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1. Introduction

This paper presents a model for valuing claims subject to default by both contracting

parties. This extends the valuation model for defaultable claims proposed by Duffie and

Singleton (1994) to cases in which the two counterparties have asymmetric default risk.

The extension permits a re-examination of the impact of credit risk on swap rates. While

the valuation model applies to all forms of contingent claims in which both contracting

parties are at risk to default, such as forward contracts, we focus on swaps for purposes of

illustration.

For example, consider a 5-year interest rate swap between a given party paying floating

LIBOR rates and another counterparty paying a fixed rate. Replacing the given fixed-

rate counterparty with a “lower-quality” counterparty whose bond yields are 100 basis

points higher increases the swap rate by roughly 1 basis point, using our model and typical

parameters for LIBOR rate processes. This credit impact on swap rates is approximately

linear within the range of normally encountered credit quality. For a 5-year currency swap,

given a foreign exchange rate with 15 percent volatility, our model shows the impact of

credit risk asymmetry on the market swap rate to be roughly 10-fold greater than that

for interest rate swaps, that is, approximately 10 basis points in swap rate per 100 basis

points in bond yield credit spread. The main goal of this paper is to provide a simple and

theoretically consistent model allowing such computations.

The basic idea behind our model is that the impact of credit risk on swap rates depends

on the probability distribution of the path taken by the value of the swap itself. When the

swap value is positive for a given counterparty, it is the default characteristics (default

hazard rate and fractional loss given default) of the other counterparty that are relevant

for the backward recursive computation of the current swap value given its value at the

next point in time. The basic idea for this recursion was developed by Rendleman (1992).

Rendleman’s model, however, is based on the impact of the swap value on the balance

sheets of the counterparties, and considers the direct implications for structural insolvency

(liabilities exceed assets). In order to address the problem of determining market swap

rates, for which one cannot normally analyse the financial statements of the counterparties

on a case-by-case basis with any degree of ease or accuracy, we develop a reduced-form

model in which the default characteristics of the counterparties are directly estimated in
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terms of credit spreads.

The discrete-time intuition behind our model is as follows. At any given time t, the

current market value of the swap, assuming that it has not yet defaulted, is denoted Vt.

We suppose that Vt is the value to counterparty A, and therefore that −Vt is the value to
the other counterparty, B. If Vt > 0 then, in usual cases, counterparty A is at risk to the

default of counterparty B between t and t + 1. Thus, under risk-neutral probabilities, Vt

is the probability that B defaults between t and t + 1 multiplied by value given default

by B, plus the probability that B does not default between t and t+ 1, multiplied by the

market value given no default by B. The market value given no default is the expected

present value of receiving Vt+1 at t + 1, plus any net dividends paid to A by B between t

and t + 1, under the terms of the swap. The market value given default is some fraction,

associated with the credit quality of B, of the market value given no default. If, on the

other hand, Vt < 0, then this recursive method for computing Vt from Vt+1 is the same,

except for the fact that B is at risk to default by A in this case, so the probability of default

and fractional recovery on default used in the recursion are those of A. (We explore several

other conventions regarding the nature of the losses given default, including those based

on alternative standards that have been considered for pre-termination settlement of swap

contracts set by the International Swap Dealers Association (ISDA).)

The effective credit quality of a counterparty in our model is the spread S in the short

rate of interest that applies for debt of that counterparty, over the usual (default-free)

short rate r. In continuous-time, this spread was demonstrated by Duffie and Singleton

(1994) to be St = (1− ϕt)ht, where ϕ is the stochastic process for fractional recovery rates
given default and h is the process describing the hazard rate for default. In effect, ht∆t is

approximately equal to the conditional probability at time t of default over the next interval

of “small” length ∆t. The default-adjusted effective short rate is R = r+ S. Typical term-

structure models for default-free bonds are valid for defaultable bonds when substituting

the default-adjusted short rate R for the usual short rate r.

We consider cases in which counterparty A is always of higher credit quality than

counterparty B, in the sense that SA < SB, where SA is the short credit spread for A

and SB is the short credit spread for B. In these cases, we show that netting across

swap portfolios always increases the market value of the portfolio for the higher-quality
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counterparty A (and therefore reduces the market value for the lower quality counterparty

B). Of course, the diversification of credit risk associated with netting is usually beneficial

to both counterparties. We also show that the party of higher credit quality prefers to delay

the release of information that may have an impact on swap values. We provide a relatively

explicit formula for the marginal impact of an increase in the credit-risk asymmetry SB−SA

on the market value of a swap. The distinguishing feature of this formula is the appearance

of an expectation of an integral over time of (SAt − SBt )V +t , the credit spread multiplied
by the positive part of the market value of the swap contract, showing the importance to

both counterparties of the volatility of the market value of the swap. Indeed, in an example

involving a currency swap, we are able to exploit the Black-Scholes formula to compute this

marginal impact of credit risk asymmetry, and thereby deduce the marginal impact on the

swap rate.

In Section 2, we present and characterize a two-counterparty defaultable claim valuation

model in a general setup, extending results from Duffie and Singleton (1994) and Duffie,

Schroder, and Skiadas (1993). In Section 3, we apply our model to the case of interest-rate

swaps and calculate the impact on swap rates of asymmetric credit quality. In Section 4,

we apply the model to a portfolio of swaps and calculate the impact of netting provisions

on swap rates. In Section 5, we apply the model to foreign currency swaps. All proofs are

in Appendix A.

2. Valuation of Defaultable Swaps

We are interested in the valuation of a contingent claim (or contract) between two coun-

terparties, allowing for the possibility that either counterparty could default before the

maturity of the contract. If the claim is an asset (that is, has positive value) to one party

throughout the life of the contract, the valuation problem is normally reduced to that in-

volving a single defaultable party, since only default by the party of liability affects the value

of the claim. Such one-party defaultable claim valuation problems have been studied ex-

tensively by many authors; see Artzner and Delbaen (1991); Duffie, Schroder, and Skiadas

(1993); Duffie and Singleton (1994); Hull and White (1992a); Jarrow, Lando, and Turnbull

(1993); Jarrow and Turnbull (1992); Lando (1993, 1994); Longstaff and Schwartz (1993);

Nielsen, Saá-Requejo, and Santa-Clara (1993); Ramaswamy and Sundaresan (1986); and
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Sundaresan (1991). Our interest lies in the valuation of two-party contingent claims (or

contracts) that can be either an asset or a liability to each party during the life of the con-

tract. Without loss of generality, this problem is equivalent to the valuation of defaultable

swaps.

Since swap default settlement rules are based on market values (obtained through

market quotations) at the time of default (as will be specified later in this section), the

valuation of the default risk of swaps can be studied within the framework of defaultable

claims valuation proposed by Duffie and Singleton (1994), as extended by Duffie, Schroder,

and Skiadas (1993), which assumes that the payoff upon default is a function of the market

value of the claim just prior to the time of default (or equivalently, to the market value of

un-defaulted claims that are otherwise identical). The above two studies, however, focus on

defaultable claims with one-party default risk and apply to defaultable swaps only when the

two counterparties have identical default risk. In this section, we use the same framework

to study the valuation of swaps involving counterparties with asymmetric default risk.

2.1. Basic Setup

We begin with a probability space (Ω,F , P ) and a family IF = {Ft : t ≥ 0} of sub-σ-
algebras of F satisfying the usual conditions. (See, for example, Protter (1990) for technical
details.) The filtration IF represents the arrival of information over time. We also assume

the existence of a short rate process r (progressively measurable and integrable), so that an

investor can place one unit of account in riskless deposits at any time t and roll over the

proceeds until time s ≥ t for a (time-s) market value of exp(
∫ s
t
ru du).

2.2. Swaps and Default Characteristics

Consider two counterparties denoted, respectively, as party 1 and 2. Following Duffie,

Schroder, and Skiadas (1993), we model the stochastic default time of party i (i = 1, 2)

as an IF -stopping time τ i valued in [0,∞].1 The default time for the swap is defined as
τ = τ1 ∧ τ2, the minimum of τ1 and τ2. The event {τ > T} is then the event of no
default. In this setup, a swap2 with maturity T initiated at time zero between these two

counterparties is formally defined by

1 Throughout, we use superscripts 1 and 2 to denote counterparties. The event τ i =∞
means no default.
2 Our definition of a swap includes a forward contract as a special case.
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(1) a pre-default payment by party 2 to party 1 of a cumulative dividend process {Dt :
0 ≤ t ≤ T}, where D is a semimartingale of finite variation3 such that4

EQ

[∫ T
0

exp

(
−
∫ t
0

ru du

)
|dDt|

]
<∞;

(2) a settlement payoff to party 1 in case of default at time t by one or both parties: party 1

receives Z1(ω, t) when party 1 defaults at state ω and time t and Z2(ω, t) when party 2

defaults at state ω and time t. The processes Z1 and Z2 are assumed to be predictable

and may depend endogenously on the valuation of the swap, as described below. Of

course, both parties could default simultaneously, but in practice it is unlikely that

they will do so with positive probability. For completeness, we consider the possibility

of simultaneous default in Appendix B.

Suppose, for example, that parties 1 and 2 are engaged in a fixed-for-floating interest rate

swap in which party 1 exchanges a fixed interest payment for a floating interest payment (on

the same constant notional amount) with party 2, semiannually until maturity. Party 1’s

cumulative dividend Dt is then the total floating interest payment by party 2 up until time

t, minus the total fixed interest payment by party 1 up until time t.

The predictability of the default settlement payoff means roughly that, were the time

of default known, the payoff upon default would be known just prior to default. The de-

fault time, however, may be a “surprise,” that is, totally inaccessible.5 Intuitively, a totally

inaccessible stopping time represents an event that cannot, with positive probability, be fore-

seen immediately before it occurs. Madan and Unal (1994) argued that, since a predictable

stopping time for default may force the default spread near zero for small maturities, the

empirical fact that spreads can be substantial for even short maturities makes it more rea-

sonable to assume that default times are surprises. Of course, this argument assumes that

3 See, for example, Protter (1990) for a technical definition of a semimartingale. We
always assume without loss of generality that a semimartingale is RCLL (right-continuous
with left limits).
4 This integrability condition is satisfied if the market value of the promised gross

payment of each counterparty, if assumed to be default-free, is finite.
5 A stopping time T is totally inaccessible if for every predictable stopping time S,

P ({ω : T (ω) = S(ω) < ∞}) = 0. A predictable stopping time S is a special case of an
accessible stopping time, and is defined as the limit of an increasing sequence of stopping
times (Sn)n≥1 that are strictly smaller than S on {S > 0}.
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empirical spreads are due to default risk. See Grinblatt (1994) and Duffie and Singleton

(1994) for a discussion of alternative determinants of spreads, with references.

