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ABSTRACT

This paper examines the role of production and stock markets in a continuous—time
stochastic economy. The results include sufficient conditions for the existence of general
equilibria: spot price processes and security price processes under which there exist pref-
erence maximal consumption and portfolio choices for agents and share value maximizing
production choices for firms that clear markets for commodities and securities at all dates
and states. Specific stochastic growth and stochastic input—output production technologies
satisfying the stated production conditions are illustrated. We also study traditional issues

concerning the financial and production policy of the firm.
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1. Introduction

This paper examines the role of production in a continuous—time stochastic economy. We
take a general equilibrium approach, demonstrating price processes for securities and spot
commodities at which individuals’ optimal consumption and security trading strategies and

firms’ share-value-maximizing production strategies clear markets at all dates.

The overall choice space for the economy is the set of consumption processes adapted
to the available information. Although this space is typically infinite-dimensional a finite
number of securities, with continuous trading possibilities, allows any consumption process
to be financed by some security trading strategy. In developing the role of production in a
stochastic economy, we chose to model information as generated by diffusion state—variables,
this being particularly well suited to our purposes and allowing us to draw a connection
with earlier work on stochastic equilibria with production. Cox, Ingersoll, and Ross [7,8], for
example, provided necessary conditions for a single-agent stochastic production—exchange
equilibrium satisfying certain “smoothness” conditions. Breeden [4] has done related work.
Merton [20] has the seminal model of necessary conditions on continuous—time stochastic
equilibria. One of the goals here is to actually demonstrate an equilibrium in a multi-
agent production—exchange economy with the same “diffusion” information structure. The
other major goal is to incorporate and illustrate stochastic extensions of classical production

models within equilibrium.

We begin in the next section by laying out the primitives of an economy that fits within
our general scope for demonstrating stochastic equilibria. In Section 3 we provide an equilib-
rium existence theorem for an economy with general production technologies. Section 4 ex-
amines the production and financial policies of the firm, reconfirming the Modigliani-Miller
Invariance Principle as well as unanimous shareholder support for share value maximiza-
tion by firms. Section 5 studies particular classes of production technologies. The principal
examples here are : (i) production functions modeled as operators that map production
input stochastic processes to production output stochastic processes, and (ii) capital stock
accumulation, in the framework of stochastic growth models such as that modeled by Cox,

Ingersoll, and Ross [7,8].




2. The Economy

Uncertainty

For simplicity we choose a finite time-interval [0, 1]. Basic uncertainty is represented
by a complete probability space (Q,.F, P). Here 2 represents the set of states of the world,
and F denotes the tribe (or, in some vocabularies, o~algebra) distinguishing the events, or
subsets of ) that can be assigned a probability. A reference probability measure P is given.
Agents need not agree on probability assessments stated by P, but must have bounds on
their disagreements. More precisely, given a finite set T = {1,...,I} of agents, each agent
¢ € T must have a probability measure P; on (2, F) uniformly equivalent! with respect to

the reference measure P.

Information Structure

Agents receive identical information represented by a filtration ¥ = {F; : ¢t € [0,1]} of
sub—tribes of 7 = Fy. The sub-tribe Fy, for any time ¢ in [0, 1], represents the set of events
revealed by all information received up to and including time ¢. In particular, if A € F;
then one will know at time ¢ whether or not A “happens.” The collection (Q,F,F, P) of
primitives is a filtered probability space, and is the fixed reference point for all probabilistic

statements unless otherwise indicated.

Although we need not restrict ourselves to a particular filtration in order to demonstrate
equilibria, we will do so for purposes of concreteness and for ease of comparison with the
literature. We suppose that B = (B?,..., BV)T is an N—dimensional Standard Brownian
Motion defined on (R, F, P). An N-dimensional state-variable process Z is specified by

the It6 integral equation:

Z(t) = Z(0) + /Ot;L(Z(s),s)ds +/0 o(Z(s),s)dB(s) Vtel[0,1] a.s., (2.1)

where Z(0) € RV, and where ¢ : RV x [0,1] = RV*N and u : RN x [0,1] — RV are

continuous and satisfy: for some constant K, all ¢ in [0,1], and all y and 7 in R;

|y, ) =@, I< K Jy-7] lo(yt)—o@)|<K[y-7l,

! Two measures P and § on (§2, F) are uniformly eqlg'_va,lent provided there exist strictly
positive scalars I{ and K such that K P(B) < Q(B) < KP(B) for all events B in F.
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and

|u(y,t) P K+ 19 17), lo(y,t) P<EQ+ Ty ),
referred to henceforth as a Lipschitz condition and a growth condition, respectively.? We
assume that o(y,t) is nonsingular for each y and ¢. Theorem 9.3.1 of Arnold [1] ensures
that (2.1) has a unique (strong) solution Z that is a diffusion process.

The agents’ commonly endowed information structure is the augmented filtration F
= {F: : t € [0,1]} generated® by Z. By the assumption that o(y,t) is continuous and
nonsingular, F is in fact the augmented filtration F2 generated by the underlying Brownian
Motion (Harrison and Kreps [12]). In interpretation, agents observe a state process Z whose
evolution over time depends upon B (is adapted to FB).4 Observing Z provides agents with

the same information that would be obtained by observing B directly.

Spot Commodities and Agents

The spot commodity space is R¢, for some integer number £ > 1 of different com-
modities. An R‘-valued stochastic process ¢ = {c(t) : t € [0, 1]} representing consumption
choices at each time ¢ must be chosen on the basis of available information. We thus impose
the restriction that ¢ : Q x [0,1] — R¢ is predictable, meaning measurable with respect to
the tribe 7 on Q X [0, 1] generated by left-continuous® adapted processes. This may be
interpreted as requiring that the consumption choice ¢(t) at any time ¢t must be based only
on information obtained by observing the behavior of Z from time zero to time ¢.

In order to exploit continuity assumptions, we also require a consumption process ¢ to

be square—integrable, satisfying

E [ /0 1 c(t)Tc(t)dt] < . (2.2)

2 We write | o |*=tr(co "), where T denotes transpose and tr denotes trace.

3 The filtration FZ = {FZ : t € [0,1]} is generated by Z if 77 is the smallest sub-tribe
of F with respect to which Z(s) is measurable for all s in [0,¢]. The filtration is augmented
by replacing FZ with the tribe F; generated by F7Z and all zero probability subsets of the
complete tribe F.

4 A process {X(t):t € [0,1]} is adapted to a filtration F = {F; : ¢ € [0,1]} if X(¢) is
measurable with respect to F; for all ¢ € [0, 1].

