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Abstract

Scandals over the manipulation of Libor, foreign exchange benchmarks, and other financial

benchmarks have spurred policy discussions over the appropriate design of benchmark fixings.

We introduce a framework for the design of a benchmark fixing as an estimator of fair market

value. The fixing data are the reports or transactions of agents whose profits depend on

the fixing, and who may therefore have incentives to manipulate the fixing. We focus on

linear fixings, which are weighted sums of transaction prices, with weights that depend on

transaction sizes. We derive the optimal fixing under a simplifying assumption that weights

are unidimensional, and we axiomatically characterize the unique benchmark that is robust

to a certain form of collusion among traders. Our analysis provides a foundation for the

commonly used volume-weighted average price (VWAP) and for a variant of VWAP based on

unidimensional size weights. We characterize the relative advantages of these fixing designs,

depending on the market characteristics.
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1 Introduction

This paper solves a problem faced by administrators of financial benchmarks. A benchmark

administrator constructs a “fixing,” meaning an estimator of an asset’s market value that is

based on reported transaction prices or other data. The data are generated by agents whose

profits depend on the realization of the fixing. Agents may therefore misreport or trade at

distorted prices in order to manipulate the fixing. We study optimal transaction weights for

benchmark fixings, assuming that the benchmark administrator cannot use transfers, such as

fees or subsidies. We derive the optimal fixing under a simplifying assumption that weights

are unidimensional, and axiomatically characterize the unique benchmark that is robust to a

certain form of collusion among traders. Our analysis provides a foundation for two versions of

the commonly used volume-weighted average price (VWAP), and delivers insights about the

properties of benchmark fixings necessary for ensuring their robustness against manipulation.

Financial benchmarks are prevalent in modern financial markets. Their fixings directly

influence the valuation of other assets: Literally millions of different financial contracts, in-

cluding interest rate swaps, futures, options, variable rate bank loans, and mortgages, have

payments that are contractually linked to interest-rate benchmarks.1 In addition to the role

of benchmarks for the purpose of contractual settlement of financial instruments, benchmarks

serve an important price transparency function.2 Benchmarks are also used for evaluating

investment performance and as indicators of current conditions in credit and interest-rate

markets.

However, these important functions of benchmarks become distorted if the fixings no

longer reflect the underlying market fundamentals. Concerns have been raised over the ma-

nipulation of benchmarks, including the London Interbank Offered Rate (Libor),3 foreign

exchange fixings, and various commodity benchmarks.4 These concerns were followed by

investigations resulting in billions of dollars of fines. By February 2017, the Commodity Fu-

tures Trading Commission, alone, had fined dealers5 $5.29 billion for manipulation of Libor,

Euribor, foreign exchange benchmarks and the swap rate benchmark known as ISDAFIX.

Benchmark manipulation has also been a recent concern for the equity volatility benchmark

1For example, the aggregate outstanding amount of Libor-linked contracts has been estimated by
the Alternative Reference Rate Committee (2018) at $200 trillion.

2See Duffie, Dworczak and Zhu (2017).
3For details, see, for example, Hou and Skeie (2013); Financial Conduct Authority (2012); BIS

(2013); Market Participants Group on Reference Rate Reform (2014).
4See Financial Stability Board (2014).
5See “CFTC Orders The Royal Bank of Scotland to Pay $85 Million Penalty for Attempted Ma-

nipulation of U.S. Dollar ISDAFIX Benchmark Swap Rates.”

http://www.cftc.gov/PressRoom/PressReleases/pr7527-17
http://www.cftc.gov/PressRoom/PressReleases/pr7527-17
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known as VIX,6 and in the markets for various commodities,7 precious metals such as gold,8

and manufactured goods such as pharmaceuticals.9

Reports of systematic manipulation of benchmarks have also triggered regulatory reforms.

Among other jurisdictions, the European Union (2016) introduced legislation10 in support

of robust benchmarks, which came into force on January 1, 2018. The Financial Stability

Board is leading an ongoing global process to overhaul key reference rate and foreign currency

benchmarks with a view to improving their robustness to manipulation. A key principle of

International Organization of Securities Commissions (2013) is that fixings of key benchmarks

should be “anchored” in actual market transactions or executable quotations.

The reasons for traders to engage in benchmark manipulations varied depending on the

setting. However, the most common incentive was to to profit from benchmark-linked posi-

tions held by the manipulator. For example, in a typical email uncovered by investigators,

a trader at a bank whose reports are used to fix Libor wrote to the Libor rate submitter:

“For Monday we are very long 3m cash here in NY and would like setting to be as low as

possible...thanks.”11 Going forward, Libor in various currencies will be replaced by bench-

marks that are fixed on the basis of transactions prices or executable quotes. But this does

not eliminate the ability or incentive to manipulate. For example, a manipulator can buy an

asset at a price above its fair market value to cause an upward distortion of the fixing. The

cost of over-paying can be more than offset by the manipulator’s profit on contracts whose

settlement value is contractually linked to the benchmark.

This paper has a theoretical focus. Under restrictive conditions, we focus on the optimal

design of a transactions-based weighting scheme. In order to illustrate the problem that we

study, we ask the reader to consider the following abstract situation. An econometrician is

choosing an efficient estimator of an unknown parameter Y . Data are generated by strategic

6See Griffin and Shams (2017).
7For cases of oil, natural gas, and propane benchmark manipulation, see “Federal Court Orders $13

Million Fine in CFTC Crude Oil Manipulation Action against Parnon Energy Inc., Arcadia Petroleum
Ltd., and Arcadia Energy (Suisse) SA, and Crude Oil Traders James Dyer and Nicholas Wildgoose,”
CFTC, August 4, 2014; “CFTC Files and Settles Charges against Total Gas & Power North America,
Inc. and Therese Tran for Attempted Manipulation of Natural Gas Monthly Index Settlement Prices,”
CFTC, December 7, 2015; and “CFTC Finds Statoil ASA Attempted to Manipulate the Argus Far East
Index, a Propane Benchmark, to Benefit Statoil’s NYMEX-cleared Swaps Position,” CFTC, November
14, 2017.

8See Vaughn (2014) and “How a Barclays’ options trader manipulated the gold price fix,” Reuters,
May 23, 2014.

9See Gencarelli (2002).
10Financial Conduct Authority (2016) explains how the EU regulation “aims to ensure benchmarks

are robust and reliable, and to minimise conflicts of interest in benchmark-setting processes.”
11December 14, 2006, Trader in New York to Submitter; source: Malloch and Mamorsky (2013).

Another example: “We have another big fixing tom[orrow] and with the market move I was hoping we
could set the 1M and 3M Libors as high as possible.”

http://www.cftc.gov/PressRoom/PressReleases/pr6971-14
http://www.cftc.gov/PressRoom/PressReleases/pr6971-14
http://www.cftc.gov/PressRoom/PressReleases/pr6971-14
http://www.cftc.gov/PressRoom/PressReleases/pr7289-15
http://www.cftc.gov/PressRoom/PressReleases/pr7289-15
http://www.cftc.gov/PressRoom/PressReleases/pr7643-17
http://www.cftc.gov/PressRoom/PressReleases/pr7643-17
https://www.reuters.com/article/us-barclays-regulation-gold-trader/how-a-barclays-options-trader-manipulated-the-gold-price-fix-idUSBREA4M0KU20140523
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agents whose utilities depend on the realized outcome of the estimator Ŷ . Thus, the chosen

estimator influences the data generating process. This game-theoretic aspect of the problem

must be considered in the design of the estimator.

Our model features a benchmark administrator who acts as a mechanism designer. The

designer chooses a benchmark fixing Ŷ that is an unbiased estimator of Y and minimizes the

mean squared error of the estimation. The agents that might manipulate the benchmark could

be banks, broker-dealers, asset-management firms, or individual traders within any of these

types of firms. The mechanism designer observes the transactions: The data generated by

each transaction consist only of the price and size (the notional amount) of the transaction.

Whether or not manipulated, the transactions prices are noisy signals of the fundamental

value Y . For non-manipulated transactions, noise arises from market microstructure effects,

as explained by Aı̈t-Sahalia and Yu (2009), and also from asynchronous reporting.12

In our model, the benchmark administrator is restricted to fixings Ŷ that are linear with

respect to observed transactions prices, with weighting coefficients that can depend on the

sizes of the transaction. If the transaction weights are required to add up to one, we call the

associated benchmark a fractional-weight fixing. A commonly used fractional-weight fixing

is the “volume weighted average price” (VWAP), for which the weight applied to a given

transaction price is the size of that transaction normalized by the total of the sizes of all

observed transactions. VWAP fixings are used, for example, for the settlement of futures

contracts on the Chicago Mercantile Exchange.13 We will characterize optimality for both

fractional-weight fixings and for absolute-size-weight fixings, for which the weight on any given

transaction depends only on its own absolute size, and not on the sizes of other transactions.

Agents have private information about their exposures to the benchmark. If the agent

decides not to manipulate, she transacts in the market to fulfill “legitimate” business pur-

poses (such as hedging, investment, or market making). However, the agent can choose to

manipulate by conducting a transaction with an artificially inflated or reduced price in order

to gain from the associated distortion of the benchmark. Manipulation is assumed to be

costly. For example, in order to cause an upward distortion in the benchmark, a trader could

buy the underlying asset at a price above its fair market value. In order to manipulate the

price downward, the agent would sell the asset at a price below its true value. Either way, by

trading at a distorted price, the agent suffers a loss. On the other hand, the agent may have

12For example, the WM/Reuters benchmarks for major foreign exchange rates are fixed each day
based on transactions that occur within 5 minutes of 4:00pm London time. In an over-the-counter
market, moreover, each pair of transacting counterparties is generally unaware of the prices at which
other pairs of counterparties are negotiating trades at around the same time.

13See Quick Facts on Settlements at CME Group, CME Group, October, 2014). For the NYMEX
crude oil futures contract, “If a trade(s) occurs on Globex between 14:28:00 and 14:30:00 ET, the
active month settles to the volume-weighted average price (VWAP), rounded to the nearest tradable
tick.”

https://www.cmegroup.com/trading/agricultural/files/settlement-price-fact-sheet.pdf
https://www.cmegroup.com/confluence/display/EPICSANDBOX/NYMEX+Crude+Oil
https://www.cmegroup.com/confluence/display/EPICSANDBOX/NYMEX+Crude+Oil
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pre-existing contracts, such as derivatives, whose settlement value is linked to the benchmark.

On a large pre-existing derivatives position, the agent may be able to distort the benchmark

enough to generate a profit that exceeds the cost of creating the fixing distortion.

This suggests the benefit of avoiding benchmarks whose underlying asset market is thinly

traded relative to the market for financial instruments that are contractually linked to the

benchmark. Our model implies that manipulation is unavoidable when the potential benefits

from manipulation, measured by the monetary gain from changing the fixing by one unit,

are large relative to (i) the cost of manipulation, (ii) the average size of the transaction,

and (iii) the number of transactions in the market for the benchmark asset. As emphasized

by Duffie and Stein (2015), when the volume of transactions in an underlying market that

determines a fixing is tiny by comparison with the volume of derivatives contracts whose

settlements are contractually linked to that fixing, there is a stronger incentive to manipulate.

However, our framework makes clear that even if a benchmark could be found that induces

only honest (unmanipulated) transactions, this is not necessarily optimal from the viewpoint of

the efficiency of the estimator, because the transaction weights that are optimal for statistical

efficiency can be quite different from those minimizing the incentive to manipulate.

Our formal analysis consists of two main parts. First, we solve for the optimal benchmark

fixing among absolute-size-weight fixings using optimal control techniques. Second, because

optimization is not longer tractable in more general classes of fixings, we axiomatically char-

acterize a unique class of fractional-size-weight fixings that prevent traders from engaging in

a particular form of collusion.

Our main findings for absolute-size-weight fixings, analyzed in Section 4, are the following.

First, the optimal benchmark must put nearly zero weight on small transactions. This is

intuitive, and stems from the fact that it is cheap for agents to make small manipulated

transactions. For instance, Scheck and Gross (2013) describe a strategy said to be used

by oil traders to manipulate the daily oil price benchmark published by Platts: “Offer to

sell a small amount at a loss to drive down published oil prices, then snap up shiploads at

the lower price.” Second, although the optimal transaction weight is always non-decreasing

in the size of a transaction, the optimal benchmark assigns nearly equal weight to all large

transactions. This follows from the fact that the optimal weighting function is concave in size,

with a slope that goes goes to zero as trade sizes become large. In many cases, the optimal

weight is actually constant above some threshold transaction size. This avoids overweighting

transactions made by agents with particularly strong incentives to manipulate. Third, our

main result characterizes the exact shape of the optimal weighting function, as a solution

to a certain second-order differential equation. In the examples that we study, this optimal

shape is well approximated by a weighting function that is linear in size up to a threshold,

and constant afterwards.
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In our baseline model, we assume that each trader conducts one transaction, or that the

trader’s multiple transactions are aggregated for purposes of the fixing. In Section 4.2, we

relax this assumption, and allow traders to split their total desired transaction into smaller

trades. For many benchmarks, such as the VIX, LBMA Gold Price, CME futures and WMR

foreign exchange fixings, the underlying data are anonymous with respect to the firm or trader,

thus preventing the benchmark administrator from detecting or deterring order splitting. In

such settings, we show that the optimal fixing is the absolute-volume weighted average price

(A-VWAP).

In Section 5, we turn our attention to fractional-size-weight fixings. We observe that

because benchmark weights in this class are allowed to depend on all transaction sizes, agents

have incentives to collude by sharing information or coordinating their trades. A simple

collusive strategy for two traders is to split their total volume of trade in a way that maximizes

their overall impact on the benchmark fixing, effectively by having one agent execute trades

on the other’s behalf. Because this strategy does not affect the total trade volume (and hence

prices) in the market, it is difficult to detect. A fixing that makes this collusive strategy

unprofitable is said to “neutralize pairwise order splitting.” Remarkably, it turns out that

this property, along with the weak condition requiring that positive weight is only assigned to

transactions with non-negligible size, pins down a unique fixing within the class of fractional-

size-weight fixings, namely, the commonly used volume-weighted average price (VWAP).

Overall, our theoretical results give support to both the commonly used VWAP bench-

mark, and also to the variant, A-VWAP, that is based on absolute size weights. In Section

6, we discuss the trade-offs associated with choosing between fixings based on absolute and

relative size weights. Absolute weighting avoids certain types of collusion by inducing a

dominant-strategy equilibrium between the agents. However, when weights depend only on

absolute transaction sizes, they suffer from at least two drawbacks. First, their mean squared

error is inflated by a term that depends on the variance of the fundamental asset value Y ,

which could be avoided by switching to a fractional-weighting scheme. Second, absolute size

weighting can lead to benchmark values that are outside the range of transaction prices.14

This cannot happen with fractional weights. Under conditions, we show that the A-VWAP

benchmark actually admits an equivalent fractional representation, mitigating some of its un-

desirable properties. On the other hand, fractional-weight fixings, including VWAP, create

incentives for collusive information sharing among agents, and also increase the component

of the mean squared error arising from manipulation. Ultimately, whether the VWAP or the

A-VWAP fixing is preferred might depend on market characteristics such as the number of

traders, variability of day-to-day trading volume, and scope for collusion.

In addition to the choice of the benchmark asset and the fixing design, regulators can

14We are grateful to a referee for noting this.



1 Introduction 7

implement a range of governance and compliance safeguards, raising the cost of manipulation,

consistent with the suggestions of Financial Conduct Authority (2012) and the International

Organization of Securities Commissions (2013). Our setting allows for an extra cost for trading

at a price away from the fair value, associated with the risk of detection of manipulation by

the authorities, and resulting penalties or loss of reputation.

For our theoretical analysis, we assume that the mechanism designer cannot use transfers.

In particular, fines or litigation damages, forms of negative transfer, may affect the cost of

manipulation exogenously but cannot be actively controlled by a benchmark administrator.

Building on our framework, Coulter, Shapiro and Zimmerman (2018) address the optimal

design of fines in a “revealed preference mechanism” that directly elicits private information

from the agents. Because Coulter et al. (2018) do not study the problem of designing an

optimal fixing, our approaches are complementary.

Baldauf, Frei and Mollner (2020) analyze a contracting problem between a client (princi-

pal) who needs to purchase a fixed quantity of an asset and a dealer (agent). The contract

references a benchmark whose value can be computed from commonly observed market prices

and volumes. The dealer can manipulate the benchmark using the fact that her trades are

not directly observed by the client. Baldauf et al. (2020) derive the optimal (cost-minimizing)

contract for the client and show that—under conditions—it references a VWAP benchmark.

Thus, our work and theirs are complementary, both giving theoretical support for a VWAP

benchmark but in different contexts and under a different objective function.

Zhang (2020) studies a similar manipulation problem of financial benchmarks but iden-

tifies an alternative approach to regulating them based on the measurement of manipulation

incentives. He defines two measures of manipulation-induced welfare losses, and shows that

they can be estimated from the commonly observed market data. His empirical framework can

be used to estimate the manipulation-induced distortions that would arise under hypothetical

benchmark designs, casting light on their optimal design.

Our work falls into a growing literature on mechanism design without transfers. This

body of research, however, typically focuses on allocation problems (for example Ben-Porath,

Dekel and Lipman, 2014 and Mylovanov and Zapechelnyuk, 2017). The techniques we use

are reminiscent of those used to study direct revelation mechanisms and, to some degree,

principal-agent models. There are, however, essential differences. Because of the restriction

on the class of mechanisms (linear estimators), we cannot rely on the Revelation Principle.

The objective function is not typical. Our mechanism designer is minimizing the mean squared

error of the estimator (benchmark). Agents face a cost of misreporting their type which is

proportional to the deviation from the true type.15 Overall, we are forced to develop new

15Lacker and Weinberg (1989) analyze a model of an exchange economy where an agent may falsify
public information at a cost; Kartik (2009) studies a cheap talk game in which the Sender pays a cost
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techniques that draw on tools from optimal control theory.

We do not analyze estimators that assign different weights to transactions based on the

transactions prices themselves (that is, nonlinear estimators). In particular, our methods do

not allow for trimming outlier price reports or trades. Some benchmarks dampen or eliminate

the influence of outlier prices. Related to this, Eisl, Jankowitsch and Subrahmanyam (2014)

and Youle (2014) argue that the median estimator can reduce the incentive to manipulate.

However, the net effect on the statistical efficiency of a median-based fixing as an estimator

of the underlying market value is unknown in a setting such as ours with strategic data

generation. We show in Appendix A that, at least in our model, the median-based fixing does

not fundamentally alter manipulation incentives relative to linear benchmarks.

The remainder of the paper is organized as follows. Section 2 introduces the primitives of

the model and the solution concept. Section 3 offers some preliminary results that apply to

a general class of linear fixings. Section 4 contains our main analysis of absolute-size-weight

fixings, while Section 5 deals with fractional-size-weight fixings. We conclude in Section 6

by discussing the trade-offs associated with the choice between the two benchmark designs

that emerge from the analysis of the preceding sections. Appendix A discusses non-linear

fixings, Appendix B presents two models of manipulation that micro-found our reduced-form

baseline framework, while Appendix C contains additional examples. Finally, most proofs are

relegated to Appendix D.

2 The baseline model

A mechanism designer (benchmark administrator) estimates an uncertain variable Y, which

can be viewed as the “true” market value of an asset (the “fundamental”). To this end, she

designs a benchmark fixing, which is an estimator Ŷ that can depend on the transaction data{
(X̂i, ŝi)

}n
i=1

generated by a fixed set {1, 2, . . . , n} of agents. Here, X̂i is the price and ŝi

is the quantity of the transaction of agent i. The size ŝi of each transaction is restricted to

[0, s̄], a technical simplification that could be motivated as a risk limit imposed by a market

regulator or by an agent’s available capital. The price X̂i is a noisy or manipulated signal of

Y , in a sense to be defined. Agents are strategic: they have preferences, to be explained, over

their respective transactions and over the benchmark Ŷ . The sensitivity of a given agent’s

utility to Ŷ is known only to that agent.

We next describe in detail the problem of the benchmark administrator and the agents.

Further interpretation of our assumptions is postponed to the end of the section.

for deviating from the truth; Kephart and Conitzer (2016) formulate a Revelation Principle for a class
of models in which the agent faces a reporting cost.
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2.1 The problem of the benchmark administrator

The benchmark administrator minimizes the mean squared error E
[
(Y − Ŷ )2

]
of a benchmark

fixing Ŷ that is a linear unbiased estimator of the fair value Y of the form

Ŷ =
n∑
i=1

fi(ŝ)X̂i, (2.1)

where ŝ = (ŝ1, . . . , ŝn), and for each i, fi : [0, s̄]n → R+ is a measurable transaction weighting

function. We will consider two special classes:

1. Absolute-size-weight fixings, for which fi(ŝ) = wi(ŝi), where, for each i, wi :

[0, s̄] → R+ is a transaction weighting function to be chosen. That is, the weight

placed on a given transaction depends only on its own size.