There exist at least two kinds of default settlement rules in the swap market. Under the

so-called “fault” or “one-way payment” rule, specified in early standard swap documentation

supported by the International Swap Dealers Association (ISDA), the payment due the non-

defaulting party is the higher of the market value of its position or zero. In other words, the

non-defaulting party is not obligated to compensate the defaulting party if the remaining

market value of the swap is positive for the defaulting party. The current standard practice

in swaps markets (supported by current standard documentation by ISDA), however, is the

so-called “no fault,” or “two-way payment” rule, which obligates the party with negative

remaining market value in the swap to compensate the other party, based on the remaining

market value of the swap, regardless of the identity of the defaulting party. Standard swap

contracts also often include netting provisions across swap portfolios, requiring only the net

market value of all swaps between two counterparties to be paid in the event of default.

The actual default settlement payoff can be short of that given by the default settlement

rule. The default settlement payoffs to party 1, given that the default time is t and that

the market value of the swap just prior to the default (the left limit) is some number v, are

given by

Z1(ω, t) = ϕ1(v, ω, t) v 1{v<0} + ϕ̄
2(v, ω, t) v 1{v≥0};

Z2(ω, t) = ϕ2(v, ω, t) v 1{v≥0} + ϕ̄
1(v, ω, t) v 1{v<0},

(2.1)

where, for each i, the functions ϕi and ϕ̄i belong to the class

Λ = {λ : IR× Ω× [0, T ]→ IR, λ is measurable and λ(v, ·, ·) is predictable for all v}.

Here, ϕi represents the fraction of market value paid by the defaulting party i when the

swap has negative net market value for i, and ϕ̄i represents the fraction of market value

paid by the non-defaulting party i when the swap has negative net market value for i. Note

that ϕ̄i = 0 represents the “one-way payment” settlement rule, while ϕ̄i = 1 represents

the “two-way payment” settlement rule. The case of 0 < ϕ̄i < 1 can represent either a

mixture of these settlement rules, or the risk faced by the defaulting party in collecting the

remaining market value of the swap from the non-defaulting party.

The above formulation of defaultable swaps can be applied to a portfolio of swap
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contracts written with a netting provision, under which the cumulative dividend process

D to party 1 represents the net cash flow exchange (in the event of no default) across all

swaps in the portfolio. An example of the impact of netting on swap valuation appears in

Section 4.

2.3. Recursive Valuation of Defaultable Swaps

To characterize the market value of a defaultable swap, we formally define a process V

with the property that, if there has been no default by time t, then Vt is the market value

St of the swap to counterparty 1. The value V (ω, t) for t ≥ τ(ω) need not be uniquely

defined. We will show, however, that V is uniquely defined up to the default time. By

market value, we mean the price to any investor, of a claim that pays off the same cash flow

that counterparty 1 receives from the swap contract.

We study the valuation directly under an equivalent martingale measure, denoted Q,

relative to the short rate process r. This means that, for any security defined by a cumulative

dividend process {Xt : 0 ≤ t ≤ ∞} (adapted, RCLL, with finite variation), the market value
of the security at time t is

St = EQ

[∫ ∞
t

exp

(
−
∫ s
t

ru du

)
dXs

∣∣∣∣ Ft
]
, (2.2)

where EQ denotes expectation under Q. We do not deal directly with the existence of an

equivalent martingale measure, a property essentially equivalent to the absence of arbitrage,

as shown by Harrison and Kreps (1979), nor with the identification of some particular

equivalent martingale measure from market prices.

Some conditions are placed on the default times τ1 and τ2. We assume that, under Q,

the default time of each counterparty is totally inaccessible and that the associated hazard

rates are well defined and bounded. More explicitly, we introduce, for each i, the default

indicator functions, Hit = 1{t≥τ i}, a stochastic process that is equal to one if default by

party i has occurred, and zero otherwise. The Doob-Meyer decomposition implies that

Hi can be uniquely decomposed as Hi = Ai +M i, where Ai is a predictable and right-

continuous increasing process with Ai0 = 0, and M
i is a Q-martingale. We assume that the

default time of each counterparty is totally inaccessible, so that Ai is continuous.6 Indeed,

6 See Lemma 2 in Appendix A, where we show that Ai is continuous if and only if the
stopping time τ i is totally inaccessible.
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we assume that Ai is absolutely continuous, in that there is a (progressively measurable)

non-negative integrable process hi, called the default hazard rate of counterparty i, such

that

Ait =

∫ t
0

his1{s<τi} ds, t ≥ 0.

Artzner and Delbaen (1994) give technical conditions under which a hazard rate exists under

one probability measure if and only if a hazard rate exists under an equivalent probability

measure.

We allow each counterparty’s default hazard rate hi to depend on the value of the swap

contract. That is, we take hit(ω) = λ
i(Vt(ω), ω, t), where λ

i is in Λ.

The cumulative dividend process X of the swap for counterparty 1 is given by

Xt =

∫ t
0

1{s<τ} dDs + 1{s≤τ}

(
Z1s dH

1
s + Z

2
s dH

2
s

)
, t ≤ T. (2.3)

The first term is the prearranged swap payment before default. The second term is the

settlement payoff in two different default scenarios: party 1 defaults or party 2 defaults.

Appendix B considers the extension of (2.3) allowing for simultaneous default of the two

counterparties. Here, this event is implicitly assumed to generate zero payment. Equiva-

lently, we can assume that this event has zero probability and therefore has zero payment

almost surely.

A valuation formula can be obtained by substituting (2.3) into (2.2), using the above

decompositions of the default indicator functions, and then applying the formula for inte-

gration by parts for discontinuous semimartingales given, for example, by Protter (1990).

The result is a recursive integral equation of the general form

Vt = E

[∫ T
t

f(Vs, ω, s) ds + dDs

∣∣∣∣ Ft
]
, t ≤ T, (2.4)

for some f in Λ that is given explicitly below. This equation (2.4) is to be solved for the

stochastic process V representing the market value of the swap prior to default. Conditions

for existence and uniqueness of solutions to similar equations are given by Duffie and Epstein

(1992) and Antonelli (1993), and extended slightly in Appendix A to handle (2.4).

Formally, a process V is a pre-default value process if the swap value process S is well

defined by (2.2) and (2.3), and is indistinguishable from V before τ , in that St = Vt1{t<τ}

for all t.
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For defaultable swap valuation, we will consider the version of (2.4) given by

Vt = EQ

[∫ T
t

−Rs(Vs, ω)Vs ds+ dDs
∣∣∣∣ Ft

]
, t ≤ T. (2.5)

where

Rt(v, ω) = rt(ω) + s
1
t (v, ω)1{v<0} + s

2
t (v, ω)1{v≥0}, (2.6)

with

s1t (v, ω) =
(
1− ϕ1t (v, ω)

)
h1t (v, ω) +

(
1− ϕ̄1t (v, ω)

)
h2t (v, ω);

s2t (v, ω) =
(
1− ϕ2t (v, ω)

)
h2t (v, ω) +

(
1− ϕ̄2t (v, ω)

)
h1t (v, ω).

(2.7)

Extending from Duffie and Singleton (1994) and Duffie, Schroder, and Skiadas (1993), we

may think of R as the short rate after adjustment for the effect of default risk. We call a

function λ in Λ uniformly varying if v 7→ λ(v, ω, t)v is uniformly Lipschitz7.

Proposition 1. Suppose that r is bounded and that R, h1, and h2 are uniformly varying.

Then the swap price process S exists and is unique. Moreover, there exists a unique solution

V for (2.5). Furthermore, if the jump of V at τ is zero almost surely, then V is a pre-default

value process; that is, St = Vt1{t<τ} for all t.

If the short rate r is unbounded, the result remains valid with appropriate, but slightly

cumbersome, changes of numeraire, and mild technical integrability conditions.

In practice, the requirement that V does not jump at τ (almost surely) may not be

met, since V is discontinuous on dates of lump-sum payments when, in general, there may

exist a positive probability of inability of a counterparty to make the promised payment.

This difficulty can be avoided by taking into account8 the positive default probability and

lump-sum dividends on these deterministic dates with boundary conditions and applying

(2.5) between these dates.

7 v 7→ f(v, ω, t) is uniformly Lipschitz if there exists some constant k such that |f(u, ω, t)−
f(v, ω, t)| ≤ k|u− v| for all (ω, t) and all (u, v) ∈ IR2.
8 For example, at a coupon date t, let V− denote the pre-default value at t− and

V denote the pre-default value at t. Letting p(ω, t, V−) denote the conditional proba-
bility under the equivalent martingale measure of default at t (given no default up to
t, taking into account the lump-sum dividend payment ∆D(ω, t)), one has the equation
V− = p(ω, t, V−)ϕ(ω, t, V−)V−+

(
1− p(ω, t, V−)

)(
∆D(ω, t)+V

)
to solve for V−. Regularity

conditions on p and ϕ then allow one to solve for Vs for s < t, using a recursive integral
equation for the period between the previous coupon date and t, with terminal boundary
condition Vt− given.

10



Aside from lump-sum payment dates, there is no obvious reason to expect V to jump

at default. For example, we can rule out any jumps for V at default times in diffusion-style

models such as those treated in Section 3.