5 An adapted process is left—continuous if its sample paths are left continuous almost
surely. By Chung and Williams [6], the predictable and optional tribes corresponding to
the filtration generated by any Hunt process such as Brownian Motion are the same tribe.
Thus we are consistent with the consumption space of optional processes used in related
papers [9].




Thus the consumption space is L2 = x{_; L?(2x[0,1],P,r), where v is the product measure
generated by P and Lebesgue measure. We henceforth abbreviate X7, L9(2 x [0,1},P,v),
for any ¢ € [1,00) and any integer n > 1, as LY. In summary, L} consists of any Ré-valued
square—integrable predictable process. As usual, we identify any two consumption processes
that are equal almost everywhere on © X [0,1] (with respect to the product measure v).
The set of positive consumption processes is the positive cone (L3)4 of L2.

A spot price process is given by some 9 = (¢1,...,%*) € L%, where ¥!(w, ) is the unit
price of the I-th commodity in state w € Q at time t.

Each agent ¢ € 7 = {1,2,...,I} has a non-zero endowment e; € (L2),. and a preference
relation® =; on (L%);. An example of a preference relation is given by the time-additive
von Neumann Morgenstern form of utility represenfation “E( fOT u(c(t),t)dt),” but that is

vastly more restrictive than needed for the existence of equilibria.

Capital Assets, Financial Assets, and Trading Strategies

A set J = {1,...,J} of firms is given, characterized by a production set Y; C L?
for each 7 € J. Any y € Y; represents a feasible net production process for firm j.
For example, the production set Y; could be that represented by a production output
function f; : (L3)+ — (L3)+ mapping production inputs to production outputs, a class of
technologies studied in Section 5.

A security is identified with an RCLL integrable” process D defining its cumulative
dividends. In other words, security D is a claim to cumulative dividends D(t) up to any
time t. If, for example, one share of D is bought at time s and sold at a later time ¢, a total
of D(t) — D(s) is received during the interim as dividends. The lump sum dividend paid
at time ¢, if any, is the jump AD(t) = D(t) — D(t_). [By our convention, AD(0) = 0.] As
in Arrow’s original model of 1953, dividends are denominated with respect to a numeraire
that need not be any particular one of the { commodities. One might think in terms of

“dollars,” although this is not a monetary economy.

& For our purposes, a preference relation > on a subset X of L3 is merely a binary order
on X. We interpret 2 > y, for any z and y in X, as “a is at least as good as y”. We do not
require that > be complete or transitive, although this would automatically be the case if
> is represented by a utility function v : X — R, meaning u(z) > u(y) whenever z > y.

" An adapted process D is integrable if | D(t) | has finite expectation for all ¢, and
RCLL if its sample paths are right-continuous with left limits almost surely. The left limit
of an RCLL process D at time ¢ is D(t_) = lims:D(s).
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Given a spot price process %, any element z of L defines a security D,y by

D (1) :/0 W(s) z(s)ds, t€[0,1]a.s.

(By the Cauchy-Schwarz inequality, Dy, is integrable.) Each firm j € J has one security D’
outstanding, called common stock, of the form D = Dy, where y; € Y; is the production
process chosen by firm j. In other words, firm j at time t sells its net output at the rate
y;(t) on the spot market at prices 9(t), and pays all of the proceeds as dividends at the
rate ¥(¢)Ty;(¢), yielding the cumulative dividend process [ 4(t)Ty;(t)dt. We could also
allow firm 7 to issue, buy, or sell securities, for examplé debt financing, in order to adjust
its dividend stream. The nature of the equilibrium we are about to demonstrate leaves
all shareholders indifferent to such schemes, a Modigliani-Miller style invariance principle

developed in Section 4. Thus we leave the financial policies of firms out of the model for

the present.

Common stocks are capital assets, or claims to net sales of commodity production in
strictly positive supply. A financial asset, on the other hand, is a security in zero net supply.
In addition to capital assets, an economy includes some number K — J of financial assets,

defined by cumulative dividend processes D7+, ..., DX,

Each agent ¢ € 7 is initially endowed with some share ef >'0 of the common stock D/
of each firm j € J. Agent ¢’s initial endowment e{ of any financial asset j > J is zero. By
convention, Zfﬂ el = 1for all j € 7. We denote (¢,...,eX) by €.

Each security D7 is assigned a price process §7 for its ex—dividend market value. That
is, §7(t) is the random variable for the market value at time ¢ of a claim to all future
dividends to be paid by security DJ. [Since §7 is ex—dividend, S7(1) = 0 almost surely,
barring arbitrage.] A gain operator is a linear operator II on the space of dividend processes
into the space of Ité processes, which are reviewed in Appendix A. Under II, for any dividend
process D, the gain G = II(D) is the process defining the cumulative market value earned
by holding one share of D, including both capital gain and dividend gain. That is, II(D) =
D+ S, where § is the price process for D.

Agents take as given a vector D = (D!,..., DE)T of K securities, a spot price process

¥, and a gain operator II. Let G denote the corresponding R ~valued gain process for the
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securities. As an It6 process, G has the stochastic differential form
dG(t) = dV(t) + o(t)dB(t), te€0,1], (2.3)

where V is an R -valued bounded variation process and o is an K X N matrix—valued
predictable process, as described in more detail in Appendix A. Agents trade securities by
holding portfolios prescribed by an ®*-valued predictable process 6 = (6*,...,6%), where
67 (w,t) is the number of units of the j—th security held in state w € Q at time ¢ € [0, 1].

For regularity we demand that
1 .
/ | 0(t)* | |dVE(®)| < 00 as., 1<k<K, (2.4)
0 .

and that

) .

E [/ |8(t)o ()| dt] < 00, (2.5)
0

ensuring the existence of the stochastic integral [6dG. The total gain of strategy 0 is

this integral [ 6dG, representing the sum of the cumulative dividend gain [ 6dD and the

cumulative capital gain [ 6dS, if both integrals exist. The set of R -valued predictable

processes 6 satisfying (2.4) and (2.5) is the (linear) space O[G] of trading strategies.

Optimal Consumption and Trading Strategies
Given securities D = (D!,..., DX)T, a gain operator II, and a spot price process 9, a

consumption process ¢ is financed by a trading strategy 0 if
8(t)[S(t) + AD(t)] = 6(0)S(0) + /0 t 0(s)dG(s) — /0 t P(s) e(s)ds, Vte[0,1]as., (2.6)
where G = (II(DY),...,I(DX))T and § = (51,...,5%)T = G — D, and if
8(T)[S(T) + AD(T)] = 0. (2.7)

The left-hand-side of (2.6) is the cum¥dividend market value of the strategy 9 at time ?;
on the right is the initial market value of 6, plus the cumulative capital and dividends gains
from security trade up to and including time t, less the cumulative spot market cost of c.
Given (D, 11, 9), a pair (c,8) € (L%); x O(G) is a budget feasible plan for agent i if §(0) = ¢;
and if @ finances the net trade ¢ — e;. A budget feasible plan (¢, 8) is optimal for agent i if
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there is no budget feasible plan (¢, ') such that ¢’ >; c. The equality constraint in (2.7) is

without loss of generality given locally non—satiated preferences.

