Online Appendix of “Market Fragmentation”

Daniel Chen and Darrell Duffie

APPENDIX A: VERIFICATION THEOREM

Here, we prove a theorem that we later use to verify a candidate symmetric
affine equilibrium. The theorem applies to the models of Section III, Section
V, and Appendix H. In what follows, F; denotes trader i’s information set.
In the models of Section IIT and Appendix H, F; = o(X;) while in the model
of Section V, F; = 0(X;, > ;cn Xj). The set of admissible demand schedules,
M,;, is the set of all maps h : Q@ x R — R that are F; x B(R)-measurable.
We denote a candidate symmetric affine equilibrium by the associated triple of
demand schedule coefficients, (A, a, ().

THEOREM 1: Let (A, «,() be a candidate symmetric affine equilibrium. For
each e € E and i € N set

Tie *= OCZX + — 1 A — Qe
J#i

and let fie be as in (2). Necessary conditions for (A,a,() to be a symmetric
affine equilibrium are that ¢ # 0 and

1
(Al) —E [2b <X + Z f’L€ w p@)) |]:27Tle] = pg + mfie(w’pg)

ecl
holds almost surely for eachi € N ande € E. If { > 0 then (A1) is also sufficient.

PROOF:

We first show that if { = 0, then (A, a, ¢) can not be a symmetric affine equilib-
rium. In this candidate equilibrium, with probability 1, no trades are executed on
any exchange.! Now suppose trader i deviates to submitting the demand schedule
—ep on a given exchange e. Then trader ¢ will absorb « Z#i X;—(N-1)A+Q.
units from the other traders. The market clearing price on exchange e will be

—az#in +Ap(N—-1)— Q.

€

Pe =

Thus the transfer to trader 7 is

(@34 Xi — AN = 1) + Q)

€

—Pelic =

1Recall from Section II that if a unique market clearing price does not exist no trades are executed.
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That is, for e > 0 sufficiently small the deviation is profitable. Hence (a,(, A)
can not be a symmetric affine equilibrium.

Going forward we assume ¢ # 0. Suppose that all traders j # i submit demand
schedules of the form in (2) to each exchange. Suppose trader i submits g;e € M
to exchange e. Then if a market clearing price exists, it satisfies

o rie(w) + Gie (wape(w))
(A2) pe(w) = (N =1

For any given demand schedule g;. which conditions the quantity purchased on the
realization of p. there is a function g;e which conditions the quantity purchased
on the realization of r;. such that

§ie(W, Tie(w)) = Jie (Wape(w))
for each w € Q for which a unique clearing price exists and
Jie(w, Tie(w)) =0

for each w € Q such that there is no unique clearing price. To see this, define g,
as follows. For each r € R let p(r,w) denote the unique solution to

_ r +gie(wyp)
¢(N—1)

if such a solution exists. For all r such that p(r,w) is well defined, we let
gie(wv T) = Gie (w,p(T,W)) .

Otherwise, set

Gie(w,r) = 0.
Given {fic}ecr as in the statement of theorem, define { fie}ee g in this way. Then
~ N -1 r N -1
fie(wyr) = _O‘TXi - N + TA

for each e € F.
It is convenient to relax trader i’s optimization problem to

2
(A3) sup E |« Z Gie(w,Tie) — b (XZ- + Z Gie(w, rie)>

giEMf ecE eeE

—-E

Tie +§i6(w7Ti€) ~ )
;C(N_l)gze(wﬁze)] )
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where, as is standard, we suppress w from the notation for X; and r;.. For some
g = (Gi1, - Gig) € MiE, the expectation may be infinite. As a result we first
restrict to the subset M¥ where M is the subset of h € M such that (-, (- ))
is a finite-variance random variable. Later, we argue that this is without loss of
generality because, if ¢ > 0, any profile of demand schedules outside of M leads
to a utility of —oc. 3

To derive a first order condition, for each e € E, we take the variation of f;.
with an arbitrary h. € M and substitute into the objective. This gives

(A4) E [ﬂ Z (fie(w, Tie) + Vhe(w, rie)) — b(X; + Z fie(w, Tie) + vhe(w, Tie))2]

eckE eckE

Z Tie + fie(wa Tie) + Vhe(wa Tie)

-E (N 1)

(fie(wv Tie) + Vhe<w7 Tie))] y

ecE

where v is a constant in R. Differentiating with respect to v and evaluating at
v =0 gives:

(A5) E [n D he(w,rie) = 26(Xi + > fielw,mie)) > he(w, rie)]

ecE ecE ecE

fiew,rie)  Tie + fie(w, Tie) -
_ELEZE(C(N_l) + C(N—l) )h‘e(wvrie)] =0.

This holds if

(A6) E

. £ . | Tie -+ ine(wyrie) _
_Qb(XZ + I;Efzk(w, le)) ’ Fi, Tze] = SN - 1) .

for each e € E. We now show that (A6) is a sufficient condition for optimality
within M¥. Differentiating (A4) with respect to v twice we derive

(A7) E [—2()( Z hie(w, Tie))2 - C(]Vz—l) Z hz’e(wa rie>2] )

eck eckE

which is less than or equal to 0 for all (hq, ..., hg) € MPE . The derivative is negative
if one of hq, ..., hy is nonzero on a set of positive measure provided ¢ > 0. Suppose
for contradiction that (fi1,..., fig) satisfies (A6) but there exists (h,...,h%) €
MP¥ which achieves a strictly higher value of (A3). Set (h1,....hg) = (b —
fitsoens hy — fie) € ME. Then the function (A4) achieves a higher value at v = 1
than at v = 0. However (A4) is a strictly concave function of v and thus has a
global maximum at v = 0. This is a contradiction.
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To show that it is without loss of generality to restrict attention to optimality
within MP we observe that the coefficient of i(w,r%)? in (A3) is negative if
¢ > 0. Tt is easy to see then that any (Gie, ..., Gir) ¢ ME must result in —oo for
the objective.

Using (A2), we see that (A6) is equivalent to (A1) which, if ¢ > 0, is therefore
a sufficient condition for (A, a, () to be a symmetric affine equilibrium. We now
show that it is also a necessary condition (even if ¢ < 0). Suppose for some e € F,
(A1) does not hold and set

£ ie 2 ~i€ s e
he(w,rie) = pir + E —2b(Xz‘ + Z fik(W,T,'k)) ‘]:Z.’rie  Tie T fie(w,r )
keE (N —1)

Note that h. is an affine function of r; with a deterministic slope (does not
depend on w). This is because the conditional expectation above is affine in r;. in
each of the models of Section III, Section V, and Appendix H with a deterministic
slope. Set hy(w, i) = 0 for k # e. Then (A5) is strictly positive. Thus for all
v > 0 sufficiently small (f;1,..., fie + Vhe, ..., fig) achieves a higher value of the
objective (A3) than does (fi1, ..., fig). Define the demand schedule d. such that
for any given p € R and w € )

de(w, p) = (fie + vhe)(w,r(w,p))

where r(w, p) is defined to be the r that solves

4 (fie + vhe)(w, )
(N —1)
If v > 0 was chosen sufficiently small, r(w, p) is well defined since the right hand

side is an affine function of r with nonzero slope and so d.(w, p) is also well defined.
Moreover

de(w, pe(w)) = (fie + Vhe) (@, Tie(w))
for each w € Q. But then (fi1,...,de, ..., fir) gives higher expected utility to

trader ¢ than does (fi1, ..., fig) which is a contradiction. Thus (A1) is a necessary
condition.

APPENDIX B: PROOFS FOR SECTION III

Here, we provide proofs for all results in Section III. We first prove Lemma 2
which states that an equilbrium is “more efficient” the closer is Fag to 1. Lemma
2 will be used in the proof of Theorem 1.

LEMMA 2: Let (A,«, () be a symmetric affine equilibrium when there are E
exchanges and (A, &, ) be a symmetric affine equilibrium when there are E ex-
changes. For each w € Q, the sum of strategic traders’ holding costs post trade is
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strictly lower in the equilibrium corresponding to (o, ¢, A) if and only if |1— Ea| <
|1 — Ea|. If the sum of strategic traders’ holding costs post trade are equal across
the two equilibria, then |1 — Eal = |1 — Fal.

PROOF:
The sum of holding costs in the equilibrium (A, o, ¢) is

ZEEE Qe

bZ: 1—EaAT+Ew—§:XW+ ~

1EN JEN

Expanding, rearranging, and combining like terms we obtain

(1— Ea) E:XQ (1 — Ea)? E:X

JEN ]EN

ZeGE Qe ZjeN X; n (ZeGE Qe)2
N N

b [2
Thus the lemma is a result of Jensen’s inequality.

B1. Proof of Theorem 1

We prove Theorem 1 in three steps. In step 1, we derive a system of equations
and show that a necessary and sufficient condition for (Ag, ag, (g) to be a
symmetric affine equilibrium is that they solve this system. In step 2 we prove
that there is exists a unique solution to the system, thus establishing existence
and uniqueness of a symmetric affine equilibrium. This proves the preamble in
Theorem 1. In step 3, we prove Parts 1 through 7.

Step 1. Conjecture there exists a symmetric affine equilibrium (Ag, ag,(g).
Under this conjecture, each agent ¢ € N submits a demand schedule of the form
n (2) to each e € E and i € N. Market clearing in exchange e implies that the
equilibrium price is

Zi XZ) +ApN — Q.
CeN '
Price impact can also be determined from the market clearing condition. If trader

1 purchases ¢ units on exchange e when all other traders submit the equilibrium
demand schedules then

—aEZXj —CE(N = 1)pe + Ap(N = 1) + ¢ = Q..
i

(B1) pl = 22
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This implies that the inverse residual supply curve trader ¢ faces is

—OF Zj;éz' Xj +q+ AE(Nv - 1) — Qe
Ce(N —1) .

(B2) Pe(q) =

Thus the price impact trader i faces in exchange e is A := m, which
by symmetry, is the price impact each agent faces in all exchanges. Define
fie(Xi,pg) = que- By Theorem 1 a necessary condition for (Ag,ag,(g) to be
a symmetric affine equilibrium is that

f

q.
qfk!pg - XZD =p£+Aque — g

o
(B3) —2b (X, +q,+ (E—-1)E GIN 1)

holds almost surely for each e € E and trader i € N. Moreover if (g > 0 it is also
sufficient. In (B3), we have used symmetry of the exchanges. By the projection
theorem,

(B4) E [qfk pl - gf(]fi;];—l)’Xi] — —aEXi% B (1 B NA; 17E> A,
- N]\; 1’YECEP£ +7E§{‘; + Apg,

where

(B5) v — corr(pdpl | X1) = 0BV — 1ok

- Eai(N —1)0% —|—0’%2.