Although (2.5) is useful for proving the existence of a unique solution for the swap

price S and for its characterization (as will be shown later), it is sometimes more intuitive

to rewrite (2.5), through Ito’s lemma, as

Vt = EQ

[∫ T
t

e
−
∫
s

t
Ru du dDs

∣∣∣∣ Ft
]
, t ≤ T. (2.5′)

We call Rt the effective discount rate and s
i the default spread for counterparty i. The

discount rate Rt has a switching-type dependence on the swap value Vt. It is the riskless

interest rate plus the default spread of that counterparty with negative swap value. When

the two parties have asymmetric default risk (that is, different default spreads), the value

of the swap does not depend on the promised cash exchange D in a linear fashion.9 We

explore this non-linearity in more detail in the following proposition, which shows that, if

party 1 always has a lower default spread than party 2, then the value of a swap portfolio

with a netting provision (to party 1) is always weakly higher than that of the same swap

portfolio without a netting provision. Furthermore, the value of the swap portfolio with

a netting provision (to party 1) is strictly higher than that of the same portfolio without

a netting provision if, given the information available at any t, the values of swaps in the

portfolio (calculated separately without netting provision) can, with positive probability,

offset each other in the future.

Proposition 2. Suppose that, for each party i, si is bounded and does not depend on the

swap value directly: sit(v, ω) = ŝit(ω) for all (v, ω, t) ∈ IR × Ω × [0, T ]. Let V a, V b, and
V ab be, respectively, the value processes (to party 1) of swaps with cumulative dividend

processes Da, Db, and Da +Db. If ŝ1 ≤ ŝ2, then V ab ≥ V a + V b. Furthermore, for given

9 Since the promised payoff D of a defaultable security is not its actual payoff X, this
nonlinearity does not violate the simple consequence of absence of arbitrage which states
that the value of a security is linearly related to its payoff.
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t, V abt > V at + V
b
t on event B, where

A = {(ω, u) : u ≥ t, ŝ1u(ω) < ŝ2u(ω), V
a
u (ω)V

b
u (ω) < 0}

B =

{
ω : EQ

[∫ T
t

1A( · , u) du
∣∣∣∣ Ft

]
> 0

}
.

We note that Proposition 2 and, more generally, the non-linear relationship between

the value process V of a swap portfolio with netting provisions and the promised cumulative

dividend process D of the swaps in the portfolio implies that it is inappropriate to value such

a portfolio between two counterparties by valuing each swap (with default risk considered)

separately and then adding these values. Indeed, without some convention for treating a

swap in the context of the portfolio within which it is netted, the “price” or “rate” for the

swap is not a well defined concept. One can, however, define the marginal value of a single

swap to a netted portfolio by the difference between the value of the portfolio including the

swap and that of the portfolio without the swap. We will study, numerically, the impact of

netting on the marginal values of swaps in Section 4.

Proposition 2 also captures the value of the favorable industry practice of attempting,

if possible, to arrange swaps of offsetting default risk in a portfolio with netting provisions,

particularly with the same counterparty of a lower credit rating. (See, for example, Ruml

(1992).) An incorrect assumption of linear dependence of V on D (as in the case of valuing

each swap separately) would suggest that this kind of activity has no impact on market value.

Of course, swap diversification is also a useful means of risk management, independently of

its impact on market values.

Since the promised cash flow exchange in a single swap is always netted, Proposition 2

also implies that it is inappropriate to value a single defaultable swap by pricing the default

risk of the promised gross payment from each counterparty (for example, the fixed interest

payment by one party and the floating interest payment by another party in a coupon

swap) separately and then adding the two together (as done, for example, by Longstaff and

Schwartz (1993) and Sundaresan (1991)). Because the values of the two gross payments

have strictly opposite signs for party 1, Proposition 2 shows that this method of calculating

default risk would exaggerate the default risk of the swap by underestimating the value

of the swap to the party with higher credit quality (that is, the party with lower default
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spread).

The above implication of Proposition 2 for the valuation of coupon swaps also helps

explain the “puzzle,” posed by Litzenberger (1992): Market term swap rates (the fixed rate

on a term swap against a floating rate of LIBOR flat) do not reflect credit rating differ-

ences between counterparties to the extent that corporate bond yields do. One commonly

recognized explanation is that the notional amounts of the swap are not involved in an

interest rate swap, which therefore does not have the extent of default risk of corporate

bonds. Furthermore, only the net amount of the exchanged cash flow, not the floating or

fixed coupon separately, is exposed to default risk. This reduced exposure to default risk for

coupon swaps (as opposed to an exchange of a floating-rate corporate bond with a fixed-rate

corporate bond between the same two counterparties) is widely recognized as the second

important reason for the small swap-rate spreads for counterparties of different credit qual-

ity (compared with yield spreads in the corporate bond market); see, for example, Hull

and White (1992a) and Sundaresan (1991). Pricing the default risk of the floating payment

and the fixed payment separately and then adding the two, however, does not capture the

pricing implication of this reduced default risk exposure for interest rate swaps, and exag-

gerates the required credit spreads for swap rates. For example, Sundaresan (1989, 1991),

using a CIR term-structure model with reasonable parameters, finds that a credit spread of

about 100 basis points in the bond market translates into a credit spread of about 30 to 60

basis points in term swap rates.10 Longstaff and Schwartz (1993), under their parameter

assumptions, gave 10 to 35 basis points for the swap credit spreads for 10-year interest rate

swaps between counterparties with asymmetric credit risks. Both of these results are much

larger than those observed in the coupon swap market, in which swap rates are often not

adjusted at all by some investment banks for their investment grade clients; see Litzenberger

(1992). This market behavior is consistent with our approach of discounting the net value

of the swap with the discount rate of the party with negative market value. We will study

this issue in detail, numerically, in the next section.

We emphasize that the default payoff ratios ϕi and ϕ̄i as well as the default hazard

rates hi could depend on the swap’s value V . This introduces another source of non-linear

10 Sundaresan’s formula appears in the 1991 published form of his paper. These numerical
results, however, are from the 1989 pre-publication version of the paper.

13



dependence of the swap value V on the prearranged cash exchange amount D. We allow

for, but do not characterize, the impact of this additional source of non-linearity.

2.4. Early Resolution of Information and Default Spread Asymmetry

Nabar, Stapleton, and Subramanyam (1988) and Duffie, Schroder, and Skiadas (1993) have

pointed out that the future timing of resolution of information may influence the current

market price of a defaultable claim whose default hazard rate or payoff upon default may

depend on the price of the claim. Our defaultable swaps valuation model provides an

example of such an effect. Simply put, the party with a lower default spread prefers later

resolution of uncertainty because it causes the swap value to deviate from its initial (zero)

value more slowly and therefore leaves the two parties exposed to default risk for a shorter

period of time.

To illustrate this effect, we compare defaultable swap prices in two markets. Market

F , with filtration IF , is the one that we have been studying. Market G, with filtration

G = {Gt : t ∈ [0, T ]}, is identical to market F except that it has earlier resolution of
uncertainty. That is, Ft ⊆ Gt for all t while F0 = G0. The equivalent martingale measure Q
is assumed to apply to both markets, as we are interested in the pure effect of information.

(One can imagine, for example, a setting with risk-neutral investors.) Consider a swap of

a cumulative pre-default dividend process D, a semimartingale of integrable variation with

respect to both IF andG. The following proposition shows that, if party 1 always has a lower

default spread, the time-zero value of the swap (to party 1) in market F is higher than it is

in market G. The proposition can be deduced from Duffie, Schroder, and Skiadas (1993),

whose technical convexity assumption is naturally satisfied with the structure we have here

of asymmetric default risk. The converse result, for higher default risk by counterparty 1,

is easy to deduce.

Proposition 3. Suppose that, for each party i, si is bounded and does not depend on

the swap value directly: sit(v, ω) = ŝit(ω) for all (v, ω, t) ∈ IR × Ω × [0, T ]. Suppose that
r, ŝ1, and ŝ2 are adapted to filtrations IF and G. Suppose that ŝ2 ≥ ŝ1. Let V F and V G

denote, respectively, the values in markets F and G respectively (to party 1) of a swap of

a given cumulative pre-default dividend process D, which is a semimartingale of integrable

variation with respect to filtrations IF and G. Then V F0 ≥ V G0 .
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Next, we study the price impact of default-spread asymmetry. As one might expect,

each party’s market value for the swap is monotonically decreasing with respect to the other

party’s default spread.

We again assume that, for each party i, the default spread si does not depend on the

swap value directly: sit(v, ω) = ŝ
i
t(ω) for all (v, ω, t) ∈ IR×Ω× [0, T ]. To formally describe

this monotonicity, we will compute the Gateaux derivative of the swap value with respect

to η ≡ ŝ2 − ŝ1, the default-spread asymmetry of the two parties, at a given asymmetry η̄.
This derivative is defined (when it exists) as a process ∇V (η̄; η) such that

lim
ε↓0
sup
t

∣∣∣∣∇Vt(η̄; η)− Vt(η̄ + εη)− Vt(η̄)
ε

∣∣∣∣ = 0,
for any bounded predictable process η, where V (η) denotes the pre-default value process,

that process solving (2.5) for spread asymmetry η.

Corollary 1. Suppose that ŝ1 and ŝ2 are bounded and predictable. Let η̄ = ŝ2− ŝ1. For
any bounded predictable η, the Gateaux derivative ∇V (η̄; η) exists and is given by

∇Vt(η̄; η) = −EQ

[∫ T
t

exp

[
−
∫ s
t

(
ru + ŝ

1
u + η̄u1{Vu(η̄)≥0}

)
du

]
max(Vs(η̄), 0)ηs ds

∣∣∣∣ Ft
]

≤ 0.
(2.8)

This derivative, giving the marginal impact of changing the default spread, shows that

increasing the default spread of counterparty 2 relative to that of counterparty 1 reduces the

swap value to counterparty 1. As expected, the impact of default spread is more dramatic

in more volatile markets, given the appearance of max(Vs, 0) in (2.8).

In Section 5, we derive an explicit expression of ∇Vt(0; η) for an example involving
fixed-coupon currency swaps. This formula is then used to estimate default spreads for

currency swaps.

Hull and White (1992a) treat the case in which counterparty 1 is default-free and arrive

at an impact of default risk on swap values similar in spirit to (2.8), with ŝ1 = 0. The two

models, however, are quite different.
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2.5. Effective Discount Rates In A Few Cases

The default-adjusted short rate R in (2.6) has a general form that applies in several partic-

ular situations:

(i) One-party defaultable claims: If the value of the financial claim to party 1 is always

positive (for example, if D is increasing), then the problem is reduced to that of a one-

party defaultable claim problem. Assume that the claimholder (party 1) never defaults

(that is, h1t = 0) or, if it does, the default does not affect its cash flow from the claim

(that is, ϕ̄2t = 1). Then Rt(v, ω) = rt(ω) +
(
1 − ϕ2t (v, ω)

)
h2t (v, ω). This agrees with

Duffie and Singleton (1994) and Duffie, Schroder, and Skiadas (1993).