Share Value Maximizing Production Choices

Given a spot price process 1 and a gain operator II, a production choice y € Y;
generates the share price process Syy = II(Dyy) — Dyy for firm j. Given a production
choice y € Y; and a stopping time 7', a production plan z is a continuation of y at T if

2(t) = y(t) for all ¢ < T almost surely. The set of continuations of y € Y; at T' is denoted

Y;(T,y). Given (%,1I), a production plan y € Y; is share value maximizing for firm j if

there is no stopping time 7" with P(T < 1) > 0 and continuation z € Y;(T,y) such that
Sap(T) > Syy(T) almost surely. In other words, y is optimal in this sense if it impossible
at any time to revise the firm’s production plan in a consistent manner and improve the
firm’s current share price with non—zero probability. We should remark that, as the firm’s
cumulative dividend process is continuous, the cum and ex dividend values of the firm are
equivalent. We would otherwise naturally describe market value maximization in terms of

the cum~—dividend value.

We define the conditional expectation gain operator II by II(D); = E[D(1)|F], under
which the current market value $(¢) of a security D is the current conditional expected
value of its total future dividends, or S(¢) = E[D(1) — D(t)|F;]. This gain operator is one

of a large time-additive class with the property that maximizing initial share price implies

share—value-maximization in the above sense.

PRroPOSITION 2.1. Given a spot price process v and the conditional expectation gain op-
erator II, a production plan yj € Y; is share-value-maximizing for firm j if and only if, for

allyey;,
B[ [ 607w - v o

Proo¥F: The only if assertion is trivial, taking the stopping time T = 0. For the reverse
implication, suppose there exists a stopping time 7" with P(T' < 1) > 0, and a continuation
y € Y;(T,y;) such that §y4(T) > Sy, 4(T) almost surely, or equivalently, that

E [ /T 1 P(s) y(s)ds |]—'T} > E [ /T 1 ¢(3)Tyj(s)d.s|}"T] a.s.
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Since y is a continuation of y; at T', we have

T T
/0 $(1)Ty(t)dt = /O BTy as.

Taking the expectation of the sum of the two previous expressions inplies that

B[ [ 000 - o] > o

a contradiction. |

Stochastic Equilibrium

A stochastic production—-exchange economy, in summary, is a collection:
€= ((zi,e06); (D, .., DEY (V)i € T,5 € ). (2.8)

A collection (II, %, (y;), (¢, 8:),7 € T, i € I),is an equilibrium for & if Il is a gain operator
and % is a spot price process such that:

(1) given (4, 1), for all j in J the production choice y; € Y; is share value maximizing,

(17) given (II,(DY,..., D), ), where DI = Dy, 1 <5< J, forall 7in Z the plan
(¢i,6;) is optimal for agent ¢, and

(#44)  markets clear: . .c¢; — e = 25 Yis 2 0{ =1,1<j5 < J;and 2202 = 0,
J+1<j< K.

3. Existence of Stochastic Equilibria

Our procedure will be: first demonstrate a static complete markets equilibrium; then demon-
strate a stochastic equilibrium by construction, “implementing” the static equilibrium allo-

cations by dynamic trading on security and spot markets.

Regularity Conditions
Recent advances by Zame [31], Mas—-Colell [19], and Richard [31] in the theory of static

(Arrow-Debreu) production economies provide weak conditions on production technologies

that are particularly well-suited to the choice space at hand. Not yet having had the
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opportunity to incorporate Richard’s very recent extension of Mas—Colell’s work, we will
employ Zame’s production conditions. The genesis for this recent spate of work is an early

pure—exchange version of Mas—Colell’s paper.
For topological conditions, we will sometimes use the norm || - ||; on L defined (using

Cauchy-Schwarz) by

feli=E

1 £
/ S Je®)| dt] .
0 =1

[This is the product L'(v)-norm.] Continuity in this norm is more restrictive than continuity

in the usual norm || - || defined by

ele= (2] 1 ot ett)it

We desire an equilibrium spot price process to be bounded for technical convenience, how-

1/2

ever, and so work with the finer || - ||; topology.

The appendix reviews Zame’s strongly bounded marginal efficiency condition on pro-
duction sets. We examine specific technologies that exhibit strongly bounded marginal effi-
ciency in a later section. An appropriate condition on preferences over infinite-dimensional
spaces was developed by Mas—Colell [19] and extended by Yannelis and Zame [30] to pref-
erence relations that need not be complete or transitive. A consumption choice v € (L3)4
is extremely desirable for a preference relation > on (L%), if there is a scalar § > 0 with
the following property. For any ¢ € (L2%)4,if z € L? and o € (0,1) satisfy 2 < ¢+ av
and || z |1 < ad, then ¢+ av — z > c. Interpreting, the choice v is such a good direction
to move in that one can compensate for the loss of z by gaining av, provided || z ||; is
small enough. For complete transitive preferences, this is identical to Mas—Colell’s uniform
properness® condition. For a restrictive example, if > is represented by the time—additive
form E[ fol u(c¢)dt] where u is concave and monotonic with a finite right—derivative at zero,

then v(w,?) = (1,1,...,1) € R* is extremely desirable for .

8 If the preference relation > is represented by a concave continuous monotonic utility

function that can be extended to a || - ||;—neighborhood of (L%), while preserving these
properties, then > has extremely desirable choices, or in Mas—Colell’s sense, is “uniformly
proper”. See Richard [26] and Richard and Zame [28]. For our purposes, we will sometimes
place additional conditions on extremely desirable choices, so these results need not always
apply.
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The total production set for our economyis Y = E;ﬂ Y;; any element of Y is a feasible
addition to endowments in forming aggregate consumption. The aggregate endowment is
€= Z{:l €i-

Production Conditions. The production sets Yi,...,Yy are || - ||o—closed, convex,
include zero, and demonstrate strongly bounded marginal production efficiency. The set of
feasible production choices Y N ((L3)+ — {e}) is || - ||2~bounded.