Substituting (B4) and (2) into (B3) and matching coefficients we derive a system
of three equations which characterize the three unknowns, Ag, ag, and {(g. These
equations are

HUr
(B6) Ap = :
2% (1 + ’YE(]%*U + (’YE(]%:E)JFU + (E _ 1)N]\_71'YE>

1
(B7) O = — _ )
14220 4 Bhetl 4 (p - 1) 8L
and
1 N —2
(B8) CE

T 2W(E-D)yp+ )N -1

Equations (B6), (B7), and (B8) are necessary and sufficient conditions for
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(Ag,ap,(g) to be a symmetric affine equilibrium.

Step 2. We now prove existence of a symmetric affine equilibrium. When £ =1,
there are closed form solutions to equations (B6), (B7), and (B8). When E > 1,
by substituting (B5) into (B7) and rearranging we see that a cubic equation
characterizes ap. Since the equation is cubic, there exists at least one real root.
Take this to be the value of ap and compute (g and Ag using equations (B5),
(B8), and (B6). Thus a symmetric affine equilibrium exists.

To prove uniqueness, fix £ € N and define the function g by

1
B1Gh )+ (- v B

g(a) =a~

where ~ is a function of a such that v(a) is equal to (B5) but with a in place of
ap. Since we have already shown existence there is an a € R such that g(a) = 0.
We observe that the second term in the above expression is strictly monotone
decreasing in . By (B5) we see that v is strictly monotone increasing in a. Thus
g is strictly monotone increasing in a. Hence there can exist at most one value of
a € R such that g(a) = 0.

Step 3. Part 1 follows immediately from (B1) and the fact that Ag = m
Part 2 follows immediately from (B8). Part 4 follows by substituting (B1) into
(2). Parts 5 and 6 can be seen from the fact that when aé =0 or E =1 there
are closed form solutions to (B8), (B7), and (B6) for (g, ag, and Ag. Using

these closed form solutions we find that Eag, by (B7), is equal to =2 which is

independent of F and also equal to 2bibA1‘

Finally, we prove part 7. By inspecting equations (B7) and (B5), yg — 0.
Using (B7), with some rearrangement we write

1
ve(x + 7o) + (L= 1m) 5y + v) + o

(B9) Eogp =

Taking limits, Fag — % To prove that Fap is strictly monotone increasing
in E, suppose for contradiction that there exists E € N such that (E+ 1)agy; <
Eap. Then by inspection it must be that yg1 > vg. But, inspecting (B5), this
implies that (E+1)a%,, ;| > Fa3, which in turn implies that (E+1)agi1 > Fag,
a contradiction.

When F is equal to 1, Fag is equal to % by part 6. When £ — oo, Fag

converges strictly monotonically to % Thus for any £ > 1 we have
1
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That a fragmented market is always more efficient than a centralized market
follows from Lemma 2.

APPENDIX C: PROOFS FOR SECTION IV
C1. Proof of Proposition 1

That Ag is strictly monotone increasing and diverges to co when aé =0is

immediate from Theorem 1, where we showed that, in this case, Ap = %. For
what follows assume aé > 0.
By Theorem 1 we have Ap = %. To show Apg is strictly monotone

increasing it suffices to show that (E — 1)vg is strictly monotone increasing. Fix
an arbitrary £ € N. If yg41 > g, then it must be that Evygi; > (E — 1)yg.
Suppose Yg+1 < yg. Then to prove that Evygy1 > (F — 1)vg it suffices to prove
that (E + 1)yg4+1 > Evg. Consider the equation for ~, derived in the proof of
Theorem 1 which holds for arbitrary n € N:

na2(N —1)o%

na2(N —1)o% + 0'629'

Denote the numerator, num,, so that

nuMmy,
Tn = .
num, + aé

By Theorem 1, (E + 1)agy1 > Eag which implies that

E+ Dnumpgyq Enumg
(E+ 1)yps = ( ) ;_ > > = EvE
numpg4+1 + ) numpg + 70

since Yg+1 < 7yg implies that numg4; < numg.
We next prove that Ag converges and give an explicit expression for the limit
point. We can, using the expression for vg, write Ag as

2 (. E?a%,(N —1)0% — Ea%(N — 1)o% '
N -2 Eag(N —1)o% + 05

By Theorem 1, Fag — % which implies that EaQE — 0. Taking limits of the

NQUE( )

right-hand side of the above equation we obtain Ap — 2% (1 + N 1)

N—2
To prove that vz — 0 we inspect (B7) to see that

1 1
<op < ——
EAA+ L+ ) T BN
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for all E sufficiently large. Using this inequality, inspecting (B5), we see that for
large E, the numerator is O(%) The denominator is roughly equal to UQQ for
large E so it must be that vg — 0. Note that the proof that vg — 0 only makes
use of (B7) and not the claim in Part 7 of Theorem 1 that Fap — %

Finally, we prove that g is strictly monotone decreasing in E. Using (B9) and
substituting into (B5) we derive a cubic equation which characterizes yg, in that

(C1)

, (N—1 1/1 1 2
+yeEo() N —1— N+N—2

N-1_ 1 1
2 1- Bt —+—
+7EUQ< ><N N—2>< N +N+N—2>

Each of the coefficients are unambiguously increasing in E except for possibly

N-1 1/1 1 2
Bor ([~ (=4 .
UQ( N +E<N+N—2>>

Taking a derivative with respect to E we have

, (N—1 1 /(1 1 2

UQ( N +E<N+N—2>>
2 ,(N-1 1 1 1 1 1
_EUQ<N+E(N+N—2>><N+N—2>'

This derivative is nonnegative if

EN -1 S 1 n 1
N — N N-2
The above holds for E > 2 since

2N -1 S 1 n 1

N — N N-2

whenever N > 3. Since each of the coefficients of the powers of vg in (C1) are
increasing in E and some are strictly increasing it must be that g is strictly
decreasing in F since the left hand side of (C1) is constant.
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C2. Proof of Proposition 2

Substituting (B5) into (B7) and rearranging we obtain the following cubic equa-
tion which defines Fap by

(©2) (Bapf® (A =D+ ) ) - (Basf(V - 1)k

E 1 1
2 2 __
The efficient allocation is acheived at E* such that E*ap+ = 1 provided E* is in
N. Thus

1 E* 1 1

Solving,

2 N —1No%
* N -2 + N—-2 o2

79Q

That the E € N whose symmetric affine equilibrium allocation is most efficient is
either | E*| or [E*] follows from the proof of Part 7 of Theorem 1 which shows
that Fag is strictly monotone increasing. By inspection, the proof did not rely
upon F taking values in N—the same method of proof can be adapted to show
that if we increase F continuously, the corresponding ar which simultaneously
solves (B5) and (B7) is such that Eap is strictly monotone increasing. Combining
this observation with Lemma 2 gives the result.

E*=2

C38. Proof of Proposition 3
We first prove part 1. Recall that

. N-1
Pe = "7 Ag

Z —apX;+ NAg — Qe] .

1EN
By the projection theorem
2
aivar o Xi
var ZXi lpe | =1(1- BV (Liew X)) > | var ZXi .
iEN advar (.o n Xi) + Ze '
B ieN “Vi E ieN
Since g is strictly monotone decreasing to 0 as stated in Proposition 1, it
follows that )
agvar (ZiGN XZ-)

o2
agvar (Lien Xi) + 7
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also converges to 0 strictly monotonically as E diverges.
We now prove part 2. Since the price in each exchange consists of a common

signal component and noise which is iid across exchanges, the sum of prices is a
sufficient statistic for inference so that
>k >k
P1, >pE) .

r (Z X; Zp;> = var (Z X;
D pi= —AE (—EaE YXi-Q+ ENAE> .

1€EN eck 1€EN
eckE 1EN

By the projection theorem,

ar (Z X | Y p;f> = var (Z X1~>

i€EN ecE i€EN
B (Eag)?var (ZzGNX
(Eag)?var (ZieN ) (;VX )

We have

The result follows since

(Eap)*var (3-en Xi)
(Eag)?var (ZZEN Xi) + 0’22

increases strictly monotonically, because Fag increases strictly monotonically as
seen from part 7 of Theorem 1.

PROPOSITION 1: The expected payment of liquidity traders is —AEJQ and
if 0'22 > 0 s strictly monotone increasing in F.

PROOF:

(Z peQe> = ——AEE (Z (—aE Y Xi+NAog+ Qe> Qe>

ecE ecE iEN
N-1
= Apod.
N TEoe

That the expected payment is strictly monotone increasing follows from the fact
that Ap is strictly monotone increasing as stated in Proposition 1.
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APPENDIX D: PROOFS FOR SECTION V
D1. Proof of Theorem 2

We prove Theorem 2 in three steps. In step 1 we derive a candidate equilibrium.
In step 2 we verify that the candidate equilibrium is in fact an equilibrium, and
then establish that it is the unique symmetric affine equilibrium if for each e €
E, Q. has full support over the real line. In step 3 we show that the derived
equilibrium has properties 1 through 5 given in the statement of the theorem.