(ii) One-way payment (fault) rule: In this case, ϕ̄1t = ϕ̄
2
t = 0, and we have

Rt = rt +
[
(1− ϕ1t )h1t + h2t

]
1{Vt<0} +

[
(1− ϕ2t )h2t + h1t

]
1{Vt≥0}.

We see that the party with the lower probability of default (that is, lower hazard rate

hit) could actually have a higher discount rate, for example, when the default payoff

ratios of the two parties are equal (that is, ϕ1 = ϕ2). This is caused by the nature of the

“one-way” payment rule, which acts against the counterparty of lower credit quality,

since that party is the more likely to default, and when it does default the swap value

may be positive. It is therefore theoretically possible that the market interest rate swap

term rates for higher credit quality parties may actually be higher than those for lower

credit quality parties under the “one-way” payment rule.

(iii) Two-way payment (no-fault) rule: In this case, ϕ̄1t = ϕ̄
2
t = 1, and we have

Rt = rt + (1− ϕ1t )h1t1{Vt<0} + (1− ϕ2t )h2t1{Vt≥0}. (2.9)

Under the two-way payment rule, investors in a given firm’s liabilities should use the

same instantaneous discount rate for swap positions (with negative value to that firm)

as for its corporate bonds (that are given the same priority in default settlement).

This provides a framework for interpreting the relationship between corporate bond

yield spreads and market swap-rate spreads, the subject of Section 3. This approach is

similar to that of Hull and White (1992a, 1992b), who first pointed out the advantage

of using bond yield credit spread data to estimate the impact of default risks on market

prices of OTC derivatives.
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2.6. Valuation of Defaultable Swaps in Markovian Settings

In a Markovian setting, the above valuation framework can be simplified. For example,

we take Y to be a continuous-time Markov process in some state space Y with differential
generator11 D and assume that:

1) the prearranged swap cumulative dividend process D is made up of lump-sum payments

at a finite set TD = {t1, t2, . . . , tN = T} of (deterministic) times:

Dt =
∑
tn∈TD

1{t≥tn}δn(Ytn)

for technically well-behaved functions δ1, . . . , δn;

2) rt(ω) = r̄(Yt, t) for a technically well-behaved function r̄;

3) all contemporaneous default hazard rates and default settlement payoff ratios depend

only on Vt, Yt, and t so that we have, for well-behaved functions s̄
1 and s̄2,

R(v, ω, t) = r̄(Yt(ω), t) + s̄
1(v, Yt(ω), t)1{v<0} + s̄

2(v, Yt(ω), t)1{v≥0}. (2.10)

Then, under technical conditions,12 we can take Vt(ω) = J(Yt(ω), t), where J : Y × [0, T ]→
IR solves the partial differential equation (PDE)

DJ(y, t)−
[
r̄(y) + s̄1(J(y, t), y, t)1{J(y,t)<0} + s̄

2(J(y, t), y, t)1{J(y,t)≥0}
]
J(y, t) = 0,

for (y, t) ∈ Y ×
(
[0, T ]\TD

)
.

(2.11)

The terminal boundary condition is

J(y, T ) = 0, y ∈ Y. (2.12)

Interim boundary conditions are given by computing the cum dividend value J(y, tn−) in
terms of the ex dividend value J(y, tn) by

J(y, tn−) = J(y, tn) + δn(y), y ∈ Y and n ∈ {1, . . . ,N}. (2.13)

11 For example, if Y solves a stochastic differential equation (SDE), D is given by Ito’s
Lemma. More generally, Y may be of a jump-diffusion variety.
12 The technical conditions are to ensure the existence of a unique solution to (2.11)–
(2.13), so that the Feynman-Kac representation implies that this solution uniquely solves
(2.5) with VT = 0. For the case in which Y solves an SDE, technical conditions for the exis-
tence of a unique solution to (2.11)–(2.13), the first boundary value problem of a semilinear
parabolic differential equation, can be found, for example, in Ivanov (1984), pp. 170–171.
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The solution to such a PDE can be computed by a finite-difference algorithm. An example

follows in the next section.

3. Term Swap Rate Credit Spreads versus Corporate Bond Yield Spreads

In this section, we apply the general framework of valuation of defaultable swaps developed

in the last section to study the pricing of interest rate swaps involving an exchange of floating

and fixed interest payments between two counterparties with asymmetric default risk. In

particular, we are interested in the quantitative relationship between the term swap rates

spread that counterparties with different credit ratings face in the fixed-for-floating swap

market (against the same counterparty), and the yield spreads they face in the corporate

bond market.

3.1. Coupon Swap and Model Specification

We select as our object of study a “plain vanilla” coupon swap with semiannual exchanges of

fixed-rate payments for floating-rate payments on a constant notional amount. We assume

that counterparty 1 pays the six-month LIBOR rate and counterparty 2 pays the fixed

term swap rate. For our purpose, we fix counterparty 1 and vary the credit quality of

counterparty 2. We then study how the swap credit spread is related to the credit spreads

of the two parties in the bond market.

To be consistent with current standard market practice, we assume the “no fault” or

“two-way” payment rule for swaps. In order to focus on the pricing implications of netting,

we make the following simplifying assumptions.

First, we assume that each counterparty’s credit spread si does not depend on the value

of the swap. With this simplification, for example, the term swap rates are the same for two

swap contracts that have different notional amounts but are otherwise the same. We can

therefore assume for convenience that the notional amount is one unit. Second, we assume

that the credit quality of counterparty 1 is such that its effective discount rate, rt + s
1
t , is

always equal to the short term LIBOR rate, which we represent by ρt. (We call such a

counterparty a LIBOR party.) In fact, the LIBOR rate is a “replenished” AA rate, that

is, the current AA rate. The fact that a given party may diverge from AA is ignored here.

Third, we assume that the default spread ηt between counterparty 2 and the LIBOR party

is a function of the spot short term LIBOR rate, that is, ηt = η̄(ρt). Finally, we assume
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that the short term LIBOR rate is modeled in the same way that Cox, Ingersoll, and Ross

(1985) modeled the short rate rt. That is,

dρt = κ(µ− ρt) dt+ σ
√
ρt dBt, (3.1)

where κ, µ, and σ are positive constants and B is a standard Brownian motion and an

IF -martingale relative to the equivalent martingale measure Q. This is the form of the

LIBOR rate process studied empirically by Duffie and Singleton (1994).

3.2. Method of Calculation

Valuation can be done in a Markovian setting. With payment in arrears, one would use

two state variables, the LIBOR rate ρ̂t on the last reset date and the current LIBOR rate

ρt. Note that ρ̂t is constant between a reset date and the associated payment date. For the

case of symmetric default risk for the two counterparties (including default-free valuation

as a special case), a standard trick avoids the use of ρ̂t by having dividends paid at reset

dates according to appropriately discounted amounts. The non-linear nature of valuation

in the case of counterparties with asymmetric default risk prohibits such a simplification.

In order to avoid the use of two state variables, we numerically study the simpler

case without payment-in-arrears. For completeness, in Appendix C we outline a numerical

valuation method for defaultable swaps with payment-in-arrears.

The general valuation equations (2.11)–(2.13) can now be written

1

2
σ2yJyy + κ(µ− y)Jy + Jt −

[
y + η̄(y)1{J≥0}

]
J = 0, y ≥ 0, tn ≤ t < tn+1, (3.2)

where 0 < t1 < · · · < tN = T define the coupon dates. The boundary conditions are

J(y, T ) = 0, y ∈ [0,∞) (3.3)

and

J(y, tn−) = J(y, tn) + δ(y), (3.4)

where δ : IR+ → IR describes the dependence of the net payment to counterparty 1 on the

spot short term LIBOR rate. For a coupon swap with semiannual exchange of a fixed rate

C with the market six-month LIBOR rate on payment date tn, we have

δ(y) =
C

2
−
(

1

p(y, 0.5)
− 1
)
, (3.5)
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where p(y, t) denotes the price of a zero-coupon LIBOR bond with time to maturity t and

current LIBOR rate y. From Cox, Ingersoll, and Ross (1985),

p(y, t) = ᾱ(t) exp[−β̄(t)y], (3.6)

with

ᾱ(t) =

[
2γe(γ+κ)t/2

(γ + κ)(eγt − 1) + 2γ

]2κµ/σ2

β̄(t) =
2(eγt − 1)

(γ + κ)(eγt − 1) + 2γ ,
(3.7)

for γ = (κ2 + 2σ2)1/2.

Equation (3.2) can be solved by any of several finite-difference methods. We use the

Crank-Nicholson method for our calculation. (See, for example, Duffie (1992) for an illus-

tration of this method applied to pricing contingent claims in a CIR model.) For a given

initial LIBOR rate ρ0, the term swap rate is then obtained by searching for the fixed rate

C̄(ρ0) that makes the initial swap value J(ρ0, 0) equal to zero.

Our goal in this section is to study the quantitative relationship between the swap

rate credit spread and the corporate bond yield credit spread of two companies. Given the

default-spread asymmetry η̄(ρt), we can use the above procedure to calculate the company’s

term swap rate C̄(ρ0). We can also calculate the yield of the company’s zero-coupon bond

with the same maturity as the swap and establish the relationship between the swap credit

spread and the bond yield spread of a company against a LIBOR party. This numerical

relationship depends on the functional form of η̄(·). Here, we study the relationship for:

1) η̄(ρt) = c (constant);

2) η̄(ρt) = c̄ρt for some constant c̄.

The price (and yield) of a zero-coupon bond issued by a company with these two kinds of

default-spread asymmetries against a LIBOR party can be calculated analytically as follows.