Agent Conditions. The preference relations >;, ¢ € Z, are strictly increasing®, convex,°
I - |li—continuous,!! and have an extremely desirable choice v; € (L2), such that v; <e.
The condition on extremely desirable choices is implied, for example, by strictly increasing
uniformly proper preferences and an assumption that Zf=1 e; is strictly positive almost
everywhere. With production of intermediate goods, for example, we would prefer not to
make the strictly positive aggregate endowment assumption. Aside from bounded marginal

production efficiency, the other regularity conditions are fairly standard.

Static Equilibria
Underlying our stochastic economy is the static (Arrow—Debreu) economy
&5 = (L4 zi e (@) () i€ T,i € ).

A (static) equilibrium for &g is a collection (ei1,...,¢71,91,---,YJ,¢) Where (e1,...,¢5) is
a consumption allocation, (y1,...,¥s) is a production allocation, and ¢ is a linear price

functional on L2, such that

I J
zci € = Zyj (3.1)
i=1 j=1
J .
¢(Ci) S ¢(ei + Z G‘Zyj)a t € I> (32)
j=1 '
2> => §(2) > ¢(e:) Vze(Ly)y, i€I, (3:3)
#(z) < Ply;) Vz€Y;, jeJ. (3.4)

® A preference relation > is strictly increasing if ¢ +y >; ¢ for all ¢ and y € (L2), with
y#0.

10 A preference relation > on a subset X of a vector space is convex provided az + (1 —
a)z > w whenever z = w and z > w, for any z, z, and w in X and any « in [0,1].

11 A preference relation > on (L3)4 is || - ||1—continuous provided the graph of > is a
relatively || - ||i—open set. This can be weakened; see for example, Zame [31].
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These are the usual conditions: feasibility (3.1), budget feasibility (3.2), optimality (3.3),

and maximization of production value (3.4).

THEOREM 3.1 (EXISTENCE OF STATIC EQUILIBRIA). Provided the Production Conditions
and Agent Conditions are satisfied, the economy Es has a static equilibrium. Moreover,
an equilibrium price functional ¢ can be represented by a strictly positivel? bounded spot

price process ¥ as

¢@)=E[A3mommm4, z € L3 ' (3.5)

The proof may be found in Appendix B.

Dynamic Spanning

In order to implement a static equilibrium as a stochastic equilibrium, we will make
use of the theory of martingale generators. As the details have been extensively developed

in the exchange case, we will be brief. A vector m = (m?,...,m#) of It6 integrals

m(t) = m(0) +/0 a(s)dB(s),

where 7 is an H x N-matrix valued predictable process, is a martingale generator provided

any square-integrable martingale!® M has a representation of the form
, ‘
M@:Mm+/9@mm)wemm¢% (3.6)
0

where 6 is an #7—valued predictable processes satisfying E [ fol |6(t)a(¢)|? dt] < 00. For ex-
ample, the underlying Brownian Motion B = (B?,..., BV)T is itself a martingale generator

(Kunita and Watanabe [17]). More generally, we have:

LEMMA 3.1. Suppose m is vector martingale of the form m(t) = m(0) + fot 7(s)dB(s),

Vt € [0,1] almost surely, where G is an H X N matrix-valued predictable process with

12°An element 9 of L? is strictly positive if v{(w,t) € 2'x [0,1]: P(w,t) > 0} = 1.
13" A martingale is an integrable adapted process M satisfying E[M(t) | F;] = M(s)
whenever 0 < s <t < 1. On the Brownian filtration we can assume without loss of generality

that all martingales have continuous sample paths. A martingale M is square—integrable if
E[M(1)%] < o0.
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rank ((t)) = Nv — a.e., and where fol tr(6(t)a(t) " )dt < oo a.s. Then m is a martingale

generator.

This result is contained in a more general form in Chapter 4 of Jacod [16]; for concreteness
a proof is given in Appendix A.

A security D is a riskless bond if D(t) = 0,¢ € [0,1) and D(1) = 1. A vector D =
(DY,...,D¥)T of securities is fundamental if DX is a riskless bond and if there exists a

martingale gene‘rator m = (m!,...,m%~1) such that, for all ¢ in [0, 1],
E[DF(1)| F) =m*(t), 1<k<K -1

Given a vector D of securities and a gain operator II, markets are dynamically complete if,

given any spot price process 1, every c € Liis financed by some trading strategy € ©[G].

ProrosITION 3.1. If D is a fundamental vector of securities and Il is the conditional

expectation gain operator, then markets are dynamically complete.

A proof and partial converse may be found in Duffie [1985].

Stochastic Equilibria

Under the conditional expectation gain operator II, the initial investment required to

finance a consumption plan is merely the total expected spot market cost of the plan.

'ProrosiTioN 3.2. Given the conditional expectation gain operator II, any vector of secu-
rities D, and any spot price process ¥, if  Iis a trading strategy financing a consumption

process ¢, then

6(0)5(0) = E [ /0 ()T e(t) dt} .

PrOOF: The proof is immediate from (2.6)—(2.7) and from the fact that the gain G = II(D)
is a martingale, implying that [6dG is a martingale for any trading strategy 6 € O[G]. |

Harrison and Kreps [12] indicate that, barring arbitrage, any gain operator is a conditional
expectation operator under some numeraire and probability measure. [For extensions, see
Huang [15].] We have the luxury here of picking the probability measure P and numeraire in
advance. Of course, if prices are denominated with respect to one of the £ commodities, then

this form of nominally risk-neutral pricing is only possible in equilibrium with a risk—neutral
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agent. With any equilibrium satisfying regularity conditions, howgver, one can normalize
prices relative to one of the securities and construct a new probability measure under which
nominally risk-neutral pricing applies. This does not require a fundamental “spanning”
set of securities such as constructed in the following theorem, which states sufficient rather

than necessary conditions for a stochastic equlibrium.

THEOREM 3.2 (EXISTENCE OF STOCHASTIC EQUILIBRIA). Suppose that
&s = (L, znedi (i (¥ i€ T i€ T)

satisfies the Production Conditions and the Agent Conditions. Then there exist financial

assets (D7+1,..., DX) such that the stochastic production—-exchange economy
((zivee)i (D7, DR)(Yy) i€ T, € T),

has a stochastic equilibrium. Moreover, the equilibrium allocation is Pareto optimal if >;

is complete and transitive for all i € T.

ProoF: By Theorem 3.1, there exists a static equilibrium (c1,...,¢r,91,-..,¥7, ¢) for &g,
where the price functional ¢ can be represented as in (3.5) by a strictly positive bounded
spot price process 1. We take this spot price process ¥ and the Arrow—Debreu production
plans (y;), generating the common shares D7 = Dy y, 1 < j < J. We take the conditional
expectation gain operator II, defining a gain process G for the common share of each firm
j. Since 1 is bounded, G7 is a square-integrable martingale, and is thus represented by an
RN-valued predictable process 3; with E [fol Ej(t)?rj(t)-rdt} < oo by

Gi(t) = /O,Ej(s)dB(.s), t€[0,1], a.s.