Step 1. To begin the first step, we conjecture that there exists a symmetric affine
equilibrium, denoted (A, «, ) in which each trader submits demand schedules of
the form in (2). Note that in this case A may depend on the aggregate endowment
> jen Xj- Under this conjecture, by market clearing, the residual supply curve
trader ¢ faces in exchange e is

(> —aXj) + (N-1)A+q— Qe
(N —1)¢ ’

pe(Q) -

which implies that A = ™ ) Also by market clearing we have

¢’
f (ZjeN _an)+NA_Qe

(1) vl e

for each e € E. By observing p£ trader ¢ can infer the realization of Q. but this is

uninformative of pi for k # e. By Theorem 1 a necessary and sufficient condition

for (A, «, () to be a symmetric affine equilibrium is that
(D2) —26(Xi + ¢ + (E—V)El¢, | ) =p! +¢fA—p.
where we have used symmetry. Rearranging, we have

o = X 20(E - E g | Fi] - pe+uﬂ
e A+2b

Substituting p£ into the conjectured equilibrium demand schedule, we have

(ZjeN aX;) + Qg
N

quk = —aX;+

so that
(ZjeN an)

E[quk | Fi] = —aX; + N
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We therefore have

;o (=204 26(E — 1)a)X; — 2(E — 1) e ®) _pf 4y

qie - 1
w=nc T 2b
We now match coefficients with our conjecture that qf; = —aX; — ng; + A to
determine that
N-21
D S
(D3) ¢ N —12b
2b
D4 A=—
(D4) —,
2b
D5 - =
(D3) CT AT 2E
and

26 Dien Xi
(D6) A _ _Qb(E - 1)A+25E E]</Y + Hr

2b+ A

Step 2. To complete step 2 we appeal to Theorem 1 which can be applied
since (D2) holds. To see that the symmetric affine equilibrium is unique when
each @, has full support over the real line suppose that there exists a symmetric
affine equilibrium such that at least one of the equations (D3), (D5), and (D6)
are not satisfied. Then equation (D2) is violated for some realization of the price
in some exchange e € F for some agent i € N. Continuity implies that (D2) must
be violated for realizations of p£ in an open neighborhood of positive Lebesgue
measure. Since each @), has full support over the real line and is independent of
Fi (D2) is violated on a set of positive P-measure. This contradicts Theorem 1.

Step 3. Part 1 was shown in equation (D4). Part 2a follows from substituting
equations (D3), (D5), and (D6) into (D1). Part 2b follows from substituting the
equation for price in part 2 in to the equilibrium demand schedule. Part 3 follows
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from part 2b and taking the limit as E tends to infinity. To prove part 4, we have

E ;EpiQe] - ;;E ;3 (—ai;vxi LNA- Qe> Qe]
92BN - 1)
= mv&r [(;Qe] .

APPENDIX E: PROOFS FOR SECTION VI

This Appendix provides a proof of Theorem 3, characterizing an efficient equi-
librium for the dynamic version of the model.

E1.  Proof of Theorem 3

The proof proceeds in six steps. In Step 1 we derive the Bellman equation for the
dynamic programming problem of trader ¢. In Step 2 we conjecture a continuation
value function V' as a solution to the Bellman and we derive a first order condition
characterizing the optimal demand schedules of trader ¢ in a restricted domain
of demand schedules. In Step 3, we use the first order condition to compute the
necessary number E of exchanges and the demand-schedule coefficients p, ¢, and
X- In Step 4 we relax the domain restriction on demand schedules. In Step 5, we
verify a transversality condition on the value function. In Step 6 we verify that
the strategy of submitting demand schedules with coefficients derived in Step 3
from the Bellman equation is in fact optimal. In what follows, for notation, we

2

: 2
use o7 in place of o%.

Step 1. For a given date t, let

Ht = ({Qie}eeE,sQﬁv {pe}eeE,s<t7 {Xis}s§t>

denote the history of past quantities purchased by trader i, prices on each of the
exchanges, and inventory levels. An admissible demand schedule submitted to
an exchange e is a function f specifying the quantity f(Hy,p) that trader i will
purchase for any given realization p € R of the price in the exchange following the
history H;. By inspecting (16) and following a similar argument to that given in
the proof of Theorem 1, we see that for any such demand function f there exists a
corresponding function f that instead specifies the quantity purchased by trader
1 as a function of H; and

1
Wep = £ Z Xjt + Qet-
JEN

For instance, in the conjectured equilibrium, on exchange e, trader ¢ makes the
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socially efficient purchase

. 1 W,
(E1) Fiet (Hy, Wet) = =2 Xie +
as can be seen by substituting (16) into (14).

We first relax the dynamic programming problem by allowing trader ¢ to select
demand functions of the type f. Let ke denote (X, By, We). Under the relax-
ation, the Bellman equation characterizing trader i’s continuation value function
V(-)is

(E2) V(Xit, Bi) = sup  Eq [ui + e "2V (Xipy1, Bi)] s
{gilta---7giEt}
where
2
Uit = PrA (Xit + Z giet(/fet)> —b (Xit + Z gz‘et(ﬁet)> - Zpetgiet(ﬁet)-
ecFE eckE eckE

Above, each gije; : R? — R is an arbitrary measurable function. We will assume
for now that each gje; is such that gjei(ket) is of finite variance conditional on X
and By. Call the set of all such measurable functions with this property M. We
will show in step 4 that the finite variance assumption is without loss of generality.
Note that fie; is in M. The operator [E;; is the conditional expectation given the
state variables, X;; and B;. These are the relevant state variables because, at
date t, trader ¢ infers that %Bt is the total inventory held by the other traders
following trade at date t — 1. Thus X;; and B; are sufficient statistics for trader
7 to conduct inference on the residual supply curves on each exchange at each
future trading date. The law of motion for (Xj, B;) is given by (12) and (15).

A standard verification argument implies that if V' satisfies the Bellman equa-
tion, and for every feasible strategy, the transversality condition

(E3) lim e_TAtEio V(Xit, B)] =0,

t—o00

then V is indeed the value function and the strategy achieving the supremum in
(E2) determines the optimal policy.

Step 2. We conjecture the value function V' defined by

(E4) V (X, By) =) e "I,
s=t
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where

2
M =E; 1“’71'A (Xz}; + Z ques> —b <X2J; + Z qges) - Zpgsqfes

eckE eckE eckE

and where the superscript f implies that the inventories, quantities, and prices
are those induced by the conjectured equilibrium strategy in which any given
trader ¢ selects (E1) for any given exchange e. Substituting (E4) into the right
hand side of the Bellman and using the law of iterated expectations, we can write
the objective function in the Bellman equation as

Eit [i e—TA(S—t)Mﬂ.A <ngs + Z qfes)]
s=t

eeE

2
o0
g |3 et b(X;’;+qu’es> ||

s=t eckE eck

where the superscript g indicates that inventories, quantities, and prices are those
generated by a strategy that selects at date ¢ demands according to the functions
gilt, ---, §iEt, and then reverts back to the conjectured equilibrium strategy at date
t+1. We now derive the F, p, ¢, and x such that the optimal choice of g;1¢, ..., gi £t
coincides with (E1), thus verifying the conjecture (E4).

To simplify the objective further, we recognize that for any choice of the devi-
ating demands g;14, ..., gigt, following trade at date ¢ + 1, the inventory of trader
1 returns to the efficient level, so all inventories, prices, and quantities at dates
s >t + 1 would be the same as if trader ¢ had never deviated and therefore do
not depend on the chosen g;14, ..., g;gt. Thus, it suffices to consider the objective

(E5)

2
—rA
B, uﬁazqfet—b(mzqfa) R S

eck eeE ecE ecE

Let et = —% 2.5 Xjt — Qer- Then

>ty = 0 T b (N D
etdiet C(N — 1) g,
EEE EEE

(E6) = C(Nl_l) [; (et + (N = 1)pBy + (N = 1)x) ., + ;E;E(Qf’et)z
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From (12), (14), and (16),

1 Q t+1
qige,t—l—l - B (Xit + Z iy + 6i,t+1> Z gir1 T :
eckl ]GN
and
P} 1=
~E Z]GN jar1 T Np (NEPBt + ENx — (N ZeEEpgt) — Qet+1+ Nx
¢N '

From the above two equations,

E g g = -
( 7) pe,t+1qze,t+l CNE2J§;V g+l T C t C EC

1 1 1
— Np EX”—’_NEZX%H Zpé’tJerEZpithi’eﬁOe,
JEN ecE ecE ecE

where O, is a term whose conditional expectation does not depend on the choice
of {Ggiet}ecr. Above we have used the fact that the aggregate endowment of
strategic traders is exogenous. Equivalently, we can express (E7) as

p? N 1
PX X
(ES) pg,t+1q§e,t+l = 2 Z PRAS Bt - 1§ - EE Z qiget

JEN eck
Net + (N — 1) (PBt-i'X)‘l’qgt
—Np NEZ Jit+1 Z C(N—1) =

JEN eckE
Zn8t+ _1th+(N_1X+qzetZ
Eim (N —1) 2t

By substituting (E6) and (E8) into (E5), recalling that by definition ¢}, =
Giet (Ket) , and ignoring terms whose conditional expectation does not depend on
the choice {giet}ecr we have transformed the objective function in the Bellman
equation into

2
(E9) E; |A (Z giet(lﬁet)> + B giet(ket) + Cli, |

eckE eck
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where

0it = Z(Tlet + (N = 1)pBs + (N — 1)X)Giet (Ket) + giet(ﬁet)2,

ecE
for coefficients
1
E10) A= -b— Np———e ™
(E10) PEN -1
_ 11 NEp? NEpx x
B=jpA—20Xy—e ™| ==Y X9, . — B, — _X
t CNEJ,;V LT T
—rA
e ">Np 1 g
e | et e
JEN
e—rANp
v -) Z (et + (N = 1)pB; + (N = 1)x)
eck
1
C=—-—.
(N -1)

Next, for each e € E, we let

giet("iet) = fiet("iet) + Vhiet('%et)v

f9r an arbitrary measurable deviation hje in M from the conjectured optimal
fiet, and for some arbitrary constant v. Substituting into (E9) leaves

2
(Ell) Eit |:A (Z fiet +v Z hiet) +B Z(fiet + Vhiet)

ecE ecE ecE

+CY " (et + (N = DpBy + (N = 1)) (fiet + vhiet) + (fier + vhier)? |,
eckE

where we have suppressed the argument k¢ from the notation, and will continue
to do so whenever convenient. Taking a derivative with respect to v, evaluating
the derivative at v = 0, and setting the derivative equal to 0 gives the necessary
optimality condition

Eit |:2A Z fiet Z hiet + B Z hiet:|
ecE eckE ecl

+ K [C Z(Tlet + (N = 1)pBy + (N = 1)x)hier + inethiet =0,
ecll
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which holds if, for each k € F,
(E12)

E; |24 Z fiet + B+ C(Ukt + (N —1)pB; + (N — 1)X)
eckE

ﬁkt] = _2Cfikt~

The necessary condition (E12) is also sufficient for optimality if the second deriva-
tive of (E11) with respect to v is negative, that is,

2
(E13) E; |A (Z hiet) +C Z h‘zzet < 0.

eckE eeE

To see why, suppose for contradiction that there exists a candidate (L1, ..., Ligt)
in M satisfying the first order condition (E12) that achieves a strictly higher
value of the objective than (fm, . ,fiEt). In that case, let hje = Lijer — fiet for
each e € E. Then (E11) achieves a higher value at ¥ = 1 than at v = 0. This is
a contradiction since (E13) ensures that (E11) is maximized at v = 0.