Let p(y, t;κ, µ, σ), given by (3.6) and (3.7), denote the current price of a zero-coupon bond

issued by a LIBOR party when the current instantaneous LIBOR rate is y, the time to

maturity is t, and (κ, µ, σ) are the CIR parameters describing the dynamics of the LIBOR

rate process ρ. Then the price of a zero-coupon bond issued by a party with default-spread

asymmetry η̄(ρt) = c against a LIBOR party is given by e−ctp(y, t;κ, µ, σ), given that the
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current LIBOR rate is y and the time to maturity is t. The price of a zero-coupon bond

issued by a party with default-spread asymmetry η̄(ρt) = c̄ρt against a LIBOR party is

given by p(y, (1 + c̄)t; κ
1+c̄

, µ, σ√
1+c̄
), given that the current LIBOR rate is y, the time to

maturity is t, and (κ, µ, σ) are the CIR parameters describing the dynamics of the LIBOR

rate process ρ.

3.3. Results and Discussion

Throughout this section, we assume that the CIR model parameters are κ = 0.4, µ = 0.1,

and σ = 0.06. These parameters are not empirical estimates, but are not atypical; see

Pearson and Sun (1990), Gibbons and Ramaswamy (1993), Chen and Scott (1993), or

Duffie and Singleton (1994).

We report the results for cases (1) and (2) above in Tables 1 and 2 for a 5-year coupon

swap. For case (1) (or (2)), we calibrate the credit-spread parameter c (or c̄) so that

the bond yield spread is given by the number in the first row of Table 1 (or 2). We

then use the same constant to calculate the swap credit spread. The initial LIBOR rate

is chosen as ρ0 = 10.1818%. (The results of Tables 1 and 2 are not sensitive to ρ0 within

reasonable ranges.) In addition to the swap credit spread, we show the “pseudo” swap credit

spread calculated by treating the default risk of the fixed-rate payment and the floating-

rate payment separately. This is shown to exaggerate swap credit spreads dramatically.

All credit spreads are assumed to be against a LIBOR party. Yield spreads are shown in

continuously compounding form.

Table 1. Swap Credit Spread versus Corporate

Zero-Coupon Bond Yield Spread for η̄(ρt) = c

(all spreads in basis points)

Bond Yield Spread 0 100.00 200.00 300.00

Swap Credit Spread 0 0.95 1.90 2.84

Pseudo-Swap Credit Spread 0 26.37 53.19 80.46
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Table 2. Swap Credit Spread versus Corporate Zero

Coupon Bond Yield Spread for η = c̄ρt

(all spreads in basis points)

Bond Yield Spread 0 100.00 200.00 300.00

Swap Credit Spread 0 0.76 1.53 2.29

Pseudo-Swap Credit Spread 0 26.52 53.51 80.97

Two conclusions can be drawn from these results. First, the netting of fixed against

floating payments in interest rate swaps significantly reduces the impact of default risk on

swap rates. With our parameter choices, a credit spread of 100 basis points in the bond

market translates into a credit spread of less than one basis point in the coupon swap

market. Second, one can drastically exaggerate the impact of default risks on swap rates if

one does not deal with the nonlinear effect of netting the two streams of payments in swaps.

A large swap spread error is produced by treating fixed-rate payments and floating-rate

payments separately, and adding values. These conclusions are supported by both tables.

The functional form of η̄(·), at least among those considered here, does not heavily influence
our main conclusions.

One may note that the swap credit spreads are smaller in Table 2 than those in Table 1

for the same bond yield spreads. For the results in Table 2, counterparty 1 pays the floating

rate and is thus exposed to the default risk of counterparty 2 only when the LIBOR rate ρt

is low, which is also when the default-spread asymmetry c̄ρt is low. The impact of default-

spread asymmetry on the swap price is further reduced by this monotonic relationship

between ρt and η̄(ρt).

Subsequent to the initiation of a swap, the credit spread of the swap may become

higher (or lower) if market interest rate changes favor (or act against) the counterparty

with higher quality. An interest-rate swap that is 100 basis points off the market in favor

of the LIBOR party (defined as a swap that would be marked-to-market if the fixed rate

is lowered by 100 basis points) but is otherwise identical to that studied in Table 1 has a

credit spread of 2.9 basis points for a yield spread of 100 basis points in the bond market.
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The above swap credit spread becomes 0.2 basis points if the swap is off the market against

the LIBOR party by 100 basis points while everything else remains the same.

In the above example of coupon swaps, we assumed that the fixed-rate payment dates

match the floating-rate payment dates. Many coupon swaps, however, involve a fixed-rate

payment once (or twice) a year, but a floating-rate payment four times per year. (We call

these coupon swaps 4-for-1 (or 4-for-2).) Compared with the case of matched payment dates,

the precedence of the floating-rate payments over the fixed-rate payments reduces the effect

of netting and generally results in a larger swap credit spread when the floating-rate payer

has higher credit quality. To illustrate this effect, we consider two coupon swaps between a

LIBOR party and a second party with a default-adjusted short rate that is 100 basis points

higher than that of the LIBOR party. The LIBOR rate dynamics and the initial LIBOR

rate are those underlying Table 1. The first swap, a 1-for-1 swap in which the LIBOR party

pays a one-year LIBOR rate annually against a fixed rate by the other party, has a credit

spread of 1.0 basis point. This result is roughly the same with that of the 2-for-2 swap in

Table 1. The second swap, a 4-for-1 swap in which the LIBOR party exchanges 4 quarterly

payments of the 3-month LIBOR rate against a year-end fixed-rate payment by the other

party, has a credit spread of 4.4 basis points. This higher credit spread reflects the LIBOR

party’s additional exposure to default risk by the fixed-rate payer, for example at the point

at which 3 quarterly payments by the LIBOR party have been made, while the offsetting

annual fixed rate payment is yet to be made.

The above results are consistent with the recent practice started of some investment

banks who, when on the floating side of a swap, request that the floating-rate payments

be compounded and paid on the fixed-rate payment dates. These requests are usually met

without a change of swap rate. Our calculation indicates that this practice increases the

value of the swap to the floating-rate payer, in addition to reducing the exposure to credit

risk.

We next present some new results. First, we show how the swap credit spread can

depend on the slope of the yield curve. We consider the same swap as studied in Table 1.

We vary the initial spot rate and the long term mean of the CIR model such that the fixed

rate for a second party with the same risk quality as the libor party stays the same. We

then calculate the swap credit spread for a party with a constant default-spread asymmetry

23



η = 100 basis points against a LIBOR party, which implies a bond yield spread of 100

basis points. Intuitively, we expect that, as the yield curve becomes less upward-sloping

(or more downward-sloping), the exposure of the float-rate payer should increase, which in

turn causes the swap credit spread to increase. This is confirmed by the result shown in

the following table.

Table 3. Effect of Yield Curve Slope on the

Swap Credit Spread for η̄(ρt) = c

(all spreads in basis points)

Short LIBOR rate (in %) 9.78 10.18 10.60 11.05

5-Year LIBOR rate (in %) 10.00 10.04 10.07 10.11

Long Term Mean (in %) 10.25 10.00 9.73 9.47

Fixed Rate for c = 0 (in %) 10.2922 10.2922 10.2922 10.2922

Fixed Rate for c = 1% (in %) 10.3006 10.3017 10.3029 10.3043

Swap Spread for c = 1% (in bp) 0.85 0.95 1.08 1.21

Second, we assume that the default-spread asymmetry is linearly increasing in time,

with η(t) = ct and that the swap is otherwise the same with that studied in Table 1. If we

calibrate c such that the two parties has 100 basis points in bond yield spread, then the

swap credit spread is 0.84 basis points.

Third, we consider the fact that the credit quality of the fixed-rate payer might get

worse as the floating rate gets lower in time relative to his fixed rate. We model this by a

default-spread asymmetry of the form η̄(ρt) = a − bρt. We let a = 2% and calibrate b so
that the two parties have 100 basis points in bond yield spread. The swap credit spread is

shown to be 1.14 basis points and, as expected, higher than that in Table 1.

Finally, we consider the possibility that both parties can have positive default spread

against the LIBOR rate. Assume that the effective instantaneous discount rates of the

“libor party” and other party are, respectively, 100 and 200 basis points higher than the
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spot libor rate while keeping all other factors the same as in Table 1. Then the bond yield

spread of the two parties is still 100 basis points and the swap credit spread is shown to be

0.95 basis points, the same with the result in Table 1.

4. The Effect of Netting Provisions On Values of Swap Portfolios

In the last section, we studied the impact on coupon swap term rates of netting the fixed

and floating payments of a single swap. As Proposition 2 shows, netting among swaps in

a swap portfolio also influences the value of the portfolio. In this section, we use a simple

example of two coupon swaps to illustrate the effect of netting on the valuation of swap

portfolios.

Our first approach is to compare the difference between the value of the portfolio with a

netting provision and that of the same portfolio without a netting provision. The difference

represents the financial benefit of netting to the counterparty with higher credit quality (in

addition to risk-management benefits).

Alternatively, one can think of the effect of netting as follows. Suppose that counter-

party 1, the party with higher credit quality, is about to enter into a swap contract, called

the new swap, with counterparty 2. If the new swap is not to be netted with an existing

swap portfolio, then the term rate of the new swap should be set such that the value of the

new swap is zero at initiation. If, however, the new swap is to be netted with some existing

swap portfolio between the two parties, then counterparty 1 may set a slightly lower rate

for counterparty 2 because, for any given promised payment, the marginal value of the new

swap with netting is higher than it is without netting. The amount of discount depends on

the extent to which the credit exposure of the new swap offsets that of the existing swap

portfolio.

To illustrate this effect, we consider the following example. (See Table 3 for an il-

lustration of the setup and all definitions. Each swap (or swap portfolio) in the table is

assumed to be marked to market at t = 0.) Let counterparty 1 be the LIBOR party and let

counterparty 2 have a constant default spread, s2 − s1, of 100 basis points against counter-
party 1. At a fractional payment on default of 50 percent, for example, this translates into

an annual probability of default by counterparty 2 that is roughly 2 percent more than that

of counterparty 1. We take the new swap to be exactly the same as the swap studied in

25



the last section, in which the LIBOR party, semiannually, exchanges the six-month LIBOR

rate for a fixed rate with party 2, until maturity in five years. The dynamics of the short

term LIBOR rate is again assumed to be described by the CIR model with the parameters

assumed in Section 3. The term rate of the new swap for counterparty 2, without a netting

provision for the portfolio of swaps, is denoted C̄(ρ0) and is calculated as in the last section.