2. Fractional-weight fixings, those for which

n∑
i=1

fi(ŝ) = 1,

for all ŝ ∈ [0, s̄]n. For example, the volume-weighted average price (VWAP), fi(ŝ) =

ŝi/(
∑n

j=1 ŝj), is a fractional-weight fixing.

2.2 The problem of the agents

We now explain how the transaction data
{

(X̂i, ŝi)
}n
i=1

are generated by strategic agents.

We assume that an agent can conduct a manipulated transaction at some reduced-form net

benefit, without explicitly modeling the market in which the transaction takes place. In

Appendix B, we propose two alternative stylized models of market trading that endogenize

the reduced-form costs and benefits of a manipulator.

Agent i privately observes her type Ri, which is interpreted as the agent’s profit exposure

to the benchmark. Specifically, the agent’s payoff includes a profit component RiŶ . This

type Ri can be negative, corresponding to cases when the agent holds a short position in the

asset whose value is positively correlated with the benchmark.

Having observed Ri, the agent chooses a pair (ẑi, ŝi) ∈ {−zi, 0, zi} × [0, s̄], where ẑi is a

price distortion and ŝi is a trade size. The absolute magnitude zi > 0 of the price distortion

is assumed to be exogenous, and can be a random variable, as discussed in Appendix B. If

agent i chooses not to manipulate, in that ẑi = 0, the benchmark administrator observes

(X̂i, ŝi) = (Xi, si), where (Xi, si) can be thought of the transaction (price and quantity)
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of agent i that would be naturally preferred in the absence of manipulation incentives. The

transaction (Xi, si) is determined by hedging or speculative motives that we do not model.

That is, we take the distribution of (Xi, si) as given. On the other hand, if agent i chooses

to manipulate, in that ẑi 6= 0, then the benchmark administrator observes the transaction

(X̂i, ŝi) = (Xi + ẑi, ŝi).

Intuitively, the agent can trade some quantity ŝi at a distorted price to manipulate the

benchmark fixing. This substitution, however, induces a cost γŝi|Xi− X̂i| to the agent that is

proportional to the size of the transaction and to the deviation of the price from the market

level Xi, where γ > 0 is a fixed parameter.

Without loss of generality, we normalize to zero the payoff to the agent associated with the

truthful reporting choice (X̂i, ŝi) = (Xi, si). Therefore, agent i solves the following problem

max
ẑi∈{−zi, 0, zi}, ŝi∈[0, s̄]

[
RiE

[
∆ẑi,ŝi Ŷ

]
− γŝi|ẑi|

]
1{ẑi 6=0}, (A)

where E
[
∆ẑi,ŝi Ŷ

]
is the equilibrium expected manipulative impact on the benchmark fix-

ing relative to choosing ẑi = 0 and ŝi = si. (Thus, ∆0, si Ŷ = 0.) We assume that agents

play a Bayes Nash equilibrium. Formally, each agent i evaluates E
[
∆ẑi,ŝi Ŷ

]
assuming equi-

librium strategies for other agents, taking expectations over their unobserved characteristics

(Rj , sj , Xj)j 6=i. To simplify the problem faced by the agent, we further assume that the

transaction price Xi is unobserved at the time of choosing whether to manipulate or not. (We

discuss and motivate this assumption in Subsection 2.4.)

2.3 The distribution of transactions data

The unmanipulated transactions {(Xi, si)}ni=1 are generated as follows. First, Y is drawn from

some probability distribution with mean normalized to zero, and with some finite variance

σ2
Y . Then, a pair (εi, si) is drawn for every agent, i.i.d. across agents and independently of

Y . We assume that E (εi | si) = 0, and that var (εi| si) = σ2
ε for some σ2

ε > 0. The size si has a

cumulative distribution function (cdf) G with a continuous density g that is strictly positive

on [0, s̄]. The unmanipulated price is Xi = Y + εi, which is therefore a noisy and unbiased

signal of Y , with variance σ2
U ≡ σ2

Y +σ2
ε . The subscript U is a mnemonic for “unmanipulated.”

The exposure types R1, . . . , Rn are i.i.d. and independent of all other primitive random

variables in the model. The cdf H̃ of Ri has support contained by some interval [−R̄, R̄]. We

allow the case of R̄ = ∞. We assume that the probability distribution of Ri is symmetric

around zero, and that bigger incentives to manipulate are relatively less likely to occur than

smaller incentives. That is, H̃ has a finite variance and a density h̃ that is symmetric around

zero and strictly decreasing on (0, R̄). Examples include the normal and Laplace (“double
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exponential”) distributions. Given the symmetry of H̃, we can define a cdf H on [0, R̄] such

that

H̃(R) =

1
2 −

1
2H(−R) if R < 0,

1
2 + 1

2H(R) if R ≥ 0.

That is, H is the distribution of Ri conditional on Ri ≥ 0. We let h denote the density of H,

and we assume that h is twice continuously differentiable.

The agents’ respective price-distortion magnitudes z1, . . . , zn are i.i.d., and are indepen-

dent of all other primitive model variables. The variance σ2
z of zi is finite and strictly positive.

We let σ2
M ≡ σ2

U +σ2
z > σ2

U denote the variance of the reported price Xi+ ẑi conditional on the

event {ẑi 6= 0} of a manipulation. The subscript M is thus a mnemonic for “manipulated.”

2.4 Comments on assumptions

For tractability, we restrict attention to benchmark fixings that are linear with respect to

price, with weights depending only on the sizes of transactions. We do not consider non-

linear benchmarks, that is, fixings whose weights depend jointly on the sizes and prices of

transactions. We do, however, discuss nonlinear designs in Appendix A.

For absolute-size-weight fixings, a trader’s problem is particularly simple, since her weight

in the fixing is independent of the choices of other traders. In contrast, for general fixings

such as VWAP, for which the weight placed on a given agent’s transaction may depend on

the sizes of the transactions of other agents, there can be non-trivial strategic interaction,

because the optimal manipulation strategy of an agent may depend on how other agents

behave. As a result, some fixings create natural scope for collusion. Because we are not

able to accommodate all classes of benchmark fixings in a single optimization framework, we

instead proceed in three steps. First, in Section 4, we solve for the optimal absolute-size-

weight fixing using optimal control techniques. Second, we adopt an axiomatic approach in

Section 5, where we characterize the unique class of fixings that are robust to certain types of

collusive behaviors among traders. Third, in Section 6, we compare the optimal designs that

emerge from the analysis of Section 4 and 5, and explain when using one versus the other is

preferred.

The commonly used volume-weighted average price (VWAP) benchmark fixing method

uses the relative size weight ŝi/(
∑n

j=1 ŝj) and is thus a special case of a fractional-weight

fixing. In the class of absolute-size-weight fixings, we can accommodate a version of the VWAP

benchmark, in which
∑n

j=1 ŝj in the denominator of the VWAP benchmark is replaced with

its expectation (under equilibrium strategies). We will refer to this fixing as absolute-VWAP

or “A-VWAP.”

We have assumed that the variance of the price noise εi associated with an unmanipulated
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transaction has a variance that does not depend on the size of the transaction. It would be

more realistic to allow the price precision to be increasing with the size of the transaction, as

implicitly supported by volume-weighted-average-price (VWAP) schemes often used to report

representative prices in financial markets.16 Let κ(si) = var (Xi | si)−1 denote the precision of

the unmanipulated price Xi conditional on the transaction size si. Focusing on the case of a

constant κ(s) allows us to greatly simplify our arguments and sharpen the results. However,

as shown in a preliminary version of this paper (Duffie and Dworczak, 2014), our qualitative

conclusions remain valid provided that κ(s) is a non-decreasing and concave function, and that

σ2
z is large enough that a manipulated transaction has more price noise than an unmanipulated

transaction, regardless of its size.

The problem faced by each agent is stylized. We aim to capture some of a manipulator’s

key incentives. The trader’s type (Xi, si) can be interpreted as the transaction that the

agent would make, given current market conditions, to fulfill her usual “legitimate” business

purposes. For example, such a trade could be the result of a natural speculative, market

making, or hedging motive. The assumption that each agent can make only one transaction

is relaxed in Section 4.2. Formally, this assumption is justified if all of the transactions of a

given agent are first aggregated and only then provided as a single input to the estimator.

This is the method currently used in the fixing of Libor by ICE Benchmark Administrator.

Section 4.2 considers the problem of a benchmark administrator when such an aggregation is

infeasible or undesirable.

The assumption that Xi is unobserved at the time of solving problem A means that the

agent commits to a direction and magnitude of manipulation before executing the trading

strategy. For example, manipulation can often be generated through the effect of “price

impact.” A manipulator who wishes to create an upward distortion of the price could submit

a large market order to buy to a limit-order-book exchange. The buy order would “travel

up” the limit order book to the price level at which it is filled, which cannot be predicted

when the order is submitted. More generally, it is typically difficult to predict one’s execution

price in a financial market at the point in time at which the trading decision is made (see

Appendix B for a formal model supporting this claim). Alternatively, this assumption can be

micro-founded via an agency friction. Suppose that there are two traders at bank i: Trader

A is responsible for trading the underlying asset, while trader B operates in the derivative

market. It is then trader B who observes Ri and stands to gain from the manipulation.

The literal interpretation of our model is that trader B submits a request to trader A with

the recommended size and price distortion (ẑi, ŝi), and then trader A observes (Xi, si) and

executes the trade (X̂i, ŝi) in the market for the underlying asset.17

16See, for example, Berkowitz et al. (1988).
17While trader B would in general benefit from conditioning her manipulation strategy on the
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For simplicity, we have also assumed that the size of a price manipulation is bounded by

zi. Then, the restriction to the choice from {−zi, 0, zi} is without loss of generality given

the linearity of the agent’s objective function in ẑi. Alternatively, we could assume that

there there is an increasing cost ψ(|z|) of manipulation, based for instance on an increasing

probability of detection. Formally, in our setting, ψ(|z|) = c1{z /∈[−zi, zi]}, for some large c > 0.

The results depend mainly, in this regard, on the assumption that the manipulation levels

chosen by agents are high enough that manipulated transactions are less precise signals of

price than unmanipulated transactions. This property would hold across many plausible

alternative model specifications.

The cost of manipulation reflects the losses that the trader incurs when trading away from

fair-value prices in order to manipulate the fixing. We take a partial-equilibrium approach,

relegating an endogenous model of trading and payoffs to Appendix B. Our particular func-

tional form for the cost of manipulation, chosen in large part for its tractability, can be further

justified by an alternative interpretation of the nature of manipulations. Namely, imagine that

traders can submit “shill trades,” in the form of fictitious transactions at distorted prices, with

reimbursements,“kickbacks,” arranged through side payments. Then ŝi|Xi − X̂i| is precisely

the kickback cost of manipulation.18 Assuming that the cost of manipulation is linear, rather

than strictly convex, with respect to size and price distortion is a conservative approach in

that it allows for relatively higher profits associated with larger manipulations.

Finally, Ri can be thought of as the position that the trader holds in contracts whose

settlement price is tied to the administered benchmark fixing. For example, manipulators

of oil price benchmarks (Footnote 7) were allegedly motivated by the fact that they held oil

futures contracts whose settlement payments are contractually based on the oil price fixing.

For positions such as options whose market values are nonlinear with respect to a benchmark,

one can view Ri as the so-called “delta” (first-order) sensitivity of the position value to the

benchmark. The assumption that Ri is symmetric around zero is, in effect, a belief by the

benchmark administrator that upward and downward manipulative incentives are similar,

other than with respect to their signs.

3 Statistical efficiency versus manipulation deterrence

This section considers basic properties of a general benchmark fixing Ŷ =
∑

i fi(̂s)X̂i. We

present solutions to some preliminary cases that provide intuition as well as elements on which

current market information about pricesXi, such back-and-forth communication between traders might
be too risky. Indeed, Libor litigation and fines have mostly arisen when such private communication
between traders was uncovered—see footnote 11.

18This assumption is that the cost is linear in size. We can view γ as a per-dollar cost of using an
illegal transfer channel, for example resulting from the possibility of detection and punishment.
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to build when solving the general case.

3.1 Solution without manipulation

For comparison purposes, we first solve the problem assuming that agents do not manipulate.

That is, for each i, X̂i = Xi and ŝi = si. The law of iterated expectation implies that

E [Ŷ |Y ] = Y E

[
n∑
i=1

fi(s)

]
. (3.1)

Thus, Ŷ is unbiased if and only if E
∑n

i=1 fi(s) = 1. Then, it follows from our distributional

assumptions that

E
[
(Y − Ŷ )2

]
=

E

( n∑
i=1

fi(s)

)2
− 1

σ2
Y + E

[
n∑
i=1

f2
i (s)

]
σ2
ε .

Proposition 1 Absent manipulation, the weighting function f that minimizes the mean

squared error of the benchmark fixing subject to unbiasedness is given by fi(s) = 1/n.

The proof is skipped: This problem can be viewed as a simple case of ordinary-least-

squares estimation. The benchmark administrator’s optimal weights are proportional to the

precision of each price observation. Because the precisions are assumed to be identical and

in particular invariant to the sizes of transactions, the optimal weights are equal. There is an

obvious generalized-least-squares extension to the case of a general covariance structure for

the observation “noises” ε1, . . . , εn.

3.2 Manipulation deterrence

We now turn to the manipulation problem A facing an agent. By symmetry, we may con-

centrate on the event of a positive manipulation incentive, Ri ≥ 0. Using the assumptions of

Subsections 2.2 and 2.3, we can express the problem A of agent i as

max
ẑi∈{0, zi}, ŝi∈[0, s̄]

[
Rif̄i(ŝi)− γŝi

]
ẑi1{ẑi 6=0}, (3.2)

where f̄i(ŝi) = E[fi(ŝi, ŝ−i)] is the interim expected weight for agent i’s transaction with

expectation taken over the vector of transaction sizes ŝ−i of agents other than i. In particular,

we have used the assumption that, from the perspective of agent i, X̂j has zero mean, and
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thus agent i can ignore the influence of her ŝi on the weight on agent j’s transaction, for any

j 6= i.

An agent with type Ri manipulates if and only if there is some s ∈ [0, s̄] such that

Rif̄i(s) > γs, that is, if there is a size for the manipulated trade at which the impact on the

benchmark fixing is high enough to cover the associated manipulation cost. If type Ri chooses

to manipulate, then all types higher than Ri also manipulate. Similarly, if type Ri chooses not

to manipulate, all types below Ri also choose not to manipulate. Moreover, because agents

are ex-ante identical, if the designer wants to implement truthful reporting by all agents,

she may without loss of generality focus on symmetric weights: fi(s) = f(si, s−i) for some

f : [0, s̄]n → R+. It follows that with any such weighting function f we may associate a

unique threshold Rf defined by

Rf = sup{R ≤ R̄ : Rf̄(s) ≤ γs, s ∈ [0, s̄]},

where f̄(s) = E[f(s, ŝ−i)]. That is, given f , the types above Rf manipulate and the types

below Rf do not. This easy observation leads to the following result.

Proposition 2 The benchmark administrator can ensure that there are no manipulations if

and only if R̄ ≤ nγE[s1].

Proof: No manipulation means that ŝi = si for all i. By the fact that the benchmark fixing

is unbiased, we must have that Ef̄(s1) = 1/n. By the above discussion, it is possible to

implement no-manipulation (truthful reporting) if and only if, for every s ∈ [0, s̄], we have

R̄f̄(s) ≤ γs. Thus, a necessary condition to implement no manipulation is that

R̄Ef̄(s1) ≤ γE[s1]

from which it follows that R̄ ≤ nγE[s1]. The condition is also sufficient. Indeed, the designer

can simply use an absolute-size-weight fixing with weights w1(si), . . . , wn(sn) of the form

wi(si) = si/(nE[s1]) which are unbiased, and do not lead to any manipulation since in this

case f̄ = wi and

R̄f̄(s) = R̄
s

nE[s1]
≤ nγE[s1]

s

nE[s1]
= γs.

�

The result states that implementing truthful reporting may sometimes be possible. How-

ever, the condition R̄ ≤ nγE[s1] is likely to be violated in practice, especially when the

underlying asset market for the benchmark is thinly traded relative to the market for instru-

ments that determine the incentives to manipulate. A thinly traded underlying asset market
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corresponds to the case in which R̄ is large relative to E[s1], the expected size of a typical

transaction in the benchmark market. This condition is even less likely to be satisfied when

manipulation is relatively cheap (γ is small) or when there are few transactions (n is small).

The latter case is indeed a practical concern. For example, as documented by Brundsen (2014)

for the case of EURIBOR, banks are increasingly reluctant to support benchmarks in the face

of potential regulatory penalties and the risk of private litigation.

We note that the weight used in the proof of Proposition 2 differs significantly from the

optimal weight used when agents do not manipulate from Proposition 1. This is a reflection of

the fundamental trade-off that our designer faces between statistical efficiency (which dictates

using constant weights) and manipulation deterrence (which requires weights that are small

for small transactions). In particular, this means that the benchmark administrator should

not restrict attention to weighting functions that fully deter manipulation, even when this is

feasible.19 The optimal weighting function instead influences the degree to which agents ma-

nipulate. At the same time, it is never optimal to ignore the manipulation problem altogether

by using the statistically efficient fixing from Proposition 1. The following simple observation

illustrates this fact.

Observation 1 If the weight chosen by the designer satisfies lim supsk→0 f̄(sk) > 0, then all

agents choose to manipulate with probability 1.

Observation 1 is a straightforward consequence of the assumption that it is much less costly

to manipulate small transactions. As a result, if the fixing attaches a strictly positive weight

to arbitrarily small transactions, each agent will always choose to bias the price in her favor,

no matter how small their incentive to manipulate Ri. Because manipulated transactions are

less precise signals of the fundamental Y , such a fixing cannot be optimal. The designer could

set a zero weight for transaction sizes below some arbitrarily small threshold, and lower the

mean squared error by improving the precision of signals with strictly positive probability

(since agents with sufficiently low Ri would no longer choose to manipulate).

For clarity of exposition, we henceforth assume that R̄ =∞, so that implementing truthful

reporting is not possible.20

4 The optimal absolute-size-weight fixing

In this section, we work with the class of absolute-size-weight fixings, and derive the optimal

benchmark using optimal control techniques. All proofs are relegated to the appendix.

19See an earlier draft of our paper Duffie and Dworczak (2014) for a formal numerical example
illustrating this point.

20Mathematically, this is essentially without loss of generality because we can specify the cdf H of
Ri to place arbitrarily small probability mass above any finite R̄.



4 The optimal absolute-size-weight fixing 17

Because agents are ex-ante identical, it is without loss of generality to restrict attention

to symmetric weights. We will abuse notation slightly by using f : [0, s̄]→ R+ to denote the

one-dimensional weight function in this section. That is, we study benchmarks of the form

Ŷ =
∑n

i=1 f(ŝi)X̂i.

We impose a mild regularity condition that is needed to ensure the existence of a solution

to the administrator’s problem. Let CK,M be the set of upper semi-continuous f : [0, s̄]→ R+

with the property that there exist at most K points 0 = s1 < s2 < · · · < sK−1 < sK = s̄ such

that f is Lipshitz continuous with Lipshitz constant M in each (si, si+1). The constants K

and M are assumed to be finite but large.21 This regularity allows the weighting function f

to have finitely many jump discontinuities.

We summarize the problem of the benchmark administrator as

inf
f ∈CK,M

E

(Y − n∑
i=1

f(ŝi)X̂i

)2
 subject to E

[
n∑
i=1

f(ŝi)

]
= 1. (P)

We now derive a concise mathematical formulation of the problem P faced by the bench-

mark administrator under the assumptions of Subsections 2.2 and 2.3.

First, we use our symmetry assumptions to simplify the problem. From the viewpoint of

the benchmark administrator, the events ẑi = zi and ẑi = −zi are equally likely, even after

conditioning on ŝi. Therefore, equation (3.1) still holds if we replace si by ŝi. That is, forcing

the estimator Ŷ to be unbiased is equivalent to the requirement that E [
∑n

i=1 f(ŝi)] = 1. We

denote by Ψf ( · ) the cdf of the transaction size ŝi, conditional on its manipulation. That is,

Ψf (s) = PRi∼H(argmaxŝRif(ŝ)− γŝ ≤ s|Ri > Rf ). (4.1)

By the law of iterated expectations and because of arguments presented in Subsection 3.2,

E
[
(Y − Ŷ )2

]
=

n∑
i=1

ˆ s̄

0
f2(ŝi)

[
σ2
UH(Rf )g(ŝi) dŝi + σ2

M (1−H(Rf )) dΨf (ŝi)
]
−
σ2
Y

n
.