Step 3. We derive the E, (, p, and yx such that (E12) holds and then show
that (E13) is satisfied. This implies that we have found a solution to the Bellman
equation. We first derive the moments in (E12). By (E1),

N 1
Bit | Y fiet ﬁkt] = —Xit + Bt Z Xjt + Qe | Mt
eck JEN
and
2¢ "ANp —raX
Eit[B‘nkt]:_ 2b+m Xit+e Z_'_/’[/TI'A

eTA  eTAp(N +1
+ < + t )) Eir | Y X+ Qre | Mt

(NE ' ({(N-1) =

By the projection theorem,

it Z Xjt + Qre

, N E
JEN

N -1 EF—-1
Nt | = (Bt +Xit> (1-TI)——

@+ - 1) (- X ).
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where
(N = 1)o?

—1)o2 2
(N —1)oZ + Eo

=

Finally, we use the fact that

A 1 1 1
fikt = _EXit - N <77kt - EXit)

and match coefficients in (E12). Matching the coefficient on Xj;; gives

20 1 E-1 _.Af{ -1 p(N+1) E-1 C

Matching the coefficient on 7y — %Xit gives

(E15) % = —214%(1@(15—1))—6*’”A <

-1 p(N +1
(NE ' ¢(N 1)

_l_

Matching the coefficient on B; gives

N -1 E—-1

A/ -1  p(N+1\N-1 E-1
e A<<NE+<<N—1)> t=-D=%—

Matching the constant coefficient gives
(E17) 0:CXN¥—Dx+e”A%+1MA.

Using (E14) and (E15), we have

N-2 1+4+T(E-1)

N Q-D)(E-1)

Rearranging gives

2N -2
(E18) F=—r—7—+.
N—-2—- N+
As an aside, this expression is useful in so far as it characterizes the efficient
number of exchanges in a partial equilibrium model in which strategic traders
percieve the correlation in exchange prices to be I'. Taking I as given, the analysis

does not depend on o2 or Uc29-
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We deduce from (E18) that

2 N(N —1) o2
E1l E=2 ~<.
(E19) +N—2+ N -2 0(29

Thus the number of exchanges achieving the efficient allocation is precisely that
of the static case, as stated by the Theorem.
Next, using (E14) and (E16), we can solve for

1
P="NE

Now, in order to solve for ¢, we use (E23) with (E15) to get

% - %ﬂ-rﬁ% <Np - ;) (1+F(E—1))—2b§(N—1)%(1+F(E—1)),

which rearranges to
2
WC(N —1)(1+T(E—-1))=N—-2—e"™(N - D1+ T(E - 1)),

Thus
B N -2 A 2N -2
= BN —DATTE-1) © (N-1)2E"

Using (E17) we find

JTRYAN
The within-period price impact is
1 26(1+T(F —1))

(V=1 T N2 SIS N(E 1))

as stated in the Theorem. Comparing with the static model, we see that price
impact is higher in the dynamic model. We now verify that { > 0 by showing
that oN 9

N-2> e_TAT_(l +T(E —1)).

The above equality holds since (E18) implies that

(N —=2)E = (2N = 2)(1 + I(E — 1)).
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Using (19), the cross-period cross-exchange price impact is

dpesi _ o 1 1 2(1 +T(E — 1))

P = - :
dqit (N=1)( EN—-2—-eTAN2(1 L T(E - 1))

as stipulated by the Theorem. Finally, we verify the sufficient condition for opti-
mality (E13) is negative by showing that

2
A (Z hiet> +CY hi, <.

ecE ecE

Using (E10) and (E23), this is equivalent to

2
S T 1
(o s o) <th> HLETP I

eck eck
which holds by Jensen’s inequality because ¢ > 0. Thus, (E4) solves the Bellman

equation when the domain of admissible demand functions is restricted to M.

Step 4. In this step, we show that if any measurable g;e; : R® — R outside of M
is chosen, the objective associated with the Bellman equation is —oo. Towards
this end, consider the terms in (E9) involving (3 ¢ giet)? and >, g g2, Which

sum to
2
1 . 1
[—b+ me A} (E giet) —m E gz'Qet.

ecE ecE
By Jensen’s inequality, the above expression is less than

2
- 1
(E21) —b (Zgi6t> —(1-e A)m > Gier

ecFR eclR

The other terms in (E9) are B )" . giet, which is only linear in ) . o gier, with
B having finite variance, and C' > cp(net + (N — 1)pBt + (N — 1)x)giet, where
each 7. is of finite conditional variance. We define J. by

Bgiet +C (net + (N — l)th + (N - 1)X) Giet = Jegiet-

Note that each J, is of finite conditional variance.



VOL. VOL NO. ISSUE CHEN AND DUFFIE: MARKET FRAGMENTATION 23

Then

1— efrA )
E; [_C(N—l)giet + Jegiet] =

1— efrA )
B ﬁgiet + Jegiet | dP(w)
[weQel>| L gierl } —1)
1—e —rA
+ / A ( gzet + Jegzet> dP(w).
{weaulrl<l s T gierl }

The first integral must be finite since J, is a finite-variance random variable
and the integrand satisfies

1—e¢ —rA
‘ mgwt + JeGiet

for some constant K € R. The second integral must be —oo since the integrand
satisfies

< KJ?

1— e—rA —e —rA

—mgfa + Jegier < = C( )gzet-
Thus, if ge¢ is of infinite variance then the second integral must be —oc. Hence,

in this case,

1— e—TA )
TN 1)t + JeGiet| = —00.
With this observation and inspecting (E21) and (E9) we see that if a chosen gje
is not in M, the objective function would equal to —oco

E;t

Step 5. We now check that the transversality condition (E3) holds. We compute
the moments involved in the terms M, defining the candidate value function V'
of (E4). For s > t,

Eit

p 1 N -1
Xis+ Y qg;] = X+ 5 B
eckl

and

2
Ei (Xis+zqé;> =
ecE
1 N -1
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Fors>t+1ande € FE,

Eit [pgs ques] =

1 1
—=> o onXjs— wBs+ Ny — 1 1
E;; EZ]EN 0BT X = Qes —fXZ‘S—I—iZXjS—i-%
(N E NE « N
JEN
1 1
—=> o onXijs— =Bs+ Ny — 1 1
— Eit E Z]EN Js E=Ss X Qes Z €is— —€is 4 %
(N NE R N
JEN
2
= — O-Q
E(N?’

Above, we have used the results that p = ]Q—}; and By = %(Z]EN Xjs—1 +

ZeEE Qe,s—l) for s Z t + 1. Next,

Eielplial) =
E. _% ZjeN th - %Bt'*'NX_Qet 1 X, 1 X, Qet
it CN _E zt+ﬁz ]t+ N
JEN
N -1 2 N —-1)\? N-—12N—1
= X2 XyB; — —— "~ B?
(N2E? ”+E2gN< N ) wEETUN2E2 T N2t
ol N —1)02 N -1 N -1
e )o¢ XN L X B,

~ ECN?2  FE%(N?2 ( NE """ ( N2E
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Substituting these moments into (E4) we find that

V(Xy,B;) = X2 Ve :be_rA) - éVN_H«lj]
+ :“”AN(l _1erA) + ?N]\_f 1] it
+ _MWANQ(QV__;_TA) _ ?Nz\; 1] B
- —2bN3(]1V__el_TA) N E?N(N]\; 1)2} Prtu
+ [—b(N]\_z 1)2N2(1 - Py JXW_EI 2];2_41]33

+ o2 [ L — b ]

Q (N2(1—e )  N2(1—e7A)2

5 be A b(N —1) N -1
+oe [_N(l —eA)2  N2(1—eA) E(NQ] '

Recall that an admissible strategy must lead to an inventory process that
satisfies the no-Ponzi scheme condition e "*E;o[X2] — 0. Thus to show that
e ARO[V (X, Br)] — 0 it suffices to show that e "R [B;X;] — 0 and
e_rAtEio[Btz] — 0.

We have
_ _ N
e "R [BiXi] = e " Eqg N1 (Xj,tl +> Qje,t1> Xit
jF#i eck
_ —’I‘At]E' N X - X . X
=€ 10 N _1 Z gt—1+ Z Qe,t—l it T €t i
L JEN ecl
N —rAt 2
=xy_1¢ Eo > Xji1+ Y Qesr | X — X3
JEN eclE
N
—rA
+e " tiN - 103

where, for the first equality, we have used

%Bt = Z <X]',t1 + Z Qje,t1> )

i e€E

and for the second equality we have used Xt = Xj 114> . cp Giet—1 + €3¢ Since,
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by Cauchy-Schwarz,

e AR Z Xjt—1+ Z Qe—1 | Xit

JEN eclk

2

Eio Z X1+ Z Qet—1 e 2rAlE [X2],

JEN ecl

IN

it follows that

lim eiTAt]Eio Z X1+ Z Qei—1 | Xit| =0.

t—o00
JEN eck

Thus, limg e e "AEi[Bi Xi] = 0, as desired. That limy o, e "AE;[B?] = 0
can be shown using the same method.

Step 6. We now verify that the optimal strategy of trader ¢ is the conjectured
equilibrium strategy, coinciding with (E1). For an arbitrary admissible strategy,
which we denote [, let qﬁet, pfit, Xft, and Bé denote, respectively, the induced
quantity purchased on exchange e, the price on exchange e, the inventory, and
the belief at date t. By recursive substitution, using the Bellman equation, for
each t € N,

t
EiO [V(X@(), BO)] Z ]EiO [Z e_TAS:uﬂ'A (les + Z qges)]

s=0 ecE

¢ 2
ko [ (o (xfs+zqzes> FY ped
s=0 ecl eck
+ Eio [e_TAtV(Xf,tH»BéH)} .

The above holds with equality under the conjectured equilibrium strategy. By
taking limits as ¢ — oo, applying the transversality condition and Fatou’s Lemma,

2
o0
V(X0 B0) 2 Eo |3 e [ naa (Xés Py qges) b (Xis iy qﬁes)

s=0 eck ecE

o0
Eq [z TS gt
s=0

ecE
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The right-hand side is the utility of the arbitrary strategy [, whereas the left-
hand side is the utility of the conjectured equilibrium strategy. This completes
the proof of the Theorem.