We assume that the new swap is to be netted with an existing swap, called the old

swap, between the two parties. The old swap is taken to be an inverse floater against fixed,

in which party 2 exchanges, semiannually, a fixed rate for a floating rate by party 1 of

L(ρ0)− k [L(ρt)− L(ρ0)] ,

where k is a constant and L(y) denote the six-month LIBOR rate when the spot short term

LIBOR rate is given by y. With the short term LIBOR rate described by the CIR model,

we have

L(y) =
1

p(y, 0.5)
− 1,

where p(y, t) is given by (3.6)-(3.7). (If k > 1, we refer to the inverse floater as an inverse

super floater.) To simplify the problem, we assume that the old swap has the same maturity

as the new one and that counterparty 2 pays the fixed rate Ĉ(ρ0, k) with the property that

the initial value of the old swap is zero.

Table 3. Semiannual Floating and Fixed Payments of

the Old Swap, the New Swap, and the Netted Portfolio

Old Swap New Swap Old and New Swap
(no netting) (no netting) (netted portfolio)

Floating Payment L(ρ0)− k [L(ρt)− L(ρ0)] L(ρt) (1− k)L(ρt) + (1 + k)L(ρ0)

Fixed Payment 1
2
Ĉ(ρ0, k)

1
2
C̄(ρ0)

1
2

[
Ĉ(ρ0, k) + C̄k(ρ0)

]

The term rate of the new swap depends on the extent to which the payments in the

old and new swaps offset each other. In other words, with netting, the term rate C̄k(ρ0)

of the new swap to party 2 depends on the parameter k of the inverse floater between the
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two parties. If k ≤ 0, the payoffs of the new swap and those of the old swap are linearly
related and perfectly correlated. There is, therefore, no impact on swap rates of netting in

this case. That is, C̄k(ρ0) = C̄(ρ0) for k ≤ 0. For 0 < k < 1, the floating rate of the old

swap partially offsets the floating rate of the new swap, with the greatest offset occurring

at k = 1. Consequently, the term rate C̄k(ρ0) of the new swap is smaller than C̄(ρ0) and

decreases with increasing k. If the inverse floater is an inverse super floater, that is, k ≥ 1,
then the floating rate of the new swap is fully offset by the inverse floater and the term

rate of the new swap to be netted with an inverse super floater is the same as that of the

new swap to be netted with an inverse floater with k = 1, that is, C̄k(ρ0) = C̄1(ρ0) for

k ≥ 1. This is illustrated in Figure 1. The linear dependence on k for 0 < k < 1, shown in

Figure 1, is demonstrated in Appendix D.

(Please insert Figure 1 here.)

Figure 1. Impact of Netting on Swap Rates

We provide the numerical result for one example. Suppose that the constant asymmetry

of default spread between the two parties is 100 basis points. For ρ0 = 10.1818%, we have

C̄0(10.1818%) = 10.3017%, C̄1(10.1818%) = 10.2835%,

and

C̄0(10.1818%)− C̄1(10.1818%) = 1.82 basis points.
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The effect of netting on the value of a portfolio of coupon swaps is small for realistic

parameters because netting the fixed and floating payments, within a single swap, already

reduces the credit spread to about 1 basis point (at least for our typical term struture

model and parameters). The netting effect of a master swap agreement, however, should be

quantitatively more significant for other forms of contracts, such as foreign exchange swaps

or forwards, with larger credit risk exposure. This is illustrated in the next section.

5. The Effect of Netting Provisions on Currency Swap Rates

Currency swaps typically involve an exchange of principals, and are therefore subject to

more exposure to default risks than are interest rate swaps. In this section, we calculate

the impact of default risks on currency swap rates.

We use “dollar” and “yen” to denote, respectively, the units of the domestic and foreign

currencies. We first describe a specific foreign exchange swap contract of interest. Suppose

that counterparties 1 and 2 are engaged in a fixed-for-fixed foreign currency swap with

Pd and Pf denoting, respectively, the principal amounts of domestic currency (in dollars)

and foreign currency (in yen). Counterparty 1 exchanges a fixed coupon payment of 12cdPd

dollars for a fixed coupon payment of 12cfPf yen with counterparty 2, semiannually until

maturity at time T , where cd and cf are constant coupon rates. At maturity, counterparty 1

exchanges Pd dollars for Pf yen with counterparty 2.

Since the volatility of the market value of the above fixed-for-fixed currency swap

depends mostly on the volatility of the currency exchange rate, we simplify by taking

constant domestic and foreign interest rates, rd and rf , respectively. The foreign exchange

rate W , with Wt defined as the market value (in dollars) of one yen at time t, is taken to

be a geometric Brownian motion under the equivalent martingale measure Q. That is,

dWt = (rd − rf )Wt dt+ σwWt dBt, (5.1)

where σw is a constant, B is a Brownian motion under Q, and the drift term (rd − rf )Wt
ensures that the gain process associated with rolling over one yen in short term riskless

lending, discounted by the domestic interest rate, is a martingale under Q.

One way to estimate the impact of default risks on currency swap rates is to apply the

PDE (2.11)–(2.13), taking W as the state variable. In this section, however, we use the
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Gateaux derivative ∇Vt(0; η), given in (2.8), to estimate the impact of default risks on swap
rates of the default-spread asymmetry η between the two parties. The resulting first order

approximation provides sufficient accuracy for most practical applications. The advantage

of this approximation method is that the Gateaux derivative ∇Vt(0; η) can be computed
relatively explicitly.

Consistent with common practice, we assume for our example that Pd dollars have

the same initial market value as Pf yen; that is, Pd = W0Pf . Second, we assume that

the domestic and foreign interest rates are equal; that is, rd = rf . Third, we assume that

the default spread s1 of counterparty 1 is a constant, so that R1 = rd + s
1 is a constant.

Finally, we assume that the default-spread asymmetry η is a constant c. These assumptions

are made for analytical tractability and should not heavily influence the numerical relation-

ship between the swap credit spread and the default-spread asymmetry η, which depends

essentially on the exchange rate volatility.

We do the first order approximation from a reference point of η = 0 for credit-spread

asymmetry. For η = 0, the predefault value process V (η) (to counterparty 1) can be

calculated using (2.5′), and is given by

Vt(0) = Pd

[(
Wt
W0
− 1
)
e−R

1(T−t) +

(
cf
Wt
W0
− cd

)∑
tn>t

e−R
1(tn−t)

]
, (5.2)

where T is the time of maturity and tn is, for each n, a coupon date. If cd = cf , then

V0(0) = 0. Our first step is to calculate, for the case of cf = cd, the impact of a small

constant default-spread asymmetry c on the market value of the swap.

According to (2.8), the Gateaux derivative of the initial market value of such a swap

with respect to the default-spread asymmetry η at η̄ = 0 is

∇V0(0; c) = −EQ

[∫ T
0

e−R
1tmax(Vt(0), 0) c dt

]

= −cPdEQ

[∫ T
0

e−R
1t

[
e−R

1(T−t) + cd
∑
tn>t

e−R
1(tn−t)

]
max

(
Wt
W0
− 1, 0

)
dt

]

= −cPd

(
e−R

1T

∫ T
0

EQ

[
max

(
Wt
W0
− 1, 0

)]
dt

+ cd
∑
tn

e−R
1tn

∫ tn
0

EQ

[
max

(
Wt
W0
− 1, 0

)]
dt

)
.

(5.3)
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Using the Black-Scholes formula and integration by parts, we have

∫ s
0

EQ

[
max

(
Wt
W0
− 1, 0

)]
dt

=

∫ s
0

[
2N

(
1

2
σw
√
t

)
− 1
]
dt

=

(
s− 4

σ2w

)[
2N

(
1

2
σw
√
s

)
− 1
]
+
4√
2π

√
s

σw
exp

(
−σ

2
w

8
s

)
,

(5.4)

where N(·) is the standard normal cumulative distribution function. Substituting (5.4) into
(5.3), we have

∇V0(0; c) = −cPde−R
1T

[(
T − 4

σ2w

)[
2N

(
1

2
σw
√
T

)
− 1
]
+
4√
2π

√
T

σw
exp

(
−σ

2
w

8
T

)]

− c cdPd
∑
tn

e−R
1tn

[(
tn −

4

σ2w

)[
2N

(
1

2
σw
√
tn

)
− 1
]
+
4√
2π

√
tn
σw
exp

(
−σ

2
w

8
tn

)]
.

(5.5)

Equation (5.5) gives the relationship between the initial swap value and a small default-

spread asymmetry for the case of cd = cf . This result can help us obtain the relationship

between the swap credit spread and a small default-spread asymmetry. Let V0(η; cd, cf )

denote the initial value of a swap with coupon rates cd and cf . For each constant default-

spread asymmetry c, we fix counterparty 1’s coupon rate cd and search the coupon rate

cf = Cf (c) of counterparty 2 with the property that V0(η; cd, cf ) = 0. For η = 0, we have

Cf (0) = cd. The swap credit spread is given by Cf (c) − Cf (0), which is determined, with
accuracy to the first order of c, by

[
∇V0(0; c) +

(
Cf (c)− Cf (0)

)∂V0(0; cd, cf )
∂cf

] ∣∣∣∣
cf=cd

≈ 0,

from which we have

Cf (c)− Cf (0) ≈ −
∇V0(0; c)
∂V0(0;cd,cf )

∂cf

∣∣∣∣∣
cf=cd

. (5.6)

Equation (5.6), combined with (5.2) and (5.5), gives the relationship between the currency

swap credit spread and a small default-spread asymmetry.

For example, with

σw = 15%; R1 = 6%; T = 5 years; cd = cf = 5%,
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we have

Cf (c)− Cf (0) ≈ 0.087c.

For a constant default-spread asymmetry of c = 100 basis points, this translates into a

bond yield spread of 100 basis points, and a currency swap credit spread of about 8.7 basis

points.

This calculation shows that netting can significantly reduce the impact of default risks

on the credit spreads for foreign currency swaps. If the above currency swap is not netted,

that is, if counterparty 1 exchanges a five year bond (denominated in dollars) with a fixed

coupon rate for a five year bond (denominated in yen) with a fixed coupon rate from

counterparty 2, then counterparty 1 would demand a credit spread of 100 basis points for

a default-spread asymmetry of 100 basis points. Netting reduces the 100 basis-point credit

spread to about 8.7 basis points.