The displayed equation states that if |Ri| ≤ Rf (which happens with probability H(Rf )), then

the transaction of agent i is unmanipulated, in that ŝi = si, X̂i has variance σ2
U , and ŝi has

probability density g. On the other hand, if the transaction is manipulated, which happens

with probability 1 −H(Rf ), then X̂i has variance σ2
M from the viewpoint of the benchmark

administrator.

21Formally, all our results hold for large enough M and K.
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Similarly, we can express the constraint in problem P as

1 = E

[
n∑
i=1

f(ŝi)

]
=

n∑
i=1

ˆ s̄

0
f(ŝi) [H(Rf )g(ŝi) dŝi + (1−H(Rf )) dΨf (ŝi)] .

To characterize the optimal benchmark, we use an approach familiar from principal-agent

models. We address the best way, given some target manipulation threshold R, for the

administrator to implement an outcome in which an agent with |Ri| ≤ R chooses not to

manipulate. As we saw before, this requires that the benchmark weight function satisfies the

additional constraint f(s) ≤ (γ/R)s. Solving this auxiliary problem is a key step towards

solving the original problem P. This auxiliary problem is illuminating in its own right.

For example, the benchmark administrator may have exogenous preferences for deterring

manipulation, which could be modeled by setting a high manipulation threshold R. Formally,

using the assumption that agents are symmetric, we can formulate the auxiliary problem as

inf
f ∈CK,M

ˆ s̄

0
f2(s)

[
σ2
UH(R)g(s) ds+ σ2

M (1−H(R)) dΨf (s)
]

(P(R))

subject to22

f(s) ≤ γ

R
s, s ∈ [0, s̄], (4.2)

ˆ s̄

0
f(s) [H(R)g(s) ds+ (1−H(R)) dΨf (s)] =

1

n
. (4.3)

If the target manipulation threshold R is too high, then no function f inducing that threshold

(that is, satisfying constraint (4.2)) will satisfy constraint (4.3). Among all weighting functions

f satisfying (4.2), f(s) = (γ/R)s maximizes the left hand side of (4.3). In particular, under

this transaction weighting all manipulators choose the maximal transaction size s̄. Therefore,

if we define

R̂ = max

{
R ≥ 0 :

γH(R)

R
E (s1) +

γ(1−H(R))

R
s̄ ≥ 1

n

}
,

then the condition R ≤ R̂ is both necessary and sufficient for the set of feasible f to be

non-empty for the problem P(R).

4.1 The optimal benchmark

In this section we present the solution to the problem faced by the benchmark administrator.

Theorem 1a lists the main properties of the optimal benchmark. Theorem 1b describes the

exact shape of the optimal fixing under a technical assumption. When this technical assump-

22We abuse notation slightly by treating Ψf (s) as being defined by (4.1) with Rf replaced by R.
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tion fails, the optimal fixing can still be described as a solution to a parameterized differential

equation.

Theorem 1a For any R ∈ (0, R̂), there exists a unique solution f? to problem P(R). More-

over, f? is non-decreasing, concave, continuously differentiable, and satisfies (f?)′(s̄) = 0.

There is some s0 > 0 such that f?(s) coincides with (γ/R)s whenever s ≤ s0.

The following ordinary differential equation (ODE), which will play a key role in de-

termining the shape of the optimal fixing, is indexed by two parameters: s0 and s1, with

0 < s0 < s1 < s̄. Consider

f ′′(s) = −
[f(s1)− f(s)]H(R)g(s) +

σ2
M

σ2
U
γh
(

γ
f ′(s)

)
[
σ2
M

σ2
U
f(s)− f(s1)

] (
−h′

(
γ

f ′(s)

))
γ2

(f ′(s))3

, (4.4)

with boundary conditions

f(s0) = (γ/R)s0, f ′(s0) = (γ/R).

Theorem 1b Suppose that there exist s0 < s1 < s̄ such that f?, defined by

f?(s) =


γ
Rs, s ∈ [0, s0]

solves (4.4), s ∈ (s0, s1)

f?(s1), s ∈ [s1, s̄],

is continuously differentiable and satisfies (4.3). Then, for any R ∈ (0, R̂), f? is the unique

solution to the optimal fixing problem P(R).

Intuitively, in Theorem 1b, for any given s0, the point s1 is chosen so that f ′(s1) = 0.

(This is called the “shooting method.”) This construction guarantees that f? is continuously

differentiable. Then s0 can be chosen to satisfy (4.3). However, especially when s̄ is relatively

small, suitable choices for s0 and s1 might not exist. In such a case, the optimal f? asymptotes

to a constant function without being constant on any interval; f? satisfies a generalized version

of (4.4) given in Appendix C.1, which depends on an additional parameter chosen to satisfy

the boundary condition (f?)′(s̄) = 0.

We refer a reader interested in our techniques to Appendix D.1 that presents an informal

sketch of the proof of the above results, as well as the formal supporting arguments.

Because there is no explicit solution to the differential equation (4.4), a closed-form solu-

tion for the optimal fixing-weight function f? is not available. However, Theorem 1a provides

a number of economic predictions about the form of the optimal benchmark. One robust
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finding is that the optimal weighting function becomes flat as the transaction size increases,

as captured by the property (f?)′(s̄) = 0. The optimal f? is typically flat after some threshold

transaction size s1 < s̄, as predicted by Theorem 1b and as illustrated in Example 1, to fol-

low. Intuitively, assigning too much weight to very large transactions is suboptimal because it

induces agents with high manipulation incentives to choose large transaction sizes, resulting

in overweighting such large transactions in the estimator.

Another general feature of the optimal benchmark is that f?(s) coincides with (γ/R)s

for a sufficiently small transaction size s. In particular, f? attaches small weight to small

transactions. The shape of the optimal fixing for small transactions is pinned down by the

binding constraint that an agent with the cutoff type R prefers to avoid manipulation. This

is intuitive. If a benchmark fixing places small weight on small transactions, then unmanip-

ulated transactions are underweighted compared to the weight that they would receive in a

statistically efficient estimator. Therefore, it is optimal to place the maximal weight on small

transactions that is consistent with deterring manipulation by types above R.

Fig. 4.1: Optimal weighting function for Example 1. The dotted line depicts the optimal solution in

the absence of manipulation.

Finally, Theorem 1a indicates that the optimal benchmark provides an incentive for

“smoothing out” manipulations, preventing them from “bunching” around a given trans-

action size. This is perhaps somewhat surprising. The manipulated transactions have the

same precisions as signals of Y , and yet it is optimal to attach different weights to them.

As added intuition, we note that local behavior of f ′ has only second-order effects on the

incremental variance term σ2
Uf

2(s)H(R) dG(s) associated with unmanipulated transactions.

In contrast, the incremental variance term σ2
Mf

2(s)(1−H(R)) dΨf (s) for manipulated trans-

actions is sensitive to the local behavior of f ′. This follows from the influence of f ′ on the

distribution Ψf , in that relatively small changes in the slope of f can lead to large changes

in the optimal transaction volume chosen by a manipulator. Under our assumptions, this

variance term is convex in f ′. Thus, minimizing the variance term requires minimizing the
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variation of f ′ (subject to meeting other criteria). As a result, f ′ changes continuously rather

than exhibiting discrete jumps.

When the fixing function f? is that given by Theorem 1b, all manipulators choose a trans-

action size in [s0, s1], and the distribution of sizes has full support in that interval. However,

as shown in Figure 4.2, the distribution of manipulated transaction sizes is often concentrated

around s0. Under these conditions, the optimal benchmark can be well-approximated by a

simple fixing that is linear up to a threshold, and constant afterwards (we comment further

on this point in Example 3 in Appendix C.2)

To illustrate the above discussion we consider the following numerical example.

Example 1 Suppose that γ = 1, n = 10, R̄ = 5, σ2
Y = σ2

ε = σ2
z = 1, g is the uniform

density on [0, 1], and h(x) = exp(−x/2)/2. The given density h implies that, on average,

the exposure to the benchmark asset is equal to 2. We set the manipulation threshold to be

twice the mean, R = 4. The type threshold R = 4 corresponds to a probability of manipulation

of around 14%. The optimal weighting function is depicted in Figure 4.1. This function is

smooth (C1), but its first derivative changes rapidly close to s0 ≈ 0.40. All of the manipulated

transactions are in the interval [s0, s1]. Figure 4.2 illustrates that manipulations are in fact

highly concentrated around s0.

While the qualitative properties of the optimal weighting function are intuitive, the par-

ticular form of the ODE (4.4) is less clear. To gain intuition, we can rewrite (4.4) as

[
f(s)σ2

M − f(s1)σ2
U

]
dH

(
γ

f ′(s)

)
︸ ︷︷ ︸

IM

+ [f(s)− f(s1)]σ2
UH(R)g(s)︸ ︷︷ ︸

IU

=

d

ds

[(
f(s)σ2

M − f(s1)σ2
U

)
h

(
γ

f ′(s)

)
γ

f ′(s)

]
︸ ︷︷ ︸

IA

.

In the above formula, one may think of f(s1) as the optimal constant weight that would

be assigned to unmanipulated transactions for the efficient estimator (fixing) that would be

chosen in the absence of manipulation incentives (see Proposition 1). The term IU is zero, that

is f(s) = f(s1), when the weight is chosen optimally from the point of view of unmanipulated

transactions. This term is proportional to the density of sizes corresponding to unmanipulated

transactions. On the other hand, the term IM is zero, that is f(s)σ2
M = f(s1)σ2

U , when the

weight is chosen optimally from the point of view of manipulated transactions. This term

is proportional to the density of sizes that arises from manipulated transactions. In both of

these cases, individually, the term IA is also zero because h (γ/f ′(s)) (γ/f ′(s)) = 0 when f is
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Fig. 4.2: Density of manipulations

constant.23 Ideally the benchmark administrator would like to set both of the terms IM and

IU to zero, but this is impossible when σ2
M > σ2

U . Thus, the administrator faces a trade-off.

She either puts insufficient weight on unmanipulated transactions, which are relatively precise

signals of the fundamental value, or she puts too much weight on manipulated transactions,

which are relatively noisy signals of the fundamental value Y .

In balancing these two effects, the administrator takes into account the term IA. By

assumption, types in [R, ∞) manipulate. By controlling f ′, the administrator controls the

sizes of transactions chosen by types Ri in [R, ∞). Because the optimal fixing is concave and

differentiable, the optimal size of a manipulation is pinned down by the first-order condition

for the manipulator’s problem (3.2). Thus, an agent with type Ri = γ/f ′(s) chooses size

s. The term γ/f ′(s) starts at R when s = 0, and ends at ∞ when s = s̄. It follows that

dH(γ/f ′(s)) describes the density of manipulated transactions. The term IA accounts for the

fact that when the benchmark administrator chooses f(s) at s, she considers the effect of the

speed with which the slope changes on the distribution of the remaining mass of manipulated

transactions.

To complete the characterization of the optimal fixing function f?, we observe that for

the case R = 0 (at which every type manipulates), the optimal solution is f?(s) = 1/n. This

is analogous to Proposition 1, replacing σ2
U with σ2

M . For the case R = R̂, there is only one

feasible fixing function, that with f(s) = (γ/R)s, which is thus trivially optimal.

Having characterized the solution to problem P(R) for a fixed manipulation threshold R,

one can solve the original problem P by choosing an optimal threshold R?. This involves

computing the optimal weighting function f? for every R ∈ [0, R̂], evaluating the objective

function, and finding the maximum over all R, achieved at some R?. This optimum is attained,

by Berge’s Theorem. While analytic solutions are infeasible, this step can be done numerically.

However, we prove below that the optimal R? is interior, and thus deters some manipulation

23While this seems to present some issues associated with division by zero, the result follows from
integrability of h, and is formally stated in Lemma 7 of Appendix D.



4 The optimal absolute-size-weight fixing 23

but does not minimize the probability of manipulation among all feasible weighting functions.

Proposition 3 The optimal manipulation threshold for problem P is interior: R? ∈ (0, R̂).

A consequence of Proposition 3 is that the predictions of Theorem 1a about the shape of

the fixing hold at the optimal R?. Appendix C.2 contains an additional numerical example.

4.2 Robustness to order splitting

A practical concern related to the design of benchmarks based on transaction data is that

agents intending to trade total quantity s of the asset may split the order into several smaller

“chunks” to influence the benchmark fixing. For example, the fixing of the ICE Swap rate

is based on transaction data from multiple order books.24 Because orders are submitted

anonymously, instead of submitting one order to one exchange, a trader could instead submit

a few smaller orders to several exchanges. Similarly, the VIX benchmark,25 the LBMA gold

price fixing,26 CME futures settlement benchmarks,27 and WMR FX fixings28 are based

on anonymous user inputs, such as trades, quotes, or bids, and are not amenable to fixing

approaches that would combine different inputs from the same entity. Such concerns are

less relevant in settings where transaction data are submitted by well-identified traders – for

example, from a panel of banks in the case for Libor29 or registered participants of the Platts’

24As ICE describes it,“At each snapshot, we combine the order books from all the trading venues to
create a synthetic order book that represents the best prices (and accompanying volumes) available in
the market at that time. We then calculate the volume weighted prices at which you could fill a trade
in SMS [of a standard nominal size] from this synthetic order book on both the bid and offer side and
these effective prices are used to calculate the VWAMP [volume weighted average mid-price].” See
“ICE Benchmark Administration Calculation of ICE Swap Rate from Tradeable Quotes Overview,”
at https://www.theice.com/publicdocs/ICE_Swap_Rate_Full_Calculation_Methodology.pdf

25Chicago Board Options Exchange, “Settlement Information for VIX Derivatives,”
at http://cfe.cboe.com/cfe-products/vx-cboe-volatility-index-vix-futures/

settlement-information-for-vix-derivatives.
26LBMA Gold Price fixing is the clearing price of an anonymous submission double auction, under

rules described at http://www.lbma.org.uk/lbma-gold-price.
27See “CME Group Daily Settlement Procedures,” which are typically VWAP based on anony-

mous transactions, at https://www.cmegroup.com/content/dam/cmegroup/market-data/files/

CME_Group_Settlement_Procedures.pdf.
28All transactions are anonymous and enter the fixing algorithm individually, not grouped by

investor. They are used to estimate an effective bid and an effective offer for each trade. The
fixing is roughly the median of the implied midpoints of all of the transactions. See “Re-
finitiv Benchmark Services Limited, “WM/Reuters FX Benchmarks – Spot and Forward Rates
Methodology Guide,” at https://www.refinitiv.com/content/dam/marketing/en_us/documents/
methodology/wm-reuters-methodology.pdf.

29Since about 2015, each bank submits all of its transactions to the benchmark administrator,
IBA. So, “order splitting” is detectable. But the benchmark is merely the unweighted average of
one submitted rate from each bank, from among those banks whose submitted rates are not outliers,

https://www.theice.com/publicdocs/ICE_Swap_Rate_Full_Calculation_Methodology.pdf
http://cfe.cboe.com/cfe-products/vx-cboe-volatility-index-vix-futures/settlement-information-for-vix-derivatives
http://cfe.cboe.com/cfe-products/vx-cboe-volatility-index-vix-futures/settlement-information-for-vix-derivatives
http://www.lbma.org.uk/lbma-gold-price
https://www.cmegroup.com/content/dam/cmegroup/market-data/files/CME_Group_Settlement_Procedures.pdf
https://www.cmegroup.com/content/dam/cmegroup/market-data/files/CME_Group_Settlement_Procedures.pdf
https://www.refinitiv.com/content/dam/marketing/en_us/documents/methodology/wm-reuters-methodology.pdf
https://www.refinitiv.com/content/dam/marketing/en_us/documents/methodology/wm-reuters-methodology.pdf
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Market on Close30 process for energy price benchmarks – because the administrator can

aggregate the data from each trader before calculating the benchmark. Even then, however,

robustness to order-splitting might be a desirable property if two or more traders could collude

and effectively behave as a single trader who can submit more than one transaction.

So far, we have ruled out the possibility of strategic order splitting by assuming that each

agent conducts exactly one transaction. If we relax this assumption, it turns out that the

optimal benchmark from Section 4.1 is susceptible to this type of manipulation. To see this,

imagine that agent i, with a positive manipulation incentive Ri, intends to trade the quantity

s1. (See Figure 4.1.) Beyond merely distorting the price of this transaction, the agent can

additionally influence the benchmark fixing by submitting two smaller transactions, each with

quantity s1/2. Such a manipulation is costless relative to making one transaction with size

s1 given our linear cost function, and yields the agent a benefit of

Ri(2f
?(s1/2)− f?(s1)) > 0,

because of the concavity of the weighting function f?.

By an extension of this argument, if the designer chooses a benchmark fixing f , the

effective weighting function that will arise under optimal order-splitting takes the form

f̃(s) = sup{f(q1) + · · ·+ f(qk) : qi ∈ [0, s̄], q1 + · · ·+ qk = s}. (4.5)

Therefore, if order-splitting is allowed and costless,31 it is without loss of generality to require

defined for example as the highest and lowest quntiles. A bank’s submitted rate generally can be
judgmental, or based on an algorithm used by the submitter. This is up to each submitter, subject to
auditing.

30See Platts, “An Introduction to Platts’ Market-on-Close Process in Petroleum,” at https:

//www.platts.com/IM.Platts.Content/aboutplatts/mediacenter/PDF/intromocoil.pdf “Platts
Market On Close (MOC): is the process Platts’ editors use to assess prices for crude oil, petroleum
products and related swaps. ... The MOC is a structured, highly transparent process in which bids,
offers and transactions are submitted by participants to Platts’ editors and published in real-time
throughout the day until the market close. Following the close, Platts editors examine the data gath-
ered through the day, conduct their analysis and develop price assessments that reflect an end-of-day
value.” ... “the guidelines mandate that the MOC process be fully transparent. Thus, Platts requires
full disclosure on the details of any bid, offer or transaction submitted into the MOC process, and does
not allow participants to submit bids, offers and transactions anonymously. Also, Platts requires that
the data submitted reflect actual verifiable transactions and/or bids and offers that are ‘firm,’ open
to the market at large, and therefore executable. This is to prevent a participant from distorting the
process (and thus a Platts assessment) with a bid or offer that is not representative of market value.
On occasion, Platts’ editors will request supporting documentation from the counterparties in order
to verify a transaction.

31Costless order splitting amounts to assuming that agents have no price impact in the underlying
market. With price impact, submitting smaller orders might actually improve the price received by
the agent, which further encourages order-splitting.

https://www.platts.com/IM.Platts.Content/aboutplatts/mediacenter/PDF/intromocoil.pdf
https://www.platts.com/IM.Platts.Content/aboutplatts/mediacenter/PDF/intromocoil.pdf
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that the benchmark administrator chooses a weighting function f that leaves no incentive for

this type of order-splitting manipulation. This property is easily seen to be equivalent to the

condition that f is superadditive. In particular, for any positive integer k,

f(ks) ≥ kf(s), s ≤ s̄

k
. (4.6)

Superadditivity is a cumbersome constraint in optimal control problems because it is a global

property, ruling out characterizations based on local behavior. Therefore, for tractability, we

will assume a slightly stronger mathematical condition by requiring (4.6) to hold for all real

k ≥ 1, and not only for integer k.

Definition 1 A benchmark weighting function f is robust to order-splitting if

f(ks) ≥ kf(s),

for all k ∈ [1,∞) and all s such that ks ≤ s̄.

It is clear that the optimal weighting function found in Theorem 1a-1b is not robust to

order splitting. In fact, if f is concave but not linear, it cannot satisfy Definition 1.

Theorem 2 For any R ≤ R̂, the optimal solution f? to problem P(R), subject to robustness

to order splitting, is given by f?(s) = (γ/R̂)s = s/(nE[ŝi]). Then, the optimal manipulation

threshold R? is equal to R̂, and the associated benchmark is the absolute-volume weighted

average price (A-VWAP).

The proof can be found in Appendix D.3. Theorem 2 states that if the benchmark admin-

istrator cannot deter or detect order-splitting, then the optimal benchmark is the absolute-

volume weighted average price. The intuition for this result is relatively straightforward.

When agents engage in strategic order splitting, the optimal weighting function cannot be

concave unless it is linear. At the same time, it is not optimal for the weighting function

to be strictly convex in any interval, since no manipulator would choose a transaction size

in the interior of that interval, resulting in inefficient underweighting of the unmanipulated

transactions with these sizes. Thus, it is optimal to choose a linear weighting function.

Under a linear weighting function, all manipulators choose the largest feasible transaction

size, which hence receives the highest possible weight. Therefore, the optimal benchmark

that is unbiased and robust to order splitting minimizes the unconditional probability of

manipulation. In particular, the probability of manipulation is smaller under the A-VWAP

benchmark than under the optimal benchmark from Theorems 1a-1b. At the same time, the

A-VWAP gives a much higher weight to manipulated transactions because if it did not, the
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manipulator would split her order into multiple smaller ones. We illustrate this point with

Example 3 in Appendix C.2.