Recall that for the proof, we used the notation o2 in place of ag(. Summarizing
the solution for coefficients of the model, we have found that

2 N(N —1) 0%

E22 E = 2 —
( ) + N -2 + N -2 a%
1
E2 = ——
(E23) P NE
N -2 e A

E24 = _
(B24) C T BN-DILTE=1) bE

prA
E2 = —
(E25) X (=N
where )

I — (N - 1oy

2 2"
(N =1)ox + Eop)
E2. FEquivalence to Model with Brownian Inventory Shocks

Suppose that instead of receiving an inventory shock which is Gaussian with
mean zero and variance o2A at each trading date, trader i’s inventory is continu-
ally shocked by a Brownian Motion, Z;, with volatility o2. That is, Z; A is trader
1’s cumulative inventory shock up to time tA. We assume that the Brownian Mo-
tions (Z;)ien are independent across traders and of all other primitive stochastic
processes. Then in this setting,

Xig = X1+ Z Giet—1 + Zitn — Zi (1-1)A
eck
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where Z;in — Z; (—1ya ~ N(0, 02A). Moreover, trader i’s flow utility Fy;(q;) is

u (Xit +> Qiet> = Pettiet

eck eck

t+A } 2

- / e "By b | X+ Y et + Zisa — Zign | | ds
¢ ecl
2
= Tt <Xit + Z Qiet> - Zpetqwt —b (Xit + Z Qiet>
eck ecl eck
o 1-— e””AgrA + 1)’
r

where ¢;r = (qi1t, -, qipe) and b =10 (1 — e*rA) JT.

Except for the last term which is a constant (and therefore has no effects on
incentives), the flow utility is the same as in the model of the main text. Thus,
the efficient PBE constructed in the main text is also an efficient PBE of this
model.

APPENDIX F: EXTENSION—ENDOGENEOUS LIQUIDITY TRADE

This Appendix offers an extension in which liquidity traders, who are local
to each exchange and conduct no cross-exchange trade, choose the sizes of their
trades.

Fi. Setup

In this section we extend the baseline model by allowing liquidity traders to
endogenously choose the quantity of market orders that they supply. There are
M liquidity traders who are each restricted to trade on a single exchange. We
assume that M is divisible by E and that a fraction 1/E of them trade on any
given exchange. Liquidity trader 7 has endowment

1
Hj; ~ N(0, Ma%{),

where the {H;} are mutually independent. Suppose further that each liquidity
trader j has preferences of the same form that we have assumed for the strategic
traders. If liquidity trader j is restricted to trade on exchange e, his or her ex-ante
expected utility of purchasing h; units via a market order is

E[rh; — ¢(Hj + hj)? — hjpe | Hj, hj].



VOL. VOL NO. ISSUE CHEN AND DUFFIE: MARKET FRAGMENTATION 29

Above, ¢ € R, is the holding cost parameter of the liquidity traders. It is useful to
think of ¢ being high relative to b, the holding cost parameter of strategic agents.
Finally, for simplicity, for this section, we assume that px = 0 and p, = 0.

F2. Analysis

THEOREM 3: There exists a symmetric affine equilibrium. In any symmetric
affine equilibrium the following are true.

1) The quantity of market orders submitted by agent j is

—CHj
e+ Ap

hj =

2) For each e, € E distinct, the correlation between prices in the two ex-
changes from the perspective of a strategic trader is

(Bag)?c% (N —1)
Fag)?c% (N —1)+ (%)QO’%E'

N—-1
A TF

(F1) YE = (

3) A strategic trader’s price impact satisfies

2((E — 1)yg + 1)
N -2 ’

(F2) Ap =

while the price impact of a liquidity trader is

(F3) %AE.
4) Eag satisfies
(F4) Eap = 1 1 : 1,1 1 N_1
ey tv=2)+ A —)s(yg + v=)+ &
PROOF:

We conjecture that there exists a symmetric affine equilibrium in which each
strategic trader ¢ € N submits a demand schedule of the form —apX; — (gp and
each liquidity trader j submits a market order of the form —agH,;. We study the
best response problem of trader j € M. Via market clearing, we can compute the
market clearing price in exchange e is

Yien —OEXi = Y pen |k} OEHE + By
DPe =
N(g
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if all agents ¢ € N and k € M such that k& # j behave as conjectured and agent j
purchases h; units on the exchange. Retaining the notation that Agp = 0 N—ll) o

the price impact of liquidity trader j is A E% He seeks to maximize

N-1
Elrh; — ¢(H; + hy)* = hjpe| Hj, hy) = —c(H; + hj)* = Ap——h]

by choosing h; € R. Taking a first order condition with respect to h; we have

N -1
—ZC(HJ' =+ hj) — thAET = 0,

which implies that
—cH j

ot At

h; =

Thus ¢

vy

If strategic traders take the variance of aggregate liquidity trade to be

2
2 c 2
oo = ———— | o7,
@ <c+AEN];1> =

we see that the analysis of the baseline model applies. That is, strategic traders
maximize by submitting affine demand schedules such that equations (F1), (F2)
and (F4) are satisfied. Then the analysis of the baseline model therefore ensures
that provided there exists ap and g which satisfies (F1), (F2), and (F4), there
exists a symmetric affine equilibrium with the four properties given in the state-
ment of the theorem. To show existence it suffices to recognize that substituting
expressions (F2) and (F4) into (F1) and re-arranging yields a cubic equation in
~vE. Since the equation is cubic there always exists at least one real root. Thus
there always exists a solution to the system of equations.

The above theorem has characterized a symmetric affine equilibrium of the
model with endogenous liquidity traders. The following proposition states some
results relevant for assessing the allocative efficiency of the symmetric affine eqi-
ulibrium.

PROPOSITION 2: The following are true of any symmetric affine equilibrium.

1) Eap € [%, %] is always higher in fragmented markets than in central-
ized markets.

2) Fizing arbitrary E, in the limit as ¢ tends to infinity, the expected sum of
liquidity traders’ holding costs tends to zero.
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3) Fizing arbitrary E > 1, for all ¢ sufficiently large, a market with E ex-
changes is more efficient than a market with a single exchange in the sense
that the expected sum of all traders’ holding costs is lower.

4) For any E > 1, there exists an ¢ such that if ¢ > € then a market with
1 < F < E exchanges is more efficient than a market with a single exchange
in the sense that the expected sum of all traders’ holding costs is lower.

PROOF:

Centralized markets correspond to the case when F is 1. To prove Part 1,
it is clear by inspecting (F4) that Eag € [8=2, ). Next recognize that in
fragmented markets £ > 1 and vg < 1 so that again by inspection, Fag is
always higher in fragmented markets.

To prove part 2 recognize that, using part 1 of Theorem 3, the expected sum

of liquidity agents’ holding costs is

2
Nl o,
c+ A E%
which decays to 0 as ¢ diverges.

To prove part 3, fix F > 1 and inspect equation (F1). Since Fag € [%, %]
there exists a,b € R such that 1 > b > a > 0 and vg € [a, ] for all ¢ sufficiently
large. This implies that |1 — Fag| is bounded above by a constant strictly less
than ﬁ whenever c is sufficiently large. In the limit as ¢ — oo the aggregate
quantity of liquidity trader supply absorbed by strategic traders when there is a
single exchange as well as when there are E exchanges becomes arbitrarily close
to > jeM H;. Therefore, by Lemma 2, in the limit as ¢ — oo, the expected sum
of holding costs is strictly lower when there are F exchanges than when there is
a single exchange since |1 — Eap| < |1 — 1| = 3~. However, the sum of
liquidity traders’ holding costs converges to 0 as ¢ — oo. This implies the claim
asserted in part 3 of the theorem.

Part 4 is an immediate implication of part 3.

We now prove the following proposition which implies that Far must be strictly
monotone increasing in E at least until a certain cutoff point. As c increases the
range that we can prove that Fapg is strictly monotone increasing in is larger.

PROPOSITION 3: Fix E* € N. If ¢ is sufficiently large such that

2
c E*
20E* N—1 > * )
c+ E 3 E*+1

N—2 N
then Eag is strictly monotone increasing for all E < E*.

PROOF:



32 THE AMERICAN ECONOMIC REVIEW MONTH YEAR

2
C
_ | F
(C—I—AEN]GI)

is strictly monotone increasing in F for all E < E*. Since Ag is bounded above
by % we have that

We begin by proving that

2
c E*
— | E> E
<c+AENN—1> E*+1

for each E < E*. Thus we have

2 2
c c E*
— | B+ | —5e | E> o (E+1)—E
<C+AE+1N1\_;1> (E+1) <c+AENN—1> Br1 ety

for each F < E*. But the right hand side is equal to

E” 1| E+ B > B 1) E*+ E™ 0
Ex+1 E*+1 E*+1 Ex+1
Now we prove that Fag is strictly monotone increasing at each F < E*. Inspect

the equation (F4). Suppose Eag is decreasing in E then it must be that v is in-

creasing. Consider now (F1). Since (WFE is strictly monotone increasing
ETN

and Fapg is decreasing it must be that vg is decreasing, a contradiction.

APPENDIX G: EXTENSION—PRIVATE INFORMATION ABOUT ASSET PAYOFF

This Appendix addresses an extension of the model in which strategic traders
are asymmetrically informed about the asset payoff.

G1. Setup

We alter the baseline model so that each agent has private information about
the asset’s final payoff, 7 ~ N(jr,02). We assume the aggregate endowment of
strategic traders, Z = ) . Xj, is public information. As before, liquidity traders

2
supply a quantity Q. ~ N (0, %9) to each exchange, independent across exchanges.
Strategic traders receive private signals of 7:

Si=7T+€Z'

where ¢; ~ N(0,02) is i.i.d across individuals and independent of all other prim-
itive random variables.
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G2. Analysis

THEOREM 4: In any symmetric affine equilibrium with demand schedules which
are each monotone decreasing in price,

1) Each strategic trader i submits a demand schedule to each exchange e of the
form

fie(Xi, Si,p) = A — aX; — (p+ wS;.
where a, (, w, and A are defined by the system of equations (G2)—(G9).
2) Price impact is
(2b[(E — )7 + 1]+ N2)
N -2 ’
where 1 and 43 are defined by equations (G2) and (G4).