The calculation also shows that credit spreads for currency swaps are indeed much

higher than those of coupon swaps. This is partly because the principals are exposed to

default risks in currency swaps while the notional amounts are not exposed to default risks

in coupon swaps. Another factor is the manner of dependence of the volatility of the swap

market value on the volatility of the underlying process. This point can be made clear by

a comparison between the credit spread of the above currency swap and that of a forward

contract on a zero-coupon LIBOR bond. The principals of both contracts are exposed to

default risks. The same numerical procedure and parameter choices used in Section 3 show,

however, that the credit spread of a five-year forward contract on a zero-coupon LIBOR-

quality bond with a five-year maturity (from the date of forward maturity) is only 0.7 basis

points for a 100 basis point default-spread asymmetry.

As with interest rate swaps, a major determinant of currency swap spreads is market

volatility. For our currency swap example, doubling the volatility parameter σw from 15

to 30 percent increases the currency swap spread from approximately 8.7 basis points to

approximately 17.2 basis points. These estimates are roughly consistent with those obtained

by Hull and White (1992b) for the special case in which one of the counterparties has no

default risk.
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Appendix A: Technical Lemmas and Proofs

This appendix contains some technical lemmas and proofs of all propositions.

Lemma 1. For a given f ∈ Λ, an FT -measurable random variable Y , and a finite variation
process {Dt : 0 ≤ t ≤ T}, suppose there is some p ∈ [1,∞) such that

∫ T
0
|f(0, ω, t)| dt,

Y , and
∫ T
0
|dDt| are all in Lp, and suppose that there is some constant k > 0 such that

f is k-lipschitz in its v argument: |f(x, ω, t)− f(y, ω, t)| ≤ k|x − y| for all (ω, t) and all
(x, y) ∈ IR2. Then there exists a unique solution V to the recursive stochastic integral

equation

Vt = E

[∫ T
t

f(Vs, ω, s) ds + dDs + Y

∣∣∣∣ Ft
]
, t ≤ T,

in the space Vp of all RCLL adapted processes that satisfy E[(
∫ T
0
|Vt| dt)p] <∞.

Proof: For p > 1, this theorem is a simple generalization of the theorem proved in Ap-

pendix A of Duffie and Epstein (1992), with an added
∫ T
t
dDs term here. The proof is

almost identical. See Antonelli (1994) for the case of p = 1.

Lemma 2. Let τ > 0 be a stopping time. Define a process U by Ut = 1{t≥τ}. Let A be the

unique right-continuous, increasing, predictable process with A0 = 0 such that U − A is a
martingale. (The existence and uniqueness of A follows from the fact that U is a special

semimartingale.) Then A is continuous if and only if τ is totally inaccessible.

Proof: If τ is totally inaccessible, Theorem 11 in Protter (1990) (pp. 99) shows that A is

continuous. The converse can be shown as follows.

SupposeA is continuous but τ is not totally inaccessible. Then there exists a predictable

stopping time S such that P ({ω : τ(ω) = S(ω) < ∞}) > 0. Let B = {ω : τ(ω) = S(ω) <

∞}. Let a sequence of stopping times S(n) ↑ S, and S(n) < S for S 6= 0. Then, since U −A
is a right continuous martingale, Doob’s Optional Sampling Theorem implies that

E
[
AS −AS(n)

]
= E

[
US − US(n)

]
≥ E

[(
US − US(n)

)
1B
]

(since U is increasing)

= E
[(
Uτ − US(n)

)
1B
]

(since S = τ on B)

= E
(
1B
)

(since Uτ = 1 and US(n) = 0 on B)

> 0.
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But AS ≥ AS−AS(n) ↓ 0 (since A is positive, increasing, and continuous), so the integrability
of AS and the Dominated Convergence Theorem imply that limn→∞E

[
AS −AS(n)

]
= 0, a

contradiction. Thus τ is totally inaccessible.

For completeness, we restate here a version of the Stochastic Gronwall-Bellman Inequality,

due to Costis Skiadas, and as originally stated in Lemma B2 of Duffie and Epstein (1992).

We also added a strict inequality result to the lemma. This lemma is used in the proofs of

Propositions 2 and 3.

Lemma 3. Let (Ω,F , P ) be a filtered probability space whose filtration {Ft : t ∈ [0, T ]}
satisfies the usual conditions. Suppose that Y is an integrable optional process, α is a

constant, and G is a measurable process. Suppose, for all t, that s 7→ Ys is right continuous

and s 7→ E(Ys|Ft) is continuous almost surely. If YT ≥ 0 a.s. and, for all t, Gt ≥ −α|Yt|
a.s. and Yt = E[

∫ T
t
Gs ds + YT |Ft] a.s. Then, for all t, Yt ≥ 0 a.s. Furthermore, for given

t, let

A = {(ω, u) : u ≥ t,Gu(ω) > −α|Yu(ω)|} ;

B =

{
ω : EQ

[∫ T
0

1A( · , u) du
∣∣∣ Ft

]
> 0

}
∈ Ft.

Then Yt > 0 on B.

Proof: See Lemma B2 in Duffie and Epstein (1992). The added strict inequality part can

be proved using a strict version of the Gronwall-Bellman inequality.

The following lemma is a simple generalization of Lemma 1 of Duffie, Schroder, and

Skiadas (1993). We use it to simplify the proof of Proposition 1.

Lemma 4. Let V be a semimartingale satisfying E
(∫ T
0
|Vt| dt

)
<∞, let D be a semimartin-

gale satisfying E
(∫ T
0
|dDt|

)
<∞, and let G be a progressively measurable process such that

E
(∫ T
0
|Gt| dt

)
< ∞. There exists a martingale m such that dVt = −Gt dt + dDt + dmt,

t ∈ [0, T ], if and only if

Vt = E
(∫ T
t

Gu du+ dDu + VT

∣∣∣ Ft), t ∈ [0, T ].

Proof: See Duffie, Schroder, and Skiadas (1993), Lemma 1.
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Proof of Proposition 1

Proof: Substituting the swap cumulative dividend formula (2.3) into the pricing formula

(2.2) and making use of the decomposition Hi = Ai +M i, we obtain

Ste
−
∫
t

0
ru du = EQ

[∫ T
t

e
−
∫
s

0
ru du

[
1{s<τ} dDs + 1{s≤τ}

(
Z1s dH

1
s + Z

2
s dH

2
s

)] ∣∣∣∣ Ft
]

= −
∫ t
0

e
−
∫ s
0
ru du1{s<τ}

[(
Z1sh

1
s + Z

2
sh
2
s

)
ds+ dDs

]
+mt,

for some Q-martingale m. Using integration by parts and noting that St = St1{t<τ}, we

have

dSt = −
(
Z1t h

1
t + Z

2
t h
2
t − rtSt

)
1{t<τ} dt− 1{t<τ} dDt + dm̂t

=
[
Rt(St, ω)− h1t (St, ω)− h2t (St, ω)

]
St dt− 1{t<τ} dDt + dm̂t,

(A.1)

for some Q-martingale m̂. Lemma 4 then implies that

St = EQ

[∫ T
t

−
[
Ru(Su, ω)− h1u(Su, ω)− h2u(Su, ω)

]
Su du+ 1{u<τ} dDu

∣∣∣∣ Ft
]
, t ≤ T.

(A.2)

Lemma 1 shows that there exists a unique solution S to this recursive integral equation.

Suppose that the map v 7→ Rt(v, ω)v is uniformly Lipschitz. Then Lemma 1 shows

that there exists a unique solution V for (2.5). Lemma 4 implies that

dVt = Rt(Vt, ω)Vt dt− dDt + dMt,

for some Q-martingale M . Suppose, further, that ∆Vτ = 0 almost surely. Then, using

integration by parts, we have

d
(
Vt1{t<τ}

)
= d

[
Vt(1−H1t )(1−H2t )

]
=
(
1−H1t−

)(
1−H2t−

)
dVt − Vt−

[(
1−H2t−

)
dH1t +

(
1−H1t−

)
dH2t

]
= 1{t≤τ}

[
dVt −

(
h1t (Vt, ω) + h

2
t (Vt, ω)

)
Vt dt

]
+ dm̄t

=
[
Rt(Vt, ω)− h1t (Vt, ω)− h2t (Vt, ω)

]
1{t<τ}Vt dt− 1{t<τ} dDt + dM̂t, a.s.,

(A.3)

for some Q-martingales m̄ and M̂ . Lemma 4 then implies that Vt1{t<τ} satisfies (A.2) and

must be indistinguishable from its unique solution S.

Proof of Proposition 2

Proof: Define ρt = rt+ ŝ
1
t as the discount rate for counterparty 1, and let ηt = ŝ

2
t − ŝ1t ≥ 0

represent the asymmetry of default spreads between the two parties. For convenience, we
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change the numeraire as follows. For any swap with cumulative dividend D and value

process V , we define D̃t =
∫ t
0
e
−
∫
s

0
ρu du dDs and Ṽt = e

−
∫
t

0
ρu duVt. Then, with Ito’s

lemma, we can rewrite (2.5) as

Ṽt = EQ

[∫ T
t

−ηu1{Ṽu≥0}Ṽu du+ dD̃u
∣∣∣∣ Ft

]
, t ≤ T. (A.4)

Applying (A.4) to Ṽ a, Ṽ b, and Ṽ ab, we have

Ṽ abt − Ṽ at − Ṽ bt = EQ

[∫ T
t

−ηu
[
max(Ṽ abu , 0) −max(Ṽ au , 0) −max(Ṽ bu , 0)

]
du

∣∣∣∣ Ft
]
.

Defining Y = Ṽ ab− Ṽ a− Ṽ b, we have YT = 0. Let α denote an upper bound of |ηt|. Then,
using η ≥ 0, we have

Gt ≡ −ηt
[
max(Ṽ abt , 0) −max(Ṽ at , 0) −max(Ṽ bt , 0)

]
≥ −ηt

[
max(Ṽ abt , 0) −max(Ṽ at + Ṽ bt , 0)

]
≥ −ηtmax(Ṽ abt − Ṽ at − Ṽ bt , 0)

≥ −α|Ṽ abt − Ṽ at − Ṽ bt |

= −α|Yt|.