5 Manipulation-robust fractional-weight fixings

In this section, we turn our attention to fractional-weight fixings, so that fi(ŝ) may now depend

on the entire vector ŝ of transaction sizes, subject to summing to one for every realization of ŝ.

As discussed, this opens up incentives for collusion, and we are unable to solve an optimization

problem as we did for the case of absolute-size-weighting.32 Instead, we adopt an axiomatic

approach. We characterize the unique class of fractional-weight fixings that deter agents from

engaging in a particularly simple form of collusion. For ease of exposition, we assume for this

section that s̄ =∞, so that there is no upper bound on transaction sizes.

We adopt the notation sK = (si)i∈K and, in particular sometimes write (s′K , s−K) to

denote a vector of transaction sizes in which the coordinates corresponding to a subset K ⊂
{1, . . . , n} are taken from the vector s′, and the transaction sizes for the complementary

subset are taken from the vector s. We will also use s−ij as shorthand notation for the vector

s without its i-th and j-th coordinates, and write

(s′i, s
′
j , s−ij) = (s1, ..., si−1, s

′
i, si+1, ..., sj−1, s

′
j , sj+1, ..., sn).

Finally, we let N = {1, ..., n}. With this, we can define a property of benchmark fixings that

will play a key role in our characterization.

Definition 2 A benchmark fixing neutralizes pairwise order splitting if for any s ∈ Rn+,

(i, j) ∈ N2, and x ≤ si,

fi(s) + fj(s) = fi(si − x, sj + x, s−ij) + fj(si − x, sj + x, s−ij).

To understand the definition, suppose that for some i and j in N, we have Xi = Xj . That

is, traders i and j face the same price in the market.33 Then, traders i and j could conduct

the following collusion. Trader i reduces her order by the quantity x and trader j increases

her order by the same amount. Because the total of the order sizes of i and j is unchanged,

the price would be invariant to this arrangement in some typical market mechanisms. This

would be true, for example, if trading is organized with a limit order book in which the price

32The fundamental reason for the intractability of this case is that it would require solving a multi-
variate optimal control problem; strategic interactions between agents complicate the problem but
could be handled (see Section 6).

33It is not required that the traders actually observe these prices, only that they expect to trade at
similar terms.
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depends on the aggregate demand and supply curves built up from orders. This collusion

would not be difficult to coordinate. If by this arrangement traders i and j could increase

their total influence on the benchmark fixing— as determined by the sum of their weights—

then they would have the incentives to do so. Definition 2 characterizes a fixing scheme with

the property that, regardless of how traders i and j split their total trade volume, the total

of their trade weights remains the same, thus negating any potential collusive profits.

An alternative interpretation of the assumption can be given if i indexes individual market

transaction sizes rather than the trade amount of a trader. In that case, Definition 2 is a

variant of the no-order-splitting condition from Section 4.2. The condition is that if a given

trader makes two transactions at the same price, then she should not be able to increase

her influence on the benchmark fixing by splitting the volume across these transactions in an

alternative way.

In the following result, we assume that a fixing assigns weights only to transactions of

non-zero size, in that for each i and any s−i, we have fi(0, s−i) = 0.

Theorem 3 A fractional-weight fixing f neutralizes pairwise order splitting and assigns weights

only to transactions of non-zero size if and only if f is the VWAP fixing, that is, for each i,

fi(s) = si/(
∑n

j=1 sj).

The restriction that a fixing prevents pairwise order-splitting seems weak. In particular,

it only constrains a particular type of deviation between a pair of traders, and does not

make any explicit assumption about the possibility of collusion among a larger group of

traders, or about more elaborate collusive schemes. The assumption of assigning no weight to

transactions with negligible size is also natural, for as we have argued in Observation 1, in the

absence of this property of a fixing, all traders would always choose to manipulate because

the cost of manipulating with a small transaction is also negligible. Yet, we find that these

two apparently permissive assumptions pin down a unique candidate benchmark fixing, which

is the VWAP.

We have not even made an assumption that the benchmark fixing must treat all trans-

actions symmetrically. It turns out that symmetry is a necessary implication of the two

assumptions of Theorem 3. Intuitively, if two traders were treated asymmetrically, they

would have an incentive to collude, because the trader with a larger influence could make a

larger transaction “on behalf” of both traders, effectively giving the same influence to the

“less influential” trader.

In the proof of this result, a key step is to show that robustness to pairwise order-splitting

implies the seemingly stronger property that the fixing neutralizes the impact of order-splitting

among any subset of the traders.
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Definition 3 A benchmark fixing f neutralizes group order splitting if for any s ∈ Rn+ and

any subset K ⊆ {1, ..., n} of traders, the total weight assigned to traders in K,
∑

i∈K fi(s), is

unchanged if traders in K reallocate transaction sizes among themselves while keeping their

total transaction volume
∑

i∈K si constant.

Obviously, a VWAP benchmark neutralizes group order splitting.

As a corollary of our proof, we can show that even without the condition of assigning no

weight to transactions with negligible size, any fractional-weight fixing (fi)
n
i=1 that neutralizes

pairwise order-splitting must take the form

fi(s) =

1− 1

n

∑
i∈N

βi

 n∑
j=1

sj

 si∑n
j=1 sj

+ βi

 n∑
j=1

sj

 1

n
, (5.1)

for some function β : R+ → Rn+. If the fixing is also symmetric across i, then (5.1) shows that

the weight fi(s) is itself a weighted average of the VWAP weight and the constant weight

1/n, where the relative importance of these two components can depend on the total volume

of trade in the market.

6 Discussion

We developed a simple model for the design of robust benchmark fixings in settings for which

incentives to manipulate the benchmark arise from a profit motive related to investment

positions that are valued according to the benchmark. We have restricted attention to fixings

that are given by a size-dependent weighted average price, an important limitation that we

will discuss shortly. For the class of absolute-size-weight fixings, we characterized the optimal

weight for each size of transaction. We showed that an optimal benchmark fixing must in

general allow some amount of manipulation, puts negligible weight on small transactions,

and nearly equal weight on large transactions. When order-splitting cannot be detected

or otherwise deterred, the absolute-volume-weighted average price (A-VWAP) emerges as

the optimal design. For the class of relative-size weighted fixings, we have shown that the

conventional VWAP, whose weights are relative volume shares, emerges as the unique fixing

that is fractional, assigns weights only to transactions of non-zero size, and neutralizes pairwise

order-splitting.

6.1 A-VWAP versus VWAP

Since our two main results characterize Absolute-VWAP and the conventional VWAP as

the designer-preferred benchmarks among absolute-size-weight and fractional-weight fixings,
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respectively, we now discuss the trade-offs associated with choosing between these two designs,

and identify directions for future research.

Statistical efficiency. We first show that fractional-weight fixings (in particular, VWAP) can

mechanically lower the mean squared error of the benchmark fixing compared to an absolute-

size-weight fixing, by eliminating the component of the error that depends on the variance of

the fundamental σ2
Y . At the same time, the result shows that this is the only improvement,

and that the improvement disappears when n, the number of transactions, grows large, as

long as the fractional-weight fixing is asymptotically efficient.

Proposition 4 For any fractional-weight fixing f with a mean squared error V , there exists

an unbiased absolute-size-weight fixing f̄ with a mean squared error strictly smaller than V +

δnσ
2
Y with δn < 1. Moreover, f̄ induces the same equilibrium among agents as f , but in

dominant strategies. Furthermore, if f is asymptotically efficient (its mean squared error

converges to 0 as n→∞), then δn → 0 as n→∞.

It is instructive to go through the main idea behind the proposition. Starting with some

fractional weight fi(ŝ) and the corresponding Bayes-Nash equilibrium among the traders,

the designer can instead present each agent i with the interim expected weight f̄i(ŝi) =

E [fi(ŝi, ŝ−i)] that only depends on the transaction size ŝi of agent i. Intuitively, the designer

simulates the expected weight, using the equilibrium distribution, instead of conditioning

the weight on the transaction of agent i on the realization of other traders’ transactions.

As we have shown in Section 3, the manipulation incentives of agent i depend only on the

interim expected weight of agent i. Hence, agent i has exactly the same best response as

before. However, her best response is now a dominant strategy, since her payoff is trivially

independent of the strategies adopted by other traders under the absolute-size-weight fixing.

The new weighting scheme is unbiased because its an expectation over the original fixing which

is unbiased (by the fact that it is fractional). The potential increase in the mean squared error

associated with adopting the absolute-size-weight fixing is due to the fact that the component

Y in every transaction price X̂i now receives a total weight of
∑n

i=1 f̄i(ŝi), which is typically

different from one, resulting in an additional error term Y (1−
∑n

i=1 f̄i(ŝi)). In contrast, that

term would be 0 under any fractional-weight fixing, by definition.

Proposition 4 does not preclude that the improvement achieved by allowing the benchmark

weights to depend on all transaction sizes could be quantitatively significant. However, it

implies that this larger class of fixings cannot reduce the variance associated with either

noise (σ2
ε ) or manipulation (σ2

z). Consequently, if σ2
Y were negligible compared to σ2

ε and σ2
z ,

then it would be approximately optimal to choose benchmark weights that take the absolute-

size-weight form. Moreover, the proof of Proposition 4 implies that any benchmark that
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completely eliminates the noise due to σ2
Y (for example, VWAP) must necessarily increase

the total noise due to σ2
ε or σ2

z . The intuition is that the incentives to manipulate in our

model only depend on the properties of the interim expected weight, and a fractional weight

introduces additional variance due to the fluctuation of the ex-post weight around its interim

expected value. In summary, while fractional weights help reduce the mean squared error of

the fixing, absolute-size weights—including those of the A-VWAP—are actually superior in

terms of reducing the variance due to manipulation.

Fixings outside of the range of transaction prices. A potential disadvantage of absolute-

size-weight benchmarks is that they can generate fixings that lie outside of the range of

observed transaction prices. For a simple example, consider the trivial case in which all

transaction prices are the same, and equal to X, while all traders choose transaction sizes

that are twice the average size. Then, the A-VWAP fixing is 2X. While this outcome is

unlikely when transaction sizes are independent (as assumed in our formal model) or if n

is large, it becomes more plausible in settings for which trade volume is strongly correlated

across agents, or if there are few active traders. A fractional-weight benchmark eliminates

this problem.

Observation 2 A general fixing Ŷ of the form (2.1) has the in-range property, in that Ŷ ∈
[mini X̂i, maxi X̂i] for all realizations of the primitive random variables, if and only if it is a

fractional-weight fixing.

The proof of Observation 2 is immediate and hence skipped. As a corollary, the VWAP

emerges as the unique linear fixing that satisfies the in-range property, neutralizes pairwise

order-splitting, and assigns weights only to transactions of non-zero size.

Given Observation 2 and preceding discussions, one could ask whether there exists a

fractional-weight representation of the A-VWAP benchmark. That is, does there exists a

fractional-weight fixing such that the interim expected weights faced by agents are the same

as those of the A-VWAP? As we have already argued, this would preserve the equilibrium

among the agents, and could actually lower the mean squared error by eliminating the term

that depends on σ2
Y . We give a positive answer to this question, under stated conditions.

Proposition 5 Let f?(s) = s/(nE[ŝ1]) be the optimal A-VWAP benchmark from Section 4.2.

For large enough n, there exists a fractional-weight fixing f = (fi)
n
i=1 such that for any agent

i, the expected equilibrium influence on the benchmark of misreporting is the same as under f?,

in that E [fi(ŝi, ŝ−i) | ŝi] = f?(ŝi). In particular, the induced equilibrium behavior of agents

is the same under f and f?. Moreover, the same conclusion holds true for any n ≥ 2, if g

has the uniform distribution.
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Proposition 5 can be seen a converse to Proposition 4. Proposition 4 explains how we

can convert a fractional-weight fixing into an absolute-size-weight fixing while preserving the

equilibrium, without a large increase in the mean squared error. Proposition 5 explains

how we can convert the A-VWAP fixing into a fractional-weight fixing while preserving the

equilibrium, and also while potentially lowering the mean squared error.

The proof, found in Appendix D.6, applies the Matthews-Border condition from the litera-

ture on reduced-form auctions (Matthews, 1984, and Border, 1991): If Λ(s) is the distribution

of the (potentially manipulated) transaction size, then a non-decreasing weight function f(s)

is induced by some fractional weight (in the sense of Proposition 5) if and only if

ˆ s̄

τ
f(s) dΛ(s) ≤ 1− Λn(τ)

n
, τ ∈ [0, s̄), (6.1)

with equality for τ = 0. We conjecture that condition (6.1) might be useful in characterizing

the optimal benchmark in the class of fractional-weight fixings, a task that we leave for future

research. (The main complication is that the objective function of the designer—the mean

squared error of the fixing—depends on the entire weight function, and not only on its interim

expectation, resulting in a multi-variate optimal control problem.)

Manipulation and collusion. As we emphasized in Section 2.4, the benefit of the potentially

lower variance of a benchmark f that is not restricted to be an absolute-size-weight fixing

might be offset by the associated incentives for collusion. When the weights depend on all

transaction sizes, strategic players have incentives to collude by sharing data and coordinating

actions. (For a given benchmark design, a collusive model of manipulation is suggested

by Osler (2016).) Even with a VWAP benchmark fixing, which was shown to neutralize

group order splitting (Theorem 3), agents can still benefit from sharing information, because

manipulation becomes more effective when other traders trade less. In contrast, as shown

formally by Proposition 4, with an absolute-size-weight fixing, the benchmark designer can

ensure that agents have dominant strategies.

A setting that in practice has activated traders’ incentives for collusive information sharing

and joint setting of transaction sizes is the daily fixing of the WM/Reuters FX benchmarks.34

34See, for example, the U.K. Financial Conduct Authority’s findings, at http://www.fca.org.uk/
news/fca-fines-five-banks-for-fx-failings, which include: Traders at different Banks formed
tight knit groups in which information was shared about client activity, including using code names to
identify clients without naming them. These groups were described as, for example, ’the players”, ”the
3 musketeers”, ”1 team, 1 dream”, ”a co-operative” and ”the A-team”. Traders shared the information
obtained through these groups to help them work out their trading strategies. They then attempted to
manipulate fix rates and trigger client ”stop loss” orders (which are designed to limit the losses a
client could face if exposed to adverse currency rate movements). This involved traders attempting
to manipulate the relevant currency rate in the market, for example, to ensure that the rate at which

http://www.fca.org.uk/news/fca-fines-five-banks-for-fx-failings
http://www.fca.org.uk/news/fca-fines-five-banks-for-fx-failings


6 Discussion 32

It was discovered by regulators that groups of dealing traders have shared information about

their customers’ orders, which they will later fill at the benchmark price, acting as direct

counterparties to their own respective customers. The traders are able to influence the fixing

with their own trades and quotes during the minutes just before and during the fixing time

window. Through information sharing, they have allegedly profited by colluding in a manner

that reduces the sizes of the transactions or quotes of some traders relative to the sizes of

those of other traders. This does not require that all traders profit on each occasion. They

can “take turns.” For example, it could be discovered through information sharing that a

large manipulation profit would likely be achieved by traders with a buying interest, provided

that other traders in the group reduce the sizes of their sell transactions or quotes. They can

collusively agree that on this occasion, the traders who wish to buy shall take precedence.

The WM/Reuters fixing method is not of the VWAP form, but involves similar incentives for

information sharing and collusive setting of transaction sizes.

Summary. We conclude that the A-VWAP benchmark might be an attractive alternative

for benchmark administrators in settings where collusion (in particular, data sharing) among

traders is a real concern, the number of transactions is relatively large, and the day-to-day

variability of total volume is not so high that an A-VWAP benchmark would likely generate

fixings outside of the range of prices. In some cases, the designer might be able to choose

a fractional-weight representation of the A-VWAP benchmark (see Proposition 5) to avoid

the undesirable out-of-range property. On the other hand, a conventional VWAP benchmark

might perform better in a setting with few traders, because it lowers the variance associated

with the variability in the fundamental Y , which could be significant with a small number of

transactions. At the same time, the VWAP neutralizes some forms of collusion (see Theorem

3). While the VWAP does create incentives for information sharing across agents, this type

of collusion might be effectively addressed through audits and fines.
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A Non-linear fixings

In this appendix, we briefly address the issue of non-linear fixings, focusing on the most

famous example: the median-based fixing. While comparing the statistical efficiency of the

optimal linear benchmark to median-based fixings is beyond the scope of this paper, we use

our framework to argue that the potential benefit of such benchmarks – reducing the incentives

to manipulate (see for example Eisl et al., 2014, and Youle, 2014) – might actually be lower

than expected.

First, assuming n is odd for simplicity, define the median benchmark fixing ŶMED as

ŶMED = X̂(n+1
2

),

where X̂(k) is the k-th order statistic of X̂1, ..., X̂n.

Claim 1 Under the benchmark ŶMED, every agent chooses to manipulate.

The proof is straightforward: An agent can have a non-negligible influence on the bench-

mark by submitting an arbitrarily small (thus arbitrarily cheap) transaction with a maximally

distorted price. While a heavily distorted price is unlikely to be equal to the benchmark, there

is a positive probability (bounded away from zero) that it will affect which price becomes the

median observation (relative to not manipulating). Thus, even for very small exposure Ri,

agent i would want to manipulate in this way.

Of course, this undesirable property of the median benchmark, as defined above, is due

to its insensitivity to transaction sizes. The logic behind Claim 1 suggests that we should

instead consider the volume-weighted median benchmark fixing defined by

Ŷ VMED = X̂(j),
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where

j = min

k :

k∑
j=1

ŝ(j) ≥ 1

2

n∑
i=1

ŝi

 ,

with {(X̂(j), ŝ(j))}nj=1 ordered by decreasing prices.

Claim 2 Let pn = P
(

1
n−1

∑n−1
j=1 si ≤ E[s1]

)
. Then, a necessary condition for truthful report-

ing to be an equilibrium under Ŷ VMED is that

R̄ ≤ n− 1

pn
γE[s1].

Recall from Proposition 2 that a sufficient condition for truthful reporting under a linear

benchmark is R̄ ≤ nγE[s1]. Because pn will typically be close to 1/2, Claim 2 shows that

truthful reporting under the volume-weighted median benchmark requires parameter values

that are of the same order of magnitude, and can in fact be more difficult to achieve if the

sample size is small and the distribution g of unmanipulated transaction sizes has a thick

right tail.

To prove Claim 2, suppose that everyone but agent i reports truthfully. If agent i’s

exposure is R̄, one possible manipulation is to submit a transaction with distortion zi and

size si = (n − 1)E[s1]. Then, there is probability at least pn that the fixing will be equal to

agent i’s transaction price, so agent i’s expected influence on the benchmark is at least pnzi.

The inequality from Claim 2 says that the benefit from manipulating, R̄pnzi is smaller than

the cost of manipulation, γ(n− 1)E[s1]zi.

The necessary condition from Claim 2 is not sufficient because (i) the simple calculation in

the proof ignores the fact that the manipulation can also influence the benchmark indirectly,

even when agent i’s price does not become the benchmark, and (ii) there could be other,

more subtle, manipulation strategies. Therefore, the scope of the median benchmark to

reduce manipulations is quite limited.

Many benchmarks, including Libor, lie in between the volume-weighted average price and

the volume-weighted median price by excluding only some “outlier” prices. An even more

sophisticated approach would be to compute, for every transaction, the posterior probability

that the transaction is manipulated, and to use this information to construct weights. We

leave these directions for future research.

B Models of manipulation

This section presents two stylized models of trading and manipulation that give rise to the

functional forms for costs and incentives assumed in Section 2. Apart from providing a
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microeconomic foundation for our assumptions, these models give more precise meanings to

some model parameters.

B.1 Committed quotes and costly search

We first consider a framework in which manipulation is costly because agents are committed

to offering execution at the price quotes they submit to the benchmark administrator. In

this framework, as is common in some actual benchmark settings, the submitting agents are

dealers whose quotes are used to fix the benchmark. This was the case for the main industry

benchmark for interest rate swaps known as ISDAFIX, whose manipulation35 triggered more

than $600 million in fines for several dealers, Deutsche Bank, Goldman Sachs, Royal Bank

of Scotland, Citibank, and Barclays, and to a more robust benchmark design, as outlined by

Aquilina, Ibikunle, Mollica, Pirrone and Steffen (2018).