Let 7, denote the J X N matrix—valued process with j-th row 7;, j = 1,2,...,J. Let J
satisfy rank(m;(t)) > J v — a.e. and v{rank(m(t)) = J} > 0. Let K = N = J + J + L.
We define financial securities D7t1,..., DX as follows. Let DX be a riskless bond. For
J+1<j<K-1,let

Di(t) = /0 5,(s)dB(s), te[0,1],

where {Gj41,...,0x_1} ate RV -valued predictable processes such that the N x (K —1) ma-
trix process ' = (37 ,...,0%_,) has rank N v-a.e.* and satisfies E [fol tr(&(t)&(t)T)dt]

14 A measurable selection argument of the Aumann variety may be used here. See, for

example, Hildenbrand [13], p. 54.
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< 00. By Lemma 3.1, D is a fundamental vector of securities. By Proposition 3.2, there
exists for each agent i € Z a trading strategy 6; € O[G] financing the net trade ¢; — e;. We
take a trading strategy 6; € ©[G] with this property for each agent i € {1,...,7 — 1}. Let
6 = E;‘r=1 € — 2,1;11 6;. Since O[G] is a linear space, 8; € O[G]. It is then easily verified,
using market clearing in the static economy &g, that (er,8r) is a budget feasible plan for
I. For all i in T, (c;,6;) is an optimal plan given (I, D*,. .., DX 4) by arguments given in
Duffie [1985]. By Proposition 2.1, y; is share value maximizing for each firm j in J, given
(ﬁ, ). By construction we have market clearing. Pareto optimality follows under complete

transitive preferences by a standard argument. [

This proof gives us stochastic equilibrium with the minimum number of financial secu-
rities required for dynamically complete markets. These financial securities are endogenous,
depending on the particular static Arrow-Debreu equilibrium chosen for implementation.
Of course, one has the existence of stochastic equilibrium for a large class of exogenously
specified financial securities. For example, we could fix (EJ-H, ... ,_EK_I) = B and choose

—K
D" to be a riskless bond.

J+

THEOREM 3.3. If & = ((=i,¢e:,€); (D 1,...,51\,);(}’1-);2' € Z,j € J) satisfies the Agent

conditions and the Production Conditions, then £ has stochastic equilibria.

The proof is a simplification of the proof of Theorem 3.2, using the fact that B is itself
a martingale generator. In this case, since financial markets are dynamica]ly spanning in

their own right, there is no particular hedging or spanning role for capital markets.

4. The Production and Financial Policies of the Firm

This section reconfirms in a continuous—time setting two well known dictums on the pol-
icy of the firm. First, positive shareholders unanimously support a production plan that
maximizes the value of the firm, provided markets are complete, or in this setting, provided
markets are dynamically complete. Second, the value of the firm is independent of any
issuance of debt by the firm, the Modigliani-Miller [21] Proposition I. For the former impli-
cation, suppose y and z are candidate production plans for firm j with respective share price
processes Syy and S,y, with Sy (0) > 5;4(0). Then, given dynamically complete markets
and the conditional expectation gain operator II, if (c, §) is budget feasible given z (fixing

all other constraining data), if e{ > 0, and if >; is locally non-satiated, then there exists a
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budget feasible plan (¢’,6") given y (holding other data fixed) such that ¢’ »; ¢. Thus agent
¢ strictly prefers the production plan y with the larger market value. This hardly warrants

further formalization or attention.

For the Modigliani-Miller result in a continuous—time setting, we could treat the finan-
cial policy of the firm merely by allowing the firm to trade securities in its own right. We
preclude a firm trading its own shares, and the simultaneous trading of securities by other

firms, in order to ensure that security price processes are well defined. (For the general case,

see Duffie and Shafer [11].) Given a vector gain process G, any trading strategy 6 € O[G]

for firm j, with 6(0) = 0, adds the dividend process [ 8dG to the original dividend process

DJ of firm j. Under the conditional expectation gain operator II, the new share price of

the firm at time zero is E[DY(1) + fol 8dG), but since G is a martingale, this is merely the -

original share price E[D7(1)]. Barring arbitrage, the gain operator is always conditional
expectation under a probability measure with respect to which the gain process G is a
martingale [12,15]. Thus the financial policy of the firm has no effect on its initial share
price. This has nothing to do with dynamically complete markets, requiring only that the
gain operator be taken as given by firms. Furthermore, by the reasoning of the previous
paragraph, if markets are dynamically complete, shareholders are indifferent to the financial

policy of the firm.

More traditionally, we can study the Modigliani—-Miller Invariance Principle by mod-
eling the issuance of a defaultable debt security Di by a firm j whose production plan
generates the dividend process DJ. Under a given gain operator I, let 54 = H(ﬁj ) — Di
denote the price process for Di. By “defaultable”, we mean that debtholders recognize
that, if and when the market value of Di exceeds the market value of DJ , debtholders
forego the claim to D7 and receive instead the total dividends D7 generated by sale of the
firm’s output. In other words, the firm is placed in receivership. More formally, consider

the stopping time
T =inf {t € [0,1]: §9(t) + AD(t) > $%(t) + AD(t)}.

[For generality, we allow the dividends to have jumps.] Then the effective debt security of
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firm j is the security D7 defined by

Di (t)

Di(t), t<T,
Di(T_) + Di(t) ~ DI(T), t>T.

The equity of firm j is the security C¥ = D7 — D7 paying the residual dividends. Since II
is linear, the total value of the firm, that is, the value of the claim to C7 4 D7 is the same
as the value of D7, In traditional language, the total value of a firm is independent of the
firm’s debt—equity mix. In dynamically complete markets, shareholders are indifferent to
the issuance of debt, as reasoned above. Of course, the span of incomplete markets can
generally be changed by the issuance of debt, and shareholders may not be indifferent to

debt policy in incomplete markets.

5. Production Technologies

We now illustrate production technologies satisfying our production conditions. We first
examine a class of stochastic growth models of capital accumulation, including the model
used by Cox, Ingersoll, and Ross [7,8]. A second class of technologies to be studied includes

linear and non-linear stochastic input—output models.