E =

3) The final inventory of strategic trader i is

Xi+ > fielXi, 8i,pl) =(1 — Ea)X; + Ea— ZX
eck ]EN

bEw (8- 3, | 4 el
jGN

PROOF:
Conjecture a symmetric affine equilibrium in which agent ¢ submits demand
schedule
fie(Xi, Si,p) = A — aX; — (p+ wS;

to exchange e € E for each ¢ € N and e € E. By market clearing the residual
supply curve trader ¢ faces in exchange e is

D (—aX; +wS;+A) — Qe +q

1
DPe (Q) - ( o

N 1%

Thus price impact is A = ﬁ Also by market clearing, the equilibrium price
is
1

pl = D (—aX;+wS;+ A) - Qo
NC JEN

Going forward, let us define que = fie(Xi,Si,pg ) for each e € E for ease of
notation. In any equilibrium, trader ¢ must equate marginal utility with marginal
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cost for every realization of the price:

_ o _ T N S )
(Gl) 2b (XZ + qll + (E 1)E |:q12 |p1 (N _ 1)qula Xla Sl:|>

_ ! —E f _ 1 f X.. S 71 f
pl |:7T|p1 (N*l)Cqu, 1y M1 + (N*l)Cq’d
Above we have used symmetry. We now compute the two conditional moments
E[qzj; | p{—ﬁqul, Si, X;] and E[r | p{— ﬁq{;, S;, X by using the projection

theorem. We begin with the former. We can, using the projection theorem,
express
E Z:S'H?{—qu1 ) i
2T -1
= px(N = 1) +71(p] ay__ wir 2o

A
1_(N—1)C ¢ +a(]\]_1)€_2)+'72(5i—u7r).

f

Here, 1 and 79 are derived as follows. The variables, > i 9355 p{ — ﬁqil

are jointly Gaussian with variance matrix

(N—-1)2%02+03N-1) (N-1)2

2(02(N —1) +0?)
¥ — (N — 1)072r 0'72r + 062 %O’?T
2 0'2
%(U%(N - 1) + 052) %O?r C%[UJQ(J?T + (]\;El)) + E(N?UQ]
Define
_ [o2 402 %0’7%
X= 170,,.2(-2 o? 7
tor o+ w) + mvere)
with
1 1 o2 U% w? -
== 2 2 2
by - (O-W_‘_O-C)?[w (UW+(Ni1))+E(N_1)2]_<-20-7r]
X
L[U}Q(O_Q_'_ 02 )+ Ug) ] _QUQ
c2 T T N—1 E(N—-1)2 cY%m
~%07 R
Define
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By the rules of conditional normals

=1
[v2 ] =ZY .
This yields,

0'20'2
E(N—1
2= ( 2 ) o2 ’
(03 + o) |un(o2 + i) + s | - wted
Note that 5272 € [0,1]. Next, we have
= wo202(N — 1) + wo?(o2 + 02)
o2 o2 ’
(072r + 062) |:’U)2(U72r + (Ni1)> + E(N?1)2:| - wQU}r

w

Note that zxr—71 € [0,1]. We have

1 oaZ  wS;
E[Q{ﬂp{—w_l)cqlfl,&]Z—aXl-+wSi—|—A+— —A

N N
w f 1 f Wl Z — Xi A>:|
-~ MV =1 +71<p— 4 — + - =
N[”( : PN-Det ¢ (NG ¢
w
N [(V2(Si — pr)] -
Next, we move on to compute, E[r |p{ ﬁqifl,&,Xi]. We can, using the

rules of conditional normals, express

E

f_ = o
™ |p1 (N — 1)C7Sz] Mo +’74(Sz NW)

n 4 W Z-Xi A
R N e VY A

f
The variables, 7,5;, p{ - ﬁ are jointly Gaussian with variance matrix

2

o2 loped %0721,
$_ 02 o2 +0? %J?r
1 : g
2ol %od i [wiod+ i)+ mraey |
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Define
B 02 +o? %O‘?T
Y= 2 o2
¢or @ |[Wont @)t Ewer
and
Yo = [072r %0—721']
Then )
[va 1] =%1% .
We obtain,
021[w2(02+ o2 )+ o :|_w20.4
m (2 m T (N-1) E(N-1)2 &
74 - 9 0_2 R 9
(02 + Bk w3 + i) + | — ot
and

w2 2
fgwae

V3 =

2 o2 2
(03 +a2) w202 + i) + pviam | - ot

(N
to redefine the inference coefficients so that they all lie in the interval [0,1].

Specifically, define %1 = 771, Y2 = 72, A3 = av-ny 3 and Y4 = s
Then

Note that 73%1) € [0,1] and 4 € [0, 1]. Tt is useful, for the analysis to follow,

2 2¢ .2 2
(G2) = wolo? + st
- 2
w? |(02 +02)(02 + 37) - o8] + ey (02 + 02)
020,
(G3) Yo = BN-17
: |
w? (02 + 02)(02 + §7) — 02| + (o2 + 02)
wlo? 2
(G4) Y3 = e

2 o2 ’
w? [(02 +02)(02 + §75) — ob] + e (02 + 02)
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2 0'2
o2 {wQ(ag + (le)) + (E(NQ_l)Q} — wo?

(G5) Y4 =

2 o2 ’
w? [(02 + 02)(02 + ) — ob| + e (02 + 02)

We can now use the equation (G1) together with the conditional moments we just
computed, to match coefficients and pin down «, ¢, w, and A. The coefficient of
q;1 gathered on to the LHS is

1 1.
20— ——— —20(F —1)—% — —.
The coefficient of p; gathered on to the RHS is
L. (N —1)73
1-26(F —1)—=A (N - 1) — (—————.
b( )y 1( )¢ —¢ "

The coefficient of S; gathered on to the RHS is

(8 - ) (-2 -

The coefficient of X; gathered on to the RHS is

901 V3
264+ 2b(F — 1) |— — —a.
+ 2b( )[aJrozN]era

The constant coefficient gathered on to the RHS is

2(E —1) {O‘Z S, <u7r(N— D1 =92 =)+

w w

haZ AN - 1))}

- _(N=-1)A _
_Mr+'73,u7r(N_1>_ w +73( w ) + Yallr-

We now match coefficients to compute ( as a function of 4, and 7s:

N2 1

=N (20[(E — 1)31 + 1] + NB)’

Price impact is therefore

1 (20[(E — 1)31 + 1] + NB)
(G6) (N-1)¢ N -2 ‘

Notice that compared with the model without private information about asset
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payoffs, there is now a N% term which is a result of using the price in an exchange
to do inference on the asset’s payoff, 7. We now match coeflicients to derive an

equation which characterizes w:

(GT) — (B~ w1 =) + 7 =

(20[(E — 1)1 + 1] + 3 73) 1 7

w[2b +

Notice that after substituting in the expressions for the inference coefficients and
rearranging, we would obtain a cubic equation in w. We now match coefficients
to compute « as a function of the inference coefficients:

2b

(G8) @ (2b[(E—1)71+1]+N13) 1y
2 + ) 0B — 1) &5 + 20(E — 1)(1 - )

We now match coefficients to compute A as a function of the inference coefficients:

(G9)
%w—m—f-4mw—n+%?—%w>nw—%w>nmﬂ

A=- BE | 5 4 PE-DHE-1 4 HO-1)

2b+( e T

—ptr + A3 ptr (N — + Yafir
2b+ o 1)C + 2b(E 1)71 _{_%_{_ 2b(E_1)];]Y1(N )+ '73( 1)

1) _ ’733Z

Thus equations (G8), (G6), (G7), (G9), (G2), (G3), (G4), and (G5) are necessary
conditions that any symmetric affine equilibrium must satisfy. An argument
analogous to that of Theorem 1 can be used to show that a solution to these
equations constitute a symmetric affine equilibrium provided that { is positive.
Part 2 follows from equation (G6). This completes the proof of parts 1 and 2.
We omit the proof of part 3 since it is a straightforward computation.

PROPOSITION 4: For any value of E, if there exists a symmetric affine equi-
librium with ¢ > 0 then w > 0 .

PROOF:
The equation characterizing w is
1 1 N -1
Vo —F3 =w2b+ ———< +20(E — 1) =71 + 20(E — 1)(———)(1 — ¥2)]
s = s = wl2b gy + 260 — )+ 26~ (S ) (1 7)]

The left hand side is positive as seen by inspecting the equations defining the
inference coefficients. The bracketed term on the right hand side is also always
positive if the demand schedules are downward sloping since the inference coef-
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ficients are in the unit interval. Thus the only way for the cubic equation to be

satisfied is if w is positive.

We now focus on characterizing how Fw and Fa change as E varies. In this
model, the efficient allocation is the same as that of the baseline model. Thus
by part 3 of Theorem 4, perfect allocative efficiency is acheived if Fw = 0 and

FEa=1.
PROPOSITION 5:  The following are true.
1) There exists a unique symmetric affine equilibrium when E = 1.

2) When there is just a single exchange,

1 o2
0<w < ——"—,
2002 + o2
where wy corresponds to the unique symmetric affine equilibrium.

3) There exist at least one and at most three symmetric affine equilibria for all
E sufficiently large.

4) For any sequence { Ewg} corresponding to symmetric affine equilibria,

as £ — oo.
5) For any sequence, {Eag}m corresponding to symmetric affine equilibria,

FEag — 1, which is strictly greater than a;.

