix of Schaefer {17].) In our setting,

this equation implies that one can “invest® Af and receive f in the next period, for a fixed

return of i, regardless of the current state. The supremum of the set of absolute values
of eigenvalues is the spectral radius r(V) of V. In finite-dimensional cases, or when V is
compact [17, p. 266], or even more generally [17, Theorem 3.4], the positivity of V implies
that there is an eigenvalue A = (V) > 0 with a corresponding eigenfunction fy > 0. In
the finite—-dimensional case, this is known as the Frobenius-Perron Theorem, and if V is
strictly positive, then A = (V) > 0 and f > 0 is strictly positive and unique. We note

that the largest eigenvalue corresponds to the smallest possible fixed rate of return. For
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example, in the Lucas model explained earlier, it is short work to show, if marginal utility
for consumption is bounded away from zero, that the maximal eigenvalue 1s the discount
rate p and that f, = {v—(l;), z € Z} is the corresponding eigenfunction. Obviously, a security
whose payoff is the reciprocai of marginal utility is “valuable,” and a small rate—of-return
will induce an agent to hold it.

There is also an interesting relationship between the spectral radius of the valuation

operator and “expected returns” under an “eigenmeasure.”

THEOREM. Suppose V : L® — L is a positive linear operator. Then there is a proba-

bility measure @ on the state space (Z, Z) such that
E°(Vf) =r(V)E2(f)

for all f in L, where the positive scalar r(V') is the spectral radius of V.

PROOF: Let V' denote the adjoint of V. By the Corollary to Appendix Theorem 2.6 of
Schaefer [17], V! has a positive eigenvector v # 0 with eigenvalue r(V). Since the dual of
L is the space of measures on (Z, Z), we can treat v as the product of a strictly positive
constant k and a probability measure @ on (Z, Z). By the definition of the adjoint operator

and an eigenvector, we have the desired result.

The Theorem says nothing more than that there is a way to assign probabilities to states,
the “stationary Arrow-Debreu prices,” under which the mean future value of any security
is a fixed multiple of its mean current value. This multiple is the supremum of all fixed
rates of return on assets. If one insists on valuing a security by taking the expected value of
its discounted payoffs, using a fixed discount rate and a fixed set of probability assessments
for all securities, then the discount rate (V') and the probability assessments given by Q

seem an obvious choice.

COROLLARY. Suppose the market valuation operator is arbitrage-free and strictly contrac-

tive. Then there exists an i1.i.d. Markov state process X under which, for any price-dividend
pair (p, d),

B(p(X,)) = E LZ 6’°-1d(xk)] . (2)
=1

The discount factor § < 1 can be taken to be the spectral radius of an extension of the

market valuation operator.
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PROOF: Let v6 be the spectral radius of a positive norm-preserving extension V of the
valuation operator. Let @ denote the probability measure on the state space (Z, Z) defined
by the preceding Theorem. Let X be an iid. Z-valued Markov process with transition
probability @. By the theorem, for any price-dividend pair (p,d), we have EQ(Vp) =
§ E?(p), which implies
E°(p - d) = §E(p)
= §(E%(p — d) + E%(d))
= 6(E9(Vy) + E%(d))

= 62E°(p) + 6 E?(d)

If

N-—co

N—1
lim |6NE(p) + ) " E2(d)
n=1

i

S 6 59(d),
n=1

since 6% — 0. Thus, E9(p) = 2,72, 6" E9(d). But this is equivalent to (2) since X has
transition @ and is i.i.d. The expectation in (2) is given in the usual way, under the measure
determined by € on the product space Z x Z x --- of sample paths with the o-algebra

generated by all measurable cylinder sets. §

As a direct result of this corollary we have, for any price-dividend pair (p, d),

1
1-46

E9(p) = —— E2(d), (3)

where @ is the transition probability of the constructed Markov process X.
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