Stochastic Growth Models of Capital Accumulation

First we outline a simple model of capital accumulation in a stoche;stic eéonomy. Later
we guarantee the existence of equilibria embedding such a technology. For simplicity, the
consumption space here is L?; there is a single commodity. An initial capital stock is given
by a scalar £ > 0. The growth rate of capital is given exogenously by a real-valued It

process X of the form

X = /Ot m(s)ds + /Ot v(s)dB;, te€[0,1],

where m is a real-valued predictable process and v is an R"V-valued predictable process.
A capital stock process is a positive Itd process K solving a stochastic integral equation of

the form

t t :
th:f;+/ I(sts—/ csds, t€0,1], (5.1)
0 0
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where ¢ = {¢; : t € [0,1]} is a positive real-valued predictable process for consumption out
of capital stock, or depletion. Suppose, for example, that X is the solution to the stochastic

differential equation
dXt = /L(Xt,t)dt-{- O'(Xt,t)dBt, t € [0, 1], (52)

for a drift function u : % x [0,1] — R and a diffusion coefficient o : R x [0,1] — RV that
are measurable and satisfy a Lipschitz and a growth condition. Then (5.1) is of the familiar

stochastic differential form:
dK,; = [Kt,u(Xt, t) - Ct]dt + I(tO’(Xt, t)dBt, (53)

which may be recognized as the Cox—Ingersoll-Ross growth model. Under weak regularity
conditions on X and ¢, an application of Ito’s Lemma guarantees the existence of a unique

solution K to (5.1) as

~

~ t ~
Ky = eYtg — X / e Xoe ds, tel0,1], (5.4)
0
where X is the It6 process given by
- 1 [t
Ro=x- 1 / o(s)To(s)ds, 1€ [0,1]
0 .

A feasible depletion rate is any positive predictable process ¢ with the property that the
right-hand-side of (5.4) is well defined and positive. If ¢ is positive and L is well-defined
by (5.4), however, then K is positive if and only if

1
/e_X‘ctdtSn a.s. (5.5)
0

Regularity conditions on the rate of return process X and the depletion rate ¢ are required

to suit our needs; the following conditions are unnecessarily restrictive.

PropPsITION 5.1. Suppose the process e~ js square—integrable and a depletion process
¢ must satisfy || ¢ ||2 < B for some scalar . Then (5.4) is the unique solution to (5.1) for

the capital stock process K, and the resulting set of feasible depletions
1 o~
Vi={ce(L)y:|lc|2< ﬁ;/ e Xiedt <k a5}
0
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satisfies the Production Conditions.

PRrOOF: As claimed, (5.4) solves (5.1) by an application of Ito’s Lemma. We must show that
Y?is || - ||a—closed, convex, includes zero, demonstrates strongly || - ||;~bounded marginal
production efficiency, and that Y4 N ((L3); — {e}) is || - ||—bounded for any e € (L3),.
Except for the closedness of Y¢, the proof is by simple inspection. For closedness, we note
that the operator f : L? — LY(Q,F,P) given by f(c) = fOT e=Xic,dt is well-defined and
continuous by the Cauchy—Schwarz inequality. Thus, if {c,} is a sequence in Y'¢ converging
in L, then f(lim¢,) = lim f(¢,) < K a.s. Of course, || lim{c,} || < 8 and lim{c,} € (L2),
since || - ||z is || - ||z—continuous and (L%)4 is || - ||z—closed. Thus Y ¢ is || - ||2—closed. K

If there is a maximum depletion rate, then of course the set of feasible depletions is bounded
in norm. It will be noted that the capital stock depletion technology is not assumed to be
reversible. That is, we require any feasible depletion process to be positive; one cannot place
endowments into the capital stock. We make this as.éumption mainly in order to guarantee
strongly bounded marginal production efficiency, for if Y¢ C (L%)4 then the Appendix B
conditions (b.1)—(b.4) are trivially satisfied by b = 0 and § = y. Of course, if there are no
endowments, or e = 0, then the positive depletion assumption is without loss of generality,
but the assumed existence of an extremely desirable choice less than e is then impossible.!®

As a corollary to the last proposition and Theorem 3.3, we have the following conditions

for equilibrium in a stochastic growth economy.

PROPOSITION 5.2. If & = ((>4,€5,€);(DIHY,...,DX);Y), i€ 1,5 € J) is a stochastic
production exchange economy such that (D7*1,..., DX is a fundamental vector of securi-

ties and (i, €;),1 € I, satisfies the Agent Conditions, then £ has stochastic equilibria.

It is trivial to generalize to many spot goods and corresponding capital accumulation—
depletion technologies of a similar nature. Since each corresponding production set retains
the properties: closed, convex, bounded, positive, and including zero, the total production
set inherits these properties and the Production Conditions apply.

In the above formulation, the current rate of growth of the capital stock depends

entirely on current consumption and productivity. For a model with productivity lags,

15 Jf one wishes to bar endowments, the choice space L3 could be replaced by ®¢ x L2,

where ®¢ indicates the space of initial capital stocks. Individuals rather than firms could be
allocated the initial capital stock  as part of their endowment. The absence of endowments
in L? is then not a problem. :
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goods in process, and so on, we can generalize to the case of a capital stock process K

solving a stochastic Volterra equation of the form

t i
: -Kt=/ f(r.,s,I((.))chs—/ csds, t€[0,1],
0 0

where K.y : @ — C([0, 1]) denotes the sample path function for K and f : {0,1] x [0, 1] x @ X
C([0,1]) — R is sufficiently well behaved. For sufficent conditions and many generalizations,

see Protter [22] and Rao and Tsokos [24].
Extending to an infinite horizon model is also quite simple. This requires no change in
the current conditions for a static equilibrium. That is, Theorem 3.1 applies as stated to

the space of R¢-valued predictable processes on 2 x [0, c0) under the natural norm defined

by
3] 1/2
lello= B[ eotcleat]
0

where o is a strictly positive scalar “discount.” This allows us to include, for example,
a non-zero constant consumption process. In order to extend a static equilibrium to a

stochastic equilibrium, we would replace condition (2.7) by:
8()T[S(t)+ AD()] > E [/ e—%pfctdtm] t € [0, 00).
t

The proof of a stochastic equilibrium then goes through with only notational changes.

Stochastic Input—-Output Technologies

Continuing to outline examples of production technologies that fit within our frame-
work for demonstrating equilibria, we turn to a neoclassical model of a function mapping
production inputs to production outputs. For simplicity, we take two spot goods to be
called “labor” and “corn” and treat labor as a production input and corn as a production
output. This can easily be generalized, although one may run into difficulties in guarantee-
ing bounded marginal efficiency of production if the same good can be used as both input

and output.