Manipulation consists in quoting a price that is an overestimate or underestimate of the

true value of the asset to the dealer. If the values for the asset are highly correlated among

market participants, then a mispriced quote is likely to be executed by a different investor,

yielding a loss to the quoting bank. In an instance of manipulation of ISDAFIX by Deutsche

Bank Securities Inc., the CFTC found36 that “DBSI Swap traders would tell the Swaps Broker

their need for a certain swap level at 11:00 a.m. or their need to have the level moved up

or down. On at least one occasion, the Swaps Broker expressed the need to know how much

‘ammo’ certain DBSI traders had to use in order to move the screen at 11:00 a.m.” The

“ammo” presumably refers to losses that the DBSI would incur from trades at manipulated

quotes.

The probability of an execution at a distorted quote depends both on the degree of dis-

tortion and also on the transparency of the market. If quotes are public (as would be the case

in a centralized limit order book), a significantly distorted quote would be executed with a

probability close to one. If the market is more opaque or less active, and especially if quotes

are revealed to traders only upon request (as in bilateral over-the-counter markets and on

multilateral request-for-quote platforms), then the probability of incurring a loss by offering

a distorted quote would be lower.

In our model, dealer i chooses ŝi ∈ [0, s̄] and ẑi ∈ {−z̄, 0, z̄}, for some constant z̄ > 0

which we could set to σz to match the notation from the baseline model. The variable Xi

is interpreted as the actual per-unit value of the asset to dealer i. The dealer commits to

trade up to ŝi units at a price X̂i = Xi + ẑi, where the pair (X̂i, ŝi) is used as a benchmark

35See “CFTC Orders The Royal Bank of Scotland to Pay $85 Million Penalty for Attempted Ma-
nipulation of U.S. Dollar ISDAFIX Benchmark Swap Rates.”

36See CFTC Orders Deutsche Bank Securities Inc. to Pay $70 Million Penalty for Attempted
Manipulation of U.S. Dollar ISDAFIX Benchmark Swap Rates, CFTC, February 1, 2018.

http://www.cftc.gov/PressRoom/PressReleases/pr7527-17
http://www.cftc.gov/PressRoom/PressReleases/pr7527-17
http://www.cftc.gov/PressRoom/PressReleases/pr7692-18
http://www.cftc.gov/PressRoom/PressReleases/pr7692-18
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submission. For simplicity, we set the bid-ask spread to zero, that is, X̂i is both a bid and an

ask. We assume that Y has unbounded support, while εi has a symmetric distribution on an

interval [−ε̄, ε̄], for some ε̄ ≤ z̄/2. This captures the idea that the distortion in prices due to

manipulation is larger than the distortion due to idiosyncratic differences in the value of the

asset to different traders.

We adopt a stylized search protocol to determine the probability that a committed quote

is executed. Before observing its manipulation incentive type Ri, dealer i chooses a search

intensity λi ∈ [0, 1], paying a cost c(λi) = 1
2 c̄λ

2
i . Here, λi is the probability that the dealer will

be allowed to trade at the committed quotes of some other (randomly chosen) dealer j. We

assume that each dealer is contacted at most once.37 Upon contacting j, dealer i maximizes

the value of its chosen transaction. Because Xi is the unit value of the asset to dealer i, the

resulting payoff of dealer i is

max

{
max
s≤ŝj

(
Xi − X̂j

)
s, max

s≤ŝj

(
X̂j −Xi

)
s

}
.

Here, dealer i buys or sells the maximum quantity ŝj to which dealer j has committed, due

to linearity in value. The difference between the value Xi and the quote X̂j determines the

direction of trade.

B.1.1 Solution

We focus on symmetric Nash equilibria. Dealer i makes two choices, the search intensity

λi and the manipulation levels (ẑi, ŝi). Regarding the first choice, the expected payoff to a

dealer conditional on a successful search depends on the probability that other banks choose

to manipulate. If pM denotes the equilibrium probability of manipulation, then that expected

payoff is

E
(

(1− pM )|Xi −Xj |+
1

2
pM |Xi − z̄ −Xj |+

1

2
pM |Xi + z̄ −Xj |

)
E(ŝj)

= [(1− pM )E (|εi − εj |) + pM z̄]E(ŝj) ≡ φ.

The optimal choice of search intensity is thus λ? = min
{

1, φc̄−1
}
.

As for the choice of manipulation, the dealer can always guarantee a zero payoff by quoting

a price equal to the true value Xi, regardless of the size ŝi, by choosing ẑi = 0. On the other

hand, choosing ẑi ∈ {−z̄, z̄} yields a payoff −z̄ŝi in the event of being contacted by another

37Formally, imagine the following iterative procedure. Dealer 1 contacts one of the in dealer N \{1}
with probability λ1. If dealer 1 contacts dealer j, then dealer 2 contacts one of the dealers in N \{2, j}
with probability λ2, and so on.
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dealer. The probability of being contacted is

n−1∑
k=1

(
n− 1

k

)
(λ?)k (1− λ?)n−1−k k

n− 1
= λ?.

Taking into account the payoff generated by influencing the benchmark, and normalizing the

payoff from not manipulating to zero, we see that the payoff from choosing (ŝi, ẑi) is equal to

(Rif(ŝi)− λ?ŝi) ẑi

which is exactly the expression assumed in Section 2, when taking γ = λ?.

B.1.2 Discussion

Based on the simple model of the previous subsection, the parameter γ can be interpreted as

the probability of execution of a manipulated quote. If trade takes place on an active limit

order book, then it is natural to assume that the cost c̄ of search is nearly zero, and hence

that γ = λ? is close to 1. That is, manipulation would almost always yield a trading loss.

On the other hand, in an opaque over-the-counter markets, c̄ may be relatively large, and

hence manipulation is less costly – a manipulated quote might not always be executed. As

a consequence, holding the benchmark fixed, the probability of manipulation is higher in an

opaque market.

If λ? is less than one, there is an additional feedback effect between the benchmark fixing

and the probability of manipulation. The ex-ante probability pM of manipulation by any

dealer is 1 −H(Rf ), which is the probability that the dealer’s exposure type R exceeds the

threshold Rf determined by the weighting function f used in the fixing. If f is changed to

reduce manipulation, then Rf goes up and pM goes down. This, however, implies that the

incentive to search is reduced, because the probability of encountering a profitable distorted

quote gets smaller. As a consequence, λ? decreases, and manipulation becomes cheaper.

In a sense, the benchmark fixing and the market forces act as substitutes in preventing

manipulation when the market is relatively opaque.

This discussion suggests that moving from a centralized to an opaque market may have an

ambiguous influence on the shape of the optimal benchmark. On one hand, because a given

manipulation of the price is less costly in an opaque market, the fixing that should be chosen

in an opaque market would place a relatively smaller weight on small transactions. On the

other hand, a fixing that deters manipulation lowers the cost of manipulating through the

equilibrium effect on the search intensity of other market participants.
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B.2 An auction model

In this subsection, we consider an alternative trading model. When a liquidity shock hits a

dealer, it may request quotes from other dealers, as is typical on electronic request-for-quote

(RFQ) platforms. We model this as a sealed-bid auction. Absent incentives to manipulate,

the dealer will accept the most attractive quote, for example, the lowest ask when it needs to

buy the asset. The execution price, along with the corresponding trade volume, is then used

to calculate the benchmark fixing. If, however, the dealer wants to inflate the fixing in order

to take advantage of a long position in benchmark-linked assets, the dealer has an incentive

to trade at the highest ask offered in the auction. This induces a tradeoff between the loss

incurred in the auction and the gain associated with distorting the benchmark fixing.

We build a stylized model that aims to capture the main incentives. Dealer i is hit by

a liquidity shock δi that takes one of the values {−∆, ∆} with equal probability, for some

∆ > 0. Dealer i then values each unit of the asset at Y + δi, for quantities up to si. Whenever

a dealer is hit by a shock, it requests quotes from two other dealers who have access to an

unlimited supply of the asset at the common-value price Y. (The restriction to only two other

dealers is not essential for the qualitative results but will yield explicit analytic solutions.)

We model the competition between the two quoting dealers as a first-price auction (Bertrand

competition). Absent incentives to manipulate, the dealer requesting the quote chooses the

more attractive of the quotes, and thus Bertrand forces push the price to Y. However, when

the quote-requesting dealer is a manipulator, it chooses the least attractive of the quotes,

creating an incentive for dealers to provide quotes further away from the value Y.

B.2.1 Solution

For concreteness, consider the case in which dealer i requests quotes to buy the asset (the

opposite case is symmetric). Let pM be the equilibrium probability that dealer i manipulates

by accepting the higher of the quotes, corresponding to the case of a positive exposure Ri.

In the unique symmetric equilibrium of the auction, the two dealers that provide quotes

randomize their offers according to a continuous distribution function F with support [Y +

λ∆, Y + ∆], where λ is determined in equilibrium. Following the line of argument in Stahl

(1989), this requires each of the two dealers to be indifferent between all per-unit quotes q in

the support of F, so that

[(1− pM )(1− F (q)) + pMF (q)] (q − Y ) = pM∆.

Solving, we obtain

F (q) = 1− pM
1− 2pM

Y + ∆− q
q − Y
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which is a well defined cdf when pM < 1/2. Moreover, we have λ = pM/(1 − pM ). If pM

is small, the quotes are close to Y . When pM is relatively high (but below 1/2), the quotes

are close38 to Y + ∆. With the above description, we can calculate equilibrium payoffs, and

the distribution of transaction data. Let εki , for k = 1, 2, and i = 1, 2, ..., n, be the profit

margin charged by dealer k in the auction requested by dealer i. That is, Y + ε1
i and Y + ε2

i

are the quotes received by dealer i. Normalizing the payoff from not manipulating to zero,

we take the cost of manipulation to be equal to the extra profit margin conceded by dealer

i through choosing the less attractive quote for ŝi units of the asset. This concession is

ŝiE
[
max{ε1

i , ε
2
i } −min{ε1

i , ε
2
i }
]
. Taking into account the benefit from influencing the fixing,

the net expected payoff from manipulation is equal to

(Rif(ŝi)− ŝi)Ezi,

where the random variable zi is defined by zi =
[
max{ε1

i , ε
2
i } −min{ε1

i , ε
2
i }
]
. This setting

can therefore be viewed as a version of our basic model for the case γ = 1.

B.2.2 Discussion

The model of this section endogenizes the noise structure assumed in Section 2. The noise

term εi reflects the dispersion in bids and asks quoted in the auction requested by dealer

i. Manipulated transactions are more noisy than unmanipulated transactions because the

worst price is further away from the mean Y than the best price. The noise term εi is

±min{ε1
i , ε

2
i }, with symmetric probability. Manipulated transactions contain an additional

noise term zi = max{ε1
i , ε

2
i } − min{ε1

i , ε
2
i }. Thus, we provided a game-theoretic foundation

for our assumption that manipulation reduces the signal-to-noise ratio of a benchmark.

In the framework modeled in this section, there is an additional distortionary channel

for manipulation, through its impact on the probability distribution of unmanipulated data.

When it is more likely that a counterparty in a transaction is a manipulator, a trader might

provide a noisy quote, hoping that it will be accepted when the price distortion happens to

be of the sign preferred by the manipulator. As a result, even when the quote requester is

not a manipulator, and would take the most attractive quote, the distribution of quotes is

more dispersed. As the probability pM of manipulation rises, the probability distribution F

of quotes shifts towards quotes further away from the true value Y . Hence the variance of εi

rises, in that |εi| is distributed according to the CDF 1− (1− Fε(ε))2, where

Fε(ε) = 1− pM
1− 2pM

∆− ε
ε

,

38We leave out a description of the equilibrium for the case pM ≥ 1/2 which is less relevant for our
application. In that case, we would observe bids above Y + ∆.
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implying that

σ2
ε = 2∆2

(
pM

1− 2pM

)2 [
− log

(
1 +

2pM − 1

1− pM

)
+

2pM − 1

1− pM

]
.

The noise level σ2
ε is increasing in ∆ and pM . In particular, limpM→1/2 σ

2
ε = ∆2.

In this auction setting, because manipulation adversely impacts the precision of unmanip-

ulated price signals, the slope of the optimal benchmark weighting function f is lowered in

order to mitigate the risk of manipulation. The benchmark designer can affect the distribution

of εi by choosing f so that pM = 1−H(Rf ) is relatively low. As a result, the probability of

manipulation is smaller than in the baseline model in which the distribution of unmanipulated

transaction data is exogenous.

C Supplemental Material for Section 4

C.1 The generalized statement of Theorem 1a-1b

We first define a generalization of ODE (4.4). The differential equation is indexed by two

parameters: the starting point s0 and a constant η > 0:

f ′′(s) = −

[
η − 2f(s)σ2

U

]
H(R)g(s) + 2γσ2

Mh
(

γ
f ′(s)

)
[
2f(s)σ2

M − η
] (
−h′

(
γ

f ′(s)

))
γ2

(f ′(s))3

(C.1)

with boundary conditions f(s0) = (γ/R)s0, f
′(s0) = γ/R.

Theorem 1 For any R ∈ (0, R̂), there exists a unique optimal solution f? to problem P(R).

The optimal weighting function f? is non-decreasing, concave, continuously differentiable ev-

erywhere, and given by

f?(s) =


γ
Rs s ∈ [0, s0]

solution to (C.1) s ∈ (s0, s1)

f?(s1) s ∈ [s1, s̄]

.

The parameter η in (C.1) and the cutoff point s1 are chosen so that (f?)′(s̄) = 0: either s1 < s̄

in which case η = 2f?(s1)σ2
U , or s1 = s̄ in which case η ∈ [2f?(s1)σ2

U , 2f?(s0)σ2
M ) is chosen

so that the solution to (C.1) on [s0, s̄] satisfies f ′(s̄) = 0. Finally, the cutoff point s0 ∈ (0, s̄)

is chosen to satisfy the constraint (4.3).39

39The existence of such η, s0, s1 and the existence of a solution to (C.1) will be proven.
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Clearly, Theorem 1 implies Theorem 1a. To see that it also implies Theorem 1b, note that

f? described by Theorem 1b corresponds exactly to the first case described by Theorem 1:

s1 < s̄ and η = 2f?(s1)σ2
U . Because the solution is unique, when f? described by Theorem 1b

exists, it must be optimal. In this case, the ODE (4.4) is obtained from (C.1) by plugging in

the above expression for η, and dividing the numerator and the denominator by 2σ2
U .

The derivation of the optimal benchmark in Appendix D.1 establishes the generalized

version of Theorem 1a-1b described above.

C.2 Additional examples

In this appendix, we present two additional examples that illustrate the results in Section 4.

The first example illustrates Proposition 3.

Example 2 Under the parametric assumptions of Example 1, we can numerically compute

the optimal manipulation threshold: R? ≈ 2.58 achieves the minimum for the benchmark

administrator’s problem P. We can then apply Theorem 1b to compute the optimal fixing.

Figure C.1 presents the optimal weighting function for R = 0.5, R = 2.58, and R = 5. The

ex-ante probabilities of manipulation under these target levels are approximately 0.78, 0.28, and

0.08, respectively.40 Figure C.1 shows that it is possible for two feasible weighting functions to

never cross. If the distribution of sizes ŝi were fixed, this would clearly be impossible because

any two such functions could not have the same expectation with respect to the distribution of

ŝi. However, this is possible when the distribution of ŝi depends on the shape of f .

Fig. C.1: Optimal weighting functions for Example 2

40Although Figure C.1 may suggest otherwise, the function corresponding to R = 5 has a zero
derivative at s = s̄. The second derivative gets large close to s = s̄, so the first derivative changes
rapidly in a small neighborhood of s̄. This is the case in which Theorem 1b does not apply and the
solution is described by Theorem 1 in Appendix C.1.
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Fig. C.2: Optimal weighting functions for Example 3

The second example is an illustration of Theorem 2.

Example 3 We adopt the parameters of Examples 1 and 2.41 The optimal benchmark fixing

in the baseline model leads to the threshold R? ≈ 2.58 which induces 28% of agents to manipu-

late. The optimal benchmark that deters order splitting is that which minimizes the probability

of manipulation subject to unbiasedness. This yields a manipulation incentive threshold R̂ of

about 5.35, leading to manipulation with a probability of about 7%. The minimized objective

function (mean squared error of the estimator) is 0.142 in the baseline case, and 0.19 when

restricted to Condition 1, robustness to order splitting. This sharp increase in benchmark

noise is caused by attaching a higher weight to manipulated transactions and inefficiently

small weight to small unmanipulated transactions.

To put this in context, consider the optimal benchmark fixing in the class of capped volume-

weighted average price fixings, those with a weighting function that in linear in transaction

size s up to some maximal transaction size, after which the weight remains constant. The

best such fixing has a mean squared error of 0.149 and induces manipulation by an agent in

the event that the agent’s manipulation incentive R exceeds 2.81, which has a probability of

about 24%. These three weighting functions are depicted in Figure C.2.

D Proofs

D.1 Proof of Theorem 1a and 1b

In this appendix, we prove Theorems 1a and 1b. We first sketch the main argument, and then

fill in the details by proving a few lemmas.

41Because we solve the example numerically, all numerical results reported in this and other exam-
ples are approximate.
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To solve the problem P(R), we must first determine Ψf ( · ) for each admissible f ∈ CK,M .

This is complicated by the fact that f need not be well behaved. For example, f is not

necessarily differentiable or even concave. However, we can use the structure of the manipu-

lation problem faced by agents to overcome this difficulty. We do this in a series of Lemmas

which establish that the optimal benchmark exists, and the weighting function f must be

continuous, non-decreasing, and concave.

Lemma 1 The problem P(R) admits a solution for any R ≤ R̂.

Our proof of this lemma is relatively involved because the standard argument (exploit-

ing upper semi-continuity of the objective function on a compact domain) does not apply

directly. The weighting functions are allowed to have jump discontinuities, which can lead to

discontinuities in the objective function (especially if a small change in the weighting function

induces a large change in the behavior of manipulators) and failure of compactness. We deal

with these difficulties by exploiting the special structure of the problem and the regularity

conditions imposed on feasible f . For unmanipulated transactions, due to the continuous dis-

tribution of trade sizes, the properties of f on a measure-zero set (in particular at the finitely

many points of discontinuity) are irrelevant. For manipulated transactions, we observe that

discontinuities in the choice of the optimal size ŝi can occur only in cases for which the ma-

nipulator is indifferent between several transaction sizes. However, such cases are non-generic

with respect to Ri. Because Ri has a continuous distribution, any such cases can be ignored

when computing the expected payoff.

A simple corollary of Lemma 1 is that the full problem P also admits a solution. This fol-

lows from the Maximum Theorem (also known as Berge’s Theorem) which implies continuity

of the value of the problem P(R) in the threshold type R.

Having established existence, we can derive a series of restrictions on the shape of the

optimal weighting function.

Lemma 2 If f is a solution to problem P(R), then f is non-decreasing.

The proof of this lemma is technical and thus relegated to the Appendix, but the intu-

ition behind this result is straightforward and instructive. Suppose that a feasible weighting

function f is not non-decreasing. Then we can find an interval [s0, s1] ⊂ [0, s̄] such that no

manipulator chooses a transaction size in this interval. Intuitively, manipulators never choose

transactions that give them the same influence on the benchmark as some smaller (hence less

costly) transaction. Absent manipulation, however, we saw in Proposition 1 that the optimal

weight is constant. Thus, we can modify f in such an interval so as to retain feasibility but

improve the value of the program P. This rules out the optimality of f .
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Lemma 3 If f is a solution to problem P(R), then f is continuous.

By Lemma 2 and the regularity conditions imposed on any weighting function, we can

prove Lemma 3 merely by ruling out cases in which f jumps up at some s0. If there is a jump

at s0, then there are no manipulations in (s0− ε, s0) for small ε > 0 because the manipulator

can discretely increase the influence on the benchmark by choosing s0 instead, at a negligibly

higher cost. Absent manipulations, the jump in f is suboptimal because the optimal weight

for unmanipulated transactions is constant. So, we can improve on a discontinuous f by

“smoothing it out” in the neighborhood of s0.

Lemma 4 If f is a solution to problem P(R), then f is concave.

To prove Lemma 4, we use the fact that there can be no manipulations in intervals over

which the weighting function f fails to be concave, that is, where f lies below some affine

function. This follows from the linearity of costs. In such cases, we can modify f in such an

interval without inducing manipulation, so as to improve the weighting of the non-manipulated

transactions.

Given Lemmas 1-4, it is without loss of generality that we consider only weighting functions

in the set

F = {f ∈ CK,M : f is continuous, nondecreasing, and concave}.

The concavity of f implies that we can use first-order conditions to solve the agent’s manip-

ulation problem. However, f is not necessarily differentiable, so we use “superdifferential”

calculus.42 We denote by ∂f(s) the superdifferential of f at the point s. A function f ∈ F
is superdifferentiable at any point s ∈ (0, s̄) because f is concave, and the existence of a

superdifferential at 0 and s̄ follows from Rif(s) ≤ γs, and the fact that f is non-decreasing.