PROOF:
Part 1. When there is a single exchange,

A (14 §5)7s
2b(1 + )

(G10) w1

Rearranging (G10), we derive

1 3 2 2 2 052 4
2b(1+ 7)2‘1] (UW+OE) O-W—{_m —O0x

N -2
1 26‘722 2, 2
1

—l—w( +N—2> E(N—1)2(U”+U€)
2 2 2
2 O 79 2 4 N 2 2 O¢

= _ 1+

ox [w <Uﬂ+(N_1)>+E(N_1)2 wooy < +N_2)w TN 1
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Thus, when FE is 1, w; satisfies a cubic equation with coefficients:

)20 (14 5 ) [t02+ o) (o2 + 575 ) - o]

N o?
2 2 €
2
1 g
[wy] : 2b (1+N_2) E(chl)2(a§+a§)
o202,

Since the coefficient of w? is positive, the coefficient of w$ is positive, and the
constant is negative, there always exists exactly one positive real root. Let p, q,
and r denote the roots of the cubic equation. Then pqr = —Coczz;aﬁ';;ﬁf g;cfg L
0. Thus if there is one real root and 2 complex roots, the real root must be

positive. If there are are three real roots, at least one must be positive. Next,
D+ g+ = ool icient of wy

coc] Ficient of w} < 0 so if there are three real roots, two must be
negative and one must be positive. There always exists a unique positive real
root. Take this positive real root. For this value of wy, by (G6), (i is positive.
An approach analogous to that of Theorem 1 (which we omit) can then be used
to verify that there is a symmetric affine equilibrium corresponding to this value

of wy. To prove uniqueness, it can be shown that 4 — (1 + %)’?3 is monotone
decreasing in w; as seen by using (G4) and (G5). Since

Ja— (1+ 55)7
2b(1 + =)

w1 —

is monotone increasing in w; when viewing 43 and 44 as functions of wy, the
equilibrium is unique since (G10) is a necessary condition which must be satisfied
in any symmetric affine equilibrium.
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Part 2. We rearrange (G5) to derive

2 o
0'721. <w2 (O'72T + ]\?j ) + (]VQI)2> — 'UJQO';%.

o2+ o2
Inspecting (G10) together with the above inequality gives the result.
Parts 3 and 4. Rearranging equation (G7), we derive

B A1 — (14 555)73
20+ 325 + 2b(E — 1)(% + 55)71 + 26(E — 1)(YF) (1 = 42)

WE

we observe that |wg| is less than % for large E for some constant C' since 7 is
by inspection bounded away from 1 (we can derive a bound which holds for all
E) and the numerator is bounded above by 2 + % Thus, it must be the case

2
that v, — 0207# in the limit as £ — oco. By inspection 4; and 43 converges to 0

We can express

2
. ~ (e
while 49 — TisT

Y4 — (1+ §5)73

Ewg = .
E= oy 2t opE=D (1 L a4 opB=D (N-1y(q _ =
7t 22— (5 + v=)N + 20— (55 ) (1 = %2)

Thus in the limit as £ — oo,

1 1 o2 1 N o2
FBuwgp — — T = 7
Qb%ﬁ%?a%a,% 20 N — 1 o2

Note that this implies that for large enough F, any real root of the cubic equation
for wg must be positive, which by (G6) implies that (g is positive for any real
root. An argument analogous to Theorem 1 can then be used to verify that there
is a symmetric affine equilibrium corresponding to any positive root of the cubic
equation for wg. Since a cubic equation always has at least one real root and at
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most three, there always exists at least one and at most three symmetric affine
equilibrium for F sufficiently large.

Part 5. Using earlier results we can write

2bE
Bop = (@B[(E— )31 1]+ 2 7s)
ST ~
2b + 5 E— 4+ 2b(E — 1)%%1 + 2b(E — 1)(1 — &)
Thus, if 03 > 0, as E — oo,
EaE — 1.
When F =1,
20
T B
2b + ——3

Thus, an increase in fragmentation means a more efficient redistribution of en-
dowments, at least in the limit.

Next, we give a coarse analysis of welfare which compares the expected holding
costs of strategic agents as E tends infinity with the case of centralized exchange
when E = 1.

4

PROPOSITION 6: If‘;—g 1s sufficiently small, then for all E sufficiently large the
allocation of any symmetric affine equilibrium is more efficient than the allocation

of the unique symmetric affine equilibrium when E is 1.

PROOF:

By symmetry it suffices to study the expected holding cost of an individual
agent. Recall, in what follows, that we have assumed for simplicity that the mean
of the liquidity trader supply is zero. The expected holding cost of an agent is

2

Ycer Qe

Z 1
E |b| (1~ Bap)X; + Bapy; + Bwg Si—NZSj + =5

JEN
Z\? o[ (N=1\> N-1\ , 0
b[((l—EaE)XiJrEaEN) + (Ewg) (( N ) + 3 >J€+N2 .

Consider taking a limit as ' — oo of the above expression. Then we obtain

22+aé+ 1 N \’ot(/N-1 2+N—1
N2 N2 T \2bN—-1) o2 N NZ |

The only difference between this expected holding cost and the expected holding
4
cost at the efficient allocation is the last term. Thus when 7% is small, a large

3

b

g
level of fragmentation is preferred to centralized exchange.
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APPENDIX H: EXTENSION—ARBITRARY COVARIANCE MATRIX

In this Appendix, we extend the baseline model to allow for correlation among
the primitive asset quantities {X1,...,Xn,Q1,...,Qg} setting the sizes of trad-
ing interests. This model variant nests the baseline model. Consequently, many
of the proofs are quite similar.

Hi. Setup

We retain the same model setup as in the baseline but alter the assumptions
about the joint distribution of (Xi,...,Xn,Q1,...,Qg). We assume that Q =
C+Ycpbeand Q. = % + & for each e € E, where C and {&}ccp are random
variables in £2(Q, 7, P). Here, C is the component of liquidity trader supply which
is common across exchanges and &, is the component idiosyncratic to exchange
e. We assume that the distribution of C' does not depend on E and that {&}eecr
is a collection of i.Qi.d, Gaussian distributed random variables with a mean of 0
and variance of %5 that are independent of Xi,..., Xy, and C. Under these
assumptions, the distribution of ) does not depend on E. Next, we assume that
Xi,..., Xy, C are jointly Gaussian with E[C] = pg, var[C] = p, cov(X;, X;) = X
for all 4, j € N such that i # j, and cov(X;, C) = n, E[X;] = ux, and var[X;] = 0%
for all ¢ € N. For the distribution to be well defined, p, ¥, 1, and 03( are such
that the covariance matrix of X1,..., Xn,C is positive definite.

H2.  Analysis

LEMMA 5:  The condition, 0% + (N — 1) > 0, holds.
PROOF:

The covariance matrix of (Xi,..., Xy) is positive definite. Denote the covari-
ance matrix Vx. Each element of the diagonal of Vx is a§< while all other elements
are . This implies that 17Vx1 = N[o% + (N — 1)¥] > 0 where 1 is an N x 1
vector of ones.

THEOREM 6: For each E € N, there exists at least one and up to three sym-
metric affine equilibria. If either n > 0 or O'g = 0, there is a unique symmetric
affine equilibrium. Given an arbitrary E € N let (Ag,ag,(g) be an arbitrary cor-

responding symmetric affine equilibrium. Then Ag, ap, and Cg satisfy equations
(H16), (H17), and (H18). Moreover:

1) For each e € F,
2(1 + 7p(E — 1))
N -2

Ag =

where
YE = corry, (p;, Pk),
for k # e such that k € E.
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2) Price in exchange e € E is

N -1
N

*

be =

AE[Z —apX; — Qe+ NAg].
ieN

3) The final asset position of trader i € N is

ZiEN X + Q

(1 — EO[E)XZ' + Fag N N

4) If ag =0 or E =1, for each E € N, the equilibrium allocation corresponds

with that of the centralized benchmark.

5) If og > 0, given an arbitrary sequence of symmetric affine equilibria,
{(Ag,ag,CE)}Een, we have

N 1+NZ§{
N-1 1_022'

X

Fagp —

PROOF:

The proof proceeds in 3 steps. In the step 1 we compute some relevant moments
corresponding to a symmetric affine equilibrium, (Ag,ag,(g). In step 2, we
substitute the derived moments from step 1 into the optimality condition for a
traders’ demand submission problem and match coefficients to derive a system of
three equations for Ag, ag, and (g. In step 3 we prove existence of a symmetric
affine equilibrium and uniqueness when 7 > 0. We then prove parts 1 through 5.

Step 1: To begin we conjecture an arbitrary symmetric affine equilibrium
(Ag,ap,(g) in which each trader submits a demand schedule of the form in
(2) to each exchange e. For ease of notation define

al, = fie(Xi,p)).
We compute the following unconditional moments.

—aE(Zi Xi)+ AgN — Qe’:| _ TOBKX + Ag e
N Ce ECgN

(H1) E [

> jri —OEX; Qe AE] _ —oppx +Ap HQ

(H2) E{ GOV -1)  GN-D & & ECo(N — 1)
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N
(H3) var [Z Xi] =Nox +25) (i—1) = Nok + I(N - 1)N.
% =1

Using the above moments we can then compute the following moments, condi-
tional on X;, using the projection theorem.

—ap(d; Xi) + ApN — Qo
CEN

(H4) E [

x| -

—apux + Ag  HQ n CELN(_OKE(N_UE_O‘EU%_%)(X'_M )
(e ECpN o% PR
(H5) E [(Z#i —apXj) = Qe+ Ap(N —1) ‘X] _
Cg(N —1) !
—apux + Ag B HQ N m(_aEE(N_l)_%)(X'—,u )
(x ECp(N —1) o2 PR

(H6) var —aE(ZXj) +Ap(N —-1) - Qe
i

X;| =

of  2pap(N —1
a%(N—1)a§{+a?;2(N_2)(N_1)+EP2+;JrmE(E)

(H7) covx, [ Y —apX;— Q> —apX;—Q. | =

J J#i
var Z—aEXj | X5 | — 2coni(Qe/,Z—aEXj) + covy, (Qer, Qe)-
J#i J#

Using the above moments, we compute the following moments, conditional on
X; and pg — qufe, (the portion of price in exchange e which is unknown to agent
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i—see equation (H14)) by using the projection theorem. We have,

f
HS) E |pf|p/ — —e x| =
( ) [pe |pe CE(N—I)’ 3
N—-1 | —agpx +Ag 1Q N—-1_ ql
1-— —(1— _ o~ tie
v (—ap(N -1 - ) —a
+(1—yp) 2t 5 P2 (X — px) + — (X — pix)
Ox CeN
fonf .
H9) E ¢/, |pf — ——e  x;| =
( ) qze ‘pe CE(N—l) K3
N -1 N -1 po o
—apX;i——— — (1 — - A 1—yp)22 _ ZE
apXi— ( ~ ve)(—appx + Ap) + ( ’YE)EN N Hx
A(—ap(N -1)L - % N -1 q
—(1—7p)& ( 5 E)(Xi_MX)_ VeCEPL +YE-L + Ap.
o N N

Above, vg denotes

covx, (3 —apXi — Qe; D2y —apX; — Qo)