A natural example of our “labor to corn” technology is given by a stochastic Volterra

kernel:

K:TxQ— R,
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where 7 denotes the set of ordered pairs (t,s) € [0, 1] X [0, 1] with ¢ > s. We may think of
K(t,s,w) as the coefficient of productivity of inputs at time s for outputs at time ¢ in state
w € (1. For simplicity, we assume that K is bounded, jointly measurable, and that K'(-,s,-)
is predictable for each s. We can then define the output function f: L? — L% by f(y) = =

where
¢
z2(w,t) = / K(t,s,w)y(w,s)ds, (w,t) € @ x[0,1].
0

If K is a positive kernel then f is a positivel® linear operator, and we can apply Corollary
5.1 (below) to guarantee that the resulting production technology satisfies the Production

Conditions.

For a somewhat more general model, we could consider the case of a production input—

output function, mapping an input process y € (L?)4 to an output process z defined by

(1) = / o(t,5,9(s))ds + / Bt 5, 9(s))dB(s),

where g : T x QO xRy - RNand h: T x A x Ry — VY are measurable, satisfy a Lipschitz
and a growth condition in y, and are predictable in ¢ and s respectively. In this case, f
maps into L. Of course, if g and h are linear in y(s), then the input—output'operator is
linear. Further generaliztions are possible.

For the general case of a continuous linear operator H : L2 — L% mapping production
inputs to production outputs, we can simplify the production choice of the firm to a myopic
decision problem as follows. We have not provided proofs of the claims in this paragraph,
so they must be treated as conjectures for the purposes of this draft of the paper. [There
is nothing controversial here, in any case.] Let (]-) denote the inner product on L% defined
by

1
@)= 2| [ s 0],

under which L? is a Hilbert space. By Proposition 2.1 and the nature of the equilibria

demonstrated by Theorem 3.2, the firm faces the maximization problem:

Maxvev(Hz.) — %), (5.6)

16 A function g : L} — L% is positive if g(z) € (L3); for all z € (L3);. If g is linear,
then g is bounded or equivalently continuous if sup{|| g(z) ||;z € L%;|| = || < 1} is finite,
where || - || denotes the relevant norm. '
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where V' C L} denotes the feasible input set, generalizing from V = (L2),. Let H* denote

the adjoint [25] of vH, defined by (Hz|y) = (z|H*¢) for all z and ¢ in L2. It follows that

problem (5.6) is equivalent to »
Max,ev (v|9* — ), ' (5.7)

where ¥* = H*1 is the adjoint price process. That is, ¥*(t) is the vector of shadow spot
prices at time ¢, indicating the effect on the share price of the firm at time ¢ of production
inputs at that time, exclusive of actual spot market costs of inputs charged at the rate (t).

If the feasible input set is of the form
V={vel?:vwt)e Qw,t) v —ae.},

where Q : 2x[0,1] — 2% isa (Hausdorff) predictable correspondence, then y = Hv—v € L3

is share—value-maximizing if and only if
v(w,t) € arg Max geqe ' [*(w,1) — b(w, )] v —a.e. (5.8)

In other words, the firm may solve for the optimal stochastic investment process merely by
solving a simple static finite-dimensional profit maximization problem at each state and
date based on local price information. Of course, this is only useful given a solution to the
adjoint price process. If H is given by a stochastic kernel ¥ : 7 x  — R%¢ as above, then

the adjoint spot price process 9* is given by
1
P*(t)=E [/ K(s,t)T9(s)ds|Fs|, te€]0,1]. (5.9).
t

We turn to conditions on a general (possibly nonlinear) production output function

f: (L34 — (L})4 guaranteeing that the production set
Y= {(~¢,0) € (I})- x (L4 :0 < fle)} C L]

satisfies the Production Conditions, where (L2)- = —(L?); is the negative cone of (L?).
Here, cis a production input (say “labor”); b is a production output of a different commodity
(say “corn”). We note that Y/ admits free disposal of the output; this ensures the convexity

of Y/ in the following result.
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ProrosiTiON 5.3. Suppose f is positive, monotonic, concave, || - ||s—Frechet differentiable

at zero, and continuous. Then Y/ satisfies the Production Conditions.
A proof may be found in Appendix B.

CoroLLARY 5.1. Suppose f is a positive || - ||,—continuous linear operator. Then Yf
satisfies the Production Conditions.

PRrooOF: By assumption, f is positive. By positivity and linearity, f is monotonic. By
linearity, f is concave. Any continuous linear operator is Frechet differentiable. [

Appendix A. Ito Processes

We define an Ité process to be a stochastic process X of the form:
t
X(1) = X(0) + V(1) + / o(s)dB(s), t€[0,1], (a.1)
0

where 0 = (o1,. .,oN)is an RN-valued predictable process satisfying fol o(s)o(s)Tds < o
almost surely, and V is a real-valued adapted process having continuous bounded variation
sample paths. The restriction on o guarantees the existence of [odB as an Ito integral;
see Liptser and Shiryayev [18]. In short, an Itd process is the sum of an It6 integral and an

adapted process having continuous bounded variation sample paths.

Proof of Lemma 3.1

Let M be any square-integrable martingale. Since B is a martingale generator, M has

a representation
t

M(t) = M(0) + / n(s)TdB(s), te 0,1,
0
for some process 7 = (n',...,n™")7 satisfying E [fol n(t)Tn(t)dt] < oo Since @ is of rank
N v-a.e., there exists an N X H matrix valued process k such that x(t)5(t) is an N X N

identity matrix.” Let ¢ = {p(t) = &(t)Tn(t) : t € [0,1]}. We have

MO+ [ o) am(s) = m0)+ [

i

n(s)K(s)3(s)dB(s)

= M(0) + /0 tn(s)TdB(s) _ M() Vie0,las.

17 When H = N, we simply take (t) to be the inverse of 7. Since the inverse is a

measurable function, « is predictable. If H > N, a standard measurable selection argument
provides for a predictable pseudo—inverse process. :
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In addition,

E [ /O : go(t)TE(t)G(t)Tgo(t)dt} =E [ /0 1 n(t)Tn(t)dt] < o0.

Hence the assertion follows.

Appendix B — Strongly Bounded Marginal Prodﬁction Efficiency

Zame [31] has recently described regularity conditions on production sets that can be
exploited to demonstrate the existence of Arrow—Debreu equilibria in infinte~dimensional
choice spaces. Here we specialize those conditions to our setting and provide proofs of

examples presented in the body of the paper.