Moreover, ∂f(s) is a non-decreasing correspondence in the strong set order that is singleton-

valued for almost all s. A transaction size ŝi is a global maximum of Rif(s) − γs if and

only if 0 ∈ ∂(Rif(ŝi)− γŝi), or simply γ/Ri ∈ ∂f(ŝi). If f is actually differentiable at s, the

condition for optimality boils down to the usual first-order condition Rif
′(s) = γ.

We can now characterize Ψf ( · ) for any f ∈ F . For some s ∈ [0, s̄] and some manipulation

42See Rockafellar (1970) for the definitions of the subderivative and subdifferential of a convex func-
tion. The superderivative and superdifferential have the analogous definitions for a concave function.
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threshold R,

Ψf (s) = P
(
ŝi ≤ s

∣∣ |Ri| ≥ R)
= P

(
∂f(ŝi) ≥ ∂f(s)

∣∣ Ri ≥ R)
= P

(
γ

Ri
≥ f ′(s+)

∣∣ Ri ≥ R)

=
H
(

γ
f ′(s+)

)
−H(R)

1−H(R)
.

Here, f ′(s+) denotes the right derivative of f at s and (when applied to sets) the inequality

≥ is the strong set order.43 Because the right derivative of a concave function is a right-

continuous and non-increasing function, Ψf ( · ) is a well defined cdf. Discontinuities in f ′

correspond to atoms in the distribution of manipulated transaction sizes.

The concavity of f implies that the derivative of f , whenever it exists, lies below γ/R.

Indeed, the derivative is non-increasing and the constraint f(s) ≤ (γ/R)s implies that

f ′(0+) ≤ γ/R. Because f is non-decreasing, we also know that f ′(s) ≥ 0. The inequal-

ity f(s) ≤ (γ/R)s implies that f(0) = 0. Once these properties are imposed, the constraint

f(s) ≤ (γ/R)s is redundant. We will study a relaxed problem in which we do not impose

concavity of f , and instead apply the weaker conditions listed above. We will then verify that

the solution to the relaxed problem is concave, validating our approach.

The relaxed problem can be phrased as an optimal control problem in which the control

variable is the derivative of f . This approach is valid because our assumptions and previous

analysis imply that f is absolutely continuous. So, we have

min
u:u(s)∈ [0, γ/R]

ˆ s̄

0
f2(s)

[
σ2
UH(R) g(s) ds+ σ2

M dH

(
γ

u(s)

)]
(D.1)

subject to

f(0) = 0, f ′(s) = u(s),

ˆ s̄

0
f(s)

[
H(R) dG(s) + dH

(
γ

u(s)

)]
=

1

n
. (D.2)

To solve this problem, we apply a theorem that gives sufficient conditions for a control variable

and the associated state variable to be optimal. Because the objective function is quadratic

in the state variable f and the constraint (D.2) is linear in f , the Hamiltonian is convex in

the state variable, implying a unique minimizer.

Lemma 5 There exists a unique solution to problem (D.1)-(D.2). The solution is non-

43That is, for subsets X and Y of the real line, X ≥ Y if for any x in X and y in Y , we have
max{x, y} ∈ X and min{x, y} ∈ Y .
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decreasing, concave, continuously differentiable everywhere, and coincides with (γ/R)s for

small s. Moreover, the solution is given by the function f? described by Theorem 1b whenever

such a function exists.

Because f? solves the relaxed problem (D.1)-(D.2) and is feasible for the original problem

P(R), f? is also optimal for the original problem. Thus, the proof of Lemma 5 concludes the

proof of Theorem 1a-1b.

D.1.1 Proof of Lemma 1

Let V (f) be the value of the problem for a feasible function f , and let V ? be the value

of the infimum in P(R) (it exists because the objective function is bounded by zero from

below). By definition of an infimum, there exists a sequence of feasible functions fn such that

limn V (fn)→ V ?. We have to prove that a subsequence of fn converges to a well-defined and

feasible limit f , and that V (f) = V ?.

First, we define the limiting function f . Because each fn ∈ CK,M , we can define 0 = sn1 <

sn2 < ... < snKn−1
< snKn = s̄ such that fn is Lipshitz with constant M on each (sni , s

n
i+1).

Because Kn ≤ K, and K is finite, there exists a subsequence (which we still denote by fn) such

that Kn = L ≤ K for all n, and sni → si. For any i, take a compact subset Ai ⊂ (si, si+1).

Then, for large enough n, the sequence is uniformly bounded and equi-continuous on Ai, by

assumption. By the Arzelá-Ascoli Theorem, we can find a subsequence that converges point-

wise to some function f̃ i on (si, si+1), and convergence is uniform on every compact subset.

The limiting function f̃ i preserves the Lipshitz constant M . Because the function is bounded

and Lipshitz continuous, we can extend the function to [si, si+1] in such a way that f̃ i is

continuous. Because there are finitely many i, we can find a subsequence of fn such that the

above properties hold for every interval (si, si+1). Finally, we define f to be a function that

coincides with f̃ i on every (si, si+1), and is equal to max{f̃ i−1(si), f̃
i(si)} for each si. The

definition guarantees that f is upper semi-continuous, and thus belongs to the class CK,M .

The chosen subsequence of fn (which we will again denote by fn) converges to f uniformly

on every compact A ⊂ [0, s̄] \ {s1, ..., sL}.
Second, we look at the properties of dΨf (s) – the distribution of manipulated trade sizes.

In this paragraph, we use Ri to denote a generic positive exposure type. Let

Sf (Ri) = argmaxs∈[0, s̄]{Rif(s)− γs} ≡ argmaxs∈[0, s̄]

{
f(s)− γ

Ri
s

}
be the set of maximizers in the manipulator’s problem. The function f(s)− (γ/Ri)s, defined

on a lattice [0, R̄]× [0, s̄], is quasi-supermodular in s, and has a strict single crossing property

in (s, Ri). It follows from Milgrom and Shannon (1994) that the set Sf (Ri) is a complete
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sublattice, and any selection sf (Ri) ∈ Sf (Ri) is non-decreasing in Ri. In particular, this

means that Sf (Ri) is a singleton for almost all Ri. Define s̄f (Ri) = maxSf (Ri). Then,

Ψf (s) = PRi∼H(s̄f (Ri) ≤ s).
Third, we argue that limn V (fn) = V (f), and that f satisfies the constraints of the problem

P(R). It is enough to prove that

lim
n

ˆ s̄

0
fkn(s)g(s)ds =

ˆ s̄

0
fk(s)g(s)ds, k ∈ {1, 2}, (D.3)

and

lim
n

ˆ s̄

0
fkn(s)dΨfn(s) =

ˆ s̄

0
fk(s)dΨf (s), k ∈ {1, 2}, (D.4)

Showing (D.3) is straightforward – it follows from the Lebesgue dominated convergence the-

orem and the fact that fn converges to f almost surely. We prove that (D.4) holds as well.

Recalling that we are looking at the problem where agents with Ri ≥ R manipulate, we can

write ˆ s̄

0
fk(s)dΨf (s) =

ˆ R̄

R
(f(s̄f (Ri))

k dH(Ri)

1−H(R)
.

It is therefore enough to prove that fn(s̄fn(Ri)) → f(s̄f (Ri)) for almost all Ri. Intuitively,

we have to show that the weight chosen by manipulators changes continuously with the

weighting function, for almost all Ri. For some Ri, it is clear that the optimal choice can be

discontinuous when the manipulator is indifferent between two transaction sizes, but as we

saw in the second step of the proof, such situations are non-generic. It is enough to prove that

s̄fn(Ri) converges to s̄f (Ri) for almost all Ri. Indeed, if this is true, then the only scenario

in which fn(s̄fn(Ri)) might fail to converge to f(s̄f (Ri)) is when s̄fn(Ri) approaches some si

at which f has a jump, and convergence to si is from the side where f is lower – however,

this would contradict the optimality of s̄fn(Ri). To show convergence of s̄fn(Ri) to s̄f (Ri)

for almost all Ri, it is enough to prove that the limit of s̄fn(Ri) is a solution to the agent’s

problem at f . Then, the conclusion follows from the fact that, by step 2 of the proof, the set

of solutions is a singleton for almost all Ri.

Let v(f) = maxs∈[0, s̄](Rif(s) − γs), for a fixed Ri. Because the function Rif(s) − γs is

upper semi-continuous in s, it is enough to prove that v(fn) → v(f). Let Sn be defined as

[0, s̄] \
(⋃L

i=1[si − 1
n , si + 1

n ]
)

– we removed each si with some small neighborhood from the

domain. Then, fn converges uniformly to f on Sn. We have, for large enough n,

|v(fn)− v(f)| =
∣∣∣∣ max
s∈[0, s̄]

(Rifn(s)− γs)− max
s∈[0, s̄]

(Rif(s)− γs)
∣∣∣∣

≤ O(1)

n
+

∣∣∣∣max
s∈Sn

(Rifn(s)− γs)−max
s∈Sn

(Rif(s)− γs)
∣∣∣∣ ≤ O(1)

n
+Ri max

s∈Sn
|fn(s)− f(s)| ,
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and the last expression goes to 0 by uniform convergence. Here, the term O(1) denotes a

constant, and the first inequality follows from the fact that all fn are uniformly bounded and

equi-continuous on each (sni , s
n
i+1) (intuitively, removing a small part of the domain cannot

change the value of the optimization problem too much). This concludes the proof.

D.1.2 Proof of Lemma 2

Take a feasible function f and suppose it is not nondecreasing. We will prove the result

by constructing a different feasible function f̄ that improves the objective function (hence, f

cannot be optimal). By assumption, there exist s0 and s1 such that s0 < s1, but f(s0) > f(s1).

Without loss of generality we can assume (making the interval smaller if necessary and using

the regularity conditions on f) that either (i) f is strictly decreasing in [s0, s1] or (ii) f has

a jump discontinuity at s0 and f(s) is lower than f(s0) on (s0, s1].44

Consider case (i). By the choice of s0 and s1, there are no manipulations in (s0, s1), and

this will continue to be true for any function f that is non-increasing in this interval. We

can construct a non-increasing, Lipshitz continuous function f̂ on [s0, s1] with the following

properties: f̂(s0) = f(s0), f̂(s1) = f(s1),
´ s1
s0
f̂(s)g(s) ds =

´ s1
s0
f(s)g(s) ds and there exists

s2 ∈ (s0, s1) such that f̂(s) < f(s) for s ∈ (s0, s2) and f̂(s) > f(s) for s ∈ (s2, s1). We then

define

f̄(s) =

f̂(s) if s ∈ [s0, s1]

f(s) otherwise.

By construction, f̄ is feasible (in particular it satisfies the constraint that guarantees an

unbiased estimator). The difference in the value of the administrator’s objective function P
under f̄ and f is (using the fact that there are no manipulations in [s0, s1] under f̄),

ˆ s1

s0

(
f̄2(s)− f2(s)

)
σ2
Ug(s) ds =

ˆ s1

s0

(
f̄(s)− f(s)

)
φ(s)g(s) ds,

where φ(s) ≡
(
f̄(s) + f(s)

)
σ2
U is a strictly decreasing function. By the mean value theorem,

there exists x ∈ (s0, s1) such that

ˆ s1

s0

(
f̄(s)− f(s)

)
φ(s)g(s) ds = φ(s0)

ˆ x

s0

(
f̄(s)− f(s)

)
g(s) ds.

But
´ x
s0

(
f̄(s)− f(s)

)
g(s) ds < 0 because the integrand is (strictly) negative on [s0, s2),

(strictly) positive on (s2, s1] and
´ s1
s0

(
f̄(s)− f(s)

)
g(s) ds = 0.

Therefore, f̄ is feasible and yields a smaller value of the objective function than does f .

Now, consider case (ii). We can choose s1 so that f(s) < f(s0) for all s ∈ (s0, s1)

44We assume here that s0 < s̄. The opposite case is very easy to rule out.
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but not on any larger interval. By the choice of s1, there cannot be any manipulations

in (s0, s1) – this is because a manipulator would strictly prefer to choose s0 over any s

in that interval. Suppose that f is not (almost everywhere) constant on (s0, s1). Then,

there is a way to improve on f by replacing it in this interval by a constant f̄(s) = α with

α(G(s1) − G(s0)) =
´ s1
s0
f̄(s)g(s)ds =

´ s1
s0
f(s)g(s)ds. Indeed, under both f and f̄ , there are

only unmanipulated transactions in the interval (s0, s1), so the objective function changes by

σ2
U

ˆ s1

s0

(f̄2(s)− f2(s))g(s)ds < σ2
U [G(s1)−G(s0)]

α2 −

(´ s1
s0
f(s)g(s)ds

G(s1)−G(s0)

)2
 = 0,

where the (strict) inequality follows from Jensen’s Inequality and the fact that f is not (almost

everywhere) constant. Thus, f could not be optimal.

Finally, consider the opposite case in which f is constant (almost everywhere) on (s0, s1).

By definition of s1, we must in fact have s1 = s̄, and it is without loss of generality to assume

that f(s) = β for all s > s0 for some β (in the opposite case there is a simple way to improve

on f). Because the construction of f̄ is similar to the previous cases, we only discuss it

informally and omit a formal calculation. For ε > 0 small enough, β+ ε < f(s0), so if we raise

f(s) from β to β+ε on (s0, s̄], this has no influence on the distribution of manipulated trades.

To preserve constraint (4.3), we can now lower f by δ on [s0 − ∆, s0]. This might change

the distribution of manipulated trades but only in the direction desired by the administrator

– the manipulators are guaranteed to choose lower weights after the modification because,

for small enough ε, trade sizes above s0 are suboptimal. Define f̄ as a function obtained by

modifying f in a way described above with ε, δ, and ∆ such that constraint (4.3) is preserved.

Then, for small enough ε and δ, f̄ achieves a strictly lower value of the objective function

than does f . Hence, f could not be optimal.

D.1.3 Proof of Lemma 3

Take a feasible candidate solution f and suppose that it is not continuous. By the regularity

condition and Lemma 2, it is enough to consider the case when f jumps up at some s0 ∈ (0, s̄).

Consider lowering f by ε > 0 in the interval [s0, s̄], where ε is small. Note that after this

modification, the distribution of manipulated transactions conditional on ŝ ∈ [s0, s̄] does not

change, but it is possible that some manipulators switch to choosing a size ŝ < s0. However,

we can ignore this in the calculations because, by Lemma 2, the function f is lower on [0, s0)

than it is on [s0, s̄] (and continues to be lower if ε is small enough) – hence, this can only

improve the objective function. Next, notice that for small enough ∆ and ε, there cannot be

any manipulations in (s0−∆, s0) because the choice of any s in this interval is dominated by
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the choice of s0. Let us define f̄ in the following way

f̄(s) =


f(s) s ≤ s0 −∆

f(s) + δ s ∈ (s0 −∆, s0)

f(s)− ε s ≥ s0

,

where δ is chosen so that the constraint (4.3) holds (as noted before, we can ignore the

manipulated transactions): ˆ s0

s0−∆
δg(s)ds =

ˆ s̄

s0

εg(s)ds. (D.5)

Because of (D.5), the function f̄ is feasible, so we only have to prove that f̄ achieves a lower

value of the objective function. We have

ˆ s̄

0
σ2
U f̄

2(s)g(s)ds−
ˆ s̄

0
σ2
Uf

2(s)g(s)ds

= σ2
U

(
δ2

ˆ s0

s0−∆
g(s)ds+ 2δ

ˆ s0

s0−∆
f(s)g(s)ds+ ε2

ˆ s̄

s0

g(s)ds− 2ε

ˆ s̄

s0

f(s)g(s)ds

)
.

The terms multiplied by ε2 and δ2 can be ignored because they are negligibly small compared

to other terms once ε and δ are small enough (they cannot reverse a strict inequality). Using

equality (D.5), it is enough to prove that

ε
1−G(s0)

G(s0)−G(s0 −∆)

ˆ s0

s0−∆
f(s)g(s)ds− ε

ˆ s̄

s0

f(s)g(s)ds < 0.

or equivalently, ´ s0
s0−∆ f(s)g(s)ds

G(s0)−G(s0 −∆)
<

´ s̄
s0
f(s)g(s)ds

1−G(s0)
.

This means that we are done because

´ s0
s0−∆ f(s)g(s)ds

G(s0)−G(s0 −∆)
<
f(s−0 ) + f(s0)

2
<

´ s̄
s0
f(s)g(s)ds

1−G(s0)
,

where f(s−0 ) is the left limit of f at s0, and the inequality follows from the fact that f is

globally non-decreasing, and that there is a jump at s0.

D.1.4 Proof of Lemma 4

Take a feasible f and suppose it is not concave. By Lemma 2 and Lemma 3, we can assume

that f is continuous and non-decreasing. This means that we can find an affine increasing

function ϕ(s) = a + bs and an interval [s0, s1] such that ϕ(s0) = f(s0), ϕ(s1) = f(s1) and
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ϕ(s) ≥ f(s) for all s ∈ (s0, s1), with a strict inequality for at least some s̃ ∈ (s0, s1). We first

prove that there can be no manipulations45 in (s0, s1). It’s enough to show that for generic

R, and for all s ∈ (s0, s1),

Rf(s)− γs < max {Rf(s0)− γs0, Rf(s1)− γs1} .

We have

max {Rf(s0)− γs0, Rf(s1)− γs1} =

Ra+ (Rb− γ) s1 if Rb > γ,

Ra+ (Rb− γ) s0 if Rb < γ.

Take the case Rb > γ. Then we have, for all s ∈ (s0, s1),

Rf(s)− γs ≤ Ra+ (Rb− γ) s < Ra+ (Rb− γ) s1.

Similarly, for Rb < γ and for all s ∈ (s0, s1),

Rf(s)− γs ≤ Ra+ (Rb− γ) s < Ra+ (Rb− γ) s0.

This conclusion depended only on the fact that f lies below the affine function ϕ. Thus, if f

cannot be improved upon by another feasible function f̄ , it must be the case that f restricted

to the interval [s0, s1] arises as a solution to the following optimal control problem:

min
u≥0

ˆ s1

s0

f̃2(s)g(s) ds (D.6)

subject to ˆ s1

s0

f̃(s)g(s) ds =

ˆ s1

s0

f(s)g(s) ds,

f̃ ′(s) = u(s),

f̃(s0) = f(s0),

f̃(s1) ≤ f(s1),

f̃(s) ≤ ϕ(s).

Here, the first derivative plays the role of the control variable, and the weighting function is

the state variable. Notice that this is a problem mathematically equivalent to that considered

in Proposition 2. A standard application of optimal control techniques (see, for example, the

45Strictly speaking, the measure of manipulations is zero.
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Arrow’s Theorem on page 107 of Seierstad and Sydsaeter, 1987) yields the conclusion that

the optimal f̃(s) is equal to ϕ(s) up to some s2 ∈ (s0, s1), and is constant equal to f̃(s2) on

(s2, s1], where s2 is chosen to satisfy the constraint
´ s1
s0
f̃(s)g(s) ds =

´ s1
s0
f(s)g(s) ds. Note

that s2 < s1 because, by assumption, f lies strictly below ϕ for at least some points. Define

the function f̄ that coincides with f outside of the interval (s0, s1) and is equal to the optimal

f̃ otherwise. Then, f̄ achieves a weakly lower value of the objective function than f , and has

a jump discontinuity at s1. By Lemma 3, f̄ can be (strictly) improved upon, and hence f

cannot be optimal either.

D.1.5 Proof of Lemma 5

We will first find a solution to the relaxed problem (D.1) - (D.2), and then prove that it satisfies

the properties listed in Theorem 1, a generalization of Theorem 1a-1b found in Appendix C.1.

This will establish Theorem 1, and thus Lemma 5 and Theorem 1a-1b as a special case.

We fix an R ∈ (0, R̂) which guarantees that the set of functions f ∈ F that satisfy the

constraints of problem (D.1) - (D.2) is non-empty.

We can simplify the objective function (D.1): Applying integration by parts for the

Riemann-Stieltjes Integral, and using the fact that f is absolutely continuous, we obtain

ˆ s̄

0
f2(s) dH

(
γ

f ′(s)

)
= f2(s̄)− 2

ˆ s̄

0
f(s)f ′(s)H

(
γ

f ′(s)

)
ds

= 2

ˆ s̄

0
f(s)f ′(s)

(
1−H

(
γ

f ′(s)

))
ds.

Therefore, the objective function (D.1) becomes

ˆ s̄

0

[
f2(s)σ2

UH(R)g(s) + 2f(s)f ′(s)σ2
M

(
1−H

(
γ

f ′(s)

))]
ds.

Applying the same method, we get

ˆ s̄

0
f(s) dH

(
γ

f ′(s)

)
=

ˆ s̄

0
f ′(s)

(
1−H

(
γ

f ′(s)

))
ds,

which allows us to express the constraint (D.2) as

ˆ s̄

0

[
f(s)H(R)g(s) + f ′(s)

(
1−H

(
γ

f ′(s)

))]
ds =

1

n
.