(A.5)

Applying to Y and G a consequence of the Stochastic Gronwall-Bellman Inequality due to

Costis Skiadas that is stated in Lemma 2B of Duffie and Epstein (1992) (and restated in

this paper, with an added strict inequality result, as Lemma 3 in Appendix A), we conclude

that Y ≥ 0 and thus that Ṽ ab ≥ Ṽ a + Ṽ b.
If, for given t, (ω, u) ∈ A, that is, u ≥ t, ηu(ω) > 0, and Ṽ au (ω) and Ṽ bu (ω) have opposite

signs. Then we have max(Ṽ au (ω), 0) +max(Ṽ
b
u (ω), 0) > max(Ṽ

a
u (ω) + Ṽ

b
u (ω), 0). Inequality

(A.5) is then strict on A, implying Gu > −α|Yu| on A. Applying the strict inequality part
of Lemma 3 in Appendix A, we have Yt > 0 on B and thus Ṽ

ab
t > Ṽ at + Ṽ

b
t on B.

Proof of Proposition 3

Proof: Define ρt = rt+ŝ
1
t and, for any swap with cumulative dividendD and value process

V , define D̃t =
∫ t
0
e
−
∫ s
0
ρu du dDs and Ṽt = e

−
∫ t
0
ρu duVt. Applying (A.4) to Ṽ

F and Ṽ G,

we have

Ṽ Ft = EQ

[∫ T
t

−ηumax(Ṽ Fu , 0) du + dD̃u
∣∣∣∣ Ft

]
, t ≤ T ; (A.6)

Ṽ Gt = EQ

[∫ T
t

−ηumax(Ṽ Gu , 0) du + dD̃u
∣∣∣∣ Gt
]
, t ≤ T. (A.7)
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Define process U by Ut = EQ
[
Ṽ Gt |Ft

]
for all t. Since −ηtmax(v, 0) is concave in v, applying

conditional Jensen’s inequality and conditional version of Fubini’s theorem to (A.7), and

noting that ηt is measurable with respect to Gt, we have

Ut ≤ EQ

[∫ T
t

−ηumax(Uu, 0) du + dD̃u
∣∣∣∣ Ft

]
, t ≤ T.

Combining this equation with (A.6), we have Ṽ FT − UT = 0, and

Ṽ Ft − Ut = EQ

[∫ T
t

−ηu
[
max(Ṽ Fu , 0) −max(Uu, 0)

]
du

∣∣∣∣ Ft
]

≥ EQ

[∫ T
t

−ηu
∣∣Ṽ Fu − Uu∣∣ du

∣∣∣∣ Ft
]
, t ≤ T.

Lemma 3 then implies that Ṽ Ft ≥ Ut for all t, and, at t = 0, V F0 ≥ V G0 .

Proof of Corollary 1

Proof: The computation procedure of ∇Ṽ0(η̄; η) is identical to the proof of Theorem 2 in
Duffie and Skiadas (1994).

Appendix B: Valuation with Possibility of Simultaneous Defaults

This appendix generalizes the valuation model to include cases in which the two counter-

parties of a swap contract could default simultaneously with positive probability.

To account for the possibility of simultaneous defaults by the two counterparties, we

introduce a simultaneous default indicator function H12t = 1{t≥τ1}1{τ1=τ2}, a stochastic

process that is equal to one if simultaneous defaults have occurred, and zero otherwise. (One

can show that H12 is the indicator function of a (totally inaccessible) stopping time defined

by τ11{τ1=τ2} +∞1{τ1 6=τ2} and is an adapted and right-continuous increasing process.)
Appealing again to the Doob-Meyer decomposition, we write H12 = A12 + M12, where

A12 is a predictable and right-continuous increasing process with A120 = 0, and M
12 is a

Q-martingale. Furthermore, A12 is continuous (see footnote 8). We again assume that

there exists a (progressively measurable) non-negative process h12 as the hazard rate for

simultaneous defaults such that

A12t = 1{t<τ}

∫ t
0

h12s ds =

∫ t
0

h12s 1{s≤τ} ds, t ≥ 0.
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The boundedness of h1 and h2 then implies13 the boundedness of h12. Again, we allow h12

to depend on Vt. That is, we take h
12
t (ω) = λ

12(Vt(ω), ω, t), where λ
12 is in Λ.

We also need to specify the settlement payoff to party 1 in the event of simultaneous

defaults. Given that τ1(ω) = τ2(ω) = t and that the market value Vt−(ω) of the swap just

prior to the default is some number v, we assume that party 1 receives

Z12(ω, t) = ψ1(v, ω, t) v 1{v<0} + ψ
2(v, ω, t) v 1{v≥0},

where ψ1 and ψ2 are both in Λ and ψi represents the fraction of market value payment by

party i in the event of default when it has negative net market value.

The cumulative dividend process of the swap for counterparty 1 can be generally written

as

Xt =

∫ t
0

1s<τ dDs + 1s≤τ

[
Z1s (dH

1
s − dH12s ) + Z2s (dH2s − dH12s ) + Z12s dH12s

]
, t ≤ T.

The first term on the right hand side is the prearranged swap payment before default.

The second term is the settlement payoff in three different default scenarios: party 1 alone

defaults, party 2 alone defaults, and both parties default simultaneously. Risk-neutral

valuation under measure Q again results in Proposition 1 with the effective discount rate

taking the following more general form:

Rt = rt +
[
(1− ϕ1t )(h1t − h12t )(1− ϕ̄1t )(h2t − h12t ) + (1− ψ1t )h12t

]
1{Vt<0}

+
[
(1− ϕ2t )(h2t − h12t )(1− ϕ̄2t )(h1t − h12t ) + (1− ψ2t )h12t

]
1{Vt≥0}.

Appendix C: Markov Valuation for Swaps with Payments in Arrears

For a swap with payments in arrears, we use t̄n to denote the reset date for the payment

date tn. Usually, the reset date is no earlier than the last payment date. So we assume

0 ≤ t̄1 ≤ t1 ≤ t̄2 ≤ t2 ≤ · · · ≤ t̄N ≤ tN = T. (C.1)

To describe the Markov structure of the value process, we need to use two state variables,

the short term LIBOR rate ρ̂t on the reset date and the spot short term LIBOR rate ρt, to

13 h12t = limu↓0
Q[t<τ1=τ2≤t+u|Ft]

u
≤ mini=1,2 limu↓0 Q[t<τ

i≤t+u|Ft]
u

= mini=1,2 h
i
t.
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describe the value process: V (ω, t) = J(ρ̂t, ρt, t). Note that, for t ∈ [t̄n, t̄n+1), ρ̂(t) = ρ(t̄n)

and is constant. The general Markovian setting equations (2.11) – (2.13) for the value

process J can now be written as

1

2
σ2yJyy + κ(µ− y)Jy + Jt −

[
y + η̄(y)1{J≥0}

]
J = 0, y ≥ 0, tn−1 ≤ t < t̄n.

The boundary conditions are given by

J(ŷ, y, T ) = 0, y ∈ [0,∞),

and, for 1 ≤ n ≤ N ,
J(ŷ, y, tn−) = J(ŷ, y, tn) + δn(ŷ);

J(ŷ, y, t̄n−) = J(y, y, t̄n),

where δn describes the functional dependence between the net payment to counterparty 1

on payment date tn and the short term LIBOR rate on the corresponding reset date t̄n as

given in (3.5). Note that, within each sub-interval of the form [tn − 1, t̄n), J(ŷ, y, t) does
not depend on ŷ.

Appendix D: The Impact on Swap Rates of Netting a

Fixed-for-LIBOR Swap Against a Fixed-for-Inverse-Floater Swap

The intuitive discussion leading to Figure 1 can be verified by calculating C̄k(ρ0) and

studying its dependence on k for a given initial LIBOR rate ρ0. We also study the impact

of netting on the marginal value of the new swap by calculating, numerically, the quantity

C̄k(ρ0)− C̄(ρ0).

In order to compute C̄k(ρ0), we need to value the netted portfolio composed of the new

and old swaps. Table 3 in Section 4 lists all fixed and floating payments when each swap

(or swap portfolio) is marked to market at t = 0.

The following observations can help simplify the calculation. First, due to netting of

the fixed payment with the floating payment, the value of a swap remains unchanged if

each party adds the same amount to its promised payment. Second, if a swap has zero

initial market value and each party’s default spread does not depend on the value of the

swap, then multiplying all promised payments of each party by a positive constant leaves
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the swap at zero initial value. With the help of these observations, we can obtain the new

swap term rate (with netting), C̄k(ρ0), by comparing the payments of the netted portfolio

with those of either the old swap or the new swap:

1

2

[
Ĉ(ρ0, k) + C̄k(ρ0)

]
=

{
1
2
(1− k)C̄(ρ0) + (1 + k)L(ρ0), if k < 1;
1
2 Ĉ(ρ0, k − 1) + L(ρ0), if k ≥ 1.

(D.1)

This result can be simplified further by obtaining a simple analytic relationship between

Ĉ(ρ0, k) and k, for any given ρ0. Applying the above two observations again, we have

1

2
Ĉ(ρ0, k) =

{
1
2 (−k)C̄(ρ0) + (1 + k)L(ρ0), if k ≤ 0;
1
2kĈ(ρ0, 1) + (1− k)L(ρ0), if k > 0.

(D.2)

Combining (D.1) with (D.2), we obtain

C̄k(ρ0) =



C̄0(ρ0), if k ≤ 0;
C̄0(ρ0)− k

[
C̄0(ρ0)− C̄1(ρ0)

]
, if 0 < k < 1;

C̄1(ρ0), if k ≥ 1,

(D.3)

where, for all ρ0,

C̄0(ρ0) = C̄(ρ0);

C̄1(ρ0) = 4L(ρ0)− Ĉ(ρ0, 1).
(D.4)

Equation (D.3) confirms our intuition about the dependence of the new swap term rate on

the parameter k of the existing inverse floater swap that is to be netted with the new swap,

and shows that, for any given ρ0, the map k 7→ C̄k(ρ0) can be determined by calculating

three numbers, C̄(ρ0), L(ρ0), and Ĉ(ρ, 1). The first two of these numbers are calculated in

Section 3. The third can be calculated using the same finite-difference algorithm used in

Section 3.
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