First we define Zame’s condition. Any production process y € L} can be split into its
positive part y* = max(y,0) € {L})4 and its negative part y~ = max(—y,0) € (L}); so
that y = y* —y~. A production allocation is a collection (y1, ..., ys) of production processes
with y; € Y;, j € 7. A production allocation (yi,...,¥s) is positively dominated if there
exists another production allocation (§,...,§s) such that Z}']=1 #; — y; is positive and not
zero. The production sets 17,...,Y; demonstrate strongly bounded marginal production

efficiency if there exists a scalar marginal efficiency bound v > 0 with the following property:

For any production allocation (y1,...,ys) not positively dominated totalling y =
Zle y;, and any a € (L3)y with a < y~, there exists some scalar p > 0, some b € (L3)+

with b < y*, and some production allocation (i, ...,Ys) such that

. J
(r=b) -y~ —pa)=) 7 (b.1)
j=1

lolln <7lipalh (0:2)
3t <yf, jeJ (6:3)
@\j_- <y;, j€J. (b.4)

The condition appears complicated, but has a reasonably simple interpretation. The
process pa represents a reduction in the total production “input” y~. The process b repre-

sents the loss in production that is sustained in the switch to a new production allocation
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(%h,...,Ys), as indicated by relation (b.1). The constant vy indicates that there is a suffi-
ciently small p regulating the lost input such that the lost output is controlled in magnitude
by v || pa ||1 . The condition is obviously much simpler when there is a single firm. Zame
' provides additional characterization. Zame does not have the “not positively dominated”
weakening of strong marginal production efficiency, but does not assume strictly monotone

preferences.

Proof of Theorem 3.1

The choice space L? is given the || - [|1 (product L!(v)) toplogy, and as such is a normed
vector lattice. Thus Theorem 2 of Zame [31] applies with minor modification as follows. For
Zame’s toplogy 7 we take the weak || - || toplogy. Although Zame’s Standard Assumption
(1) calls for (L%)4 to be || - ||1—closed (which it is not), it is the case that (L3)4 is 7—
compact, and this is sufficient for Zame’s proof. Zame’s other Standard Assumptions (1)~
(6) are satisfied since: (L3)4 is convex and includes e; Vi€ Z (1), >=; is || - ||—continuous
by assumption (and || - ||s—continuous by the Cauchy-Schwarz inequality) Vi € T (2), >=; is
convex (3), =; has a || - ||1—extremely desirable choice Vi € 7 by assumption (4), 0 < eg <1
and Zf:l d=1VjieJ (5), and Y; is || - ||a—closed, convex, and includes zero Vj € J
(6). [Again, Zame calls for Y; to be || - ||1—closed, but it is enough for ¥; to be || - ||a—closed

and convex.]

The conditions (1) through (8) of Zame’s Theorem 2 are satisfied since: (L), NY is

a bounded and closed subset of a reflexive Banach space, and therefore 7—compact (Schae-

fer [29]) (1)~(2); || - ||2—closed convex sets are 7—closed (Schaefer [29]) and thus >; has a
relatively 7x || - |;—open graph (3); order intervals in an L? space are weak compact (4);
Y; is || - ||a—closed and convex and thus 7—closed (5); the consumption set of each agent is

(L%)4+ (6); each agent i € 7 has a || - ||;—extremely desirable choice v; € [0, Efr:l €;](7); and
the production sets Yi,...,Y; demonstrate strongly || - ||;—bounded marginal efficiency by
assumption (8). Although our version of strongly bounded marginal efﬁciency is slightly
weaker than Zame’s, the assumption of strictly increasing preferences allows one to apply

Zame’s proof with only slight modification. [The topology 7 is Hausdorff and weaker than

the || - ||;-topology by Cauchy-Schwarz, meeting Zame’s stipulations for these conditions.] 4

Thus, by Zame’s theorem, there exists a quasi-equilibrium (¢y,...,c1, %1 ,... s Y7, @) with
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#(>_; i) > 0. Thus, ¢(e;) > 0 for some i. By a standard argument, strict monotonicity im-
plies that ¢ is strictly positive, that ¢(e;) > 0 for all ¢, and thus that the quasi—equilibrium
is in fact an equilibrium. Since ¢ is in the toplogical dual of L}, which is L$°, the Riesz rep-
resentation theorem implies that ¢ has the indicated representation (3.5) with % bounded.

Since ¢ is strictly positive, v is strictly positive. This ends the proof.

Proof of Proposition 5.3

Let C = L? with the usual L? norm || - ||¢c. Suppose {(—cn,bs)} is a sequence in Y/
converging to (—c,b) € C x C. We must show that b € C; and b < f(c) to prove that Y7 is
I| - ||]2—closed, but this follows by the fact that C'y is || - ||2—closed, the || - ||1—continuity of f,
and Cauchy—Schwarz. In order to prove convexity, suppose (¢1,b1) € Y7 and (¢p,b2) € Y.
Then b; < f(c1) and by < f(e2) implies b = aby + (1 — a)by < af(er) + (1 — a)f(es) £
f(aes + (1 — a@)ez) by concavity of f, so Y7/ is convex. Of course 0 € Y. Let e; denote
the projection of the aggregate endowment ¢ € L2 = C x C into the first (“labor”) factor
space, and e, the projection of e into the second factor (“corn”) space. Since f is increasing,
aggregate feasible consumption is || - ||;—bounded by || (e1,e2 + f(e1)) ||2 - Thus the feasible
production set is || - ||;~bounded. It remains to show that ¥/ demonstrates strongly || - ||:~

bounded marginal efficiency of production.

Let 7 denote the norm of the || - [|1;F1'ec11et derivative of f at zero, and choose any
not positively dominated y = (y1,32) € Y/ C C- x C4. Let a = (a1,a2) € Cy X Cy with
a <y~ = (y1,0) as suggested by the definition of strongly bounded marginal efficiency of
production. Then a; = 0. Let d = f(—y1,—a1) and ¥ = (Th,%2) = (y1 + @1, d). Finally, let
b= (by,b2) = (0,y2 — d). For p =1, we have

(y" = b)~(y~ = pa) = ((0,42) = (0,92 — d)) = ((-91,0) = (a1,0)) = (3 + a1,d) = 7,
verifying (b.1). Next,

ol =llga—dlli=1f v — F(~=1 —a1) |lx
< || f(”‘yl) - f(—yl - a'l) ||1

<|| fla)) = fFO) i€y lar =71l palir
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by concavity and monotonicity of f and the definition of 4. This verifies (b.2). Since y is
not positively dominated, f(—y1) = y2. Then, since a; > 0,

gt = (0, f(~n —a1)) < y+ = (0, f(~w1)),

and (b.3) is satisfied. Because §~ = (~y1 — a1,0) < y~ = (~u1,0), condition (b.4) is
satisfied. Thus strongly bounded marginal efficiency of production is verified, completing

the proof.
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