Moreover, we can transform the problem into an unconstrained one by defining an auxiliary
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state variable Γ by

Γ(s) =

ˆ s

0

[
f(t)H(R)g(t) + f ′(t)

(
1−H

(
γ

f ′(t)

))]
dt, s ∈ [0, s̄].

This means that

Γ′(s) = f(s)H(R)g(s) + f ′(s)

(
1−H

(
γ

f ′(s)

))
with Γ(0) = 0 and Γ(s̄) = 1/n.

We thus have the following optimal control problem:

max
u:u(s)∈[0, γ/R]

−
ˆ s̄

0

[
f2(s)σ2

UH(R)g(s) + 2f(s)u(s)σ2
M

(
1−H

(
γ

u(s)

))]
ds (D.7)

subject to

f ′(s) = u(s), f(0) = 0, f(s̄) − free, (D.8)

Γ′(s) = f(s)H(R)g(s) + u(s)

(
1−H

(
γ

u(s)

))
, Γ(0) = 0, Γ(s̄) =

1

n
. (D.9)

The Hamiltonian corresponding to the problem is

H(f(s), u(s), s) = −
[
f2(s)σ2

UH(R)g(s) + 2f(s)u(s)σ2
M

(
1−H

(
γ

u(s)

))]
+ p1(s)u(s) + p2(s)

[
f(s)H(R)g(s) + u(s)

(
1−H

(
γ

u(s)

))]
, (D.10)

where pi(s), for i = 1, 2, are the multipliers on the two state variables f and Γ.

The lemma below gives sufficient conditions for optimality and uniqueness of a candidate

solution.

Lemma 6 Let (f(s), u(s)) be a feasible pair for the problem (D.7) - (D.9). If there exists a

continuous and piecewise continuously differentiable function p(s) = (p1(s), p2(s)) such that

the following conditions are satisfied

1. p′1(s) =
[
2f(s)σ2

U − η
]
H(R)g(s) + 2u(s)σ2

M

(
1−H

(
γ
u(s)

))
;

2. p′2(s) = 0;

3. u(s) maximizes H(f(s), u, s) over u ∈ [0, γ/R] for all s ∈ [0, s̄];

4. p1(s̄) = 0;

5. Ĥ(f, s) = maxu∈[0, γ/R]H(f, u, s) exists and is concave in f for all s,
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then (f(s), u(s)) solve the problem (D.7) - (D.9). If Ĥ(f, s) is strictly concave in f for all s,

then f is the unique solution.

Proof: By direct application of the Arrow Sufficiency Theorem (Theorem 5 on page 107 of

Seierstad and Sydsaeter, 1987). �

Before we proceed, we state a simple lemma that will be used throughout.

Lemma 7 Suppose X is a nonnegative random variable with a finite variance and a continuously

differentiable decreasing density h on (0, ∞). Then limx→∞ h(x)x2 = limx→∞ h
′(x)x3 = 0.

Proof: The first claim follows directly from the definition of variance, and the second can be

obtained by applying integration by parts. �

We will construct the functions p1, p2, and show that the conditions of Lemma 6 all

hold with (f, f ′) as described in Theorem 1. (We omit the superscript in f? and write

f throughout.) We let η = p2(s) for all s, for some constant η > 0. We conjecture that

η ∈ [2f(s0)σ2
U , 2f(s0)σ2

M ) (we will verify that conjecture later). This definition of p2(s)

satisfies condition 2 of Lemma 6.

Consider the interval [0, s0], where f(s) = (γ/R)s, and u(s) = f ′(s) = γ/R. We want to

make sure that condition 3 of Lemma 6 is satisfied:

γ

R
∈ argmax

u∈[0, γ
R

]

{
−
[
2f(s)σ2

M − η
]
u
(

1−H
(γ
u

))
+ p1(s)u

}
.

It is enough to show that the derivative of the objective function with respect to u is non-

negative, for all u ∈ [0, γ/R]:[
η − 2

γ

R
sσ2

M

] [
1−H

(γ
u

)
+
γ

u
h
(γ
u

)]
+ p1(s) ≥ 0. (D.11)

Notice that the second derivative with respect to u is given by

[
η − 2

γ

R
sσ2

M

] [γ2

u3

(
−h′

(γ
u

))]
which, by the assumption that h is decreasing, is non-negative if and only if η ≥ 2(γ/R)sσ2

M .

Thus, the Hamiltonian is convex in the control variable u (implying a boundary solution) for

all s such that η ≥ 2(γ/R)sσ2
M , and is concave otherwise. In either case, it is enough to show

that (D.11) holds for u = γ/R, i.e., that[
η − 2

γ

R
sσ2

M

]
[1−H(R) +Rh(R)] + p1(s) ≥ 0. (D.12)



D Proofs 57

To satisfy condition 2 of Lemma 6, we set

p′1(s) =
[
2
γ

R
sσ2

U − η
]
H(R)g(s)︸ ︷︷ ︸

≤0

+2
γ

R
σ2
M (1−H(R))

in the interval s ∈ [0, s0], using the assumption that η ≥ 2f(s0)σ2
U . Thus, we can write

p1(s) = p1(0) + 2
γ

R
sσ2

M (1−H(R)) +

ˆ s

0

[
2
γ

R
τσ2

U − η
]
H(R)g(τ)dτ.

To show (D.12), we need to prove that[
η − 2

γ

R
sσ2

M

]
[1−H(R) +Rh(R)]+p1(0)+2

γ

R
sσ2

M (1−H(R))+

ˆ s

0

[
2
γ

R
τσ2

U − η
]
H(R)g(τ)dτ ≥ 0.

This is equivalent to

η [1−H(R)] +
[
η − 2

γ

R
sσ2

M

]
[Rh(R)] + p1(0) +

ˆ s

0

[
2
γ

R
τσ2

U − η
]
H(R)g(τ)dτ ≥ 0.

The derivative of the left hand side is equal to

−2
γ

R
σ2
MRh(R) +

(
2
γ

R
sσ2

U − η
)
H(R)g(s) ≤ 0,

as long as 2(γ/R)sσ2
U ≤ η which is true by conjecture when s ≤ s0. Thus, we can choose

p1(0) to satisfy the inequality (D.12) at s = s0, and then it will hold on the entire interval

[0, s0]. We can define p1(0) so that the inequality binds at s0 which gives us

p1(s) =
[
2
γ

R
sσ2

M − η
]

[1−H(R)]−
[
η − 2

γ

R
s0σ

2
M

]
[Rh(R)]−

ˆ s0

s

[
2
γ

R
τσ2

U − η
]
H(R)g(τ)dτ.

We have thus shown that conditions 1-3 of Lemma 6 all hold in the interval [0, s0].

Next, consider the interval [s0, s̄]. In this interval, we want to have an interior maximizer

u(s) of the Hamiltonian (D.10). Because η ≤ 2f(s0)σ2
M , the Hamiltonian is concave in u, and

thus it is enough that the first-order condition holds at u = u(s) :

−
[
2f(s)σ2

M − η
] [

1−H
(

γ

u(s)

)
+

γ

u(s)
h

(
γ

u(s)

)]
+ p1(s) = 0. (D.13)

Taking the derivative over s, and using the fact that the equality holds at s = s0, this is
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equivalent to

−2f ′(s)σ2
M

[
1−H

(
γ

u(s)

)
+

γ

u(s)
h

(
γ

u(s)

)]
+
[
2f(s)σ2

M − η
] γ2

u3(s)
h′
(

γ

u(s)

)
u′(s)+p′1(s) = 0.

(D.14)

Using the fact that u(s) = f ′(s), so that u′(s) = f ′′(s), and combining (D.14) with the

differential equation from condition 1 of Lemma 6 for p1, we obtain

[
2f(s)σ2

M − η
] γ2

u3(s)
h′
(

γ

u(s)

)
f ′′(s) =

[
η − 2f(s)σ2

U

]
H(R)g(s) + 2γσ2

Mh

(
γ

u(s)

)
.

This means that it is enough to show that ODE (C.1) holds whenever u(s) > 0, and that

η = 2f(s)σ2
U whenever u(s) = 0.

Notice that from the first-order condition (D.13), we have

p1(s) =
[
2f(s)σ2

M − η
] [

1−H
(

γ

u(s)

)
+

γ

u(s)
h

(
γ

u(s)

)]
,

and thus condition 4 of Lemma 6 will hold as long as u(s̄) = 0. Moreover, to show that

p1(s) is continuous and piecewise continuously differentiable, it is enough to prove that u(s)

is continuous. All of that is accomplished by the following lemma.

Lemma 8 There exists η ∈ [2f(s0)σ2
U , 2f(s0)σ2

M ), and a non-decreasing, concave solution f

of class C1 to the ODE

f ′′(s) = φ(s, f, (s) f ′(s)) ≡


−

[η−2f(s)σ2
U ]H(R)g(s)+2γσ2

Mh( γ
f ′(s) )

[2f(s)σ2
M−η]

(
−h′( γ

f ′(s) )
)

γ2

[f ′(s)]3
if f ′(s) > 0

0 if f ′(s) ≤ 0

(D.15)

on an interval [s0, s̄] with boundary conditions f(s0) = γ
Rs0 and f ′(s0) = γ

R such that f ′(s̄) =

0. Moreover, if f ′(s1) = 0 for some s1 < s̄, then η = 2f(s1)σ2
U (in the opposite case, η ≥

2f(s̄)σ2
U ).

Proof: In the proof, we will rely on Lemma 7 which implies that the denominator of the ODE

(D.15) goes to 0 as f ′(s)→ 0. Fix a small ε > 0. We will work with a modified ODE

f ′′(s) = φε(s, f, (s), f
′(s)) ≡ min

{
0, φ(s, f, (s), min{ε, f ′(s))}

}
. (D.16)

With this modification, the function φε is uniformly Lipshitz continuous in f and f ′ (using the

assumption that the density h is twice continuously differentiable). By the Picard-Lindelöf

Theorem, there exists a unique solution of class C1 which we will denote by fη, ε(s); moreover,
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the solution depends on η in a continuous way. Because the second derivative of fη, ε(s) is

non-positive by definition of φε, we know that fη, ε(s) is concave.

Next, we will choose η such that f ′η, ε(s̄) = 0. When ε is small enough, and we take η to

be close enough to 2(γ/R)s0σ
2
M , we have f ′′η, ε(s0)→ −∞, so the function f ′η, ε(s) will hit zero

for some s < s̄, and we will have f ′η, ε(s̄) < 0. On the other hand, if we take η low enough,

in particular η < 2(γ/R)s0σ
2
U , then φε(s, fη, ε(s), f

′
η, ε(s)) = 0, and hence fη, ε(s) will coincide

with (γ/R)s. In this case f ′η, ε(s̄) > 0. Thus, there exists an intermediate value η such that

f ′η, ε(s̄) = 0: Let fε = fη, ε for this η. Thus, we have found a solution fε to the modified ODE

(D.16) with the property that f ′ε(s̄) = 0.

Moreover, by the boundary conditions, we can write fε(s) = γ
Rs0 +

´ s
s0
f ′ε(t)dt, and we

know that η ≥ 2fε(s)σ
2
U for all s ≥ s0, for ε small enough. Indeed, if this last claim was not

true, then by the properties of the function φε, we could show that as f ′ε goes to 0, φ becomes

positive, and thus φε becomes 0. This, however, contradicts the fact that f ′ε(s̄) = 0. When

η ≥ 2fε(s)σ
2
U for all s ≥ s0, and η < 2fε(s0)σ2

M , then φ(s, fε(s), f
′
ε(s)) ≤ 0, so fε is a solution

to the ODE

f ′′(s) = φ(s, f, (s), min{ε, f ′(s))}. (D.17)

This means that we can write f ′ε(s) as a fixed point of the following operator

f ′ε(s) = Λε(f
′
ε(s)) ≡ max

{
0,

γ

R
−
ˆ s

s0

φε

(
t,
γ

R
s0 +

ˆ t

s0

f ′ε(τ)dτ, f ′ε(t)

)
dt

}
.

We want to prove that f ′(s) = limε→0 f
′
ε(s) exists, and that f ′ is a fixed point of the limit

operator Λ = limε→0 Λε. By Tychonoff’s Theorem, we can obtain f ′(s) which is a pointwise

limit of a subsequence of f ′ε(s) because f ′ε ∈ [0, γ/R]. We prove that the limiting function f ′ is

in fact continuous. The only point at which continuity of f ′ might fail is a point s1 at which

f ′′ diverges to −∞ (at such a point, f ′ could have a jump discontinuity from a positive level

to 0). Because h ∈ C2, we can find a number B > 0 such that f ′′ε (s) ≥ −B/f ′ε(s) uniformly

in ε and s. Intuitively, f ′′ε (s) cannot be highly negative unless f ′ε(s) is close to 0. But this

means that f ′ε(s) ≤ −B/f ′′(s) and in particular f ′ε(s) → 0 when f ′′ε (s) → −∞. Therefore,

f ′(s1) = 0 if f ′′ diverges to −∞ at s1, and hence f ′ is continuous at s1. When a sequence

of non-decreasing continuous functions converges pointwise to a continuous (non-decreasing)

function, the convergence is uniform. Therefore, we have proven that f ′ε ⇒ f ′. Because the

convergence is uniform, f ′ is also a fixed point of the limiting functional Λ. Thus, we have

obtained a continuous f ′ such that

f ′(s) ≡ max

{
0,

γ

R
−
ˆ s

s0

φ

(
t,
γ

R
s0 +

ˆ t

s0

f ′(τ)dτ, f ′(t)

)
dt

}
,
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and f ′(s̄) = 0. In particular, this means that whenever f ′ > 0, f is a solution to the ODE

(D.15) (and hence (C.1)).

To finish the proof, we argue that η ≥ 2f(s̄)σ2
U , and if f ′(s1) = 0 for some s1 < s̄, then

2f(s1)σ2
U = η. The first claim is a consequence of the inequality η ≥ 2fε(s)σ

2
U for every ε > 0

(proven earlier). Suppose that the second claim is not true. Then, because we proved uniform

convergence of f ′ε to f ′, for any δ > 0, we can find ε̄ > 0 such that for all ε < ε̄,

max
s∈[s1, s̄]

|f ′ε(s)| < δ. (D.18)

However, when 2f(s1)σ2
U > η, (so that 2fε(s)σ

2
U is bounded away from η on [s1, s̄]), this

implies that −f ′′ε gets arbitrarily large as δ gets small. This is a contradiction with f ′ε being

a solution to ODE (D.17) that at the same time satisfies (D.18). �

Given Lemma 8, the proof of Lemma 5 is immediate. By taking η whose existence is

guaranteed by Lemma 8, we satisfy conditions 1-4 of Lemma 6. The functions p1(s) and

p2(s) are continuous and continuously differentaible by construction (and Lemma 8 which

guarantees that u(s) is continuous everywhere). The function Ĥ(f, s) is strictly concave in

f for all s because the Hamiltonian H is a quadratic (strictly concave) function of f. Finally,

we can choose s0 such that the corresponding f is feasible, that is, satisfies constraint (D.9),

or equivalently, (4.3). Indeed, (i) f depends on s0 in a continuous way, (ii) choosing s0 = s̄

yields f(s) = (γ/R)s which gives Γ(s̄) > 1/n because R < R̂, and (iii) when s0 → 0, the

corresponding f(s) also converges to zero pointwise, so Γ(s̄) < 1/n. By the intermediate value

theorem, there exists s0 ∈ (0, s̄) such that Γ(s̄) = 1/n, that is, constraint (4.3) holds.

This implies that the constructed f is the unique solution to the problem (D.7) - (D.9).

Because this function is feasible for the original problem P(R), it is also the unique solution

to P(R).

D.2 Proof of Proposition 3

We will show that the optimal benchmark fixing with R ∈ {0, R̂} is dominated by choosing

a weighting function of the form

fβ(s) =
γ

R(β)
max{s, β},

for some β ∈ [0, s̄], where R(β) is chosen to make fβ feasible, that is, to satisfy (4.3):

H(R(β))

R(β)

(ˆ β

0
γτg(τ)dτ + γβ(1−G(β))

)
+

1−H(R(β))

R(β)
γβ =

1

n
.
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As noted in the discussion of Theorem 1a-1b, the optimal weighting function for R = 0 is

f(s) = 1/n, and the optimal weighting function for R = R̂ is f(s) = (γ/R̂)s. Importantly,

these two functions are the limits of the family fβ as β varies from 0 to s̄.46 Moreover,

R(β) ∈ (0, R̂) for all β ∈ (0, s̄). Let

V (β) =
H(R(β))

R2(β)

[ˆ β

0
γ2τ2g(τ)dτ + γ2β2(1−G(β))

]
σ2
U +

1−H(R(β))

R2(β)
γ2β2σ2

M

denote the value of the objective function (D.1) at fβ. Then, V (0) corresponds to the value

attained by the optimal weighting function with R = 0, and V (s̄) corresponds to the value

attained by the optimal weighting function with R = R̂. Because V is continuous and differ-

entiable, to prove Proposition 3, it is enough to show that V ′(0) < 0, and V ′(s̄) > 0.

Using the implicit function theorem, we can write R(β) as a function of β with

lim
β→0

R(β)

β
= γn,

and

R′(β) =
R(1−H(R(β))G(β))

β − (H(R(β))− h(R(β))R(β))
(
βG(β)−

´ β
0 τg(τ)dτ

) .
We can calculate the derivative of V (β) at β = s̄ directly:

V ′(s̄) =
h(R̂)R̂2 − 2H(R̂)R̂

R̂3

1−H(R̂)

s̄−
(
H(R̂)− h(R̂)R̂

)(
s̄−
´ s̄

0 τg(τ)dτ
) [ˆ s̄

0
τ2g(τ)dτσ2

U − s̄2σ2
M

]

−

2H(R̂)

R̂2
s̄− 2

R̂2
s̄2 1−H(R̂)

s̄−
(
H(R̂)− h(R̂)R̂

)(
s̄−
´ s̄

0 τg(τ)dτ
) +

2

R̂2
s̄

σ2
M .

If we let λ = σ2
M/σ

2
U , then V ′(s̄) > 0 is equivalent, after some simplifications, to

[
2H(R̂)− h(R̂)R̂

] [ˆ s̄

0

(τ
s̄

)2
g(τ)dτ

]
< λ

[
h(R̂)R̂+ 2

(
H(R̂)− h(R̂)R̂

)ˆ s̄

0

(τ
s̄

)
g(τ)dτ

]
.

We know that the density h is decreasing, and because a density is integrable, we must have

limR→0 h(R)R = 0. It follows that H(R) > h(R)R for all R > 0 because

d

dR
[H(R)− h(R)R] = h(R)− h(R)− h′(R)R > 0.

46Formally, we have fs̄(s) = (γ/R̂)s and limβ→0 fβ(s)→ 1/n for all s > 0.
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Therefore, V ′(s̄) > 0 is equivalent to

λ >

[
2H(R̂)− h(R̂)R̂

]
Es21
s̄2

h(R̂)R̂+ 2
(
H(R̂)− h(R̂)R̂

)
Es1
s̄

. (D.19)

Next, we have [
2H(R̂)− h(R̂)R̂

]
Es21
s̄2

h(R̂)R̂+ 2
(
H(R̂)− h(R̂)R̂

)
Es1
s̄

≤

[
2H(R̂)− h(R̂)R̂

]
Es1
s̄

h(R̂)R̂+ 2
(
H(R̂)− h(R̂)R̂

)
Es1
s̄

≤ 1,

where the last inequality follows from the fact that, by direct calculation of the derivative,

the middle expression is increasing in Es1/s̄. This proves that (D.19) always holds because its

left hand side is strictly greater than 1, while the right hand side is less than 1.

Now, we will show that V ′(0) < 0. We have

V ′(0) = lim
β→0

V ′(β) =
[
σ2
U − σ2

M

] γ2h(0)

n
< 0.

This ends the proof.

D.3 Proof of Theorem 2

We will first show that f?(s) = (γ/R̂)s solves problem P. It follows that f? solves problem

P(R) for any R ≤ R̂, because f? is feasible for P(R) for any R ≤ R̂.

By arguments analogous to the ones used in the proof of Lemma 2 and Lemma 3, the

optimal function f is continuous and non-decreasing. By Bruckner and Ostrow (1962), As-

sumption 1 is equivalent to the following condition when f(0) = 0, and f is non-decreasing

and continuous:

f ′(s−) ≥ f(s)

s
, for all s ∈ (0, s̄],

where f ′(s−) denotes the left Dini derivative of f at s. Because f ∈ CK,M together with

continuity of f implies that f is absolutely continuous, we can write that condition as

f ′(s) ≥ f(s)

s
, for a.e. s ∈ (0, s̄). (D.20)

We first prove that under Assumption 1, all manipulators (Ri ≥ R) choose ŝi = s̄. We have

d

ds
(Rf(s)− γs) = Rf ′(s)− γ ≥ Rf(s)

s
− γ = s(Rf(s)− γs).