(H10) var[y- . —apX; — Qe | X

f
Of course, E[que /| pg —%, X;] could have been computed in one step by just a
single application of the projection theorem, but we found it less algebraicly taxing

f
to apply the projection theorem twice. To finish deriving E[qlfe /| pg — %, Xil,
we must compute an expression for vg. The denominator was computed earlier
in equation (6). To compute the numerator, we make use of the decomposition
in equation (H7). The terms Z#i X;, Q., Qc, and X; are jointly normally
distributed with covariance matrix

(N—1)o% +S(N —2)(N —1) 28D 20D wy_7)

E E
_ n(N-1) L4 % A n
3= E BT E E? E
n(N-1) P L4 % n
FE E;‘]Q E? n E E'2
E(N-1) E E 9%

The goal is to derive the covariance matrix of > ki Xj, Qe, Qe conditional on
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X;, which we denote 2. To do this we can apply the projection theorem. Then

N-1 N-1
(N =1)o% +S(N —2)(N —1) 1 >2 N 1)
- — g
x= e BT b
n(N-1) 2 L4 %
E B2 B2 T E
Yp(N-1) Ep(N-1
, S2(N —1)2 n(N-1) TI(Eé )
- — 277(1;37—1) U U
9% | Zp(N-1) 7 7
- E E? E?
From above, we have
COV x, —CtEXi—f—Z—O&EXj —Qe/,z—aEXj—Qe =
J#i J#1
Y2(N —1)? 2 N -1 by
o2 (N 1o + SN —2) (N — 1) — = 5 ) | ZapnN = 1) - =
o% E 0%
L
E?2  E20%
We finally derive that
(H11) E=——3,
= %
E+ %
where
(H12) E=a}((N = 1)k + SN = (N = 1) + 55 + 22Lap(N - 1)
(—apX(N-1) - 1)’
o% '

This concludes step 1.

Step 2. By market clearing, we have

—ap(d; Xi) + AN — Q.
CeN '

Also by market clearing, the residual supply curve trader i faces in exchange e

(H13) pl =
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is
—ap(d ;X)) Ta+Ap(N—1)— Q.

(H14) pe(Q) = CE(N — 1)

This implies that the price impact agent ¢ faces in exchange e is A := m,
which by symmetry, is the price impact each agent ¢ faces in all exchanges. In

equilibrium trader ¢ equates his expected marginal utility conditional on pg —
f
% and X;, with his marginal cost. That is
f f qf f
(H15) pr —2b | Xi+qf, + (E = DE |gh | p] — G| | = pl + Agl,.

Substiting equation (H9) into (H15) and matching coefficients we obtain a system
of three equations which characterize the three unknowns, Ag, ag, and (g. We
do not explicitly list the algebraic steps here. Matching the coefficients on price,
we obtain

1 N -2
20((E—1)yg+1)N -1

(H16) (g =

Matching the coefficients on X; we obtain

(H17) ap =
1+ %(1]\[%*)71
Bye(y + v+ ) -y + v + 55 ) + ERF (- 5
Matching the constant coefficients, we obtain
(H18) Apg =
fir — 26(E — 1)ux <(IE7VZ)£Q _ (hw)%(afgijv_l)m%) +ap=i(l - ,YE))

2082 (1 +vp(E — 1))

Above, vg, as we saw in equation (H11) is dependent on ag. By inspecting
(H17) and (H11) we see that ap satisfies a cubic equation. This cubic equation
can be derived by multiplying both sides of (H17) by the denominator on the right
hand side of (H17), and then multiplying both sides by the denominator in the
expression for yg. Note that this does not add “solutions” since the denominator
in (H17) is strictly positive since vg > —ﬁ (which can be seen by a proof
analogous to that of Lemma 5) and since the denominator in the expression for
~vg is also strictly positive since it is a variance.
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Step 3. By Theorem 1, equations (H17), (H16), and (H18) are necessary and
sufficient conditions for (Ag,ag,(g) to be a symmetric affine equilibrium. To
prove existence of at least one and up to three such symmetric affine equilibria,
we observe that equilibrium existence is equivalent to the existence of a real root
of the cubic equation that characterizes ap. But since the equation is cubic
it must have at least one real root and up to three real roots. We now prove
uniqueness of the equilibrium when n > 0. Fix E > 1, denote y = ap, and define

9(y) =
R
Yy — — — — — — .
E’YE(]\/?(]JVV,QQ) + %%) + (1 - 'VE)(NZ(JX/,QQ) + M%) + E%(l - %)

Above we view each g also as a function of y as defined by (H11) with y in
place of ag. There exists a symmetric affine equilibrium for each y positive such
that g(y) = 0. Using the assumption that n > 0, the second term in the above
expression is strictly monotone decreasing in vg when vg € (0,1]. By inspecting
equation (H11) (and using Lemma 5) we can show that vz € (0, 1]. Moreover it
is strictly monotone increasing in y. Thus g(y) is strictly monotone increasing in
y. Hence there can exist at most one value of y € R such that g(y) = 0.

We now prove the remaining parts of the theorem. Part 1 follows immediately
from (H16). Part 2 follows immediately from (H14). Part 3 of the theorem is true
of any symmetric affine equilibrium independent of the joint distribution of the
random variables and the proof is analogous to that of Theorem 1. Part 4 follows
from part 3 and (H17) when substituting in vz = 1 which is the value yg takes
on when Uc2,2 = 0. To prove part 5, observe that using Proposition 8, vg — 0. By
equation (H17),

1+ (EEU (1];3%2()71

EaE =

E-1 E-1 1 _ _ .
B+ e+ s+ (B - DR - () (B - DR 2

4502
Since yg — 0, Fag = v—1——5—-
~ (1-=)
X

COROLLARY 6.1: Let {Fag}gen be defined as in Theorem 6. Then —Elg
converges to a constant that exceeds 1 if and only if Jg >0 andn > —[cr% + (N —
1)X], where, by the positive definiteness of the covariance matriz of Xi,...,Xn,
we have 0% + (N —1)X > 0. Further, Eag converges to a constant that ezceeds

2=2 if and only ifag >0 and n > —[20% + (N —2)3]].

PROOF:
Theorem 6 supplies a closed form expression for the limiting value of Fag as
E — 00. The rest of the proof is a simple computation.
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PROPOSITION 7:  Let

I e i
ag%(l — %) —oF(1+ NZ§< 7
where
¢ =
(N = 1ok + 20V =V = 1) = = p (N - )(1- F) +p- %
B N-2 '

If E* is in N, there is a unique symmetric affine equilibrium when E = E* whose
allocation is the efficient allocation. If n > 0, by Theorem 6, there is a unique
symmetric affine equilibrium allocation associated with each E € N. The E € N
whose symmetric affine equilibrium is most efficient is either | E*| or [ E*].

PROOF:

Let (ag, (g, Ap) denote an arbitrary symmetric affine equilibrium. Define gg =
Eap. Substituting equation (H11) into (H17) and rearranging yields a cubic
equation in gg with coefficients

1
3
| ———
[9%] (+N_2)
63]: B+ -——)—4A
N —2
1 1 1 N-12Y% N -1 »
CF(1+ ——) +oi(— )+ 0iE——(1-—)-B
A G LS T s R R
. 2 n 2 N
[1]: —=F — Eog(1 + 7]\70%() + o¢ NoZ’
where ) )
Y2(N -1
AE((N—1)0§(+E(N—2)(N—1)—(02 )),
X
¥
Ox
and )
n
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By definition, at E*, gg« = 1. Therefore, we have

A(1+;)+B(1+%2)—A+F(1+;)

N -2 N N -2
1 1 N-12% N -1 by
2 2 ok
— — Fr—(1-—)-B-F
Ty Tyt w2 T Ty -2
) n 2 N
—EU£(1+W)+UENO_§(—O.

Solving for E* we obtain,

_ALB+F 201 4 1 N1 ¥y ;2 7

- N 9Nt NN 7)) T 9N
- o2N-L(] — 2y 52(1 4 )
&N 0% 3 No?

That the £ € N whose symmetric affine equilibrium allocation is most efficient is
either | E*| or [E*]| when n > 0 follows from Proposition 11.

PROPOSITION 8: For each E € N denote an arbitrary corresponding symmet-
ric affine equilibria, {(Ag,ap,Cg)}ecr. Let Ap be the corresponding equilib-
rium price impact and vg the equilibrium inference coefficient. Then, if U? =0,
{AE}Een diverges to oo and {Vg} Een is the constant sequence of ones. If ag >0,
{Ag}Een converges to

1+ c*
(N —2)
where

1+ 2 2 2

% 1 No? > (N—l)
== (N_ll—XE)Q((N— ok +S(N —2)(N —1) - ————)

oi| F(1-32) 7x
U n?
2N (1 - —
+ (+Nag()n+p 2|

while {vE}Een converges to 0.

PROOF:
The claims when Jg = 0 are obvious in light of Theorem 6. We prove the

claims when ag > 0. By inspecting equation (H17), and recognizing that Lemma
5 implies that % + ﬁ + %% > 0, and that vg > —ﬁ we see that
X

E-1(-7E)[n]
A A
ENFL(1- %)

Ox

lag| <
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Thus inspecting the equation (H11), we see that for large F, the numerator of
vE is O(ﬁ) while the denominator is w(ﬁ) so that yg — 0. To prove that Ap
converges and compute its limit point, we can use (H11) to derive an explicit
expression for Eyg and then use part 5 of Theorem 6. We find that Ag converges
to

1+c*

= (N —2)
PROPOSITION 9:  Suppose n > 0. For each E € N, let Ag denote the equi-
librium price impact in the unique symmetric affine equilibrium. The sequence,

{—Ag}Een, is strictly monotone increasing.

PROOF:
The proof is analogous to that of Proposition 1.

PROPOSITION 10: The total expected payment of liquidity traders is

2

N-1
% — apN(n+ pxpg))-

N

p+

Ap(—poNAE + 0 +

PROOF:

We compute

-E [ZPZQe] = —N]\_f 1AEIE

eckE

Z(Z —apX; + NAg — Qc)Qe

eclE ieN

N -1 p+ p?
= Ap(—ugNAp + of + TQ +apN(n+ pxpg))-

PROPOSITION 11: Suppose U? >0 and n > 0. For each, E € N, denote the
unique symmetric affine equilibrium, (Ag, ag,(g). The sequence, { Eag}pen, is
strictly monotone increasing.

PROOF:
The proof is analogous to that of part 6 of Theorem 1.