This implies that if there exists any s > 0 at which a manipulator can make positive profits,
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then that manipulator maximizes profits by choosing ŝi = s̄. This implies that the problem

to solve is

inf
f∈CK,M

ˆ s̄

0
f2(s)σ2

UH(Rf )g(s)ds+ f2(s̄)σ2
M (1−H(Rf )) (D.21)

subject to (D.20), and

f(s) ≤ γ

Rf
s, ∀s ∈ [0, s̄], (D.22)

ˆ s̄

0
f(s)H(Rf )g(s)ds+ f(s̄)(1−H(Rf )) =

1

n
. (D.23)

Similarly as for the baseline model, we will parameterize the above problem by R = Rf , and

solve it first for any fixed R ≤ R̂.

To simplify the objective function, note that

f2(s̄) = 2

ˆ s̄

0
f(s)f ′(s)ds.

Similarly, we can express condition (D.23) with R = Rf as

H(R)

ˆ s̄

0
f(s)g(s)ds+ (1−H(R))

ˆ s̄

0
f ′(s)ds =

1

n
.

To incorporate condition (D.20) into the problem, we will redefine the control variable u(s)

relative to the baseline model. Instead of f ′(s) = u(s), we let u(s) = f ′(s)−f(s)/s. Constraint

(D.20) can now be expressed as u(s) ≥ 0. Thus, the full problem can be written as

min
u≥0

ˆ s̄

0

[
f2(s)σ2

Ug(s) + 2f(s)σ2
M

(
u(s) +

f(s)

s

)]
ds (D.24)

subject to

f ′(s) = u(s) +
f(s)

s
, f(0) = 0, f(s̄)− free (D.25)

Γ′(s) = H(R)f(s)g(s) + (1−H(R))

(
u(s) +

f(s)

s

)
, Γ(0) = 0, Γ(s̄) =

1

n
(D.26)

f(s) ≤ γ

R
s. (D.27)

We conjecture that the constraint f(s) ≤ (γ/R)s is slack. We want to prove that the optimal

f is linear: f(s) = αs for some α ≤ γ/R. There exists a unique α under which a linear f

satisfies the constraint (D.23) (or D.26), namely, α = γ/R̂. Such f satisfies constraint (D.27),

and thus if it solves the relaxed problem, it also solves the original problem.
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The Hamiltonian corresponding to the relaxed problem (D.24) - (D.26) is

H(f(s), u(s), s) = −
[
f2(s)σ2

Ug(s) + 2σ2
Mf(s)

(
u(s) +

f(s)

s

)]
+ p1(s)

(
u(s) +

f(s)

s

)
+ p2(s)

(
H(R)f(s)g(s) + (1−H(R))

(
u(s) +

f(s)

s

))
. (D.28)

We state sufficient conditions for a function f to be optimal, using Arrow’s Theorem.

Lemma 9 Let (f(s), u(s)) be a feasible pair for the problem (D.24) - (D.26). If there exists

a continuous and piecewise continuously differentiable function p(s) = (p1(s), p2(s)) such that

the following conditions are satisfied

1. p′1(s) = 2f(s)σ2
Ug(s)+2σ2

M

(
u(s) + 2f(s)

s

)
−p1(s)1

s −p2(s)
(
H(R)g(s) + (1−H(R))1

s

)
;

2. p′2(s) = 0;

3. u(s) maximizes H(f(s), u, s) over u ≥ 0 for all s ∈ [0, s̄];

4. p1(s̄) = 0;

5. Ĥ(f, s) = maxu∈[0, γ/R]H(f, u, s) exists and is concave in f for all s,

then (f(s), u(s)) solve the problem (D.24) - (D.26). If Ĥ(f, s) is strictly concave in f for all

s, then f is the unique solution.

Proof: By direct application of the Arrow Sufficiency Theorem (Theorem 5 on page 107 of

Seierstad and Sydsaeter, 1987). �

Since we want to prove that f(s) = αs is optimal, we have u(s) = 0 for all s ∈ [0, s̄]. The

Hamiltonian is maximized at u = 0 across feasible u ≥ 0 when

−2σ2
Mf(s) + p1(s) + p2(s)(1−H(R)) ≤ 0.

We can set p2(s) = η for some constant η for all s (this will satisfy condition 2 of Lemma

9). The Hamiltonian is strictly concave in f . Thus, to satisfy all conditions of Lemma 9,

it is enough to prove that there exists a continuously differentiable p(s) (we abuse notation

slightly by dropping the subscript from p1(s)) and a constant η such that

p(s) + η(1−H(R)) ≤ 2σ2
Mαs, (D.29)

p(s̄) = 0, (D.30)

p′(s) + p(s)
1

s
= 2αsσ2

Ug(s) + 4σ2
Mα− ηH(R)g(s)− η(1−H(R))

1

s
, (D.31)
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for all s ∈ [0, s̄]. Solving the ODE (D.31), we obtain

p(s) =
1

s

(
κ+

ˆ s

0

[
2ατ2σ2

Ug(τ) + 4σ2
Mατ − ηH(R)g(τ)τ − η(1−H(R))

]
dτ

)
,

for all s > 0, and some constant κ. With the final condition (D.30), we obtain

p(s) = −1

s

ˆ s̄

s

[
2ατ2σ2

Ug(τ) + 4σ2
Mατ − ηH(R)g(τ)τ − η(1−H(R))

]
dτ.

This means in particular that p(s) is well defined and continuously differentiable for all s ∈
(0, s̄]. To guarantee that we can define p(0) so that p(s) is continuous at s = 0, we need

ˆ s̄

0

[
2ατ2σ2

Ug(τ) + 4σ2
Mατ − ηH(R)g(τ)τ − η(1−H(R))

]
dτ = 0. (D.32)

Condition (D.32) is also sufficient: By d’Hosptial rule, if (D.32) holds, then the limit lims↘0 p(s)

exists and is finite. Condition (D.32) pins down a unique candidate for η:

η =

´ s̄
0

[
2ατ2σ2

Ug(τ) + 4σ2
Mατ

]
dτ´ s̄

0 [H(R)g(τ)τ + (1−H(R))] dτ
.

With η defined this way, and after simplifying the expressions, (D.29) becomes equivalent to

´ s̄
0

[
τ2σ2

Ug(τ) + 2σ2
Mτ
]
dτ´ s̄

0 [H(R)g(τ)τ + (1−H(R))] dτ

[ˆ s̄

s
τH(R)g(τ)dτ + (1−H(R))s̄

]
≤ σ2

M s̄
2 +

ˆ s̄

s
τ2σ2

Ug(τ)dτ,

for all s ∈ [0, s̄]. Equivalently, after some simplifications,

H(R)

(ˆ s̄

0
τg(τ)dτ

)(ˆ s

0
τ2σ2

Ug(τ)dτ

)
+ (1−H(R))s̄

ˆ s

0
τ2σ2

Ug(τ)dτ

≤ σ2
M (1−H(R))s̄2

ˆ s

0
τg(τ)dτ +H(R)

(ˆ s̄

0
τ2σ2

Ug(τ)dτ

)(ˆ s

0
τg(τ)dτ

)
,

for all s ∈ [0, s̄]. Because the above expression is linear in H(R), and R does not appear

anywhere else in the expression, it is enough to show that it holds for both H(R) = 0 and

H(R) = 1. That is, it is enough to show that

´ s̄
0 τg(τ)dτ´ s̄

0 τ
2σ2
Ug(τ)dτ

≤
´ s

0 τg(τ)dτ´ s
0 τ

2σ2
Ug(τ)dτ

, (D.33)
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and ˆ s

0
τ2σ2

Ug(τ)dτ ≤ s̄
ˆ s

0
τσ2

Mg(τ)dτ, (D.34)

for all s ∈ [0, s̄]. Inequality (D.34) is clearly true because σ2
U < σ2

M by assumption. To prove

inequality (D.33), it is enough to show that

´ s
0 τg(τ)dτ´ s

0 τ
2σ2
Ug(τ)dτ

is decreasing in s. By calculating the derivative, we can show that a sufficient condition is´ s
0 [τ − s] τg(τ)dτ ≤ 0 for all s, which is clearly satisfied. This ends the proof that conditions

(D.29) – (D.31) all hold.

Therefore, all conditions of Lemma 9 also hold, and thus we have proven that f(s) =

(γ/R̂)s is the unique solution to the relaxed problem (D.24) - (D.26) for any R ≤ R̂, and

hence also the problem (D.24) - (D.27). It follows that the same f solves the problem P and

P(R) for any R ≤ R̂.

The equality (γ/R̂)s = s/(nE[ŝi]) holds by the definition of R̂.

D.4 Proof of Theorem 3

It is immediate to observe that a VWAP benchmark prevents pairwise order-splitting and

assigns no weight to transactions with zero size. It remains to prove the opposite direction of

the equivalence. We fix an arbitrary fractional-weight fixing (fi)
n
i=1 that neutralizes pairwise

order-splitting and assigns no weight to transactions with zero size.

The total weight function fK for a subset K ⊂ N is defined as

fK(s) =
∑
i∈K

fi(s).

The assumption that pairwise order splitting is neutralized implies that the total weight

function for a binary set K only depends on the sum of the corresponding trade sizes. That

is, for any i and j in N ,

f{i,j}(s) = f̃{i,j}(si + sj , s−ij),

for some f̃{i,j} : Rn−1
+ → R+. We will prove that this property can be generalized to an

arbitrary group K.

Lemma 10 For any K ⊆ N , there exists some f̃K : Rn−|K|+1
+ → R+ such that

fK(s) = f̃K

(∑
i∈K

si, s−K

)
.
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Proof: We prove the lemma by induction over the cardinality of K. By assumption, the claim

is true for |K| = 2. Suppose that we have proven this property whenever K has cardinality

k − 1. We now prove it for any K with |K| = k.

We have

fK(s) =
∑
i∈K

fi(s) =
1

k − 1

∑
L⊂K, |L|=k−1

fL(s) =
1

k − 1

∑
L⊂K, |L|=k−1

f̃L

(∑
i∈L

si, s−L

)
,

for some f̃L : Rn−|K|+2
+ → R+, which exists by the inductive hypothesis.

Next, for each L ⊂ K with |L| = k − 1, there exists some f̂L : Rn−|K|+2
+ → R+ such that

f̃L

(∑
i∈L

si, s−L

)
= (k − 1)f̂L

(∑
i∈K

si, s−L

)
.

This is true because there exists a one-to-one mapping between (
∑

i∈L si, s−L) and (
∑

i∈K si, s−L)

for any such L.

Fixing
∑

i∈K si = S, we must show that

fK(s) =
∑

L⊂K, |L|=k−1

f̂L(S, s−L)

is invariant to sK . Formally, we can fix s−K (the same argument can be made contingent

on any fixed profile s−K), and consider any function f̂L, whose dependence on s−K and S is

suppressed in the notation, on the linear subspace M = {s :
∑

i∈K si = S}; we must prove

that

fK(s) =
∑
i∈K

fi(s) =
∑
i∈K

f̂−i(si)

is constant on M , where f̂−i(si) is the suppressed notation for

f̂−(K\{i})(S, (si, s−K)),

using the fact that L = K \ {i} for some i ∈ K.

Consider any two indices i, j ∈ K. Because |K| ≥ 3, a restriction that si + sj is a constant

is a restriction of s to an l-dimensional linear subspace of M , for some l > 0. This restriction

implies that the total weight fi(s) + fj(s), and hence fK(s), must be invariant. But this

implies that f̂−i(si)+ f̂−j(sj) can depend only on the sum si+sj , which is only possible when

f̂−i(si) = αsi + β−i,
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for some constants α and β−i. Applying this argument to any pair of transactions, we conclude

that

fK(s) =
∑
i∈K

fi(s) = α
∑
i∈K

si +
∑
i∈K

β−i = αS +
∑
i∈K

β−i,

which proves that indeed the function fK is constant on the subspace M. This in turn proves

that we can write

fK(s) = f̃K

(∑
i∈K

si, s−K

)
,

which finishes the proof of the induction step and the lemma. �

We can now apply Lemma 10 with K = N \ {i}, for an arbitrary i ∈ N . Since the

benchmark is fractional, we have

fi(s) + fN\{i}(s) = 1. (D.35)

By the lemma, we have

fN\{i}(s) = f̃−i

∑
j 6=i

sj , si

 ,

for some f̃−i : R2
+ → R+, and moreover, by the same argument that we have used in the

proof of the inductive step,

f̃−i

∑
j 6=i

sj , si

 = αi

si,∑
j 6=i

sj

∑
j 6=i

sj + βi

si,∑
j 6=i

sj

 ,

for some functions αi and βi. Using equality (D.35) and abusing notation slightly by redefining

βi, we obtain

fi(s) = αi

si,∑
j 6=i

sj

∑
j 6=i

sj + βi

si,∑
j 6=i

sj

 .

In particular, this implies that there exists a function γi : R2
+ → R+ such that

fi(s) = γi

si, ∑
j∈N

sj

 .

Fixing
∑

j∈N sj = S and using once more the condition that the benchmark neutralizes

pairwise order-splitting, we obtain that for any k 6= i,

fi(s) + fk(s) = γi(si, S) + γk(sk, S)
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can depend only on si + sk. But this is only possible when, abusing notation slightly,

γi(si, S) = α(S)si + βi(S),

and

γk(sk, S) = α(S)sk + βk(S).

That is, the functions αi and βi defined earlier depend only on the sum S of transaction sizes,

and moreover αi does not depend on i and can be expressed as some function α.

Since the benchmark is fractional, we must have, whenever
∑

j∈N sj = S,

1 =
∑
i∈N

fi(s) =
∑
i∈N

(α(S)si + βi(S)) = α(S)S +
∑
i∈N

βi(S),

from which it follows that

α(S) =
1−

∑
i∈N βi(S)

S
.

Therefore, redefining βi as nβi to simplify notation, we conclude that robustness to pairwise

order splitting implies that the benchmark fixing weight must take the form (5.1).

Finally, we apply the condition that fi(0, s−i) = 0 for all s−i. In particular, it must be

that for all S, (
1− 1

n

∑
i∈N

βi(S)

)(
0

S

)
+ (βi(S))

(
1

n

)
= βi(S)

(
1

n

)
= 0,

and hence that function βi( · ) is identically zero. We conclude that

fi(s) =
si∑n
j=1 sj

,

which finishes the proof.

D.5 Proof of Proposition 4

Let Ŷ be a fractional-weight fixing with weights (fi)
n
i=1. We can then calculate the mean

squared error as

V ≡ E[(Y − Ŷ )2] = E

(Y (1−
n∑
i=1

fi(ŝ))−
n∑
i=1

fi(ŝ)(εi + ẑi)

)2
 ,

where expectation is taken with respect to the distributions of the primitive random variables

and equilibrium strategies of agents. Because weights add up to 1, the first term in brackets
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drops out, and we obtain

V =

n∑
i=1

E
[
f2
i (ŝ)(εi + ẑi)

2
]

+
∑
i 6=j

E [fi(ŝ)fj(ŝ)(εi + ẑi)(εj + ẑj)]

The second term drops out because even conditional on ŝ and (εi + ẑi), (εj + ẑj) for j 6= i has

a distribution that is symmetric around 0.

Observe that (εi + ẑi) is independent of ŝ−i; therefore, by the law of iterated expectations

and Jensen’s inequality,

V =
n∑
i=1

E
[
E
[
f2
i (ŝ)| ŝi

]
(εi + ẑi)

2
]
>

n∑
i=1

E
[
(E [fi(ŝ)| ŝi])2 (εi + ẑi)

2
]

=
n∑
i=1

E
[
f̄2
i (ŝi)(σ

2
ε + σ2

z)
]
≡ V ,

where f̄i(ŝi) is the interim expected weight faced by agent i. Jensen’s inequality holds in its

strict version because weights can add up to 1 only if they depend on all transaction sizes,

and because the quadratic function is strictly convex.

Now consider an absolute-size-weight fixing Ỹ defined by the interim expected weights

associated with the original fractional-weight fixing, that is, define f̄i(ŝi) = E [fi(ŝi, ŝ−i) | ŝi].
When these absolute-size weights are used instead of the fractional-weight fixing, the BNE

between the agents remains the same, since the best response of any agent i in this equilibrium

only depends on the interim expected weight on i’s transaction (see Section 3). Moreover,

this equilibrium is now in dominant strategies, since the expected weight that agent i receives

no longer depends on the behavior of other agents. And because the original weights add up

to 1 ex-post, the expected weights in Ỹ must lie between zero and one and add up to 1 in

expectation; in particular, the absolute-size-weight fixing is unbiased.

We can thus calculate the mean squared error associated with Ỹ :

E
[
(Ỹ − Y )2

]
=

E

[
n∑
i=1

f̄i(ŝi)

]2

− 1

σ2
Y +

n∑
i=1

E
[
f̄2
i (ŝi)(σ

2
ε + σ2

z)
]

=

(
n∑
i=1

Ef̄2
i (ŝi)−

1

n

)
σ2
Y +

n∑
i=1

E
[
f̄2
i (ŝi)(σ

2
ε + σ2

z)
]

Because the expected weight lies between zero and one, we can estimate

Ef̄2
i (ŝi) ≤ Ef̄i(ŝi) = 1/n.
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Therefore,

E
[
(Ỹ − Y )2

]
≤ n− 1

n
σ2
Y + V .

We have thus found an unbiased absolute-size-weight benchmark whose mean squared error

does not exceed the mean squared error V of the fractional-weight fixing by more than δnσ
2
Y ,

where δn < 1.

If moreover Ŷ is asymptotically efficient, then it must be that V → 0 as n → ∞, so in

particular Ef̄2
i (ŝi) must also converge to 0. Thus, when Ŷ is asymptotically efficient, we have

that δn → 0 as n→∞.

D.6 Proof of Proposition 5

Let Λ(ŝi) be the cdf of the transaction size ŝi (potentially manipulated) under the optimal

A-VWAP benchmark from Section 4.2, that is:

Λ(s) = H(R̂)G(s) + (1−H(R̂))1{s≥s̄}.

By the Matthews-Border condition (see Matthews, 1984, and Border, 1991), there exist

weights fi(ŝ1, ..., ŝn) such that
∑n

i=1 fi(ŝ1, ..., ŝn) = 1 for almost all ŝ1, ..., ŝn and f̄i(ŝi) =

f?(ŝi) if and only if (we use the fact that f?(s) is strictly increasing)

ˆ s̄

τ
f?(s)dΛ(s) ≤ 1− Λn(τ)

n
, ∀τ ∈ [0, s̄)

with equality for τ = 0. For τ = 0, we have

ˆ s̄

0

s

nE[ŝi]
dΛ(s) =

1

n
,

so the equality indeed holds. For any τ > 0, we want to prove that

L(τ) ≡
H(R̂)

´ s̄
τ sdG(s) + (1−H(R̂))s̄

H(R̂)
´ s̄

0 sdG(s) + (1−H(R̂))s̄
+Hn(R̂)Gn(τ) ≤ 1.

First, we argue that the inequality holds for τ ∈ (0, ε) for some ε > 0. Taking the derivative

of the left hand side with respect to τ yields (assuming n ≥ 3)

L′(τ)|τ=0 = 0

and

L′′(τ)|τ=0 ≤ 0.
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Therefore, L(τ) = 1 − L′′(0)τ2 + o(τ2), and in particular L(τ) ≤ 1 for τ ∈ (0, ε) for some

ε > 0. Now, we show the inequality for τ ≥ ε > 0. Denote

δ =
H(R̂)

´ s̄
ε sdG(s) + (1−H(R̂))s̄

H(R̂)
´ s̄

0 sdG(s) + (1−H(R̂))s̄
< 1,

where the inequality follows from the fact that G has a positive density. Take n high enough

so that Hn(R̂) < 1− δ. Then we have

H(R̂)
´ s̄
τ sdG(s) + (1−H(R̂))s̄

H(R̂)
´ s̄

0 sdG(s) + (1−H(R̂))s̄
+Hn(R̂)Gn(τ) ≤ δ + 1− δ ≤ 1

which finishes the proof of the first part.

To prove the conclusion for the uniform distribution g of unmanipulated transaction sizes

and any n ≥ 2, note that in this case

L′(τ) = −
2H(R̂) τs̄

2−H(R̂)
+Hn(R̂)n

(τ
s̄

)n−1
.

When the Matthews-Border inequality holds for n = 2, then it holds for any n > 2 as well,

so it is enough to show that L′(τ) ≤ 0 for all τ which is equivalent to

H(R̂) ≤ 1

2−H(R̂)

which holds for any H(R̂) ∈ [0, 1].
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